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Abstract

While chain-of-thought (CoT) prompting improves reasoning in large language
models, its effectiveness in vision-language models (VLMs) remains limited due
to over-reliance on textual cues and memorized knowledge. To investigate the
visual reasoning capabilities of VLMs in complex real-world scenarios, we intro-
duce DRIVINGVQA, a visual question answering dataset derived from driving
theory exams, which contains 3,931 multiple-choice problems with expert-written
explanations and grounded entities relevant to the reasoning process. Leveraging
this dataset, we explore the benefits of incorporating entity-related information,
such as entity names, spatial coordinates, and visual content, through supervised
fine-tuning to enhance the model’s reasoning abilities. Our experiments demon-
strate that our proposed method, RIV-CoT – interleaving textual explanations with
visual tokens retrieved from the input image – improves answer accuracy by 3.1%
and reasoning accuracy by 4.6% over vanilla CoT prompting. Furthermore, we
demonstrate that this retrieval-based approach effectively scales to the larger A-
OKVQA reasoning dataset by leveraging automatically generated pseudo-labels,
outperforming CoT prompting. Code and datasets are available at https://vita-
epfl.github.io/DrivingVQA.

1 Introduction

Chain-of-thought (CoT) [1] is a prompting strategy that aims at enhancing the reasoning capabilities of
large language models (LLMs) [2, 3, 4] and, more recently, vision-language models (VLMs) [5, 6, 7,
8]. While well-suited for mathematical and logical reasoning, vanilla CoT shows limited effectiveness
when tasked with visual data and spatial information [9, 10, 11]. A critical challenge is VLMs’
tendency to excessively rely on textual inputs and memorized knowledge rather than visual inputs,
which can lead to hallucinations [12, 13, 14, 15]. Despite significant research efforts to improve
VLMs’ alignment of textual and visual modalities, by generating textual image descriptions [16,
17, 18], leveraging scene graphs [19], or using bounding box coordinates [20, 21, 22], VLMs still
fall short in robustly interpreting and reasoning about visual scenes with rich semantic content and
intricate spatial configurations.

In this work, we propose to push forward VLMs’ visual reasoning ability by implementing visual
chain-of-thought as a process where the model leverages the visual and spatial information explic-
itly as part of its reasoning, jointly detecting relevant regions of interest in the scene, identifying
their attributes and spatial relationships using visual patches and region coordinates, and deducing
appropriate actions (see fig. 1).

∗Equal contribution, with order determined alphabetically.
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Question: This light is 
flashing, I must yield to 
this car:  
 
A: Yes
B: No 

If the traffic light is 
flashing yellow, it 
means you should 
yield to any oncoming 
traffic or pedestrians.

Answer: A ❌

Question: What period of the 
day is depicted in the photo?

A: morning 
B: night 
C: evening 
D: afternoon 

The clock 
indicates 5pm.

Answer: D ❌

The clock [144.53, 3.07, 127.33, 167.48]        
indicates it is almost 11:30. The sky
 [0.4, 0.45, 447.85, 334.08] 

shows it is not dark outside, 
so it is daytime, but it is not quite noon yet.

Answer: A ✅

The traffic light [1023.36, 296.6, 52.49, 274.6] 
is flashing yellow, and there is no sign under it.
The vehicle [934.14, 552.24, 273.8, 123.97] 

   on the right has a stop line marking 

[924.7, 622.2, 58.06, 71.54] 

and a stop sign [960.5, 505.21, 30.5, 36.81]          . 
Therefore, I do not have to yield to the right.
Answer: B ✅
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Figure 1: Illustration of retrieval-based interleaved visual chain-of-thought in DRIVINGVQA
and A-OKVQA. The models are trained to reason using entities’ coordinates and their retrieved
visual patches in an interleaved manner, outperforming standard chain-of-thought.

Existing reasoning-oriented visual question answering (VQA) datasets are insufficient for both
evaluating and teaching these capabilities. Some rely on synthetic or schematic visuals [23], lack
grounding annotations [24, 25], or present oversimplified scenarios with a single region of interest [11].
Additionally, most explanations are generated from a set of predefined templates or by using an
exogenous LLM [23, 11, 26]. These explanations can be repetitive, error-prone, and biased, limiting
their effectiveness as training signals.

Driving theory exams test a candidate’s understanding of traffic laws, road signs, and safe driving
practices using real-world scenarios and visual cues. This setting offers a rich and underexplored
testbed to both assess and teach VLMs reasoning in complex real-world scenarios. They require
multi-entity perception and spatial reasoning (e.g. assessing relative positions of vehicles, signs,
or lane markings) as well as rule-based logic (e.g., right-of-way, overtaking conditions). Uniquely,
they offer expert step-by-step didactic explanations designed to teach learners how to reason about
dynamic environments. We introduce DRIVINGVQA, a visual reasoning dataset derived from
publicly available French driving theory exams. It contains 3,931 samples, each featuring one or two
visual questions with multiple answer choices, alongside expert-written explanations. We propose
a pipeline to extract relevant entities with bounding box coordinates and generate reasoning traces
interleaved with the entities (see Figure 2), allowing models to leverage the entities’ visual attributes
and location as part of the reasoning process. DRIVINGVQA offers a comprehensive framework to
guide and assess VLMs’ capabilities in complex real-world scenarios that involve multiple object and
spatial reasoning.

Using DRIVINGVQA, we showcase the impact of using the spatial and visual information of relevant
entities jointly with textual CoT for complex, real-world visual reasoning problems (see fig. 5),
significantly improving VLMs’ reasoning. In particular, our Retrieval-based Interleaved Visual CoT
strategy that allows VLMs to reason using bounding box coordinates and visual crops retrieved from
the input image improves answer accuracy by up to 3.1% and reasoning accuracy by up to 4.6%
compared to vanilla chain-of-thought prompting. Finally, we demonstrate that the DRIVINGVQA
construction pipeline, even without human refinement, effectively scales to A-OKVQA [27], a larger
and general-domain dataset without relevant entity annotations.

2 Related Work

2.1 Visual Reasoning Datasets

Since the seminal work of Antol et al. [28], visual question answering (VQA) datasets have flourished
over the past decade [29, 30, 31, 32]. With the emergence of VLMs and their enhanced reasoning
capabilities, recent datasets have been specifically developed to train and assess these models’
advanced reasoning skills [24, 23, 11, 33]. To elicit grounded multimodal reasoning in VLMs,
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training datasets include step-by-step explanations leading to the correct answer, and grounding
annotations providing bounding box coordinates of entities in the images.

