
HarmoniCa: Harmonizing Training and Inference for Better Feature
Caching in Diffusion Transformer Acceleration

Yushi Huang 1 2 * † Zining Wang 2 3 * † Ruihao Gong 2 3 Jing Liu 4 Xinjie Zhang 1 Jinyang Guo 3 5

Xianglong Liu 3 6 Jun Zhang 1

Abstract

Diffusion Transformers (DiTs) excel in generative
tasks but face practical deployment challenges
due to high inference costs. Feature caching,
which stores and retrieves redundant computa-
tions, offers the potential for acceleration. Exist-
ing learning-based caching, though adaptive, over-
looks the impact of the prior timestep. It also suf-
fers from misaligned objectives–aligned predicted
noise vs. high-quality images–between training
and inference. These two discrepancies compro-
mise both performance and efficiency. To this
end, we harmonize training and inference with a
novel learning-based caching framework dubbed
HarmoniCa. It first incorporates Step-Wise De-
noising Training (SDT) to ensure the continuity
of the denoising process, where prior steps can
be leveraged. In addition, an Image Error Proxy-
Guided Objective (IEPO) is applied to balance
image quality against cache utilization through
an efficient proxy to approximate the image er-
ror. Extensive experiments across 8 models, 4
samplers, and resolutions from 256× 256 to 2K
demonstrate superior performance and speedup
of our framework. For instance, it achieves over
40% latency reduction (i.e., 2.07× theoretical
speedup) and improved performance on PIXART-
α. Remarkably, our image-free approach reduces
training time by 25% compared with the previ-
ous method. Our code is available at https:
//github.com/ModelTC/HarmoniCa.

*Equal contribution †Work done during internship at Sense-
Time Resaerch 1iComAI Lab, Hong Kong University of Science
and Technology 2SenseTime Research 3SKLCCSE, Beihang Uni-
versity 4ZIP Lab, Monash University 5IAI, Beihang University
6SCSE, Beihang University. Correspondence to: Ruihao Gong
<gongruihao@buaa.edu.cn>, Jun Zhang <eejzhang@ust.hk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

“A dreamy pastel illustration of a flower-filled meadow beneath
drifting clouds, bright blossoms in the foreground and a distant

cottage perched on a gentle slope, no humans visible.”

(a) PIXART-Σ (b) HarmoniCa (1.73×)

Figure 1. High-resolution 2048 × 2048 images generated using
PIXART-Σ (Chen et al., 2024a) with a 20-step DPM-Solver++
sampler (Lu et al., 2022b). Our proposed feature caching frame-
work achieves a substantial 1.73× speedup with minimal visual
difference. More visualization results can be found in Sec. O.

1. Introduction
Diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021)
have recently gained increasing popularity in a variety of
generative tasks, such as image (Saharia et al., 2022; Esser
et al., 2024) and video generation (Blattmann et al., 2023;
Ma et al., 2024c), due to their ability to produce diverse
and high-quality samples. Among different backbones, Dif-
fusion Transformers (DiTs) (Peebles & Xie, 2023) stand
out for offering exceptional scalability. However, the ex-
tensive parameter size and multi-round denoising nature of
diffusion models bring tremendous computational overhead
during inference, limiting their practical applications. For
instance, generating one 2048×2048 resolution image using
PIXART-Σ (Chen et al., 2024a) with 0.6B parameters and
20 denoising rounds can take up to 14 seconds on a single
NVIDIA H800 80GB GPU, which is unacceptable.

In light of the aforementioned problem, previous methods
emerge from two perspectives: reducing the number of
sampling steps (Liu et al., 2022a; Song et al., 2020b) and de-
creasing the network complexity in noise prediction of each
step (Fang et al., 2023; He et al., 2024). Recently, a new

1

https://github.com/ModelTC/HarmoniCa
https://github.com/ModelTC/HarmoniCa

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

branch of research (Selvaraju et al., 2024; Yuan et al., 2024;
Chen et al., 2024b) has started to focus on accelerating sam-
pling time per step by the feature caching mechanism. This
technique takes advantage of the repetitive computations
across timesteps in diffusion models, allowing previously
computed features to be cached and reused in later steps.
Nevertheless, most existing methods are either tailored to
the U-Net architecture (Ma et al., 2024b; Wimbauer et al.,
2024) or develop their strategy based on empirical observa-
tions (Chen et al., 2024b; Selvaraju et al., 2024). Therefore,
there is a lack of adaptive and systematic approaches for DiT
models. Learning-to-Cache (Ma et al., 2024a) introduces a
learnable router to guide the caching scheme for DiT models.
However, we have found that this method induces discrepan-
cies between training and inference, which always leads to
distortion build-up (Ning et al., 2023; Li et al., 2024b; Ning
et al., 2024). The discrepancies arise from two main factors:
(1) Prior Timestep Disregard: During training, the model
directly samples a timestep and employs the training images
with manually added noise akin to DDPM (Hu et al., 2021).
This pattern ignores the impact of the caching mechanism
from earlier steps, which differs from the inference process.
(2) Objective Mismatch: The training objective minimizes
noise prediction error of each timestep. Differently, the in-
ference goal aims for high-quality final images, causing a
misalignment in objectives. We believe these inconsisten-
cies hinder effective and efficient router learning.

To alleviate the above discrepancies effectively, we harmo-
nize training and inference with HarmoniCa, a novel cache
learning framework featuring a unique training paradigm
and a distinct learning objective. Specifically, to mitigate
the first disparity, we design Step-Wise Denoising Training
(SDT). It aligns the training process with the full denoising
trajectory of inference using a student-teacher model setup.
The student utilizes the cache while the teacher does not,
effectively mimicking the teacher’s outputs across all con-
tinuous timesteps. This approach maintains the reuse and
update of the cache at earlier timesteps, similar to inference.
Additionally, to address the misalignment in optimization
goals, we introduce the Image Error Proxy-Guided Objec-
tive (IEPO). This objective leverages a proxy to approximate
the final image error and reduces the significant costs of di-
rectly utilizing the error to supervise training. IEPO helps
SDT efficiently balance cache usage and image quality. By
combining the two techniques, extensive experiments show
the promising performance and speedup of HarmoniCa, e.g.,
over 1.69× speedup and much lower FID (Nash et al., 2021)
for non-accelerated PIXART-α (Chen et al., 2023). In addi-
tion, HarmoniCa eliminates the requirement of training with
a large number of images and reduces about 25% training
time compared to the existing learning-based method (Ma
et al., 2024a), further enhancing its applicability.

Our contributions are summarized as follows:

• We identify two key discrepancies in existing learning-
based caching methods: (1) Prior Timestep Disregard,
where training neglects the impact of earlier timesteps,
and (2) Objective Mismatch, which minimizes intermedi-
ate output errors rather than final image errors. These is-
sues hinder performance and acceleration improvements.

• We propose HarmoniCa, a framework that resolves these
discrepancies by (1) Step-Wise Denoising Training (SDT),
which captures the full denoising trajectory to account
for earlier timesteps, and (2) Image Error Proxy-Guided
Optimization Objective (IEPO), which aligns the training
objective with inference by approximating image error.

• Extensive experiments on NVIDIA H800 80GB GPUs
with 8 models, 4 samplers, and 4 resolutions demonstrate
the efficacy and universality of our framework. For ex-
ample, it achieves a 6.74 IS increase and 1.24 FID re-
duction on DiT-XL/2, surpassing previous state-of-the-art
(SOTA) methods with a higher speedup ratio. Moreover,
our image-free framework offers greater efficiency and
applicability at significantly lower training costs.

2. Related Work
Diffusion models. Diffusion models, initially conceptual-
ized with the U-Net architecture (Ronneberger et al., 2015),
have achieved satisfactory performance in image (Rombach
et al., 2022; Podell et al., 2023) and video generation (Ho
et al., 2022). Despite their success, U-Net models struggle
with modeling long-range dependencies in complex, high-
dimensional data. In response, the Diffusion Transformer
(DiT) (Peebles & Xie, 2023; Chen et al., 2023; 2024a) is
introduced, leveraging the inherent scalability of Transform-
ers to efficiently enhance model capacities and handle more
complex tasks with improved performance.

Efficent diffusion. Diverse methods have been proposed
to reduce the generation overhead for diffusion models.
These techniques fall into two main categories: reducing
the number of sampling steps and decreasing the computa-
tional load per denoising step. In the first category, several
works utilize distillation (Salimans & Ho, 2022; Luhman &
Luhman, 2021) to obtain reduced sampling iterations. Fur-
thermore, this category encompasses advanced techniques
such as implicit samplers (Kong & Ping, 2021; Song et al.,
2020a; Zhang et al., 2022) and specialized differential equa-
tion (DE) solvers. These solvers tackle both stochastic
differential equations (SDE) (Song et al., 2020b; Jolicoeur-
Martineau et al., 2021) and ordinary differential equations
(ODE) (Lu et al., 2022a; Liu et al., 2022a; Zhang & Chen,
2022), addressing diverse aspects of diffusion model opti-
mization. In contrast, the second category mainly focuses
on model compression (He et al., 2025; Yang et al., 2024;
Guo et al., 2024). It leverages techniques like pruning (Guo

2

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

𝒙! ∼ 𝒩(𝟎, 𝑰)

cache = ∅ ∅ ∅
b"
o"

b#

b$

o#

o$

𝒙%

𝒙%

b"
o"

b$

o#

o$

𝒙$

𝒙$

o"

b$

o#

o$

𝒙#

𝒙#

b"
o"

b$

o#

o$

𝒙"

cache

=
c"
c#
c$

cache

=
c"
c#
c$

cache

=
c"
c#
c$

Router =
0.7 0.2 0.9
0.2 0.3 0.7
0.6
1

0.4
1

0.8
1

𝜏 = 0.5

Forward Data
Flow

Update cache

Use Cached
Feature 𝑡 = 4 𝑡 = 3 𝑡 = 2 𝑡 = 1

Figure 2. Generation process from a random Gaussian noise x4 to an image x0 using feature
caching (T = 4, N = 3). We omit the sampler and conditional inputs.

𝒙!

DiT 𝑡 − 1DiT

cacheRouter!"#,:

DiT 𝑡DiT

𝑡 ∼ 𝒰 2, 𝑇

𝝐 ∼ 𝒩(𝟎, 𝑰)

Learnable Frozen Backward Data Flow

ℒ&'(
!"#

DiT 𝑡 − 1

Figure 3. One training iteration of
Learning-to-Cache. This method uses
the noisy image xt as the input at t.
L(t)

LTC denotes the loss function. “∗”
in “DiT (∗)” represents the timestep.

et al., 2020; Zhang et al., 2024; Wang et al., 2024b;c) and
quantization (Shang et al., 2023; Huang et al., 2024a; He
et al., 2024; Huang et al., 2024b; Lv et al., 2024) to reduce
the workload in a static way. Additionally, dynamic infer-
ence compression is also being explored (Liu et al., 2023;
Pan et al., 2024), where different models are employed at
varying steps of the process. In this work, we focus on the
urgently needed DiT acceleration through feature caching,
a method distinct from the above-discussed ones.

Feature caching. Due to the high similarity between ac-
tivations (Li et al., 2023b; Wimbauer et al., 2024) across
continuous denoising steps in diffusion models, recent stud-
ies (Ma et al., 2024b; Wimbauer et al., 2024; Li et al.,
2023a) have explored caching these features for reuse in
subsequent steps to avoid redundant computations. No-
tably, their strategies rely heavily on the specialized struc-
ture of U-Net, e.g., up-sampling blocks (Ma et al., 2024b)
or SpatialTransformer blocks (Li et al., 2023a). Be-
sides, FORA (Selvaraju et al., 2024) and ∆-DiT (Chen et al.,
2024b) further apply the feature caching mechanism to DiT.
However, both methods select the cache position and lifes-
pan in a handcrafted way. Learning-to-Cache (Ma et al.,
2024a) introduces a learnable cache scheme but induces dis-
crepancies between training and inference. In this work 1,
we design a new learning-based framework to alleviate the
discrepancies between the training and inference, which
further enhances the performance and acceleration for DiT.

