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Abstract
Large Language Models (LLMs) have been
achieving competent performance on a wide range
of downstream tasks, yet existing work shows
that inference on structured data is challenging
for LLMs. This is because LLMs need to either
understand long structured data or select the most
relevant evidence before inference, and both ap-
proaches are not trivial. This paper proposes a
framework, Learning to Reduce, that fine-tunes
a language model with On-Policy Learning to
generate a reduced version of an input structured
data. When compared to state-of-the-art LLMs
like GPT-4, Learning to Reduce not only achieves
outstanding performance in reducing the input,
but shows generalizability on different datasets.
We further show that the model fine-tuned with
our framework helps LLMs better perform on
table QA tasks especially when the context is
longer.

1. Introduction
Recent Large Language Models (LLMs) such as GPT-4
(OpenAI, 2023b), Llama 2 (Touvron et al., 2023), and Vi-
cuna (Chiang et al., 2023), have shown the ability to under-
stand language and improve performance on a wide range
of downstream tasks (Wei et al., 2022; Kojima et al., 2022;
Wang et al., 2022; Yu et al., 2022; He et al., 2024).

Despite their ability, LLMs find it challenging to under-
stand structured data such as knowledge graphs, tables, and
databases. Not only does the structured data have structural
dependencies among entities, but it also accompanies long
context issues. The maximum input sequence length of the
recent LLMs keeps increasing, yet one cannot put faith in
the LLMs’ performance when the context is long. Liu et al.
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(2023) show that the performance of ChatGPT (OpenAI,
2023a) on a multi-document QA task drops more than 20%
when it is prompted with 20 documents and the key informa-
tion about the answer is located in the middle of the prompt.
This implies that LLMs are likely to perform unsatisfactory
on structured data QA because most structured data tend to
be long and the information relevant to the answer can be
located in the middle.

To avoid a long context issue of structured data, Jiang et al.
(2023) used ChatGPT to identify the most relevant evidence
from the structured data before performing QA tasks. Unfor-
tunately, finding the most relevant evidence was not trivial;
experimental results show that around 74% and 28% of the
errors came from the incorrect selection of relevant evidence
in a KGQA task and a table QA task, respectively.

In this paper, we explore a method to improve LLMs’ rea-
soning ability on structured data by Learning to Reduce;
the model efficiently reduces the input structured data by
identifying the relevant evidence to the downstream task.
Specifically, we focus on a table QA as a downstream task,
and train a model to generate a table with reduced rows and
columns. Using On-Policy Learning, we fine-tune a T5 lan-
guage model based on the rewards computed by whether the
model selects rows and columns that are relevant to the in-
put question. Experimental results show that our framework
achieves better performance in identifying relevant items
from a table QA dataset, WikiTableQuestions (Pasupat &
Liang, 2015). Additionally, Learning to Reduce outperforms
other baseline models including GPT-4 (OpenAI, 2023b) on
the generalizability test on an unseen dataset. Lastly, the
reduced table generated by our framework helps LLMs per-
form more accurately on a table QA task, especially when
the context is longer.

To the best of our knowledge, this is the first attempt to train
a language model to reduce the input context of structured
data. The training framework we suggest is model-agnostic,
thus more powerful language models that are trained with
our framework can be used as a pre-prompting tool for any
structured data QA tasks. This would ultimately maximize
the reasoning ability of LLMs as well as the cost efficiency
of using them.

1



Learning to Reduce: Large Language Models on Structured Data

Figure 1. Inference with an original table (dotted arrow) and with a reduced table (solid arrow). Given an input question and a table, a
language model (blue hexagon) learns a policy to generate the relevant rows and columns by getting rewards. By learning the optimal
policy, our model generates reduced tables which leads the fixed LLM model to perform more accurately on QA tasks.

2. Learning to Reduce
We design a training framework for a language model that
learns to generate the relevant evidence for a given struc-
tured data QA instance.

Formally, we define an input space that consists of an input
context c, a task description x, and an output y. In the
table QA task, for instance, c is an input table, x is an input
question, and y is an answer to the question. We use a
heuristics h(·) that identifies a subset of the context that is
relevant to the task, namely cr = h(x, c). Our framework
trains a language model, θ(z|x, c), that generates a reduced
input context z, using a target reduced input context cr.
Our final objective is to help LLMs better perform on the
task, thus we prompt an LLM with reduced context z to
generate an output. Denoting ψLLM as a fixed LLM model
used for a table QA task, the predicted output ŷ follows
ŷ ∼ ψLLM (·|x, z). Figure 1 illustrates how our proposed
model works.