Due to the challenges in manually collecting detailed explanations, most visual reasoning datasets rely
on LLM-generated [11] or template-based [23] explanations, which often fall short of the diversity
and quality of human-authored content. Additionally, many complex visual reasoning datasets rely
on synthetically generated puzzle-like images, such as PuzzleVQA [23], or diagrams and schematic
figures, such as ScienceQA [24]; which do not adequately capture the complexity of natural images.
Dataset with natural images and realistic questions reflecting complex situations often belong to
specific domains such as autonomous driving, where the need for explainable driving behavior in
control planning [34, 35] and end-to-end driving [36, 37] has led to the creation of many VQA
datasets [38, 26, 39, 40]. However, only a few include reasoning traces. The recently developed
LingoQA [26] comes closest to our work, featuring VQA pairs with textual descriptions of driver
actions, justifications, and road observations. However, its questions and answers are synthetically
generated by GPT-4 [41] and do not include any bounding boxes or relevant entities to visually
ground explanations.

In the general domain, to the best of our knowledge, only VisualCoT-GQA [11] pairs relevant entity
coordinates with explanations. However, it utilizes synthetic explanations and restricts its annotations
to a single entity per image. In contrast, DRIVINGVQA uniquely combines real-world images from
driving scenarios with (1) expert-written explanations and (2) multiple relevant entity annotations,
interleaved inside the explanation.

2.2 Visual Chain-of-Thought in VLMs

A major challenge in visual CoT for VLMs is their capacity to leverage visual inputs during the
reasoning process. Significant research efforts have been made to enhance visual CoT capabilities.
One of the main strategies is to generate a textual description of the scene before answering the
question [16, 17, 18, 42]. The description may take the form of captions, a series of visual question-
answer pairs that extract additional image details [43], or sparser representations of the input image
such as scene graphs [19]. Similarly, visual programming [44, 45, 46] adopts a neuro-symbolic
approach that leverages off-the-shelf models to extract information from images and convert it into
text for subsequent reasoning.

Another research direction focuses on explicit grounding within the input image. This includes
training VLMs to generate CoT along with coordinates of relevant image regions [22, 20], or
incorporating visual prompts directly into the image, to be used by the VLM when reasoning. These
visual prompts can take the form of a grid [21] or a set of visual markers [47] that indicate specific
areas of the image. More closely related to our work, CogCOM [48] modifies the input image before
using the transformed version to answer a question, notably by zooming on a specific image region.
Concurrently, Visual CoT [11] designs a visual sampler that selects a sub-region of the input image to
answer a question; Gao et al. [49] proposes extracting different sub-regions of an image using visual
attention patterns and generating reasoning for each sub-region. In contrast, our dataset allows VLMs
to learn how to perform interleaved multimodal CoT with image patches retrieved from the input
image using their bounding box coordinates, ultimately enabling more integrated visual reasoning.

A parallel line of work trains auto-regressive VLMs [50] to generate image tokens that simulate
sequential actions [51, 52], with applications in object localization and spatial navigation, albeit
limited to simplistic images and actions.

3 DRIVINGVQA Dataset

We construct DRIVINGVQA through a three-step process (see Figure 2): (1) collecting and filtering
challenging real-world driving scenarios from driving theory tests, (2) annotating relevant entities in
each sample, and (3) generating reasoning traces interleaved with relevant entities.

3.1 Data Collection

In many countries, obtaining a driver’s license requires passing two examinations: a theoretical test
and a practical driving test. In France, the theoretical exam consists of 40 multiple-choice questions
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Step 1: Data collection

Filtering

Translation

Step 2: Entities extraction Step 2.5: Entities manual annotation

Step 3: Interleaved reasoning generation

3,931 samples

In this situation:
A: I slow down ✅
B: I stop ❌
C: I pass ✅

My light is green, so 
automatically, the pedestrian 
light is red. This pedestrian 
seems not to have seen me, I 
slow down so as not to 
approach them too quickly, 
and I pass.

Hand-crafted demonstrations

Entity labels 
& coordinates

Expert 
explanation

Question 
& options

Image

5,657 entities

Driving theory practice 
exams

Scraping

Can this question be answered 
without the image?

Entity labels extraction

Entity coordinates extraction

[ “Traffic light”,
“Pedestrian” ]

Translate the question, list of 
options and explanation to 
English.

GroundingDino

▶ Remove irrelevant entities
▶ Correct inaccurate labels or 
coordinates
▶ Add missing entities

▶ Reformulate the 
explanation to include 
all entities.
▶ Embed all bounding box 
coordinates next the the 
corresponding entity.

The traffic light [400.22, 153.32, 30.71, 61.58] 
is green, so automatically, the pedestrian light 
is red. This pedestrian [380.12, 228.27, 47.54, 
101.28] seems not to have seen me, I slow 
down so as not to approach them too quickly, 
and I pass.

Entity 
labels

Traffic light: [400.22, 152.32, 30.71, 61.58]

Pedestrian: [380.12, 228.97, 47.54, 101.28]

Expert 
explanation

Question 
& options

Image Extract key entities 
mentioned in the 
question, option and 
explanation, and  visible 
in the image.

Image

Figure 2: DRIVINGVQA creation pipeline. (1) We collect and filter real-world driving theory
problems along with expert explanations; (2) annotate relevant entities and their coordinates in each
sample, first automatically (step 2) then with manual refinement (step 2.5); and (3) generate reasoning
traces interleaved with relevant entities.

(MCQs) with images. Candidates must possess accurate knowledge of traffic laws, road signs, and
safe driving practices and must carefully analyze the image provided to answer the question. Given
this emphasis on visual analysis and the use of real-world images, we focus on French driving theory
exams.

Collection. To help candidates prepare for this exam, several online platforms offer practice driving
theory problems. These resources are often freely accessible and do not require registration. We
obtain MCQs from such platforms. Each collected sample includes questions with two to four
possible answers, where multiple answers may be correct. Some questions include two sub-questions,
each with two possible answers. We standardize the format to include the image of the driving scene,
the question, the list of possible answers, the correct answer(s), and an expert-annotated explanation.
The explanations are written by driving theory teachers when creating the exams and are very detailed,
describing the situation in the image and reasoning about it to explain the correct answer. An example
of a driving theory problem is shown in Figure 2 (step 1).