In addition, token caching (Zou et al., 2024; Lou et al.,
2024), a granular way to reduce computation, recently
emerged. It can be seen as an extremely fine-grained feature
caching. Although compatible with our work, we only focus
on feature caching with block-wise granularity as below.

1It is worth noting that we focus on the real-time speedup ratio
in this paper instead of the theoretical upper bound in some existing
works (Zou et al., 2024; Chen et al., 2024b).

3. Prelimilaries
Caching granularity. The noise estimation network of
DiT (Peebles & Xie, 2023) is built on the Transformer
block (Vaswani, 2017), which is composed of an Attention
block and a feed-forward network (FFN). Each Attention
block and FFN is wrapped up in a residual connection (He
et al., 2016). For convenience, we sequentially denote these
Attention blocks and FFNs without residual connections as
{b0,b1, . . . ,bN−1}, where N is their total amount. Fol-
lowing the existing study (Ma et al., 2024a), we store the
output of bi in cache as ci. The cache, once completely
filled, is represented as:

cache = [c0,c1, . . . ,cN−1]. (1)

Caching router. The caching scheme for DiT can be for-
mulated with a pre-defined threshold τ (0 ≤ τ < 1) and a
customized router matrix:

Router = [rt,i]1≤t≤T,0≤i≤N−1 ∈ RT×N , (2)

where 0 < rt,i ≤ 1 and T is the maximum denoising
step. At timestep t during inference, the residual branch
corresponding to bi is fused with oi defined as follows:

oi =

{
bi(hi, cs), rt,i > τ

ci, rt,i ≤ τ
, (3)

where hi is the image feature and cs represents the condi-
tional inputs 2. Specifically, rt,i > τ indicates computing
bi(hi, cs) as oi. This computed output also replaces ci in
the cache. Otherwise, the model loads ci from cache
without computation. A naive example of the caching
scheme is depicted in Fig. 2. To be noted, RouterT,: is set
to [1]1×N by default to pre-fill the empty cache.

Cache usage ratio (CUR). In addition, we define cache

usage ratio (CUR) formulated as
∑t=T

t=1

∑N−1
i=0 Irt,i≤τ

N×T in this
paper to represent the reduced computation from reusing
cached features. In Fig. 2, CUR is roughly equal to 33.33%.

2For example, cs represents the time condition and textual
condition for text-to-image (T2I) generation.

3

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

DiT 𝑡
Teacher

ℒ!"#$
%

Use Cached Feature Update cache

cache

𝒙&

𝒙&
%DiT 1DiT DiT 𝑇DiT

(a) Step-Wise Denoising Training (b) Image Error Proxy-Guided Objective

cache

DiT 𝑡DiT
Student

Use Cached Feature cache
Router

Update

…DiT 𝑡DiT DiT 1DiT DiT 𝑇DiT

RouterRouter
ℒ!"#
$ + 𝛽$ r$,&

'()

&*+
𝜆 %

𝒙𝑻 ∼ 𝒩(𝟎, 𝑰)

Step-W
ise

𝑥,()

DiT 𝑡 + 1DiT

Student

Output of

𝑥…
𝑥$

𝑇
…

𝑡
𝑡 + 1

Router⊙ℳ %Router cache

…

… …DiT 𝑡DiT

Figure 4. Overview of HarmoniCa. (a) Step-Wise Denoising Training (SDT) mimics the multi-
timestep inference stage, which integrates the impact of prior timesteps at t. (b) Image-Error
Proxy-Guided Objective (IEPO) incorporates the final image error into the learning objective by
an efficient proxy λ(t), which is updated through gradient-free image generation passes every C
training iterations. M(t) masks the Router to disable the impact of the caching mechanism at
t. ⊙ denotes the element-wise multiplication. See detailed algorithms in Sec. A.

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
xT 1 x0

0.0

0.1

0.2

0.3

M
SE

LTC (32.68%)
SDT (34.20%)

Figure 5. The Mean Square Error (MSE)
of xt for DiT-XL/2 256 × 256 (Pee-
bles & Xie, 2023) induced by differ-
ent feature caching methods. xt is the
noisy image obtained at timestep t+ 1.
“LTC” denotes Learning-to-Cache. For
a fair comparison, L(t)

LTC is employed
for SDT. CUR is marked in the brackets.

4. HarmoniCa
In this section, we first observe that the existing learning-
based caching shows discrepancies between the training and
inference (Sec. 4.1). Then, we propose a framework named
HarmoniCa to harmonize them for better feature caching
(Sec. 4.2). Finally, it shows better efficiency and applicabil-
ity than the previous training-based method (Sec. 4.3).

4.1. Discrepancy between Training and Inference

Most previous approaches (Selvaraju et al., 2024; Chen
et al., 2024b) for DiT set the Router in a heuristic way. To
be adaptive, Learning-to-Cache (Ma et al., 2024a) employs
a learnable Router 3. However, we have identified two
discrepancies between its training and inference as follows.

Prior timestep disregard. As illustrated in Fig. 2, the in-
ference process employing feature caching at timestep t
is subject to the prior timesteps. For example, at timestep
t = 1, the input x1 has the error induced by reusing the
cached features c0 and c1 at preceding timestep t = 2. Fur-
thermore, reusing and updating features at earlier timesteps
also shape the contents of the current cache.

However, Learning-to-Cache is unaffected by prior denois-
ing steps during training. Specifically, for each iteration, as
depicted in Fig. 3, it first uniformly samples a timestep t akin
to DDPM (Ho et al., 2020). It then pre-fills an empty cache
at t and proceeds to train Routert−1,: at subsequent t− 1.
Without being influenced by the caching mechanism from
T to t + 1, this pattern incurs significant error accumula-
tion (Arora et al., 2022; Schmidt, 2019) as demonstrated by
the trends of red polyline in Fig. 5.

Objective mismatch. Moreover, we also find that Learning-
to-Cache (Ma et al., 2024a) solely aimed at aligning the
predicted noise at each denoising step during training. It

3rt,i in the Router is a learnable parameter.

leverages the following learning objective at timestep t:

L(t)
LTC = L(t)

MSE + β
∑N−1

i=0 rt,i, (4)

where β is a coefficient for the regularization term of the
Routert: and L(t)

MSE represents MSE between predicted
noise of DiT with and without feature caching at t.

In contrast, the target for inference is to obtain a high-quality
image x0. Thus, L(t)

LTC induces a target mismatch due to
bypassing direct image optimization. This potentially results
in optimization shift (Rezatofighi et al., 2019) and severe
object distortion, as shown by Fig. 6 (a) vs. (b).

4.2. Harmonizing Training and Inference

Existing studies (Ning et al., 2023; Li et al., 2024b; Ning
et al., 2024) on diffusion models also validate that discrepan-
cies between training and inference can lead to error accumu-
lation and result in performance degradation. To solve the
problem, we introduce HarmoniCa, a new learning-based
caching framework that harmonizes training and inference
through the following two techniques.

Step-wise denoising training. To mitigate the first dis-
crepancy, as shown in Fig. 4 (a), we propose a new train-
ing paradigm named Step-Wise Denoising Traning (SDT).
This strategy completes the entire denoising process over
T timesteps, thereby accounting for the cache usage and
update from all prior timesteps. Specifically, at timestep T ,
we randomly sample a Gaussian noise xT and perform a
single denoising step to pre-fill the cache. Over the fol-
lowing T − 1 timesteps, the student model, which employs
feature caching, step-wise removes noise to generate an
image. Concurrently, the teacher model executes the same
task without utilizing the cache. Requiring the student to
mimic the output representation of its teacher, we compute
the loss function and perform back-propagation to update
Routert,: at each timestep t. To ensure that each rt,i is dif-

4

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

(a) DiT-XL/2 (b) SDT+L(t)
LTC (1.40×) (c) HarmoniCa (1.44×)

Figure 6. Random samples for DiT-XL/2 256× 256 w/ and w/o feature caching (T = 20). We mark the speedup ratio in the brackets.

ferentiable during training (Ma et al., 2024a), distinct from
Eq. (3), we proportionally combine the directly computed
feature with the cached one to obtain oi:

oi = rt,ibi(hi, cs) + (1− rt,i)ci. (5)

Similar to inference, we also update ci in the cache with
bi(hi, cs) when rt,i > τ . To improve training stabil-
ity (Wimbauer et al., 2024), we fetch the output from the
student as the input to the teacher for the next iteration. We
repeat the above T learning iterations during training.

As depicted in Fig. 5, by incorporating prior denoising
timesteps during training, SDT significantly reduces ac-
cumulated error at each timestep and obtains a much more
accurate x0, with lower computation, compared to LTC.

Image error proxy-guided objective. For the second dis-
crepancy, a straightforward solution to align the target with
inference involves using the error of the final image x0

caused by cache usage directly with a regularization term
of Router as our training objective. However, even for
DiT-XL/2 256 × 256 (Peebles & Xie, 2023) with a small
training batch size, this requires approximately 5× GPU
memory and 10× time compared to SDT combined with
L(t)
LTC as detailed in Sec. B, making it impractical. There-

fore, we have to identify a proxy for the error of the image
x0 that can be integrated into the learning objective.

Based on the above analysis, we propose an Image Er-
ror Proxy-guided Objective (IEPO). It is defined at each
timestep t as follows:

L(t)
IEPO = λ(t)L(t)

MSE + β
∑N−1

i=0 rt,i, (6)

where λ(t) is our final image error proxy treated as a coeffi-
cient of L(t)

MSE . This proxy represents the final image error
caused by the cache usage at t. With a large λ(t), L(t)

MSE

prioritizes reduction of the output error at t. This tends to
decrease the cached feature usage rate at the corresponding
timestep, and vice versa. Therefore, our proposed objec-
tive considers the trade-off between the error of x0 and the
cache usage at a certain denoising step.

Here, we detail the process to obtain λ(t). For a given
Router, a mask matrix is defined to disable reusing cached
features and force updating the entire cache at t as:

M(t)
j,k =

{
1, j ̸= t
1

rj,k
, j = t

, (7)

where (j, k) 4 denotes the index of M(t) ∈ RT×N . As
depicted in Fig. 4 (b), x0 and x

(t)
0 are final images generated

from a randomly sampled Gaussian noise xT using feature
caching guided by (Upper) Router and (Lower) Router
element-wise multiplied by M(t), respectively. Then, we
can formulate λ(t) as:

λ(t) = ∥x0 − x
(t)
0 ∥2F , (8)

where ∥ · ∥F denotes the Frobenius norm. To adapt to
the training dynamics, we periodically update all the co-
efficients {λ(1), . . . , λ(T)} every C iterations, where C
mod T = 0, instead of employing static ones.

Fig. 6 shows that L(t)
IEPO achieves significant performance

improvement and yields accurate objective-level traits at a
higher speedup ratio than L(t)

LTC . The study in Sec. C justi-
fies that employing L(t)

LTC incurs the optimization deviation
from minimizing the error of x0.

4.3. Efficiency Discussion

Training efficiency. HarmoniCa incurs significantly lower
training costs than the previous learning-based method. In
Tab. 1, HarmoniCa requires no training images (i.e., image-
free), whereas Learning-to-Cache utilizes original training
datasets. Thus, it is challenging to apply Learning-to-Cache
to models like the PIXART-α (Chen et al., 2023) family,
which are trained on large datasets, limiting its applicability.
Moreover, while dynamic update of λ(t) incurs approxi-
mately 10% extra time overhead, HarmoniCa requires only
3
4 training hours compared to Learning-to-Cache, which
needs to pre-fill the cache for each training iteration.

