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Abstract— In this work, we introduce a method for predicting
environment steppability – the ability for a legged robot platform
to place a foothold at a particular location in the local
environment – in the image space. This novel environment
representation captures this critical geometric property of the
local terrain while allowing us to exploit the computational
benefits of sensing and planning in the image space. We adapt
a primitive shapes-based synthetic data generation scheme
to create geometrically rich and diverse simulation scenes
and extract ground truth semantic information in order to
train a steppability model. We then integrate this steppability
model into an existing interleaved graph search and trajectory
optimization-based footstep planner to demonstrate how this
steppability paradigm can inform footstep planning in complex,
unknown environments. We analyze the steppability model
performance to demonstrate its validity, and we deploy the
perception-informed footstep planner both in offline and online
settings to experimentally verify planning performance.

I. INTRODUCTION

In 2004 and 2005, the Defense Advanced Research
Projects Agency (DARPA) launched the Learning Applied
to Ground Vehicles (LAGR) [1] program and the Learning
Locomotion (L2) program, respectively [2]. The primary
goals of the LAGR program were to make advancements
in machine perception including robust object detection and
nearsighted sensing for wheeled platforms [3]–[6] whereas
the L2 program was concerned with sophisticating motor
control and motion planning techniques [7]–[9] for legged
systems and subsequently eschewed perception and mapping
through the provision of high-accuracy terrain meshes.

From the commencement of the LAGR program to the
current day, the concept of terrain traversability has been
heavily explored through the lens of wheeled and treaded
platforms. High performance image space-based detection
and planning methods have been developed that enable
real world deployment [10]–[12]. However, with regards
to legged platforms, the state of the art in planning and
navigation [13]–[15] has largely leveraged environment rep-
resentations involving Cartesian frame global or robot-centric
2.5D occupancy and height maps, contrasting the perception
space-based methods commonly seen for wheeled platforms.
While such representations simplify downstream decision-
making, they are computationally burdensome for a naviga-
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Fig. 1: Unitree Go1 performing autonomous footstep plan-
ning in a stepping stones environment. Below, the depth
image and steppability mask of the scene are pictured. Within
the mask, green corresponds to steppable regions and yellow
corresponds to passable regions.

tion framework at the local level due to the need to perform
frequent point cloud processing steps such as projection,
transformation, and plane estimation. Due to these steps,
these representations require GPU acceleration to run online.

In recent years, research efforts have explored how to
evaluate legged traversability through the image space [16],
but to the authors’ awareness, no efforts have been made
towards evaluating steppability — which captures the ge-
ometric properties of the local environment that allow for
stable footholds — in the image space. Furthermore, while
perception-informed search heuristics have proven to greatly
improve graph search timing and performance for manip-
ulation tasks [17]–[19], they have received less attention
for the task of legged locomotion. Therefore, in this work,
our motivations are twofold: (a) explore how this notion
of image space steppability can be predicted through a
learned network, and (b) integrate this steppability network
into a navigation framework to perform perception-informed
footstep planning. In summary, our main contributions are:

1) Introduction of a novel image space-based legged
environment representation for steppability

2) Adaptation of a primitive shapes-based synthetic data
generation technique to the task of learning steppability

3) Integration of the learned steppability model into an
interleaved search and optimization foothold planner

4) Experimental validation of the learned steppability
representation and the perception-informed foothold
planner in simulation



II. METHODOLOGY

A. Dataset Generation

First, we will detail how we generate the simulation
scenes that we use to extract the synthetic steppability data.
Here, we adapt a primitive shapes-based technique that was
previously used for manipulation tasks [20], [21]. In this
work, the authors hypothesize that the geometry of graspable
objects can be decomposed into a set of primitive shapes
where each primitive shape class has a particular family of
effective grasps. The ground truth labels of these objects
can then be ascertained through the color of the primitives
within the simulation scene. We perform a similar process
here, but instead utilize class labels concerning steppability.
The synthetic scenes used for training data are assembled
according to a key set of design parameters that we detail
now. Example scene data including depth images, ground
truth labels, and model predictions is shown in Figure 3.