Filtering. Not all collected questions require visual reasoning about driving scenes, and some images
may serve only illustrative purposes. We use GPT-4o [2] to filter out samples where questions could
be answered correctly without using the image, and perform a manual review of excluded images
to address potential misclassifications. In a validation exercise with 60 randomly selected samples,
three expert annotators achieved inter-annotator agreement scores of around 0.95 for Krippendorff’s
alpha, Fleiss’ kappa, and average pairwise Cohen’s kappa.

Translation. We translate all questions, answer options, and explanations from French to English
using GPT-4o-mini, then manually review and refine them for consistency and fidelity.

The final DRIVINGVQA dataset contains 3,931 samples, divided into a training set (80%) and a
test set (20%, 789 samples). Figure 3 provides an overview of the dataset statistics, including the
distribution of the number of possible answers, correct answers, and explanation length in terms of
word count.

3.2 Entities Extraction

We augment the collected data with annotations of relevant entities to answer the question, specifying
their names and locations in the image. To reduce the burden of manual annotation, we introduce a
framework, detailed in step 2 and step 2.5 of Figure 2, that identifies possible relevant entities and
their location in the image.

Automated extraction. It begins by leveraging human explanations to extract an initial list of
domain-specific key entities found in our dataset. For each sample, we identify the entities from this
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(f) Top-10 most frequent entities.

Figure 3: DRIVINGVQA dataset statistics. In total, the dataset contains 3 931 examples. Each
sample has 2 to 4 answer choices and up to 4 answers can be correct. Expert-written explanations are
relatively long – 40 words on average – and mention up to 5 relevant entities visible in the image (1.4
on average).

list that are visible in the images and referenced in the question, possible answers, and explanation
using GPT-4o-mini. Then, GroundingDINO [53] is used to localize these entities in the image,
obtaining (entity label, bounding box coordinates) pairs. Finally, we apply heuristics to refine these
outputs, such as grouping similar labels under unified entity names. Details of this pipeline are
provided in Appendix A.1.

Manual annotation. In DRIVINGVQA, human experts refine the pseudo-annotated data by removing
irrelevant entities, correcting inaccurate labels and coordinates, and adding missing entities. In total,
5,657 entities (spanning 256 unique labels) were annotated with precise bounding boxes, averaging
1.4 entities per image. Figure 3 shows the distribution of entities per question, their image coverage,
and the top 10 most frequent entity labels.

3.3 Interleaved Reasoning Generation

Explanations in DRIVINGVQA do not systematically make explicit reference to the human-annotated
relevant entities. To ground explanations with visual cues, we integrate the list of relevant entities into
the explanations, creating interleaved explanations. We prompt GPT-4o with two manually crafted
demonstrations to embed each set of bounding-box coordinates into the explanation, reformulating it
slightly to refer to the entity at the beginning of each step of the reasoning; thereby achieving a more
causal formulation aligned with the autoregressive nature of the training objective (see examples in
Figure 1 and the step 3 of Figure 2). Hence, the resulting interleaved explanation refers to the relevant
entities early in the sentences, allowing the reasoning process to be conditioned on the content of
the image crops. This process is followed by light rule-based post-processing to refine the final
explanation (see details and prompt in Appendix A.2).

3.4 Evaluation Metrics

Answer correctness. The performance on the DRIVINGVQA test split (789 samples) is measured
with the exam score, analogous to the real driving theory score used to evaluate candidates: all correct
answers must be selected to score a question correctly. Note that this score is equivalent to the exact
match ratio. Since the task is analogous to multi-label classification, we also report the F1-score.

Reasoning correctness. While a high exam score indicates the quality of answer selection, it does not
necessarily reflect the correctness of the reasoning. A model may rely on heuristics or memorization,
a limitation that the exam score alone does not fully capture. To address this, we assess the correctness
of the model’s reasoning by comparing it against DRIVINGVQA’s ground truth explanations. We use
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Figure 4: Comparison of zero-shot model performance on the DRIVINGVQA test set. The
dashed lines indicate the random baseline (19.8%) and the human baseline (79.6%). Orange bars
indicate large reasoning VLMs (trained using Reinforcement Learning to reason before answering).

GPT-4o-mini as an evaluator, leveraging the LLM-as-a-judge paradigm [54], which is increasingly
used to scale the evaluation of open-ended generations of LLMs and VLMs, and is shown to align
well with human judgment in pairwise comparisons [55, 56]. The prompt used for GPT-4o-mini is
detailed in Appendix C.3. The model is provided with the question and answer choices, the ground
truth explanation, and the reasoning generated by the VLM. It is then tasked with identifying the key
arguments in both explanations, checking for missing or contradictory elements, and determining
whether they align. Thus, we define the reasoning correctness as the proportion of samples in the test
set where the judge determines that the model’s reasoning matches the ground truth reasoning.

4 Experiments

In this section, we first evaluate the zero-shot performance of state-of-the-art VLMs on DRIVINGVQA.
Then, we implement Retrieval-based Interleaved Visual Chain-of-Thought prompting (RIV-CoT),
exploring the benefits of incorporating entity-related information, such as entity names, spatial
coordinates, and visual content, through supervised fine-tuning to enhance the model’s reasoning
abilities. Finally, we evaluate the correctness of the generated entity coordinates and of the model’s
reasoning.

4.1 Zero-Shot Evaluation

Figure 4 presents the zero-shot performance of popular open-sourced models, including the LLaVA-
OV variants (0.5B, 7B, 72B) used in the subsequent experiments, and proprietary models on the
DRIVINGVQA test set. These models are provided a prompt defining the expected format and asked
to directly predict the answer (e.g. ‘Answer: B,C’). We include a random baseline where responses
are selected randomly from all possible answer combinations for each question. Results for the
random baseline are aggregated over 1,000 runs, reporting the mean exam and F1 scores. To estimate
human performance, we recruit six participants with varying driving experience. They are asked to
answer batches of 40 randomly selected samples in under 20 minutes, simulating the operational
driving theory exam conditions. Their average exam score of 79.6% falls below the official passing
score of 87.5% (35/40). This drop reflects the increased difficulty of DRIVINGVQA, as it focuses on
visually challenging questions after the data filtering process.