Table 1. Training costs of learning-based feature caching for DiT-
XL/2 256 × 256 (T = 20). We train with all methods for 20K
iterations using a global batch size 64 on 4 NVIDIA H800 80GB
GPUs. We set C = 500. Learning-to-Cache uses the full ImageNet
training set (Russakovsky et al., 2015) as its original paper.

Method #Images Time(h) Memory(GB/GPU)

Learning-to-Cache 1.22M 2.15 33.33

SDT+L(t)
LTC 0 1.47 33.28

HarmoniCa 0 1.63 33.28

Inference efficiency. For inference, our method with a pre-
learned Router has little computational overhead during

41 ≤ j ≤ T and 0 ≤ k ≤ N − 1.

5

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

runtime. Additionally, less than 6% extra memory over-
head 5 is induced by cache for DiT-XL/2 256×256. There-
fore, the introduced cost is controlled at a small level. For
PIXART-α, HarmoniCa achieves over 2.07× theoretical
speedup 6 and 1.69× real-world speedup with hugely im-
proved performance than the non-accelerated one.

We provide more training and inference costs in Sec. D.

5. Experiments
5.1. Implementation Details

Models and datasets. We conduct experiments on two dif-
ferent image generation tasks. For class-conditional task,
we employ DiT-XL/2 (Peebles & Xie, 2023) 256× 256 and
512× 512 pre-trained on ImageNet dataset (Russakovsky
et al., 2015). For text-to-image (T2I) task, we utilize
PIXART-α (Chen et al., 2023) series, known for its outstand-
ing performance. These models, including PIXART-XL/2 at
resolutions of 256×256 and 512×512, along with PIXART-
XL/2-1024-MS at a higher resolution of 1024× 1024, are
tested on the MS-COCO dataset (Lin et al., 2015).

Training settings. Following (Ma et al., 2024a), we set
the threshold τ as 0.1 for all the models. Each of them
is trained for 20K iterations employing the AdamW opti-
mizer (Loshchilov & Hutter, 2019) on 4 NVIDIA H800
80GB GPUs. The learning rate is fixed at 0.01, C is set to
500, and global batch sizes of 64, 48, and 32 are utilized for
models with increasing resolutions. Additionally, we collect
1000 MS-COCO captions for T2I training.

Baselines. For class-conditional experiments, we choose
the current SOTA Learning-to-Cache (Ma et al., 2024a) as
our baseline. Due to the high training cost mentioned in
Sec. 4.3, we employ FORA (Selvaraju et al., 2024) and
∆-DiT (Chen et al., 2024b), excluding Learning-to-Cache
for the T2I task. The results of these methods are obtained
either by re-running their open-source code (if available) or
by using the data provided in the original papers, all under
the same conditions as our experiments. We also report the
performance of models with reduced denoising steps. For a
fair comparison, we exclude methods (Zou et al., 2024; Lou
et al., 2024) employing highly different caching granularity,
which is not the focus of the work, from our baselines.

Evaluation. To assess the generation quality, Fréchet In-
ception Distance (FID) (Nash et al., 2021), and sFID (Nash
et al., 2021) are applied to all experiments. For DiT/XL-
2, we additionally provide Inception Score (IS) (Salimans
et al., 2016), Precision, and Recall (Kynkäänniemi et al.,

5The cache occupies 0.49 GB GPU memory with a batch size
of 8 and original inference takes 8.18 GB GPU memory.

6The theoretical speedup is based on floating-point operations
(FLOPs), and the real-world speedup is shown in Fig. 3.

2019) as reference metrics. For PIXART-α, to gauge the
compatibility of image-caption pairs, we calculate CLIP
score (Hessel et al., 2022) using ViT-B/32 (Dosovitskiy
et al., 2020) as the backbone. To evaluate the inference effi-
ciency, we measure CUR 7 and inference latency. In detail,
we sample 50K images adopting DDIM (Song et al., 2020a)
for DiT-XL/2, and 30K images utilizing IDDPM (Nichol
& Dhariwal, 2021), DPM-Solver++ (Lu et al., 2022b), and
SA-Solver (Xue et al., 2024) for PIXART-α. All of them
use classifier-free guidance (cfg) (Ho & Salimans, 2022).

More implementation details can be found in Sec. E, and the
qualitative experiments are available in Sec. N. In addition,
we apply the trained Router to a different sampler from
training during inference in Sec. L. The robustness of our
methods has also been validated in Sec. M.

5.2. Main Results

Class-conditional generation. We begin our evaluation
for DiT-XL/2 on ImageNet and compare HarmoniCa with
current SOTA Learning-to-Cache (Ma et al., 2024a) and
the approach employing fewer timesteps. The results in
Tab. 2 show that our method surpasses all baselines. No-
tably, with a higher speedup ratio for a 10-step DiT-XL/2
256× 256, HarmoniCa achieves an FID of 13.35 and an IS
of 151.83, outperforming Learning-to-Cache by 1.24 and
6.74, respectively. Moreover, the superiority of our Har-
moniCa increases as the number of timesteps decreases. We
conjecture that it is because the difficulty to learn a Router
rises as the timestep goes up. Additionally, we further con-
duct experiments with a lower CUR for this task in Sec. H.

Table 2. Accelerating generation on ImageNet for the DiT-XL/2.
We highlight the best score in bold.

Method T IS↑ FID↓ sFID↓ Prec.↑ Recall↑ CUR(%)↑ Latency(s)↓

DiT-XL/2 256× 256 (cfg = 1.5)

DDIM (Song et al., 2020a) 50 240.37 2.27 4.25 80.25 59.77 - 1.767

DDIM (Song et al., 2020a) 39 237.84 2.37 4.32 80.22 59.31 - 1.379(1.28×)

Learning-to-Cache (Ma et al., 2024a) 50 233.26 2.62 4.50 79.40 59.15 23.39 1.419(1.25×)

HarmoniCa 50 238.74 2.36 4.24 80.57 59.68 23.68 1.361(1.30×)

DDIM (Song et al., 2020a) 20 224.37 3.52 4.96 78.47 58.33 - 0.658

DDIM (Song et al., 2020a) 14 201.83 5.77 6.61 75.14 55.08 - 0.466(1.41×)

Learning-to-Cache (Ma et al., 2024a) 20 201.37 5.34 6.36 75.04 56.09 35.60 0.468(1.41×)

HarmoniCa 20 206.57 4.88 5.91 75.20 58.74 37.50 0.456(1.44×)

DDIM (Song et al., 2020a) 10 159.93 12.16 11.31 67.10 52.27 - 0.332

DDIM (Song et al., 2020a) 9 140.37 16.54 14.44 62.63 50.08 - 0.299(1.11×)

Learning-to-Cache (Ma et al., 2024a) 10 145.09 14.59 11.58 64.03 52.06 19.11 0.279(1.19×)

HarmoniCa 10 151.83 13.35 11.13 65.22 52.18 22.86 0.270(1.23×)

DiT-XL/2 512× 512 (cfg = 1.5)

DDIM (Song et al., 2020a) 20 184.47 5.10 5.79 81.77 54.50 - 3.356

DDIM (Song et al., 2020a) 16 173.31 6.47 6.67 81.10 51.30 - 2.688(1.25×)

Learning-to-Cache (Ma et al., 2024a) 20 178.11 6.24 7.01 81.21 53.30 23.57 2.633(1.28×)

HarmoniCa 20 179.84 5.72 6.61 81.33 55.80 25.98 2.574(1.30×)

T2I generation. We also present PixArt-α results in Tab. 3,
comparing our HarmoniCa against FORA (Selvaraju et al.,

7Definition can be found in Sec. 3.

6

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

Table 3. Accelerating generation on MS-COCO for PIXART-α.
The results of PIXART-Σ (Chen et al., 2024a) family are available
in Sec. F, including generation with resolution of 2048× 2048.

Method T CLIP↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓

PIXART-α 256× 256 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 30.96 27.68 36.39 - 0.553

DPM-Solver++ (Lu et al., 2022b) 15 30.77 31.68 38.92 - 0.418(1.32×)

FORA (Selvaraju et al., 2024) 20 31.10 27.42 37.98 50.00 0.364(1.52×)

HarmoniCa 20 31.13 26.33 37.85 56.01 0.346(1.60×)

IDDPM (Nichol & Dhariwal, 2021) 100 31.25 24.15 33.65 - 2.572

IDDPM (Nichol & Dhariwal, 2021) 75 31.25 24.17 33.73 - 1.868(1.37×)

FORA (Selvaraju et al., 2024) 100 31.25 25.16 33.62 50.00 1.558(1.65×)

HarmoniCa 100 31.17 23.73 32.23 53.24 1.523(1.69×)

SA-Solver (Xue et al., 2024) 25 31.31 26.78 38.35 - 0.891

SA-Solver (Xue et al., 2024) 20 31.23 27.45 39.01 - 0.665(1.34×)

HarmoniCa 25 31.27 27.07 38.62 54.19 0.561(1.59×)

PIXART-α 512× 512 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.30 23.96 40.34 - 1.759

DPM-Solver++ (Lu et al., 2022b) 15 31.29 25.12 40.37 - 1.291(1.36×)

HarmoniCa 20 31.29 24.81 40.18 54.64 1.072(1.64×)

SA-Solver (Xue et al., 2024) 25 31.23 25.43 39.84 - 2.263

SA-Solver (Xue et al., 2024) 20 31.19 25.85 40.08 - 1.738(1.30×)

HarmoniCa 25 31.20 25.74 39.99 54.24 1.406(1.61×)

PIXART-α 1024× 1024 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.10 25.01 37.80 - 9.470

DPM-Solver++ (Lu et al., 2022b) 15 31.07 25.77 42.50 - 7.141(1.32×)

HarmoniCa 20 31.09 23.02 36.24 55.06 5.786(1.63×)

SA-Solver (Xue et al., 2024) 25 31.05 23.65 38.12 - 11.931

SA-Solver (Xue et al., 2024) 20 31.02 23.88 39.41 - 9.209(1.30×)

Harmonica 25 31.07 23.77 38.93 53.98 7.551(1.58×)

2024) and the method using fewer timesteps. HarmoniCa
outperforms these baselines across all metrics. For example,
with the 20-step DPM-Solver++, PIXART-α 256× 256 em-
ploying HarmoniCa achieves an FID of 26.33 and speeds
up by 1.60×, surpassing the non-accelerated model’s FID
of 27.68. In contrast, DPM-Solver++ with 15 steps and
FORA only achieve FIDs of 31.68 and 27.42, respectively,
with speed increases under 1.52×. Notably, HarmoniCa
also cuts about 41% off processing time without dropping
performance when using the IDDPM sampler, while FORA
results in over a 1.10 FID increase compared with the non-
accelerated model. Overall, our method consistently deliv-
ers superior performance and speedup improvements across
different resolutions and samplers, demonstrating its effi-
cacy. Additionally, in Sec. I, HarmoniCa also significantly
outperforms ∆-DiT (Chen et al., 2024b).

Besides the above evaluation, we have also conducted ex-
periments with more metrics (e.g., Image-Reward (Xu et al.,
2024), LPIPS (Zhang et al., 2018), and PSNR), which are
provided in Sec. K. Here, we present DINO (Caron et al.,
2021) and human evaluations (e.g., HPSv2 (Wu et al., 2023)
and PickScore (Kirstain et al., 2023)). As shown in the
Tab. 4, our method outperforms baselines and achieves com-
parable performance with non-accelerated models.