1) Primitive Shape Classes: We use four primitive shape
classes to build scenes: Cuboid, Cylinder, Sphere, and Semi-
sphere. The Cuboid class is parameterized by length l,
width w, and height h, the Cylinder class is parameterized
by x-dimensional radius rx, y-dimensional radius ry , and
height h, and lastly, the Sphere and Semisphere classes are
parameterized by radius r. Visualizations of each shape class
along with design parameter ranges are shown in Table I.

TABLE I: Primitive Shape Classes and Visualizations

Primitive
Shape Class

Geometry
Visualizations

Label
Visualizations

Parameter
Range (unit: m)

Cuboid
l ∈ [0.2, 1.0]
w ∈ [0.1, 0.50]
h ∈ [0.05, 0.25]

Cylinder
rx ∈ [0.10, 0.50]
ry ∈ [0.10, 0.50]
h ∈ [0.05, 0.25]

Sphere r ∈ [0.025, 0.05]

Semisphere r ∈ [0.025, 0.05]

2) Primitive Shape Steppability Policies: Each primitive
shape class is assigned a mesh-based steppability policy that
defines which faces of the shapes should be assigned which
labels. The three labels used are:

• Steppable (Green): can support a stable foothold
• Passable (Yellow): can not support a stable foothold,

but can be stepped over by a foot swing trajectory
• Non-passable (Red): can not support a stable foothold

and can not be stepped over by a foot swing trajectory

For Cuboids and Cylinders, the top face is labeled as
steppable due to its flat horizontal geometry. If the height of
the primitive exceeds a maximum swing height for the robot
leg, in this work defined as hmax = 0.10 m, then all vertical
faces are labeled as non-passable. Otherwise, the vertical
faces are labeled as passable. For Spheres and Semispheres,
the entire primitive is labeled as non-passable if the diameter

and radius respectively exceed hmax. Otherwise, the entire
primitive is labeled as passable.

3) Primitive Shape Pose: The six-dimensional pose of
each primitive shape can be set according to desired scene
attributes. For instance, scenes can be set to feature clusters
of primitive shapes localized within a particular region of
the scene, the primitives can be scattered all throughout the
scene, or the poses can be overwritten to accept manually
defined entries if the user wants to create more contrived
scenes that include structures such as staircases or stepping
stones. The z-dimension of all shapes is restricted so that all
shapes are placed on support surfaces, and the orientations
of cuboids and cylinders are restricted to ensure that the face
labeled as steppable remains as the top face in the scene.

4) Camera pose: The six-dimensional pose of the cam-
era placed within each simulation scene can also be pa-
rameterized to emulate expected real-world circumstances
for onboard sensing. Given that our desired application is
quadrupedal locomotion, we set the camera at a height of
z = 0.325 m and pitch it downwards by 30° to approximate
the pose of the depth camera attached to our quadruped.
To capture multiple frames of a single scene, the camera
is set to follow a prescribed trajectory that approximates
how a quadruped’s torso would move through a real world
environment. Gaussian noise is also applied to all six pose
dimensions to represent the jitter that the camera would
experience during deployment.

5) Scene Environment: Lastly, the overall synthetic en-
vironment that the primitive shapes are placed within can
also be controlled. In this work, we randomly select between
indoor environments that include walls and a ceiling and
outdoor environments that include an infinite horizon.

B. Model Training

For model training, we use the off-the-shelf DeepLabV3+
[22] model from the Detectron2 deep learning library [23].
To construct the dataset, 500 scenes were generated with 5
frames each, making for a total of 2, 500 images. In total,
dataset generation took roughly 10 hours. The generated data
was put into 80%/10%/10% splits of 2,000, 250, and 250
images for training, validation, and test subsets respectively.
Model training was performed on an Intel Xeon W-2223
CPU at 3.60GHz along with an NVIDIA T1000 GPU, with a
trial taking 37 minutes. Plots of training loss and intersection-
over-union can be seen in Figure 2.