2.1. Language Model as a Policy Network

We consider a language model as a policy network. Fol-
lowing an approach proposed by Li et al. (2023), we first
fine-tune the language model parameters before applying
policy learning objectives.

Supervised fine-tuning requires a dataset that has relevant
rows and columns annotated for input questions and tables.
To automatically identify relevant items, we use a table QA
dataset which has a text-to-SQL annotation. The heuristics
for automatically identifying relevant rows and columns is
to execute SQL queries while iteratively removing rows and
columns one by one from the input tables; if executing a
SQL query can generate an answer on a table even after
removing some rows and columns, then the removed items

are irrelevant to the input question.

Using the WikiTableQuestions (WTQ) dataset (Pasupat &
Liang, 2015) and its corresponding text-to-SQL annotation
from SQUALL (Shi et al., 2020), we identify relevant rows
and columns using the aforementioned heuristics. WTQ
dataset was selected because the questions in the dataset are
simple enough to be translated into SQL queries, yet the
state-of-the-art LLMs’ inference ability on this dataset is not
reliable compared to other widely used table QA datasets1.
Appendix A describes the details of the data.

We use a sequence-to-sequence language model with FLAN-
T5-Large (Chung et al., 2022) pre-trained checkpoint as a
base model. For better optimization, we train two models
separately, one for the column reduction and the other for
the row reduction. The two models work in sequence; the
column reduction language model is applied and generates
a table with relevant columns, then the row reduction model
gets a column-reduced table and determines relevant rows.
Thus the column reduction model gets all column headers in
the prompt, whereas the row reduction model gets rows only
with relevant columns. More details of the model choice
and prompt designs are described in Appendix B.

2.2. Policy Optimization

We consider fine-tuned language models as initial policy
network parameters and further optimize the models by
maximizing the rewards. The models get positive rewards
for selecting the correct relevant items, and get two types of
negative rewards.

Type I errors occur when the models generate rows and

1Jiang et al. (2023) reported ChatGPT’s accuracy on WTQ is
43.3, while it achieves 51.6 on WikiSQL (Zhong et al., 2017) and
82.9 on TabFact (Chen et al., 2019)
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columns that are not relevant. Having this error is not pre-
ferred but it is not critical; when the policy network gener-
ates a table with some irrelevant rows and columns, LLMs
can still perform a QA task as long as the relevant items are
in the table. In this case, the policy network gets a small
negative reward.

On the other hand, type II errors need to be considered more
seriously, as this happens when the models fail to generate
relevant rows and columns. In this case, LLMs would have
to perform inference without the necessary information and
fail to correctly answer the question. We consider this as
a critical error and the policy network gets a high negative
reward.

To formally define a reward function, consider z and cr as a
concatenated text of rows and columns from a set Z and Cr.
For instance, Z = {col1, row1} when z is “col1, row1”.
The model maximizes the reward R, which is defined as:

R = λp|Z ∩ Cr|+ λn1|Z − Cr|+ λn2|Cr − Z|

λp > 0, λn1 < 0, λn2 ≪ 0 are coefficients for correct
predictions, type I errors, and type II errors, respectively.
Details of the policy network architecture, implementation,
and reward optimization are described in Appendix C.

3. Experiments
Baselines: First, we fine-tune a RoBERTa token classifier
(Liu et al., 2019) as a baseline. Similar to supervised fine-
tuning of a language model, input is given with question
and column/row values, and the token classifier models
generate tags for each column/row whether they are relevant
or not. Another baseline is a zero-shot GPT-4 model2. In
this setting, we provide input questions with column/row
values, then ask the GPT-4 model to select relevant rows
and columns. Lastly, we use fine-tuned FLAN-T5 models
as a baseline. This is to measure the effectiveness of the
On-Policy Learning component in context reduction.

Evaluation Metrics: As described in 2.2, context reduction
models are considered better when they generate relevant
items as many as possible, even though their generation
includes irrelevant items. Thus we use recall scores as a
metric for context reduction and measure how many relevant
rows and columns are selected from the models. More
discussions and results of the precision scores are reported
in Appendix D.

Dataset: The models are tested on the WTQ test set as well
as on Hybrid QA (Chen et al., 2020). Hybrid QA is a table
QA task that not only requires reasoning on a given table but
also needs more complex language understanding. We test

2We use version gpt-4-0613

Table 1. Input context reduction tested on WTQ test set (WTQ)
and on an unseen test set (HybQA).