Results for flow-based models. HarmoniCa can be
effectively applied to rectified flow models (Liu et al.,
2022b). We employ the pretrained models and evaluation

Table 4. Evaluation with additional metrics for PIXART-α.
Method T DINO↑ HPSv2↑ PickScore↑ CUR(%)↑ Latency(s)↓

PIXART-α 256× 256 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 0.3082 28.91 27.89 - 0.553

DPM-Solver++ (Lu et al., 2022b) 15 0.2582 27.98 23.02 - 0.418(1.32×)

FORA (Selvaraju et al., 2024) 20 0.2712 28.11 22.44 50.00 0.364(1.52×)

HarmoniCa 20 0.3235 28.72 26.65 56.01 0.346(1.60×)

PIXART-α 512× 512 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 0.3339 30.53 28.52 - 1.759

DPM-Solver++ (Lu et al., 2022b) 15 0.3127 29.79 22.03 - 1.291(1.36×)

FORA (Selvaraju et al., 2024) 20 0.3099 29.82 21.98 50.0 1.150(1.53×)

HarmoniCa 20 0.3289 30.28 27.47 54.64 1.072(1.64×)

in LFM (Dao et al., 2023). As shown in Tab. 5 (T = 100,
Euler Solver, and a batch size of 8), it achieves substantial
speedup ratios without performance degradation.

Table 5. Accelerating generation for LFM (Dao et al., 2023).
Dataset Model FID↑ Latency(s)↓

LSUN-Bedroom 256× 256 (Yu et al., 2016) DiT-L/2 5.22 1.76

w/ HarmoniCa DiT-L/2 5.13 1.09(1.62×)

CelebaHQ 256× 256 (Karras et al., 2018) DiT-L/2 5.42 1.76

w/ HarmoniCa DiT-L/2 5.41 1.07(1.65×)

ImageNet 256× 256 (Russakovsky et al., 2015) DiT-B/2 (cfg = 1.5) 5.06 1.37

w/ HarmoniCa DiT-B/2 (cfg = 1.5) 5.04 0.87(1.58×)

Comparison with the increase in speedup ratio. To
emphasize the significant advantage of our method over
Learning-to-Cache, we present the IS and FID results as
the speedup ratio increases for both Learning-to-Cache and
our methods in Fig. 7. As the speedup ratio grows, the
gap between Learning-to-Cache and our approach widens
substantially. Specifically, with a speedup ratio of approxi-
mately 1.6, HarmoniCa achieves substantially higher IS and
lower FID scores, 30.90 and 12.34, respectively, compared
to Learning-to-Cache.

+30.90

-12.34

Figure 7. IS/FID with the increase of the speedup ratio for different
methods. We employ DiT-XL/2 with a 10-step DDIM sampler on
ImageNet 256× 256.

Comparison with additional feature caching methods.
To highlight HarmoniCa’s advantages, we compare it with
DeepCache (Ma et al., 2024b) and Faster Diffusion (Li
et al., 2023a) on a single A6000 GPU. Due to the par-
tial open-sourcing of the compared methods and the lack
of implementation details, we directly report their results

7

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

from Learning-to-Cache. As demonstrated in Tab. 6,

Table 6. Comparison between different
caching-based approaches. We use U-
ViT (Bao et al., 2023) on ImageNet
256×256 here.

Method T FID↓ Latency(s)↓

DPM-Solver (Lu et al., 2022a) 20 2.57 7.60

Faster Diffusion (Li et al., 2023a) 20 2.82 5.95(1.28×)

DeepCache (Ma et al., 2024b) 20 2.70 4.68(1.62×)

HarmoniCa 20 2.61 4.60(1.65×)

HarmoniCa shows a
negligible < 0.05
FID increase with a
1.65× speedup ra-
tio, outperforming
both methods. No-
tably, DeepCache is
constrained by the
U-shaped structure,
making it unsuit-
able for DiTs.

Table 7. Comparison between different acceleration approaches.
We use DiT-XL/2 on ImageNet 256×256 here. “*” denotes the la-
tency was tested on one NVIDIA A100 80GB GPU. Experimental
details are presented in Sec. G.

Method T IS↑ FID↓ sFID↓ Latency(s)↓ Latency(s)↓*

DDIM (Zhang et al., 2022) 20 224.37 3.52 4.96 0.658 1.217

EfficientDM (He et al., 2024) 20 172.70 6.10 4.55 0.591(1.11×) 0.842(1.45×)

PTQ4DiT (Wu et al., 2024) 20 17.06 71.82 23.16 0.577(1.14×) 0.839(1.45×)

Diff-Pruning (Fang et al., 2023) 20 168.10 8.22 6.20 0.458(1.44×) 0.813(1.50×)

HarmoniCa 20 206.57 4.88 5.91 0.456(1.44×) 0.815(1.49×)

Comparison with pruning and quantization. As shown
in Tab. 7, we compare our HarmoniCa with advanced quan-
tization and pruning methods. Our method significantly
outperforms these methods, demonstrating the substantial
benefit of feature caching for accelerating DiT models. It
is important to note that the speedup ratio for quantization
is partially determined by hardware support, which we do
not rely on, and the current customized CUDA kernel often
lacks optimization on H800’s Hopper architecture. Here,
we believe the significant performance drop of PTQ4DiT
results from small sampling steps. A 50/250-step DDPM
sampler is used in the original paper.

Combination with quantization. We conduct experiments
to show the high compatibility of our HarmoniCa with the
model quantization technique. In Tab. 8, our method boosts
a considerable speedup ratio from 1.18× to 1.85× with only
a 0.12 FID increase for PIXART-α 256× 256. In the future,
we will explore combining our HarmoniCa with other ac-
celeration techniques, such as pruning and distillation, to
further reduce the computational demands for DiT.

5.3. Ablation Studies

In this subsection, we employ a 20-step DDIM (Song et al.,
2020a) sampler for DiT-XL/2 256× 256.

Effect of different components. To show the effectiveness
of components involved in HarmoniCa, we apply different
combinations of training techniques and show the results
in Tab. 9. For the training paradigm, equipped with L(t)

LTC ,

Table 8. Results of combining our framework with an advanced
quantization method: EfficientDM (He et al., 2024). IS↑ is for
DiT-XL/2 and CLIP↑ is for PIXART-α in the table. Experimental
details here can be found in Sec. G.

Method IS↑/CLIP↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓ #Size(GB)↓

DiT-XL/2 256× 256 (cfg = 1.5)

EfficientDM (He et al., 2024) 172.70 6.10 4.55 - 0.591(1.11×) 0.64(3.93×)

w/ HarmoniCa (β = 4e−8) 168.16 6.48 4.32 26.25 0.473(1.40×) 0.64(3.93×)

PIXART-α 256× 256 (cfg = 4.5)

EfficientDM (He et al., 2024) 30.09 34.84 30.34 - 0.469(1.18×) 0.59(1.98×)

w/ HarmoniCa 30.15 34.96 30.55 53.34 0.299(1.85×) 0.59(1.98×)

PIXART-α 512× 512 (cfg = 4.5)

EfficientDM (He et al., 2024) 30.71 25.82 41.64 - 0.461(1.20×) 0.59(1.98×)

w/ HarmoniCa 30.75 26.15 41.99 53.11 0.281(1.97×) 0.59(1.98×)

our SDT significantly decreases FID by 10 compared to
that of Learning-to-Cache. For the learning objective, our
IEPO achieves nearly a 40 IS improvement and a 3.13 FID
reduction for SDT compared with L(t)

LTC . Moreover, both
SDT and IEPO can help significantly enhance performance
for the counterparts in the table. For a fair comparison, we
modify the implementation of Learning-to-Cache to train
the entire Router in Tab. 9. A detailed discussion of this
can be found in Sec. J.

Table 9. Effect of different components. The first row denotes
the model w/o feature caching. The green and blue rows denote
Learning-to-Cache and HarmoniCa, respectively.

Training Paradigm Learning Objective
IS↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓

Learning-to-Cache SDT L(t)
LTC L(t)

IEPO

224.37 3.52 4.96 - 0.658

✔ ✔ 115.00 18.57 16.18 32.68 0.483(1.36×)

✔ ✔ 203.41 5.20 6.07 36.70 0.458(1.44×)

✔ ✔ 166.65 8.01 7.62 34.20 0.471(1.40×)

✔ ✔ 206.67 4.88 5.91 37.50 0.456(1.44×)

200 400 500 600 800 1K 20K
Interval C

4

5

6

7

8

FI
D

0.30

0.35

0.40

0.45

La
te

nc
y

(s
)

Figure 8. Ablation results of different iter-
ation interval C. “∅” denotes the employ-
ing L(t)

LTC as loss function.

Effect of itera-
tion interval C.
As illustrated in
Fig. 8, we carry
out experiments
to evaluate the
impact of differ-
ent values of C
on updating λ(t)

in Eq. (8). De-
spite the similar
speedup ratios, employing an extreme C value leads to no-
table performance drops. Specifically, a large C means the
proxy λ(t) fails to accurately and timely reflect the caching
mechanism’s effect on the final image. Conversely, a small
C results in overly frequent updates, complicating training
convergence. Hence, we choose a moderate value of 500 as
C in this paper based on its superior performance.

8

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

Table 10. Ablation results of different metrics for λ(t). The first and second columns represent the
model w/o feature caching and SDT+L(t)

LTC , respectively. DKL(·) denotes Kullback–Leibler (KL)
divergence. We employ ∥ · ∥2F in the paper to obtain λ(t).

λ(t) +∞ 1
∑

|x0 − x
(t)
0 | ∥x0 − x

(t)
0 ∥2F DKL(x0,x

(t)
0) 1− MS-SSIM(x0,x

(t)
0) LPIPS(x0,x

(t)
0)

IS↑ 224.37 166.65 172.08 206.57 205.91 204.72 205.83
FID↓ 3.52 8.01 6.95 4.88 5.25 4.91 4.83
sFID↓ 4.96 7.62 7.79 5.91 5.51 5.83 5.57

CUR(%)↑ - 34.20 34.82 37.50 36.79 37.68 37.32
Latency(s)↓ 0.658 0.471(1.40×) 0.470(1.40×) 0.456(1.44×) 0.458(1.44×) 0.456(1.44×) 0.456(1.44×)

Table 11. Performance of Harmon-
iCa across different values of τ ∈
[0, 1). τ is the threshold for the
Router as described in Sec. 3.
τ T IS↑ FID↓ sFID↓ Latency(s)↓

0.1 10 151.83 13.35 11.13 0.270(1.23×)

0.5 10 151.80 13.41 11.09 0.269(1.23×)

0.9 10 151.78 13.37 11.08 0.270(1.23×)

3e 8 5e 8 8e 8 1e 7 1.2e 7 1.5e 7

4

6

8

10

12

FI
D

 Sharp

Gradual

Sharp

0.3

0.4

0.5

0.6

0.7

La
te

nc
y

(s
)

Figure 9. Ablation results of different co-
efficient β. “∅” denotes the model w/o
feature caching.

Effect of coeffi-
cient β. We also
explore the trade-
off between infer-
ence speed and
performance for
various values of
β in Eq. (6). As
shown in Fig. 9, a
higher β leads to
greater acceleration but at the cost of more pronounced
performance degradation, and vice versa. Notably, perfor-
mance declines gradually when β ≤ 8e−8 and more sharply
outside this range. This observation suggests the potential
for autonomously finding an optimal β to balance speed and
performance, which we aim to address in future research.