Larger models and reasoning models tend to perform better, with OpenAI’s o3 [57] achieving the
highest exam score (67.0%). Nevertheless, it remains far from the human baseline (79.6%), which
illustrates the benchmark’s difficulty due to its domain-specific images and knowledge and the
complexity of the visual scenes. We also assess the impact of visual inputs in DRIVINGVQA by
evaluating GPT-4o [2] without image information. This results in a substantial performance drop to
33.1% (-26 pts) compared to its image-enabled counterpart. It confirms that images are necessary to
accurately answer DRIVINGVQA’s questions, and knowledge-based shortcuts are not sufficient.
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<img>

is green, so automatically, the pedestrian 
light is red. This pedestrian [380.12, 228.97, 
47.54, 101.28]

seems unaware of my presence, I slow down 
to avoid approaching the pedestrian too 
quickly, and I pass.
Answer(s): A, C.

<img>
In this situation:

A: I slow down
B: I stop 
C: I pass

DirectAnswer

CoT w/ entities (labels+bboxes) 

Answer(s): A, C.

My light is green, so automatically, the 
pedestrian light is red. This pedestrian 
seems not to have seen me. I slow 
down so as not to approach him too 
quickly, and I pass.
Answer(s): A, C.

CoT

The relevant entities are: traffic light, 
pedestrian.
My light is green, so automatically, the 
pedestrian light is red. This pedestrian 
seems not to have seen me. I slow 
down so as not to approach him too 
quickly, and I pass.
Answer(s): A, C.

CoT w/ entities (labels) 

The relevant entities are: traffic light 
[400.22, 152.32, 30.71, 61.58] , pedestrian 
[380.12, 228.97, 47.54, 101.28].
My light is green, so automatically, the 
pedestrian light is red. This pedestrian 
seems not to have seen me. I slow down 
so as not to approach him too quickly, and 
I pass.
Answer(s): A, C.

The relevant entities are: traffic light 
[400.22, 152.32, 30.71, 61.58] , pedestrian 
[380.12, 228.97, 47.54, 101.28].

CoT w/ entities (labels+bboxes+crops) 

My light is green, so automatically, the 
pedestrian light is red. This pedestrian 
seems not to have seen me. I slow down 
so as not to approach him too quickly, and 
I pass.
Answer(s): A, C.

Their corresponding image crops are:
traffic light <img>          , pedestrian <img>                     

.

CoT w/ interleaved entities (labels+bbox) 

The traffic light [400.22, 152.32, 30.71, 
61.58] is green, so automatically, the 
pedestrian light is red. This pedestrian
[380.12, 228.97, 47.54, 101.28]. seems 
unaware of my presence, I slow down to 
avoid approaching the pedestrian too 
quickly, and I pass.
Answer(s): A, C.

RIV-CoT

The traffic light [400.22, 152.32, 30.71, 61.58]

<img>

Figure 5: Illustrations of conversation format for each fine-tuning strategy on one example. All
of them start with a prompt including an image, a question and possible answer choices.

4.2 Retrieval-based Interleaved Visual CoT

We explore how to enhance VLMs’ visual chain-of-thought by leveraging relevant entities through
their label, bounding box and visual crops.

Experimental setup. We fine-tune LLaVA-OneVision (LLaVA-OV) 7B [58] on the DRIVINGVQA
train split. LLaVA-OV uses SigLIP [59] as image encoder, a two-layer MLP as image-language
adapter, and Qwen2 [60] as LLM backbone. All components are trained end-to-end with an autore-
gressive loss. Each training run is repeated five times with different random seeds to account for
stochasticity in the fine-tuning process and all results are reported with standard deviation. Training
is performed over 10 epochs, following the hyperparameters used by the authors of LLaVA-OV [58].

Baselines and ablations. An illustrative example of conversation formats with relevant entities
can be found in Figure 5. The model takes as input the image, the question and the list of possible
answers. The minimum baseline is the Direct Answer. Standard chain-of-thought (CoT) is obtained
by training the model on the expert explanations, so that it reasons before answering. Then, we
successively train the model to generate elements relative to the relevant entities before reasoning
(CoT w/ entities): the labels list, their bounding box coordinates, and their associated visual patch
cropped from the input image. To leverage the visual patches, we implement two rounds of inference.
The model first predicts relevant entities’ labels and coordinates given the question; then, it is fed
with the visual crops associated with the entities (see blue boxes in Figure 5) and uses them to reason
then answer. Finally, we ablate the effect of interleaving the bounding box coordinates within the
reasoning trace (CoT w/ interleaved entities (labels+bbox)).

Retrieval-based interleaved visual CoT (RIV-CoT). To jointly leverage the entities’ labels, coor-
dinates and visual patches as part of the reasoning process, we introduce RIV-CoT (see Figure 5,
bottom right). It consists of a multi-turn conversation, breaking down the model’s reasoning into
sequential turns. The explanation is broken down into sequential turns, with each model turn ending
with the bounding box coordinates of a relevant entity. The corresponding image crop is retrieved
from the input image and fed to the model in the next turn, allowing the model to iteratively process
visual and textual information in an interleaved fashion. To capture additional context and better
understand the entity’s attributes, we expand the detected bounding box by 50%. Training is con-
ducted using a standard autoregressive objective. At inference time, the generation process follows
an iterative approach. The model generates outputs until it predicts a bounding box; then, the image
crop corresponding to the predicted coordinates, expanded by 50%, is retrieved from the input image.
The cropped image is then encoded via the vision encoder and the crop tokens are inserted into the
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Table 1: Comparative results of fine-tuning LLaVA-OV-7B using different training strategies on
DRIVINGVQA. Crops stands for “visual crops”. RIV-CoT is equivalent to CoT with interleaved
relevant entities in the form of label+bboxes+crops.

Method Entity Format Answer Reasoning

Labels BBoxes Crops Interlvd. Exam (%) F1-Score (%) Acc. (%)

DirectAnswer 53.0 (±0.9) 63.3 (±0.6) –
CoT 56.2 (±1.0) 65.8 (±0.9) 20.9 (±0.4)

CoT w/ relevant entities (labels) ✓ 57.0 (±1.3) 67.1 (±1.4) 19.8 (±1.2)

CoT w/ relevant entities (labels+bboxes) ✓ ✓ 57.7 (±0.7) 67.3 (±0.7) 23.3 (±0.4)

CoT w/ relevant entities (labels+bboxes+crops) ✓ ✓ ✓ 58.4 (±1.1) 67.8 (±1.1) 24.3 (±0.9)

CoT w/ interleaved relevant entities (labels) ✓ ✓ ✓ 56.4 (±0.4) 66.3 (±0.6) 24.1 (±0.3)

CoT w/ interleaved relevant entities (labels+bboxes) ✓ ✓ ✓ 57.9 (±0.5) 66.8 (±0.2) 24.7 (±0.8)

RIV-CoT ✓ ✓ ✓ ✓ 59.3 (±1.0) 68.8 (±0.9) 25.4 (±0.8)

context after the bounding box, guiding the subsequent text generation. This multi-step retrieval
and integration cycle continues until the final answer is produced, yielding intermediate steps that
interleave image crops with textual reasoning, providing a more grounded chain-of-thought. An
illustration of RIV-CoT is available in Appendix C.2.