Recall on Context Reduction
Column Reduction WTQ HybQA
RoBERTa Token Clf 89.08 77.32
Zero-shot GPT-4 74.03 71.48
Fine-tuned FLAN-T5 90.19 82.72
⋆⋆⋆ Learning to Reduce (ours) 91.82 87.22
Row Reduction WTQ HybQA
RoBERTa Token Clf 95.06 60.35
Zero-shot GPT-4 86.13 92.12
Fine-tuned FLAN-T5 95.21 90.22
⋆⋆⋆ Learning to Reduce (ours) 96.17 93.78

the models on Hybrid QA to evaluate their generalizability.
The model needs to be robust to different data distributions
because fine-tuning is not always possible. Thus we argue
that the model’s performance on Hybrid QA is more sig-
nificant when we consider deploying the model for more
general usages. Table 1 shows the experimental results.

3.1. Performance and Generalizability

RoBERTa token classifier outperforms zero-shot GPT-4 on
both column and row reduction. However, the model’s
performance significantly drops when it is tested on Hybrid
QA; the column reduction model shows a 12% drop in
column reduction and a 35% drop in row reduction. This
result shows that fine-tuned BERT-based token classifiers
lack generalizability.

GPT-4 is a very large and highly contextual model, yet it
has difficulty understanding the relatedness between a table
and a question. This result aligns with the selection error
statistics in the existing research (Jiang et al., 2023). As the
model is not fine-tuned on a specific dataset, its performance
on WTQ and Hybrid QA are similar as expected. A slight
drop from 74% to 71.5% on column reduction implies that
Hybrid QA is a little more challenging dataset than WTQ.

Regarding the language model approaches, On-Policy
Learning helps improve performance. Not only does the
Learning to Reduce outperform other baselines on the WTQ
test set, but it also exhibits remarkable results on Hybrid
QA. This result implies that policy networks can capture
more general knowledge about context reduction and opens
the possibility of applying Learning to Reduce on other
structured data QA tasks without fine-tuning again.

3.2. Downstream Task Performance

The ultimate goal of our framework is to help LLMs better
perform table QA tasks with reduced rows and columns.
Figure 2 illustrates the accuracy of the GPT-4 model in
answering the WTQ questions when prompted with different
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Figure 2. Accuracy (precision) of GPT-4 model on WTQ test set
with different input context tables. Reducing both rows and
columns (red and purple) is more powerful when the context is
longer.

context inputs3. Note that the x-axis is the number of tokens
of the input tables before context reduction.

Our hypothesis, that LLMs lack inference ability on struc-
tured data due to its long context, is validated by the results
of original input table; the accuracy of the original input
drops as the table gets longer (blue line in Figure 2).

We assumed that the input table representations with only
columns reduced can moderately improve the inference
ability of LLMs. This is because the majority of tables in
WTQ datasets are long-narrow tables (i.e. fewer columns
than rows), thus removing a few columns would reduce
a great number of input tokens. However, the green and
orange line shows that reducing only columns does not
improve the overall performance of LLMs.

The performance of both rows and columns reduced (red
and purple line), on the other hand, is significantly more
stable, especially when the original input table is longer. The
purple line shows that our proposed method provides better
QA results compared to pure LLM-based approaches (blue),
even though the policy network’s recall on context reduction
is not 100% accurate. Our proposed method proves to be
more impactful for maximizing LLMs’ ability to understand
long structured data. More results with a different LLM,
GPT-3.5-turbo, are described in Appendix D.

4. Related Work
LLM on Structured Data: Various approaches have been
proposed to integrate structured data into LLM prompts. Ye
et al. (2023) proposed DATER which uses LLMs to decom-
pose inputs into sub-questions/-tables, then executes queries

3We compute precision (i.e. how many GPT-4 predictions are
correct out of all prompted instances)

to improve the reasoning ability of the LLM. Hegselmann
et al. (2023) converted tables into natural language and
fine-tuned LLMs on downstream tasks. StructGPT (Jiang
et al., 2023) iteratively gets the most relevant evidence from
structured data, then prompts LLMs for better inference.

LLM Prompt Engineering: Another direction to improve
the downstream task performance of a fixed LLM is to
optimize the prompts. GrIPS (Prasad et al., 2023) uses a
gradient-free, edit-based instruction search method. Au-
toPrompt (Shin et al., 2020) and RLPrompt (Deng et al.,
2022) train the model to generate tokens that help LLMs
better perform on downstream tasks. Directional Stimulus
Prompting (Li et al., 2023) trains the model to generate key-
words or hints that can directly help LLMs to accomplish
downstream tasks.