Effect of different metrics for λ(t). In Tab. 10, we con-
duct experiments to explore the effect of λ(t) with different
metrics. Both ∥ · ∥2F and DKL(·) lead to notable perfor-
mance enhancements compared to using only the output
error (i.e., λ(t) = 1) at each timestep. Due to the insensitiv-
ity to outliers,

∑
| · | is generally less effective for image

reconstruction and inferior to the others in the table. We fur-
ther test MS-SSIM (Wang et al., 2003) and LPIPS 8 (Zhang
et al., 2018), which are designed to evaluate natural image
quality as metrics for λ(t). These metrics exhibit similar
performance compared with ∥ · ∥2F .

Effect of different threshold τ . we conduct study on dif-
ferent values of caching threshold τ in Tab. 11. The results
demonstrate our method is robust w.r.t variations in τ . Thus,
we set τ to 0.1 for all the experiments in this work.

SDT vs. teacher forcing. Teacher forcing, which uses the
outputs of a non-accelerated teacher model as the input data
(i.e., replace ϵ(t)

′
by ϵ(t) in the 13th row of Alg. 1) for the

next iteration of training, may further help mitigate cumula-
tive errors. In Tab. 12, SDT shows comparable results with
teacher forcing, which indicates that using ϵ(t)

′
would not

lead to potential error accumulation compared with ϵ(t). A
more detailed theoretical analysis is planned for future work.

8AlexNet (Krizhevsky et al., 2017) is used to extract features.

Table 12. Comparison between SDT and teacher forcing. Both
employ L(t)

IEPO as their loss functions.
Method T IS↑ FID↓ sFID↓ Latency(s)↓

DiT-XL/2 256× 256 (cfg = 1.5)

SDT 20 4.88 206.57 5.91 0.456(1.44×)

Teacher forcing 20 4.87 207.12 6.02 0.458(1.44×)

DiT-XL/2 512× 512 (cfg = 1.5)

SDT 20 5.72 179.84 6.61 2.574(1.30×)

Teacher forcing 20 5.74 178.96 6.61 2.577(1.30×)

6. Conclusions and Limitations
In this research, we focus on accelerating Diffusion Trans-
formers (DiTs) through a learning-based caching mecha-
nism. We first identify two discrepancies between training
and inference of the previous method: (1) Prior Timestep
Disregard in which earlier step influences are neglected dur-
ing training, and (2) Objective Mismatch, where training
only focuses on intermediate results. To solve these, we
introduce a novel caching framework named HarmoniCa,
which consists of Step-wise Denoising Training (SDT) and
an Image Error Proxy-Guided Objective (IEPO). SDT cap-
tures the influence of all timesteps during training, while
IEPO introduces an efficient proxy for image error. Exten-
sive experiments show that HarmoniCa achieves superior
performance and efficiency with lower training costs than
the existing training-based method. In terms of limitations,
we focus on block-wise caching and image generation in
this work. However, we believe our work is easy to expand
to any caching granularity and video/audio/3D generation.

Acknowledgement
We thank Chengtao Lv and Yuyang Chen for their insights
and feedback, and Yifu Ding for her help with diagrams.
This work was supported by the Hong Kong Research
Grants Council under the Areas of Excellence scheme grant
AoE/E-601/22-R and NSFC/RGC Collaborative Research
Scheme grant CRS HKUST603/22. It was also supported
by the Beijing Municipal Science and Technology Project
(No. Z231100010323002), the National Natural Science
Foundation of China (Nos. 62306025, 92367204), CCF-
Baidu Open Fund, and Beijing Natural Science Foundation
(QY24138).

9

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Arora, K., El Asri, L., Bahuleyan, H., and Cheung, J. Why

exposure bias matters: An imitation learning perspective
of error accumulation in language generation. In Muresan,
S., Nakov, P., and Villavicencio, A. (eds.), Findings of the
Association for Computational Linguistics: ACL 2022,
pp. 700–710, Dublin, Ireland, May 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.
findings-acl.58. URL https://aclanthology.
org/2022.findings-acl.58.

Bao, F., Nie, S., Xue, K., Cao, Y., Li, C., Su, H., and Zhu, J.
All are worth words: A vit backbone for diffusion mod-
els, 2023. URL https://arxiv.org/abs/2209.
12152.

Blattmann, A., Dockhorn, T., Kulal, S., Mendelevitch, D.,
Kilian, M., Lorenz, D., Levi, Y., English, Z., Voleti, V.,
Letts, A., et al. Stable video diffusion: Scaling latent
video diffusion models to large datasets. arXiv preprint
arXiv:2311.15127, 2023.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,
Bojanowski, P., and Joulin, A. Emerging properties in
self-supervised vision transformers, 2021. URL https:
//arxiv.org/abs/2104.14294.

Chen, J., Yu, J., Ge, C., Yao, L., Xie, E., Wu, Y., Wang,
Z., Kwok, J., Luo, P., Lu, H., et al. Pixart-\alpha: Fast
training of diffusion transformer for photorealistic text-
to-image synthesis. arXiv preprint arXiv:2310.00426,
2023.

Chen, J., Ge, C., Xie, E., Wu, Y., Yao, L., Ren, X., Wang, Z.,
Luo, P., Lu, H., and Li, Z. Pixart-\sigma: Weak-to-strong
training of diffusion transformer for 4k text-to-image
generation. arXiv preprint arXiv:2403.04692, 2024a.

Chen, P., Shen, M., Ye, P., Cao, J., Tu, C., Bouganis, C.-S.,
Zhao, Y., and Chen, T. δ-dit: A training-free acceleration
method tailored for diffusion transformers, 2024b. URL
https://arxiv.org/abs/2406.01125.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training deep
nets with sublinear memory cost, 2016. URL https:
//arxiv.org/abs/1604.06174.

Dao, Q., Phung, H., Nguyen, B., and Tran, A. Flow match-
ing in latent space. arXiv preprint arXiv:2307.08698,
2023.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller, J.,
Saini, H., Levi, Y., Lorenz, D., Sauer, A., Boesel, F., et al.
Scaling rectified flow transformers for high-resolution
image synthesis. In Forty-first International Conference
on Machine Learning, 2024.

Fang, G., Ma, X., and Wang, X. Structural pruning for
diffusion models, 2023. URL https://arxiv.org/
abs/2305.10924.

Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F.,
and Yan, J. Differentiable soft quantization: Bridging
full-precision and low-bit neural networks. In The IEEE
International Conference on Computer Vision (ICCV),
October 2019.

Gong, R., Yong, Y., Gu, S., Huang, Y., Lv, C., Zhang,
Y., Tao, D., and Liu, X. LLMC: Benchmarking large
language model quantization with a versatile compres-
sion toolkit. In Dernoncourt, F., Preoţiuc-Pietro, D., and
Shimorina, A. (eds.), Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing: Industry Track, pp. 132–152, Miami, Florida,
US, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.emnlp-industry.
12. URL https://aclanthology.org/2024.
emnlp-industry.12/.

Guo, J., Ouyang, W., and Xu, D. Multi-dimensional pruning:
A unified framework for model compression. In CVPR,
2020.

Guo, J., Wu, J., Wang, Z., Liu, J., Yang, G., Ding, Y., Gong,
R., Qin, H., and Liu, X. Compressing large language mod-
els by joint sparsification and quantization. In Forty-first
International Conference on Machine Learning, 2024.

He, C., Ding, Y., Guo, J., Gong, R., Qin, H., and Xianglong,
L. Da-kd: Difficulty-aware knowledge distillation for ef-
ficient large language models. In Forty-first International
Conference on Machine Learning, 2025.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

10

https://aclanthology.org/2022.findings-acl.58
https://aclanthology.org/2022.findings-acl.58
https://arxiv.org/abs/2209.12152
https://arxiv.org/abs/2209.12152
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2406.01125
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/2305.10924
https://arxiv.org/abs/2305.10924
https://aclanthology.org/2024.emnlp-industry.12/
https://aclanthology.org/2024.emnlp-industry.12/

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

He, Y., Liu, J., Wu, W., Zhou, H., and Zhuang, B. Effi-
cientdm: Efficient quantization-aware fine-tuning of low-
bit diffusion models, 2024. URL https://arxiv.
org/abs/2310.03270.

Hessel, J., Holtzman, A., Forbes, M., Bras, R. L., and Choi,
Y. Clipscore: A reference-free evaluation metric for im-
age captioning, 2022.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium, 2018. URL
https://arxiv.org/abs/1706.08500.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models, 2022. URL
https://arxiv.org/abs/2204.03458.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models, 2021. URL https://arxiv.
org/abs/2106.09685.

Huang, Y., Gong, R., Liu, J., Chen, T., and Liu, X. Tfmq-dm:
Temporal feature maintenance quantization for diffusion
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7362–
7371, 2024a.

Huang, Y., Gong, R., Liu, X., Liu, J., Li, Y., Lu, J., and Tao,
D. Temporal feature matters: A framework for diffusion
model quantization. arXiv preprint arXiv:2407.19547,
2024b.

Jolicoeur-Martineau, A., Li, K., Piché-Taillefer, R., Kach-
man, T., and Mitliagkas, I. Gotta go fast when gen-
erating data with score-based models. arXiv preprint
arXiv:2105.14080, 2021.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progressive
growing of gans for improved quality, stability, and varia-
tion, 2018. URL https://arxiv.org/abs/1710.
10196.

Kerr, A., Merrill, D., Demouth, J., and Tran, J. Cutlass:
Fast linear algebra in cuda c++. NVIDIA Developer Blog,
2017.

Kirstain, Y., Polyak, A., Singer, U., Matiana, S., Penna,
J., and Levy, O. Pick-a-pic: An open dataset of user
preferences for text-to-image generation, 2023. URL
https://arxiv.org/abs/2305.01569.

Kong, Z. and Ping, W. On fast sampling of diffusion proba-
bilistic models. arXiv preprint arXiv:2106.00132, 2021.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Commun. ACM, 60(6):84–90, May 2017. ISSN 0001-
0782. doi: 10.1145/3065386. URL https://doi.
org/10.1145/3065386.

Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., and
Aila, T. Improved precision and recall metric for assess-
ing generative models. Advances in neural information
processing systems, 32, 2019.

Li, D., Kamko, A., Akhgari, E., Sabet, A., Xu, L., and Doshi,
S. Playground v2.5: Three insights towards enhancing
aesthetic quality in text-to-image generation, 2024a. URL
https://arxiv.org/abs/2402.17245.

Li, M., Qu, T., Yao, R., Sun, W., and Moens, M.-F. Allevi-
ating exposure bias in diffusion models through sam-
pling with shifted time steps, 2024b. URL https:
//arxiv.org/abs/2305.15583.

Li, S., Hu, T., Khan, F. S., Li, L., Yang, S., Wang, Y., Cheng,
M.-M., and Yang, J. Faster diffusion: Rethinking the
role of unet encoder in diffusion models. arXiv preprint
arXiv:2312.09608, 2023a.

Li, X., Liu, Y., Lian, L., Yang, H., Dong, Z., Kang, D.,
Zhang, S., and Keutzer, K. Q-diffusion: Quantizing dif-
fusion models. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 17535–17545,
2023b.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L.,
and Dollár, P. Microsoft coco: Common objects in con-
text, 2015. URL https://arxiv.org/abs/1405.
0312.

Liu, E., Ning, X., Lin, Z., Yang, H., and Wang, Y. Oms-dpm:
Optimizing the model schedule for diffusion probabilistic
models. In International Conference on Machine Learn-
ing, pp. 21915–21936. PMLR, 2023.

Liu, L., Ren, Y., Lin, Z., and Zhao, Z. Pseudo numeri-
cal methods for diffusion models on manifolds. arXiv
preprint arXiv:2202.09778, 2022a.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast: Learn-
ing to generate and transfer data with rectified flow, 2022b.
URL https://arxiv.org/abs/2209.03003.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization, 2019. URL https://arxiv.org/abs/
1711.05101.