Answer correctness results. Table 1 shows the answer and reasoning correctness of RIV-CoT
along with the various baselines. As expected, fine-tuning LLaVA-OV with CoT allows the model to
generate better answers than predicting answers directly. While learning to generate the list of relevant
entities before generating an explanation and answer only leads to a minor improvement (+0.8 pts
over CoT baseline), adding bounding box coordinates improves the exam score to 57.7% (+1.5 pts
over CoT). Using visual crops further improves the performance, reaching 58.4% and showing the
importance of incorporating visual information for reasoning. Finally, using explanations interleaved
with visual patches, RIV-CoT achieves the best exam score (59.3%). This result shows that providing
rich contextual visual information interleaved within explanations results in the most efficient way to
enhance VLMs’ reasoning abilities. Fine-tuning on interleaved explanation without coordinates nor
visual patches leads to a score comparable to fine-tuning with the original explanations, validating that
the performance gain seen with interleaving comes from the added information from the bounding
boxes and visual patches.

Reasoning correctness results. We measure reasoning correctness with the evaluation metrics
defined in Section 3.4. The CoT baseline reaches a reasoning correctness of 20.8%; then come
models incorporating bounding boxes and image crops. Among retrieval-based approaches, RIV-CoT
improves its non-interleaved counterpart by 1.1 points (25.4% vs. 24.3%) and outperforms the CoT
baseline by 4.5 points, demonstrating the benefits of visual patches and interleaved formatting for
reasoning accuracy.

Impact of detection performance. Table 2 shows the detection performance of models fine-tuned
to predict bounding boxes of relevant entities. We measure the top-1 accuracy based on Hungarian
matching at an IoU threshold of 0.50. Results are reported for all samples, as well as for samples
with correct and incorrect final predictions. For correctly answered samples, the detection accuracy
is slightly higher than the overall average; while samples with incorrect predictions exhibit lower
accuracy. Notably, RIV-CoT achieves the highest accuracy on correctly predicted samples (72.4%)
but its detection performance decreases to 66.3% on incorrect answers, indicating that detection
failures may contribute to prediction errors.

To further assess the effectiveness of visual patches, we compare models using predicted entities
against ‘oracle‘ entities provided as additional information in the prompt during inference. The oracle
entities improve performance significantly (+3.3 pts in exam score, +3.1 pts in F1-score), highlighting
a limitation in grounding capabilities of the VLM chosen in our experiment.

To determine whether this improvement stems from relevant visual information rather than merely
adding more visual tokens, we compare also compare with a LLaVA-OV fine-tuned with a multi-
scale image patching strategy, AnyRes, introduced in [61]. It consists in splitting the image into N
sub-patches and concatenating all their representations with the original image, and is often used to
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Table 2: Detection performance of bounding box-
predicting models on DRIVINGVQA.

Method Top-1 Acc. @ IoU 0.50 (%)

All Correct Incorrect

CoT w/ relevant entities (labels+bboxes) 68.7 (±1.4) 69.3 (±1.1) 67.6 (±1.4)

CoT w/ relevant entities (labels+bboxes+crops) 69.8 (±1.5) 72.3 (±1.4) 66.1 (±2.7)

CoT w/ interleaved relevant entities (labels+bboxes) 68.5 (±1.8) 68.9 (±1.7) 67.3 (±1.6)

RIV-CoT 69.6 (±1.7) 72.4 (±1.2) 66.3 (±1.8)

Table 3: MC accuracy of LLaVA-
OV-7B models on A-OKVQA [27].

Dataset Method MC Acc. (%)

A-OKVQA
DirectAnswer 78.2 (±0.3)

CoT 80.6 (±0.4)

RIV-CoT 84.2 (±0.2)

encode high-resolution images. As the maximum number of entities per sample in DRIVINGVQA is
five, we use 4 splits in addition to the main image for a fair comparison. LLaVA-OV-AnyRes only
achieve 60.7% exam score, which is -1.3 pts compared to fine-tuning with visual crops. This result
confirms that carefully selected visual patches provide a stronger advantage than image splitting.

5 Scaling with Automatically-Extracted Entities

DRIVINGVQA includes high-quality annotated relevant entities along with their coordinates. Such
annotations are rarely available, and transferring our method to new datasets requires external tools
to obtain annotations. In this section, we extend our study to a dataset where high-quality entity
annotations are unavailable, demonstrating how automatically generated pseudo-annotations can
serve as an alternative for improving model performance at scale.

Similar to Section 4.2, we fine-tune LLaVA-OV-7B models on A-OKVQA [27], a crowd-sourced
dataset composed of 25K visual questions requiring commonsense and world knowledge to be
answered. Each question in A-OKVQA is accompanied by multiple-choice options and rationales
explaining the reasoning behind the correct answer. To obtain a list of relevant entities and their
coordinates for each question, we employ an automated entity extraction pipeline based on the method
introduced in Section 3.2. Specifically, we prompt GPT-4o-mini to generate potential relevant entity
labels for each question. Then, we use the open-set object detector GroundingDINO [53] to localize
these entities within the image (step 2 in Figure 2). Only the top 5 entities with the highest confidence
scores are retained, and interleaved with the existing rationales using GPT-4o (step 3 in Figure 2).

Using these pseudo-labeled entities, we fine-tune LLaVA-OV-7B with RIV-CoT method on the train
set of A-OKVQA and evaluate its performance on the available validation subset (1992 samples).
As shown in Table 3, RIV-CoT achieves a multiple-choice (MC) accuracy of 84.2%, outperforming
both the DirectAnswer baseline (78.2%) and vanilla CoT prompting (80.6%). These results highlight
that the retrieval-based interleaved approach can largely improve the model’s ability to accurately
answer questions that require complex visual reasoning, even when relying on automatically extracted
entities to compensate for the lack of gold-standard annotations.