5. Discussion and Conclusion
There are a few areas that can further improve the paper. The
paper would benefit from experiments on more table QA
datasets; the baseline models as well as Learning to Reduce
are only tested on Hybrid QA datasets for measuring the
models’ generalizability. Similarly, the downstream task
performance results would be more strongly supported by
experimenting with more table QA datasets—measuring
whether LLMs’ inference ability improve or not on other
table QA datasets after context reduction.

The goal of this paper can be stretched to develop a frame-
work that improves performance on LLMs on any type of
structured data, including knowledge base and databases.
Testing the framework with other types of structured data
remains as future work.

Lastly, our framework can benefit from adding task-specific
rewards. There are some cases where our model generates
a very small number of rows and columns. Even though
they are correct reduction, LLMs end up being confused
with the input with too much reduced rows and columns. If
there are more reward signals from how LLMs perform on
downstream tasks with the reduced context input, the model
would be able to learn better representations. We leave this
as future work.

To conclude, we propose Learning to Reduce, a framework
that learns to generate a reduced context. The framework
adopts a novel reward function for context reduction and
fine-tunes a language model through On-Policy Learning.
Not only does our framework outperform a state-of-the-
art LLM (e.g. GPT-4) in context reduction, but it is also
generalizable to an unseen dataset. We further show that the
output of our framework improves the LLM’s performance
on downstream tasks. Learning to Reduce is model-agnostic
thus it can be applied to different types of structured data
such as knowledge base and databases in future studies.
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A. Data Statistics
The original WTQ dataset consists of around 14K, 3.5K,
4.5K instances for training, validation, and test set. When
we use the SQUALL annotation and identify the instances
with valid SQL query annotation, the number of remain-
ing instances is 10K, 3K, 1.5K for each of the data split.
Detailed statistics of the dataset is described in Table 2.

From the observation, most of the tables in the dataset are
long-narrow tables where there are more rows than columns.
The average number of tokens of input context table is 1,333,
and there are around 300 isntances that exceed the maximum
sequence length of recent GPT checkpoints, 4,096.

B. Experiment Details
All models are trained and tested on 8-core NVIDIA Tesla
A10 GPU with 24GB RAM. Policy networks are trained
over 10 iterations and evaluated for every 3 iterations. The
total amount of policy network training took 18 hours.

We design our framework to fine-tune two separate lan-
guage models, one for the column reduction and the other
for the row reduction. One of the reasons we did not train
a single model for context reduction is to minimize repe-
tition. Consider an input table, and denote the number of
all columns N , number of relevant columns n, number of
all rows M , and number of relevant rows m. When we
have a language model with the maximum input sequence
length as L, the single model needs to be prompted ⌈N×M

L ⌉
times. When we reduce the columns first, the number of
prompting reduces to ⌈n×M

L ⌉+ 1 times. +1 represents lan-
guage model prompting for column reduction, and this can
be done within a single prompting because the maximum
number of columns is 25 in WTQ dataset. Another reason
is to make the policy network optimize better. The single
language model that generates relevant rows and columns
at the same time fails to be fine-tuned and only generates
columns or rows even after training the model with several
iterations.

For context reduction, language models are prompted as
“Select relevant columns from a table to answer a question.
Output ‘@’ if done generating. Question: {Table QA ques-
tion}, List of column headers: {Col1, Col2, ..}”. For row
reduction, the rows are represented with each cell’s cor-
responding column value as “Select relevant rows from a
table to answer a question. Output ‘@’ if done generating.
Question: {Table QA question}, List of rows in a format
‘rowX: (column name=value)’: {row1: (col1=val1), row2:
(col2=val2), ..}”. When there are a lot of rows in the table
and representing them exceeds the maximum token limit
of the language model, we truncate the table and prompt
the model. Thus in some cases, the language model can
only generate the end-of-sequence token when the given
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Table 2. Statistics of the WTQ dataset with valid SQUALL anno-
tation

WTQ with valid SQUALL annotation
# of train / valid / test set 10K / 3K / 1.5K
# of unique tables 5.4K
# of questions per table 2.73
Avg / Max # of columns 9 / 25
Avg / Max # of rows 46 / 753
Avg / Max # of cells 230 / 3,832
Avg / Max # of context tokens 1,333 / 20,324
# instances > 4,096 tokens 248
# instances > 8,192 tokens 60

sub-table does not contain the relevant evidence.

For the generalizability test, we manually annotate 200 in-
stances of the Hybrid QA test set in order to identify the
relevant rows and columns for a given question and table
pair, because Hyrbid QA does not have corresponding SQL
queries annotated for the instances.