11

https://arxiv.org/abs/2310.03270
https://arxiv.org/abs/2310.03270
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/2204.03458
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/2305.01569
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://arxiv.org/abs/2402.17245
https://arxiv.org/abs/2305.15583
https://arxiv.org/abs/2305.15583
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

Lou, J., Luo, W., Liu, Y., Li, B., Ding, X., Hu, W., Cao, J., Li,
Y., and Ma, C. Token caching for diffusion transformer
acceleration. arXiv preprint arXiv:2409.18523, 2024.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J.
Dpm-solver: A fast ode solver for diffusion probabilistic
model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. Dpm-
solver++: Fast solver for guided sampling of diffusion
probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Luhman, E. and Luhman, T. Knowledge distillation in
iterative generative models for improved sampling speed.
arXiv preprint arXiv:2101.02388, 2021.

Lv, C., Chen, H., Guo, J., Ding, Y., and Liu, X. Ptq4sam:
Post-training quantization for segment anything. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 15941–15951, 2024.

Ma, X., Fang, G., Mi, M. B., and Wang, X. Learning-
to-cache: Accelerating diffusion transformer via layer
caching, 2024a. URL https://arxiv.org/abs/
2406.01733.

Ma, X., Fang, G., and Wang, X. Deepcache: Acceler-
ating diffusion models for free. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15762–15772, 2024b.

Ma, X., Wang, Y., Jia, G., Chen, X., Liu, Z., Li, Y.-F., Chen,
C., and Qiao, Y. Latte: Latent diffusion transformer
for video generation. arXiv preprint arXiv:2401.03048,
2024c.

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko,
Y., van Baalen, M., and Blankevoort, T. A white paper
on neural network quantization, 2021. URL https:
//arxiv.org/abs/2106.08295.

Nash, C., Menick, J., Dieleman, S., and Battaglia, P. W.
Generating images with sparse representations. arXiv
preprint arXiv:2103.03841, 2021.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffu-
sion probabilistic models. In International conference on
machine learning, pp. 8162–8171. PMLR, 2021.

Ning, M., Sangineto, E., Porrello, A., Calderara, S., and
Cucchiara, R. Input perturbation reduces exposure bias in
diffusion models, 2023. URL https://arxiv.org/
abs/2301.11706.

Ning, M., Li, M., Su, J., Salah, A. A., and Ertugrul, I. O.
Elucidating the exposure bias in diffusion models, 2024.
URL https://arxiv.org/abs/2308.15321.

Pan, Z., Zhuang, B., Huang, D.-A., Nie, W., Yu, Z., Xiao,
C., Cai, J., and Anandkumar, A. T-stitch: Accelerating
sampling in pre-trained diffusion models with trajectory
stitching. arXiv preprint arXiv:2402.14167, 2024.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 4195–4205,
2023.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn,
T., Müller, J., Penna, J., and Rombach, R. Sdxl: Im-
proving latent diffusion models for high-resolution image
synthesis, 2023. URL https://arxiv.org/abs/
2307.01952.

Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid,
I., and Savarese, S. Generalized intersection over union:
A metric and a loss for bounding box regression. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In CVPR, 2022.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation,
2015.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:
211–252, 2015.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in neural information processing systems, 35:
36479–36494, 2022.

Salimans, T. and Ho, J. Progressive distillation for
fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training gans. Advances in neural information processing
systems, 29, 2016.

Schmidt, F. Generalization in generation: A closer look
at exposure bias. In Birch, A., Finch, A., Hayashi,
H., Konstas, I., Luong, T., Neubig, G., Oda, Y., and
Sudoh, K. (eds.), Proceedings of the 3rd Workshop
on Neural Generation and Translation, pp. 157–167,

12

https://arxiv.org/abs/2406.01733
https://arxiv.org/abs/2406.01733
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2301.11706
https://arxiv.org/abs/2301.11706
https://arxiv.org/abs/2308.15321
https://arxiv.org/abs/2307.01952
https://arxiv.org/abs/2307.01952

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

Hong Kong, November 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D19-5616. URL
https://aclanthology.org/D19-5616.

Selvaraju, P., Ding, T., Chen, T., Zharkov, I., and Liang,
L. Fora: Fast-forward caching in diffusion transformer
acceleration. arXiv preprint arXiv:2407.01425, 2024.

Shang, Y., Yuan, Z., Xie, B., Wu, B., and Yan, Y. Post-
training quantization on diffusion models. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 1972–1981, 2023.

Song, J., Meng, C., and Ermon, S. Denoising diffusion im-
plicit models. arXiv preprint arXiv:2010.02502, 2020a.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Urbanek, J., Bordes, F., Astolfi, P., Williamson, M., Sharma,
V., and Romero-Soriano, A. A picture is worth more than
77 text tokens: Evaluating clip-style models on dense
captions, 2024. URL https://arxiv.org/abs/
2312.08578.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Wang, H., Ma, S., Dong, L., Huang, S., Zhang, D., and
Wei, F. Deepnet: Scaling transformers to 1,000 layers.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2024a.

Wang, K., Chen, J., Li, H., Mi, Z., and Zhu, J. Sparsedm:
Toward sparse efficient diffusion models. arXiv preprint
arXiv:2404.10445, 2024b.

Wang, Z., Simoncelli, E. P., and Bovik, A. C. Multiscale
structural similarity for image quality assessment. In
The Thrity-Seventh Asilomar Conference on Signals, Sys-
tems & Computers, 2003, volume 2, pp. 1398–1402. Ieee,
2003.

Wang, Z., Guo, J., Gong, R., Yong, Y., Liu, A., Huang,
Y., Liu, J., and Liu, X. Ptsbench: A comprehensive
post-training sparsity benchmark towards algorithms and
models. In Proceedings of the 32nd ACM International
Conference on Multimedia, pp. 5742–5751, 2024c.

Wimbauer, F., Wu, B., Schoenfeld, E., Dai, X., Hou, J.,
He, Z., Sanakoyeu, A., Zhang, P., Tsai, S., Kohler, J.,
et al. Cache me if you can: Accelerating diffusion models
through block caching. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 6211–6220, 2024.

Wu, J., Wang, H., Shang, Y., Shah, M., and Yan, Y.
Ptq4dit: Post-training quantization for diffusion trans-
formers, 2024. URL https://arxiv.org/abs/
2405.16005.

Wu, X., Hao, Y., Sun, K., Chen, Y., Zhu, F., Zhao, R., and
Li, H. Human preference score v2: A solid benchmark
for evaluating human preferences of text-to-image synthe-
sis, 2023. URL https://arxiv.org/abs/2306.
09341.

Xu, J., Liu, X., Wu, Y., Tong, Y., Li, Q., Ding, M., Tang, J.,
and Dong, Y. Imagereward: Learning and evaluating hu-
man preferences for text-to-image generation. Advances
in Neural Information Processing Systems, 36, 2024.

Xue, S., Yi, M., Luo, W., Zhang, S., Sun, J., Li, Z., and
Ma, Z.-M. Sa-solver: Stochastic adams solver for fast
sampling of diffusion models. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Yang, G., He, C., Guo, J., Wu, J., Ding, Y., Liu, A., Qin,
H., Ji, P., and Liu, X. Llmcbench: Benchmarking large
language model compression for efficient deployment.
NeurIPS, 2024.

Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and
Xiao, J. Lsun: Construction of a large-scale image dataset
using deep learning with humans in the loop, 2016. URL
https://arxiv.org/abs/1506.03365.

Yuan, Z., Lu, P., Zhang, H., Ning, X., Zhang, L., Zhao, T.,
Yan, S., Dai, G., and Wang, Y. Ditfastattn: Attention
compression for diffusion transformer models. arXiv
preprint arXiv:2406.08552, 2024.

Zhang, D., Li, S., Chen, C., Xie, Q., and Lu, H. Laptop-diff:
Layer pruning and normalized distillation for compress-
ing diffusion models. arXiv preprint arXiv:2404.11098,
2024.

Zhang, Q. and Chen, Y. Fast sampling of diffusion
models with exponential integrator. arXiv preprint
arXiv:2204.13902, 2022.

Zhang, Q., Tao, M., and Chen, Y. gddim: Generalized
denoising diffusion implicit models. arXiv preprint
arXiv:2206.05564, 2022.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric, 2018. URL https://arxiv.org/
abs/1801.03924.

Zhao, Y., Gu, A., Varma, R., Luo, L., Huang, C.-C., Xu, M.,
Wright, L., Shojanazeri, H., Ott, M., Shleifer, S., Desmai-
son, A., Balioglu, C., Damania, P., Nguyen, B., Chauhan,

13

https://aclanthology.org/D19-5616
https://arxiv.org/abs/2312.08578
https://arxiv.org/abs/2312.08578
https://arxiv.org/abs/2405.16005
https://arxiv.org/abs/2405.16005
https://arxiv.org/abs/2306.09341
https://arxiv.org/abs/2306.09341
https://arxiv.org/abs/1506.03365
https://arxiv.org/abs/1801.03924
https://arxiv.org/abs/1801.03924

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

G., Hao, Y., Mathews, A., and Li, S. Pytorch fsdp: Expe-
riences on scaling fully sharded data parallel, 2023. URL
https://arxiv.org/abs/2304.11277.

Zou, C., Liu, X., Liu, T., Huang, S., and Zhang, L. Ac-
celerating diffusion transformers with token-wise feature
caching. arXiv preprint arXiv:2410.05317, 2024.

14

https://arxiv.org/abs/2304.11277

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

A. Alogrithm of HarmoniCa
As described in Alg. 1, we provide a detailed algorithm of our HarmoniCa. For clarity, we omit the pre-fill stage (i.e.,
denoising at T), where RouterT : is forced to be set to {1}1×N . The conds for T2I tasks and class-conditional generation
are pre-prepared text prompts and class labels, respectively.

Algorithm 1 HarmoniCa: the upper snippet describes the full procedure, and the lower side contains the subroutine for
computing the proxy of the final image error.
func HARMONICA(ϕ, ϵθ,iters,conds, τ, β, T,C)
Require: ϕ(·) — diffusion sampler

ϵθ(·) — DiT model
iters — amount of training iterations
conds — conditional inputs
τ — threshold
β — constraint coefficient
T — maximum denoising step
C — iteration interval

1: Initialize Router with a normal distribution
2: cache = ∅ ▷ Initialize cache
3: for i in 0 to iters

T
− 1 do:

4: xT ∼ N (0, I)
5: if i% C

T
= 0 then

6: {λ(1), . . . , λ(T)} = gen proxy(ϕ, ϵθ,xT ,conds[i], τ,Router)
7: end if
8: for t in T to 1 do:
9: ϵ(t)

′
= ϵθ(xt, t,conds[i],Routert,:, τ,cache) ▷ Fig. 2

10: ϵ(t) = ϵθ(xt, t,conds[i])

11: L(t)
IEPO = λ(t)∥ϵ(t)

′
− ϵ(t)∥2F + β

∑N−1
i=0 r(t)

i ▷ Eq. (6)
12: Tune Routert,: by back-propagation
13: xt−1 = ϕ(xt, t, ϵ

(t)′)
14: end for
15: end for
16: return Router
func gen proxy(ϕ, ϵθ,xT ,cond, τ,Router) ▷ Wrapped by stopgradient operator
1: cache = ∅ ▷ Initialize cache
2: Employ feature cache guided by Router to generate x0

3: for t in T to 1 do:
4: Generate M(t) ▷ Eq. (7)
5: Employ feature cache guided by Router⊙M(t) to generate x

(t)
0

6: λ(t) = ∥x0 − x
(t)
0 ∥2F ▷ Eq. (8)

7: end for
8: return {λ(1), λ(2), . . . , λ(T)}

B. Image Error with Router Regularization Term as Training Objective

Table 13. Training costs estimation across different
methods for DiT-XL/2 256×256 (Peebles & Xie, 2023)
(T = 20). We only employ 5K iterations with a global
batch size of 8 on 4 NVIDIA H800 80G GPUs. L(t)

x0

denotes the loss function replacing L(t)
MSE in Eq. (4)

with the final image error.