6 Conclusion

In this work, we introduce DRIVINGVQA, a novel visual reasoning dataset derived from French driv-
ing theory exams, along with a manual and automated pipeline to create reasoning traces interleaved
with spatial and visual information – bounding box coordinates and image crops. Then, we propose
RIV-CoT, a retrieval-based interleaved visual chain-of-thought framework designed to enhance the
visual reasoning abilities of VLMs. Our experiments from training on the manually annotated
DRIVINGVQA and automatically annotated A-OKVQA demonstrate that RIV-CoT significantly
improves both answer accuracy and reasoning correctness compared to vanilla chain-of-thought.
Furthermore, we show that our approach scales effectively to datasets lacking human annotations
by leveraging automatically generated pseudo-labels, ensuring broader applicability in real-world
scenarios. Despite these promising advances, our analysis remains limited to a specific geographical
context and to the fine-tuning stage of VLMs. A promising direction for future research is to integrate
retrieval-based interleaved visual chain-of-thought reasoning into VLM’s pretraining, by scaling the
automatically extracted entities variant on extensive grounding datasets and established multimodal
reasoning benchmarks.
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This supplementary material contains the following sections:

• A description of our pipeline to annotate relevant entities (appendix A.1);

• A description of our pipeline to generate the interleaved explanations in our dataset (ap-
pendix A.2);

• Examples showcasing representative samples and interleaved explanations (appendix B);

• Implementation details and hyperparameter configurations for model training (ap-
pendix C.1);

• LLM-as-a-judge prompt for evaluation of reasoning correctness (appendix C.3);

• Examples comparing various model outputs, showcasing the strengths and limits of our
methods (appendix C.4);

A Dataset Specifications

This section details the methodologies employed for the generation of interleaved explanations and
the annotations of relevant entities.

A.1 Pipeline for Annotating Relevant Entities

To enrich the collected dataset with relevant entities for each sample, we developed a semi-automated
entity extraction and localization pipeline that helped to accelerate the annotation process. This
pipeline comprises three steps, detailed below.

Initial entity extraction. We define a taxonomy of potential entities commonly encountered in
driving scenarios, organized into six groups (see table 4). This taxonomy includes categories such as
road signs, road markings, vehicles, people and other objects. Given this taxonomy, a multi-modal
language model, such as GPT-4o-mini, is prompted with instructions to extract for each sample an
initial list of entities relevant to the human-expert explanation. The prompt also integrates textual
cues from questions, possible answers, and correct answer along with the associated image. The
prompt, illustrated in fig. 6, is designed to guide the model to prioritize visible and contextually
significant entities. The extracted entities are returned in a structured list format, e.g., [cyclist,
pedestrian crossing, solid line].

Relevant entities localization. After generating the list of relevant entities, we use a pre-trained
object detection model, such as GroundingDINO [53], to localize these entities within the images.
This step provides a bounding box for each detected entity. Detected entities undergo refinement
such as grouping semantically similar labels under a unified category and filtering out irrelevant or
erroneous detections that deviate from the predefined taxonomy.

Manual validation. The output of the automated pipeline is validated and refined by human
annotators. Irrelevant entities are removed, inaccurate labels are corrected, and missing entities are
added to ensure dataset consistency and accuracy.

A.2 Pipeline for Generating Interleaved Explanations

As described in section 3.2, for each visual question in our dataset, human experts use the explanations
to identify and localize the key entities in the image that are required for answering the question. This
leads to an average of 1.5 entities per image, and up to 5 entities. Then, as explained in section 3.3,
we use GPT-4o to match this list of relevant entities back with the explanation to obtain an interleaved
explanation. In practice, we want to interleave each key entity – whether it is the entity label, its
bounding box coordinates, or the corresponding image tokens – inside the explanation. In the rest of
the section, we represent the interleaved explanation with bounding box coordinates appended next
to the name of the entity referred to in the explanation.

To generate the interleaved explanations, we employ a strategy that combines few-shot prompting
and cleaning heuristics.

1



Initial interleaved explanation generation. First, we feed GPT4o with each sample: the image,
question, list of options, explanation, and the list of manually annotated entities along with bounding
box coordinates. Following two demonstrations and a strict set of instructions, it is asked to interleave
the bounding boxes of the entities inside the explanation, with minimal change to the explanation.
Here, we provide the full instructions and the two hand-crafted demonstrations fed to the model.

System prompt

You are an expert at driving theory. You are tasked with helping a student answer questions
about driving scenes.

Instructions

You are given an image of the driving theory test, a question about this image, a list of options,
and the reasoning leading to the correct answer. I also give you a list of entities along with
bounding box coordinates, that are relevant to answering the question.
I need you to:

1. Convert the original reasoning into a clear, step-by-step reasoning that makes use of
all entities in the list.

2. If the original reasoning does not mention one of the entities at all, add a short
sentence referencing that entity and link it with the reasoning steps.

3. Refer to each relevant entity in the format: **entity_name** [x1, x2, y1, y2].
Replicate bounding box coordinates exactly as provided in the list.

4. Keep all other wording as close to the original reasoning as possible.
5. The entities should always be mentioned at the beginning of the sentences.
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Demonstration 1

Question: ["I am turning right at the next intersection. My attention is focused on: pedestri-
ans", "I am turning right at the next intersection. My attention is focused on: cyclists"]
Options: {A: Yes, B: No, C: Yes, D: No}
Answers: A, C
Reasoning: Before turning right, I will approach a crosswalk. My attention is therefore on
the arrival of pedestrians. As I am alongside a bike lane, I will check my right blind spot
before turning my wheels to ensure that no cyclist is next to me.
Entities:

• pedestrian crossing: [457.51, 595.61, 499.56, 62.67]
• bike lane marking: [893.4, 597.64, 196.2, 202.08]

Interleaved Reasoning

Before turning right at the next intersection, I will approach a pedestrian crossing [359.5,
337.11, 259.48, 22.09]. My attention is therefore on the arrival of pedestrians. As I am
alongside a bike lane marking [893.4, 597.64, 196.2, 202.08], I will check my right blind
spot before turning my wheels to ensure that no cyclist is next to me.
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Demonstration 2

Question: By taking this exit
Options: {A: I can slow down right now, B: I must wait to brake}
Answers: A
Reasoning: A deceleration lane allows me to exit without disrupting the flow of traffic behind
me. The vehicle behind is far away, so I can start slowing down right now.
Entities:

• deceleration lane: [933.62, 522.54, 537.35, 249.17]
• exit sign: [904.6, 413.47, 57.03, 36.02]
• vehicle: [1206.9, 156.54, 44.8, 28.56]
• rear-view mirror: [952.52, 82.74, 544.27, 181.17]

Interleaved Reasoning

A deceleration lane [933.62, 522.54, 537.35, 249.17] allows me to exit without disrupting
the flow of traffic behind me. An exit sign [904.6, 413.47, 57.03, 36.02] indicates the
upcoming exit. The vehicle [1206.9, 156.54, 44.8, 28.56] behind is far away, as I can see in
the rear-view mirror [952.52, 82.74, 544.27, 181.17]. So I can start slowing down right now.
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Explanations filtering and cleaning. We clean the generated interleaved explanations using regular
expressions and heuristics.