C. Steppability-informed Contact Planning

Now, we detail how the proposed steppability model can
be used to inform footstep planning. We provide a brief
overview here, and more details can be found at [24].

We incorporate this steppability model into our existing
interleaved graph search and trajectory optimization-based
footstep planner. To plan a discrete sequence of footholds,
we perform a search over a mode transition graph G = (V, E)
[25]. Each vertex v ∈ V represents a partial stance in which
a proper subset of the quadruped’s feet are in contact with a
unique combination of steppable objects in the environment.



Fig. 2: Results of training. The top figure shows the total
training loss over the training iterations. The bottom figure
shows the intersection-over-union (IoU) of the three semantic
classes over the training iterations.

Each vertex v represents a mode family Ξ. Within each
mode family, there is an infinite set of modes ξ ∈ Ξ
where each mode ξ represents a particular set of positions
along the steppable objects where contact is made. A set
of continuously varying coparameters χ parameterize these
contact positions.

Each edge e ∈ E represents a transition between two
partial stances which itself is a full stance in which all
feet are in contact. For a transition between source mode
ξi = ⟨Ξi, χi⟩ and destination mode ξi+1 = ⟨Ξi+1, χi+1⟩,
the graph edge e = (ξi, ξi+1) is assigned the weight

∆c(ξi, ξi+1) = wD · DΞi,Ξi+1(χi,χi+1)+

wd · dCoM(ξi, ξi+1) + wτ · dτ (ξi, ξi+1)+

wstep · dstep(ξi, ξi+1),

(1)

where the distribution DΞi,Ξi+1(χi,χi+1) captures the
kinodynamically-aware cost of transitioning from ξi to ξi+1,
dCoM(ξi, ξi+1) is the Euclidean distance between nominal
CoM positions for ξi and ξi+1, dτ (ξi, ξi+1) is the deviation
of nominal CoM positions for ξi and ξi+1 from a guiding
torso path, and dstep(ξi, ξi+1) is a proposed steppability-
informed weight. All terms are weighted by positive scalars
to assign relative importance.

This graph search returns a discrete sequence of footholds
that are then passed to a whole body trajectory optimization
(TO) program to generate a full trajectory. The optimal cost
values obtained from this TO program are then used to
update the experience-based distribution DΞi,Ξi+1(χi,χi+1)
which is obtained offline.

D. Steppability heuristic

The mode transition graph is constructed under the as-
sumption that we have access to the poses of the objects in
the environment that we want to plan footholds on, but we
assume that the poses of obstacles are unknown. We then
rely on this proposed perception-informed steppability term
for reactive obstacle avoidance.

Fig. 3: Example outputs of learned steppability model. The
top row depicts examples of input depth images to the
model. The middle row depicts the ground truth steppability
labels of the corresponding column’s input depth image. The
bottom row depicts the model outputs for the corresponding
column’s input depth image.

Prior to triggering the mode transition graph search, the
learned model is queried to obtain the current steppability
mask Istep. This mask contains steppability labels for the
current view of the environment. Then, during the graph
search, when a new edge is visited, the stance foothold
positions of the edge’s transition can be projected into
the steppability mask to ascertain information regarding the
quality of the candidate foothold positions.

From the graph edge e, we extract the world frame
positions pl

c ∈ R3 ∀l = 1, 2, 3, 4 of the center of each of
the four transition footholds. To determine the correct pixel
to query for its steppability label, we then perform pinhole
camera projectionxl

c

ylc
w

 = K ·
[
Rt

CW ttCW

]
·
[
pl
c

1

]
, (2)

where
[
xl
c ylc w

]T
are homogeneous image coordinates,

K ∈ R3×3 is the intrinsic camera calibration matrix, and
Rt

CW ∈ R3×3, ttCW ∈ R3 are the rotation and translation
from the world frame to the camera frame at time t. Fi-
nally, the homogeneous image coordinates of the candidate
footholds are obtained through the simple conversion

xl
c :=

[
xl
c/w

ylc/w

]
. (3)

Based on the steppability label returned for the foothold pixel
xl
c, we assign a weight of

dlstep(ξi, ξi+1) =


1000, if Istep(xl

c) → non-passable
100, if Istep(xl

c) → passable
5, if xl

c not in frame
1, if Istep(xl

c) → steppable

.