Method #Images Time(h) Memory(GB/GPU)

SDT+L(t)
x0 0 1.46 65.36

SDT+L(t)
LTC 0 0.15 13.33

In Tab. 13, SDT+L(t)
x0 requires t− 1 additional denoising passes per

training iteration at t to compute the error of x0. Consequently, this ap-
proach consumes about 9.73× GPU hours compared to SDT+L(t)

LTC .
Due to the extensive intermediate activations stored from timestep
t to 1 for back-propagation, it also costs 4.90× GPU memory. This
estimation is conducted with small batch sizes and limited iterations.
Therefore, SDT+L(t)

x0 is less feasible for models with larger latent
spaces or higher token counts per image, such as DiT-XL/2 512×512,
particularly in large-batch, complete training scenarios. Additionally,
the network effectively becomes T ×N stacked Transformer blocks
under this strategy, making it difficult (Wang et al., 2024a) to optimize

15

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

the Router with even a moderate T value, such as 50 or 100.

C. Optimization Deviation

135791113151719
T 1 1

10 5

10 4

10 3

10 2

10 1

(t) M
SE

0th Epoch

200th Epoch

400th Epoch

600th Epoch

800th Epoch

999th Epoch 10 7

10 6

10 5

10 4

10 3

10 2

(t)

FID: 8.01, CUR(%): 34.20

0 55b0 bN 1

1

20

T
1

(a) SDT+L(t)
LTC

FID: 4.88, CUR(%): 37.50

0 55b0 bN 1

1

20

T
1

(b) HarmoniCa

Figure 10. (Left) Variations of L(t)
MSE and λ(t) for SDT+L(t)

LTC . (Right) Router visualization across different methods. The gray grid
(t, i) represents using the feature in cache at t without computing oi. The white grid indicates computing and updating cache. We also
mark their FID (Heusel et al., 2018) and CUR. All the above experiments employ DiT-XL/2 256× 256 (T = 20, N = 56).

To generate high-quality x0 and accelerate the inference phase, we believe only considering the output error at a certain
timestep can cause a deviated optimization due to its gap w.r.t the error of x0. To validate this, we plot the values of
L(t)
MSE in Eq. (4) and λ(t) in Eq. (8) during the training phase of SDT+L(t)

LTC in Fig. 10 (Left). Comparing L(t)
MSE and λ(t)

across different denoising steps, their results present a significant discrepancy. For instance, L(t)
MSE at t = 14 is several

orders of magnitude smaller than that at t = 1 during the entire training process, and the opposite situation happens for
λ(t). Intuitively, this indicates that we could increase the cache usage rate at t = 1, and vice versa at t = 14 for higher
performance while keeping the same speedup ratio according to the value of the proxy λ(t). However, only considering the
output error at each timestep (i.e., L(t)

MSE) can optimize towards a shifted direction. In practice, the learned Router with
the guidance of λ(t) in Fig. 10 (Right) (b) caches less in large timesteps like t = 14 and reuses more in small timesteps as
t = 1 compared to that in Fig. 10 (Right) (a) achieving significant performance enhancement.

D. Training and Inference Costs for PIXART-α
We provide the computation costs of training and inference for PIXART-α (Chen et al., 2023) in Tab. 14. It is worth
noting that we only use naive distributed data parallel (DDP) training without any advanced strategies like gradient
checkpointing (Chen et al., 2016) and FSDP (Zhao et al., 2023). Thus, the requirements of computation can be further
decreased in practice.

Table 14. Training and inference costs.
Method Infer. Mem. (GB/GPU)↓ Train. Mem. (GB/GPU)↓ Train. Time (h)↓

PIXART-α 256× 256 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20.86 - -

HarmoniCa 21.21 79.05 1.84

PIXART-α 512× 512 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 24.11 - -

HarmoniCa 24.61 77.30 2.92

16

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

E. More Implementation Details
In this section, we present more details on the implementation of our HarmoniCa. First, following (Ma et al., 2024a), we
also perform a sigmoid function 9 to each rt,i before it is passed to the model. Moreover, unless specified otherwise, the
hyper-parameter β in Eq. (6) for all experiments is given in Tab. 15; any exceptions are noted in the relevant tables.

Table 15. Hyper-parameter β for training the Router.
Model DiT-XL/2 PIXART-α PIXART-Σ

Resolution 256× 256 512× 512 256× 256 512× 512 1024× 1024 512× 512 1024× 1024 2048× 2048

T 10 20 50 20 20 100 25 20 20 20 20 20

β 7e−8 8e−8 5e−8 4e−8 1e−3 8e−4 8e−4 8e−4 8e−4 1e−3 8e−4 8e−4

F. Results for PIXART-Σ
In this section, we present the results for the PIXART-Σ family, including PIXART-Σ-XL/2-1024-MS and PIXART-Σ-XL/2-
2K-MS. For the latter one, we test by sampling 10K images. Additionally, we train the Router with a batch size of 16 and
measure latency using a batch size of 1. All other settings are consistent with those described in Sec. 5.1.

As shown in Table 16, HarmoniCa achieves a 1.56× speedup along with improved CLP scores compared to the non-
accelerated model for PIXART-Σ 2048× 2048. Notably, this is the first time for the feature caching mechanism to accelerate
image generation with such a super-high resolution of 2048× 2048.

Table 16. Accelerating image generation on MS-COCO for the PIXART-Σ.
Method T CLIP↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓

PIXART-Σ 512× 512 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.20 26.81 42.79 - 1.912

DPM-Solver++ (Lu et al., 2022b) 15 31.23 25.99 42.08 - 1.435(1.34×)

HarmoniCa 20 31.28 24.64 41.58 53.45 1.145(1.67×)

PIXART-Σ 1024× 1024 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.37 20.98 27.47 - 9.467

DPM-Solver++ (Lu et al., 2022b) 15 31.34 21.63 28.68 - 7.100(1.33×)

HarmoniCa 20 31.50 20.53 27.05 52.74 5.852(1.62×)

PIXART-Σ 2048× 2048 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.19 23.61 51.12 - 14.198

DPM-Solver++ (Lu et al., 2022b) 15 31.26 24.40 53.34 - 9.782(1.45×)

HarmoniCa 20 31.51 24.09 51.83 53.80 9.081(1.56×)

G. Experimental Details for Quantization and Pruning
For EfficientDM (He et al., 2024), we employ 8-bit channel-wise weight quantization and 8-bit layer-wise activation
quantization (Gong et al., 2024; 2019) for full-precision (FP32) DiT-XL/2 and half-precision (FP16) PIXART-α. The former
uses a 20-step DDIM sampler (Song et al., 2020a), while the latter employs a DPM-Solver++ sampler (Lu et al., 2022b)
with the same steps. More specifically, we use MSE initialization (Nagel et al., 2021) for quantization parameters. For
the quantization-aware fine-tuning stage, we set the learning rate of LoRA (Hu et al., 2021) and activation quantization
parameters to 1e−6 and that of weight quantization parameters to 1e−5, respectively. Additionally, we employ 3.2K iterations
for DiT-XL/2 (Peebles & Xie, 2023) and 9.6K iterations for PIXART-α (Chen et al., 2023) on a single NVIDIA H800 80G
GPU. Other settings are the same as those from the original paper (He et al., 2024). Leveraging NVIDIA CUTLASS (Kerr
et al., 2017) implementation, we evaluate the latency of quantized models employing the 8-bit multiplication for all the
linear layers and convolutions. For PTQ4DiT, we implemented the DDIM sampler and re-run the open-source code, which
originally only supported DDPM. For Diff-Pruning, we re-implement the method for the DiT model (which originally only
supported U-Net models) and follow the settings specified in the original paper.

9σ(x) = 1
1+e−x

17

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

H. Comparison between Learning-to-Cache and HarmoniCa with a Low CUR(%)
In this section, we compare HarmoniCa with Learning-to-Cache (Ma et al., 2024a) at a relatively low CUR(%). As shown in
Tab. 17, both methods achieve a similar speedup ratio and even better performance than non-accelerated models. Therefore,
we employ higher CUR in Tab. 2 to show our pronounced superiority.

Table 17. Comparison results between Learning-to-Cache and HarmoniCa for the DiT-XL/2 with a low CUR(%).
Method T IS↑ FID↓ sFID↓ Prec.↑ Recall↑ CUR(%)↑ Latency(s)↓

DiT-XL/2 256× 256 (cfg = 1.5)

DDIM (Song et al., 2020a) 20 224.37 3.52 4.96 78.47 58.33 - 0.658

DDIM (Song et al., 2020a) 15 214.77 4.17 5.54 77.43 56.30 - 0.564(1.17×)

Learning-to-Cache (Ma et al., 2024a) 20 228.19 3.49 4.66 79.32 59.10 22.05 0.545(1.21×)

HarmoniCa (β = 3e−8) 20 228.79 3.51 4.76 79.43 59.32 21.07 0.547(1.20×)

DiT-XL/2 512× 512 (cfg = 1.5)

DDIM (Song et al., 2020a) 20 184.47 5.10 5.79 81.77 54.50 - 3.356

DDIM (Song et al., 2020a) 18 180.06 5.62 6.13 81.37 53.90 - 3.021(1.11×)

Learning-to-Cache (Ma et al., 2024a) 20 183.57 5.45 6.05 82.10 54.90 14.64 2.927(1.15×)

HarmoniCa (β = 2e−8) 20 183.71 5.32 5.84 81.83 55.80 16.61 2.863(1.17×)

I. Comparison between ∆-DiT and HarmoniCa
In this section, we compare HarmoniCa with ∆-DiT (Chen et al., 2024b). Given that the code and implementation details of
∆-DiT 10 are not open source, we report results derived from the original paper. Additionally, we evaluate performance
sampling 5000 images as used in that study. As depicted in Tab 18, our framework further decreases 9.3% latency and gains
3.35 FID improvement compared with ∆-DiT for PIXART-α with a 20-step DPM-Solver++ sampler (Lu et al., 2022b).

Table 18. Comparison results between ∆-DiT and HarmoniCa on on MS-COCO for PIXART-α 1024 × 1024.
Method T CLIP↑ FID↓ IS↑ CUR(%)↑ Speedup↑

PIXART-α 1024× 1024 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.07 31.98 41.30 - -

DPM-Solver++ (Lu et al., 2022b) 13 31.04 33.29 39.15 - 1.54×
∆-DiT (Chen et al., 2024b) 20 30.40 35.88 32.22 37.49 1.49×
HarmoniCa (β = 1e−3) 20 31.05 32.53 40.36 59.31 1.73×

J. Comparison between Learning-to-Cache and HarmoniCa with Different Sampling Strategies
For the implementation details 11, Learning-to-Cache uniformly samples an even timestep t during each training iteration 12,
as opposed to sampling any timestep from the set {1, . . . , T} as mentioned in Alg. 1 of its original paper. Consequently,
according to Fig. 3, only rt,i, where t is an odd timestep, is learnable, while the remaining values are set to one. We compare
Learning-to-Cache under different sampling strategies (i.e., sampling an even timestep or without this constraint for each
training iteration) against HarmoniCa. As shown in Tab. 19, our framework—whether training the entire Router or only
parts of it (similar to the Learning-to-Cache implementation)—consistently outperforms Learning-to-Cache regardless of
the sampling strategy.

It should be noted that the experiments in Sec. 5, with the exception of those in Tab. 9, use an implementation that uniformly
samples an even timestep t during each training iteration. This approach achieves significantly higher performance compared
to sampling without constraints.