C. Model Architecture
The initial policy network parameters are pre-trained lan-
guage model that is small enough to fine-tune. We use
a sequence-to-sequence language model with FLAN-T5-
Large (Chung et al., 2022) checkpoint as a base model and
fine-tune the model with the annotation of relevant rows
and columns for each question and table pair. Mathemati-
cally, we fine-tune the language models by maximizing the
log-likelihood as follows:

LFT = −ElogθLM (z|x, c)

We further tune the language model by computing the re-
wards from the model’s predictions on relevant rows and
columns. The model gets positive rewards for selecting the
correct relevant items, and gets negative rewards for incor-
rect selection. The model is penalized more when it does
not select the relevant items compared to when it selects
irrelevant items. As described in 2.2, the reward is defined
as:

R = λp|Z ∩ Cr|+ λn1|Z − Cr|+ λn2|Cr − Z|

Note that Cr is derived from a heuristics with text-to-SQL
annotation, namely cr = h(x, c). To formally define the pa-
rameter update condition, we aim to maximize the following
objective:

maxθLM
Ez∼θLM (·|x,c)[R(x, c, z)]

To make the optimization tractable for policy network, we

Table 3. Precision scores of input context reduction tested on
WTQ test set (WTQ) and on an unseen test set (HybQA).

Precision on Context Reduction
Column Reduction WTQ HybQA
RoBERTa Token Clf 93.32 77.61
Zero-shot GPT-4 72.13 86.78
Fine-tuned FLAN-T5 93.30 75.11
⋆⋆⋆ Learning to Reduce (ours) 90.32 75.15
Row Reduction WTQ HybQA
RoBERTa Token Clf 92.95 7.93
Zero-shot GPT-4 87.91 94.35
Fine-tuned FLAN-T5 89.01 98.22
⋆⋆⋆ Learning to Reduce (ours) 91.12 97.88

employ proximal policy optimization (PPO) method (Schul-
man et al., 2017). We consider a fine-tuned language model
as an initial policy network (i.e., π0 = θLM ) and update the
policy network π using PPO. The policy network’s genera-
tion of relevant information can be considered as a Markov
Decision Process ⟨S,A, r,P⟩, where S is a state space, A
is an action space, r is a reward function, and P is transition
probabilities. At each time step t in an episode, the model
selects an action (i.e., generating tokens of relevant informa-
tion) from A, based on the state of the current time step. The
state at time t is defined with the input and the policy net-
work’s previous generations, that is, zt = π(·|x, c, z<t−1).
The episode ends when the policy network generates an
end-of-sequence token.

Following the existing RL approaches on NLP applications
(Ziegler et al., 2019), we employ KL divergence penalty
rewards that dynamically adapt the coefficient β in different
time steps to minimize excessive parameter updates from
the initial policy. The action space for token generation
often stretches to the size of vocabulary and it makes op-
timization costly. To minimize such issues, (Ramamurthy
et al., 2022) proposed NLPO, an approach that masks out
the least probable tokens using top-p sampling. We set p
as 0.9 in the experiments. The policy network’s reward
function r(x, c, z) is defined as:

r(x, c, z) = R(x, c, z)− β log
π(z|x, c)
θ(z|x, c)

et = CLIP
(

KL(πt, θ)− KLtarget

KLtarget
,−0.2, 0.2

)
βt+1 = βt(1 +Kβet)

D. Additional Results
D.1. Context Reduction Precision

Table 3 shows the precision scores of models on context
reduction. We use recall scores for evaluating different
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Figure 3. Accuracy (precision) of GPT-3.5-turbo on WTQ test set
with different input context tables.

models, yet precision scores cannot be ignored. For instance,
if a model chooses all columns and rows as relevant for all
cases, it achieves 100% recall but the model would not be
considered as well trained.

Learning to Reduce does not outperform other models with
regard to the precision scores. When it is compared to its
non-RL counterpart, fine-tuned FLAN-T5, the precision
scores are almost similar or decreasing. This is expected
because our framework is tuned with recall-based reward.
As our framework does not show exceptionally poor perfor-
mance on precision scores compared to other baselines, we
argue that Learning to Reduce does not achieve its outper-
forming recall scores by simply selecting more columns and
rows.

D.2. Downstream Task Performance

Figure 3 shows table QA performance on WTQ dataset
when we use a different LLM, GPT-3.5-turbo. Similar to
the results using GPT-4 model, LLM’s inference ability
drops as the input context gets longer. We can also see the
same trend for inputs with reduced context—input tables
with only columns reduced does not improve the LLM’s
performance while input tables with both rows and columns
reduced leads LLMs perform better. The gap between the
gold and predicted context reduction motivates the necessity
of improving the accuracy of context reduction in future
studies.

8