• We match the bounding box coordinates in the generated interleaved explanation with the
ones in the list of entities provided, correcting minor variations due to the model failing to
exactly replicate the set of coordinates.

• We remove any hallucinated set of coordinates, that is absent from the provided list of
entities.

• When an annotated bounding box was used twice in the interleaved explanation with
different entity labels; if we can automatically identify the correct entity label, we remove
the duplicated bounding box coordinates. Otherwise, we keep only the first occurrence of
the set of coordinates.

Category Entities
Road Signs speed limit sign, end of speed limit sign, yield sign, directional sign, stop

sign, intersection sign, mandatory right turn sign, mandatory left turn
sign, mandatory straight ahead sign, no entry sign, no right turn sign,
no left turn sign, no u-turn sign, no overtaking sign, end of overtaking
prohibition sign, danger sign, priority sign, exit sign, dead end road sign,
merge lane sign, level crossing sign, two-way traffic sign, emergency
phone sign, handicapped accessible sign, parking prohibition sign, end of
restrictions sign, dimension restriction sign, road narrowing sign, one-way
street sign, construction detour sign, pedestrian crossing sign, pedestrian
underpass sign, school crossing sign, town entry sign, town exit sign,
direction sign, wild animal crossing sign, construction sign, toll road sign,
weather-related sign, camping zone sign, chevron alignment marker

Road Markings solid line, dashed line, pedestrian crossing, directional arrow, merge lane
arrow, bike lane marking, stop line marking, loading zone line marking,
traffic cones, temporary barrier

Road Features speed bump, roundabout, tunnel, bridge, construction zone, accident,
emergency phone, toll booth, parking lane, bus lane, bus stop area, bicycle
lane, emergency lane, entry lane, exit lane

Vehicles car, truck, motorcycle, bus, cyclist, van, motorhome, agricultural vehicle,
public service vehicle, emergency vehicle

People and Animals pedestrian, police officer, construction worker, horse rider, animal

Vehicle Parts rear-view mirror, side-view mirror, turn signals, brake lights

Table 4: Categorized taxonomy of relevant entities for driving scenarios.

5



You are a driving theory expert, and your role is to extract entities from a driving scenario.
These entities will be passed to an object detector for recognition.

All the possible entities are:
• road signs: (See listed entities in table 4)
• road markings: (See listed entities in table 4)
• road features: (See listed entities in table 4)
• vehicles: (See listed entities in table 4)
• people and animals: (See listed entities in table 4)
• vehicle parts: (See listed entities in table 4)

Instructions
Extract all entities from the scenes that are relevant to the following explanation and
return them as a list. The output format should be only a list of entities, such as
[cyclist, oncoming vehicle, solid line, pedestrian crossing]. Prioritize
visible signs, markings, and vehicles directly affecting the scenario. If present in the image,
always include any rear-view mirror or side-view mirror. For help, you can also refer to
the questions, possible answers and true answer below, as well as the provided image attached.

Question(s): <questions_text>
Possible answers: <answers_text>
Correct answer: <correct_answer_letters>
Explanation: <explanation_text>

Figure 6: Prompt for relevant entity extraction.

B Examples

This section presents four representative examples from DRIVINGVQA dataset. Each example
includes an egocentric image, one or two questions, a set of 2 to 4 answer options, the correct
answers, a list of entities critical for answering the questions, and a reasoning explanation interleaved
with the relevant entities. We also provide the original non-interleaved reasoning to enable a direct
comparison.

The first two examples showcase where different entities have the same label, making the matching
more challenging. Note that these two examples have question pairs, the first one associated with
answer choices A and B, the second one having answer choices C and D.
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Augmented Dataset Example 1

Question: ["Can I drive at 50 km/h:", "70 km/h"]
Options: {A: Yes, B: No, C: Yes, D: No}
Answers: A, C
Entities:

• speed limit sign: [429.54, 50.63, 38.06, 35.67]
• speed limit sign: [431.53, 86.7, 33.9, 49.8]

Reasoning: The 2 speed limit signs are independent. The lower one limits the speed to 50
km/h only for vehicles designated for the transport of goods, as indicated by the category
sign. The 70 km/h speed limit sign applies to all other categories of vehicles. I am not driving
a goods transport vehicle, so I can drive at any speed not exceeding 70 km/h.
Interleaved Reasoning: The two speed limit signs are independent. The lower speed limit
sign [429.54, 50.63, 38.06, 35.67] limits the speed to 50 km/h only for vehicles designated
for the transport of goods, as indicated by the category sign. The speed limit sign [431.53,
86.7, 33.9, 49.8] applies to all other categories of vehicles. I am not driving a goods transport
vehicle, so I can drive at any speed not exceeding 70 km/h.
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Augmented Dataset Example 2

Question: ["I monitor the pedestrian’s intention:", "I prepare to stop:"]
Options: {A: from the left, B: from the right, C: Yes, D: No}
Answers: A, B, C
Entities:

• pedestrian: [284.17, 274.3, 31.37, 84.98]
• pedestrian crossing: [359.5, 337.11, 259.48, 22.09]
• pedestrian: [757.46, 252.83, 37.6, 99.3]

Reasoning: The pedestrian on the left is very close to the crosswalk and is therefore preparing
to cross. The pedestrian on the right is leaning over his phone and his attention is significantly
diminished, so I am also monitoring him. I prepare to stop to let these two pedestrians cross.
Interleaved Reasoning: The pedestrian [284.17, 274.3, 31.37, 84.98] on the left is very
close to the pedestrian crossing [359.5, 337.11, 259.48, 22.09] and is therefore preparing to
cross. The pedestrian [757.46, 252.83, 37.6, 99.3] on the right is leaning over his phone, and
his attention is significantly diminished, so I am also monitoring him. I prepare to stop to let
these two pedestrians cross.
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The following example shows a case where the explanation had to be modified, adding an extra
sentence to include the relevant entity dashed line that was manually annotated by the human experts
but wasn’t mentioned in the original explanation.