(4)



Lastly, the total steppability weighting term is taken as the
sum across all footholds

dstep(ξi, ξi+1) =
∑
l

dlstep(ξi, ξi+1). (5)

To account for the finite size of the quadruped’s feet, we
perform a step similar to that in [16] where we additionally
check the steppability labels of world frame positions that
are offset from pl

c in the x− and y−direction by the radius
of the foot and add these to the total steppability weight.

III. EXPERIMENTAL RESULTS

A. Offline Experience Accumulation

First, we demonstrate the added steppability term signifi-
cantly expedites the offline experience accumulation process.
For this experiment, the quadruped is deployed in the envi-
ronment shown in Figures 1 and 5 where the robot must
maneuver across several spherical obstacles scattered along
the surfaces of the various stepping stones. Offline planning
trials are run with and without the steppability term included
in the graph search, and the results are shown in Figure 4.

(a) Results for experience accumulation without steppability heuristic.

(b) Results for experience accumulation with steppability heuristic.

Fig. 4: Results for offline experience accumulation. Left plots
showcase the results of all attempted subproblems – success,
failure, or not attempted due to early trial termination – along
with the total costs of the successful paths. Right plots show
graph search times for each planning trial as well as average,
minimum, and maximum TO solve times across all of the
attempted subproblems within each planning trial. Note the
difference in scale of the x-axes between Figure 4a and 4b.

Without the steppability term (Figure 4a), the planner
must ascertain the obstacle locations through the experience
heuristic. This can be viewed as as a form of intrinsic
perception where the graph search only comes to avoid the
obstacles through the high trajectory costs due to collisions
being integrated into the edge weights. After 40 offline trials,
the planner converges to a reliably successful contact path.

With the steppability term (Figure 4b), the planner has a
weighting term on the graph edges that can act as a form

of extrinsic perception. Based on the current view of the
environment, this steppability term guides the graph search
away from footholds that overlap with obstacles. The impact
of this term can be seen in that the planner can immedi-
ately identify successful contact sequences. Furthermore, the
only failure (Trial 4) was due to a kinematically infeasible
transition, not a collision.

With the steppability term included, the graph search and
trajectory optimization times increase significantly, but this
is largely because the planner must be run in a simulation en-
vironment in order to read the incoming depth image stream.
Without the steppability term, the experience accumulation
process can be run outside of a simulation environment.
Both with and without the steppability term, the TO solve
times become more consistent once a collision-free contact
sequence has been identifed by the graph search.

B. Online Trajectory Tracking

The reference trajectories generated from the contact
planner are then passed to a nonlinear MPC-based tracking
controller. We showcase the kinodynamic feasibility of the
resulting reference trajectories in Figure 5.

Fig. 5: Online tracking performance of the offline reference
trajectory in simulation.

Overall, the tracking performance in simulation is suitable
for online deployment, and the reference trajectory success-
fully guides the platform the other side of the stepping stones
layout. At roughly 6 seconds, the Z-coordinates of the front
right and back right feet fall below 0.05 m. This is due to the
feet momentarily slipping off the desired stepping stones.

IV. CONCLUSION

In the future, we aim to validate the performance of our
perception-informed contact planner on hardware in the real
world. To do so, we plan on generating synthetic data from
higher fidelity simulation environments and bridging the sim-
to-real gap by incorporating a domain alignment process that
merges simulation and real world data distributions by both
corrupting simulation data and denoising real world data.
We also seek to benchmark our steppability model against
classical point cloud processing-based representations.
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