18

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

Table 19. Comparison results between Learning-to-Cache with different sampling strategies and HarmoniCa for the DiT-XL/2 256× 256.
“♣” denotes that only parts of the Router corresponding to odd timesteps are learnable and the remaining values are set to one (i.e.,
disable reusing cached features).

Method T IS↑ FID↓ sFID↓ Prec.↑ Recall↑ CUR(%)↑ Latency(s)↓

DiT-XL/2 256× 256 (cfg = 1.5)

DDIM (Song et al., 2020a) 20 224.37 3.52 4.96 78.47 58.33 - 0.658

Learning-to-Cache (Ma et al., 2024a) 20 115.00 18.57 16.18 60.35 62.98 32.68 0.483(1.36×)

Learning-to-Cache♣ (Ma et al., 2024a) 20 201.37 5.34 6.36 75.04 56.09 35.60 0.468(1.41×)

HarmoniCa♣ (β = 3.5e−8) 20 205.39 4.86 5.92 75.06 57.97 36.07 0.463(1.42×)

HarmoniCa 20 206.57 4.88 5.91 75.20 58.74 37.50 0.456(1.44×)

Table 20. Accelerating image generation on MJHQ-30K (Li et al., 2024a) and sDCI (Urbanek et al., 2024) for the PIXART-α. We sample
30K images for MJHQ-30K and 5K images for sDCI. “IR” denotes Image Reward.

Method T

MJHQ sDCI

Latency (s)↓Quality Similarity Quality Similarity

FID↓ IR↑ CLIP↑ LPIPS↓ PSNR↑ FID↓ IR↑ CLIP↑ LPIPS↓ PSNR↑

PIXART-α 512× 512 (cfg = 4.5)

DPM-Solver++(Lu et al., 2022b) 20 7.04 0.947 26.04 - - 11.47 0.994 25.22 - - 1.759

DPM-Solver++(Lu et al., 2022b) 15 7.45 0.899 26.02 0.138 21.41 11.55 0.876 25.19 0.178 19.85 1.291(1.36×)

HarmoniCa 20 7.23 0.944 26.02 0.130 21.98 11.52 0.933 25.20 0.175 19.91 1.072(1.64×)

PIXART-α 1024× 1024 (cfg = 4.5)

DPM-Solver++(Lu et al., 2022b) 20 6.24 0.966 26.23 - - 10.96 0.986 25.56 - - 9.470

DPM-Solver++(Lu et al., 2022b) 15 6.49 0.921 26.18 0.107 23.98 11.22 0.942 25.51 0.186 18.44 7.141(1.32×)

HarmoniCa 20 6.40 0.931 26.19 0.102 25.06 10.99 0.969 25.53 0.183 20.23 5.786(1.63×)

K. Results of T2I Generation on Additional Datasets and Metrics
In addition to the evaluations on ImageNet and MS-COCO, we conducted further tests using the high-quality MJHQ-30K (Li
et al., 2024a) and sDCI (Urbanek et al., 2024) datasets with PIXART-α models. We added several metrics, including
Image Reward (Xu et al., 2024), LPIPS (Learned Perceptual Image Patch Similarity) (Zhang et al., 2018), and PSNR
(Peak Signal-to-Noise Ratio). The results, summarized in Tab. 20, demonstrate that HarmoniCa consistently outperforms
DPM-Solver across all metrics on both the MJHQ and sDCI datasets. For instance, at the 512×512 resolution, HarmoniCa
achieves an FID of 7.23 on the MJHQ dataset, which is lower than the 7.45 FID of DPM-Solver with 15 steps, indicating
better image quality. Additionally, under the same configuration, HarmoniCa achieves a PSNR of 21.98, compared to
DPM-Solver’s 21.41 with 15 steps, reflecting better numerical similarity.

L. Apply the Trained Router to a Different Sampler from Training During Inference
As shown in Tab. 21, the Router trained with one diffusion sampler can indeed be applied to a different sampler, such as
DPM-Solver++→SA-Solver (6th row) and IDDPM→DPM-Solver++ (10th row). However, the performance of these trials
is much worse than the standard HarmoniCa. We believe this is due to the discrepancies in sampling trajectories and noise
scheduling between the two samplers, which need to be accounted for during the Router training. In other words, the
sampler used for training should match the one used during inference to improve the performance.

M. Results with Different Seeds
We conducted five independent runs with different random seeds on the following setting: PIXART-α 256× 256 (Chen et al.,
2023), using DPM-Solver++ (Lu et al., 2022b) (20 steps) and evaluating on 5000 images. The results in Tab. 22 show high
consistency across runs, and more importantly, our caching-accelerated models consistently outperform the non-accelerated
models in all evaluation metrics, confirming our method’s robustness and effectiveness.

10∆-DiT presents the speedup ratio based on multiply-accumulate operates (MACs). Here we report the results according to the latency
in that study.

11Let T be an even number here.
12https://github.com/horseee/learning-to-cache/blob/main/DiT/train_router.py#L244-L247

19

https://github.com/horseee/learning-to-cache/blob/main/DiT/train_router.py#L244-L247

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

Table 21. Results of applying the trained Router to a different sampler from training during inference. “A→B” denotes the Router
trained with the sampler “A” is directly used during inference with the sampler “B”.

Method T CLIP↑ FID↓ sFID↓ Latency(s)↓

PIXART-α 256× 256 (cfg = 4.5)

SA-Solver (Xue et al., 2024) 20 31.23 27.45 39.01 0.665

SA-Solver (Xue et al., 2024) 15 31.16 28.74 40.15 0.483(1.38×)

HarmoniCa 20 31.20 27.98 39.26 0.420(1.58×)

HarmoniCa (DPM-Solver++→ SA-Solver) 20 31.18 28.56 40.01 0.431(1.54×)

DPM-Solver++ (Lu et al., 2022b) 100 31.30 25.01 35.42 2.701

DPM-Solver++ (Lu et al., 2022b) 73 31.27 25.16 36.11 2.005(1.35×)

HarmoniCa 100 31.29 25.00 35.38 1.637(1.65×)

HarmoniCa (IDDPM→DPM-Solver++) 100 31.24 26.11 40.24 1.648(1.64×)

Table 22. Results with different seeds.“x/y” in the table denotes the results that come from non-accelerated models and HarmoniCa. We
use the same settings in Tab. 2 in the main text.

Seed IS↑ FID↓ sFID↓

8 33.28/33.27 37.31/35.44 94.78/92.10

16 33.61/33.62 37.43/35.46 94.74/92.11

24 33.59/33.60 37.55/35.48 95.01/92.32

32 33.65/33.65 37.11/35.34 94.87/92.13

40 33.64/33.64 37.05/35.29 94.88/92.19

deviation 0.138/0.144 0.188/0.073 0.093/0.081

N. Qualitative Comparison and Analyses
As shown in Fig. 11 and 12, we provide qualitative comparison between HarmoniCa and other baselines, e.g., Learning-to-
Cache (Ma et al., 2024a), FORA (Selvaraju et al., 2024), and the fewer-step sampler. Our HarmoniCa with a higher speedup
ratio can generate more accurate details, e.g., 2nd column of Fig. 12 (d) vs. (b) and objective-level traits, e.g., 2nd column of
Fig. 11 (d) vs. (c).

20

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

(a) 20-step DDIM sampler

(b) 14-step DDIM sampler (1.41×)

(c) Learning-to-Cache (1.41×)

(d) HarmoniCa (1.44×)

Figure 11. Random samples from DiT-XL/2 256× 256 (Chen et al., 2023) with different acceleration methods. The resolution of each
sample is 256× 256. We employ cfg = 4 here for better visual results. Key differences are highlighted using rectangles with various
colors.

O. Visualization Results
As demonstrated in Figures 13 to 16, we present random samples from both the non-accelerated DiT models and ones
equipped with HarmoniCa, using a fixed random seed. We employ the same settings as those in the main text or more
aggressive caching strategies. Our approach not only significantly accelerates inference but also produces results that closely
resemble those of the original model. For a detailed comparison, zoom in to closely examine the relevant images.

21

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

“A stylized papercut collage
depicting the canopy of a

tropical rainforest, layers
of oversized leaves and vines
in bold greens and blues,
colorful parrots perched

among them, no people around.”

“An airy watercolor of a
European canal lined with

pastel-colored buildings, a
single boat moored by the

cobblestone quay, the water
reflecting the softly toned
facades, no people present.”

“A crisp wildlife photo of a
giraffe stooping to drink
from a watering hole at
golden hour, elongated

shadows stretching across the
savanna, undisturbed by human

presence.”

“A stylized vector
illustration of tall wind

turbines silhouetted against
a rolling farmland at sunset,
wildlife roaming below, with

no humans visible.”

(a) 20-step DPM-Solver

(b) 15-step DPM-Solver (1.36×)

(c) FORA (1.53×)

(d) HarmoniCa (1.64×)

Figure 12. Random samples from PIXART-α 512× 512 (Chen et al., 2023) with different acceleration methods. The resolution of each
sample is 512× 512.

(a) DiT-XL/2

(b) HarmoniCa (1.44×)

Figure 13. Random samples from (a) non-accelerated and (b) accelerated DiT-XL/2 256× 256 (Chen et al., 2023) with a 20-step DDIM
sampler (Song et al., 2020a). The resolution of each sample is 256× 256. We mark the speedup ratio in the brackets.

22

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

(a) DiT-XL/2

(b) HarmoniCa (1.30×)

Figure 14. Random samples from (a) non-accelerated and (b) accelerated DiT-XL/2 512× 512 (Chen et al., 2023) with a 20-step DDIM
sampler (Song et al., 2020a). The resolution of each sample is 512× 512.

“A softly lit
photograph capturing
a lone wolf standing

at the edge of a
quiet lake, its

reflection mirrored
in the still water
beneath a pale dawn

sky.”

“A dreamy watercolor
of a glassy loch
surrounded by the

Scottish Highlands at
dusk, rugged slopes
mirrored in still

waters, absent of any
boats or humans.”

“A vibrant acrylic
portrayal of a field
of sunflowers swaying
under a bright summer

sky, each bloom
turned toward the sun,

no people or
structures visible.”

“A romantic moonlit
scene of a castle
perched on a cliff,

waves crashing
against the rocks
below, illuminated
windows suggesting

occupants within, yet
no one is seen

outside.”

“A serene ink wash
painting of rolling
hills dotted with

wildflowers, a narrow
footpath winding

through the scene,
implied to be empty

of travelers.”

(a) PIXART-α

(b) HarmoniCa (1.60×)

Figure 15. Random samples from (a) non-accelerated and (b) accelerated PIXART-α 256× 256 (Chen et al., 2023) with a 20-step DPM-
Solver++ sampler (Lu et al., 2022b). The resolution of each sample is 256× 256. Text prompts are exhibited above the corresponding
images

23

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration

“A minimalist watercolor composition featuring a single, lonely tree atop a gentle hill,
its delicate branches set against a soft gradient sky, with no surrounding figures or

objects.”

“An expressive oil painting of a secluded cabin by a winding river, tall pines reflecting
on the water’s surface, a faint glow from the cabin windows hinting at life within, yet

no one is shown outside.”

“An acrylic painting of a tranquil lagoon filled with lily pads and reed-fringed shores,
warm twilight hues reflecting across the water, absent of any human presence.”

(a) PIXART-Σ (b) HarmoniCa (1.73×)

Figure 16. Random samples from (Left) non-accelerated and (Right) accelerated PIXART-Σ-2K (Chen et al., 2024a) with a 20-step
DPM-Solver++ sampler (Lu et al., 2022b). The resolution of each sample is 2048× 2048.

24