Augemented Dataset Example 3

Question: Do the tradespeople run a risk if they park their van in the same way these police
vans are parked?
Options: {A: Yes, B: No}
Answer: A
Entities:

• police vehicle: [372.0, 235.7, 1562.24, 1043.57]
• bus lane: [14.46, 755.5, 393.74, 996.79]
• dashed line: [320.34, 747.66, 214.84, 998.63]

Reasoning: These vans are not parked properly: they overflow so much from the spaces that
road users have to move onto the bus lane, which is reserved for buses. We advise an average
tradesperson against parking their van in this manner.
Interleaved Reasoning: These police vehicles [372.0, 235.7, 1562.24, 1043.57] are not
parked properly: they overflow so much from the spaces that road users have to move onto
the bus lane [14.46, 755.5, 393.74, 996.79], which is reserved for buses. The dashed line
[320.34, 747.66, 214.84, 998.63] indicates the boundary of the lane. We advise an average
tradesperson against parking their van in this manner.
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This final example shows a case with 5 annotated relevant entities, which is the maximal number that
can be found in our dataset.

Augmented Dataset Example 4

Question: ["The vehicle in front can still take the next exit", "I can follow this vehicle to
overtake"]
Options: {A: Yes, B: No, C: Yes, D: No}
Answers: B, D
Entities:

• dashed line: [317.36, 423.1, 394.94, 188.64]
• exit sign: [819.58, 272.31, 75.71, 51.58]
• car: [1101.09, 77.8, 93.61, 49.79]
• rear-view mirror: [873.99, 9.21, 623.74, 196.48]
• car: [394.01, 371.19, 211.56, 119.92]

Reasoning: The marking in the middle of the two lanes of traffic only prohibits vehicles in
the left lane from merging to take the exit. However, vehicles are approaching from behind,
so I must give up overtaking.
Interleaved Reasoning: The dashed line [317.36, 423.1, 394.94, 188.64] in the middle
of the two lanes of traffic only prohibits vehicles in the left lane [394.01, 371.19, 211.56,
119.92] from merging to take the exit indicated by the exit sign [819.58, 272.31, 75.71,
51.58]. However, vehicles [1101.09, 77.8, 93.61, 49.79] are approaching from behind, as
seen in the rear-view mirror [873.99, 9.21, 623.74, 196.48], so I must give up overtaking.
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Large Language Model

Question: In this 
situation:
• A: I slow down
• B: I stop
• C: I pass

Vision Encoder

The traffic light [400.22, 153.32, 30.71, 61.58]

Crop 
Encoder

Image Crop 
Extractor

<img>

[400.22, 
153.32, 
30.71, 
61.58]

The traffic light [400.22, 153.32, 30.71, 61.58] <img> 
is green so automatically the pedestrian light is red. 
This pedestrian [380.12, 228.27, 47.54, 101.28] 
<img> seems unaware of my presence, I slow down 
to avoid approaching the too quickly, and I pass. 
Answer(s): A, C.

2

The traffic light [400.22, 153.32, 30.71, 61.58] <img> 
is green so automatically the pedestrian light is red. 
This pedestrian [380.12, 228.27, 47.54, 101.28] 

The traffic light [400.22, 153.32, 30.71, 61.58]

Successive outputs: Multi-Step Retrieval-Based Generation

1

3

Figure 7: Illustration of multi-step retrieval-based generation. During inference, starting with
a tokenized question and an image tokenized by the adapter on the output of the Vision Encoder,
the Large Language Model generates output until it predicts a bounding box. At this point, the
generation process pauses to extract the corresponding image crop based on the predicted coordinates.
The image crop is encoded and adapted into an image crop token, which is then added back into
the model’s context along with the question, image tokens and previously generated outputs. This
iterative process continues until the model produces its final answer.

C Experiments Details

C.1 Implementation Details

We fine-tune various LLaVA-OneVision models using different prompt formats on the DRIVINGVQA
train set. All models are initialized from the pre-trained weights obtained after the final OneVision
training stage.

The fine-tuning experiments are conducted using 2 NVIDIA A100 GPUs, except for experiments
involving visual patches (’V’) where 4 NVIDIA A100 GPUs were required. We employ the following
configuration and hyper-parameters:

Table 5: Hyper-parameter configuration for fine-tuning LLaVA-OneVision on the DRIVINGVQA
dataset

Hyperparameter Value

Epochs 10

Batch Size 2

Max Seq. Length 32768

Vision Tower SigLIP-SO400M-Patch14-384
Language Model Qwen2-7B
Projector MLP2x_GELU

Trainable Parts ϕvision, θproj, θLLM

Learning Rate θproj, θLLM 1e−5

Learning Rate ϕvision 2e−6

Weight Decay 0

LR Scheduler cosine
Warm-Up Ratio 0.03

C.2 RIV-CoT diagram

See Figure 7.
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C.3 Model reasoning evaluation

See Figure 8.

Instructions

You are a strict but fair driving-theory instructor. You’re given:
1. A driving theory test question
2. A list of possible answer options
3. The official “correct reasoning”
4. A student’s reasoning for the same question

Your task: Assess if the student’s reasoning matches the correct reasoning.

Step-by-Step Instructions:
1. Identify Student’s Arguments

• List each key argument or step in the student’s reasoning.
• For each argument, briefly state whether it is correct or not, given the provided

correct reasoning.
2. Check for Missing or Contradictory Points

• Look at the official correct reasoning.
• List important points or steps from the correct reasoning that the student

omits or directly contradicts.
• Minor omissions or differences in wording/style are acceptable.

3. Decide on Overall Correctness
• If the student’s reasoning is mostly consistent with the correct reasoning and

has no major factual errors, then it is considered correct.
• If the student’s reasoning contains significant logical or factual errors, or

omits critical steps from the correct reasoning, then mark it incorrect.

Important Note: The student’s reasoning does not have to match the official reasoning
exactly; it just needs to be conceptually equivalent and free of serious contradictions.

Final Output Format:
• Provide your step-by-step analysis.
• At the end, write: Final Answer: “1” if you judge the student’s reasoning is overall

correct, “0” if it is overall incorrect.

Figure 8: Prompt for evaluation of model reasoning.

C.4 Result Output Examples

In this section, we present test samples alongside selected model outputs to highlight their capabilities
and their limitations. For each sample, we provide the question and answer choices based on the
QP-EA prompt (blue box), followed by the reasoning and answers from two models, along with their
prompt-specific formats where applicable (red boxes).
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Question Example 1

Human:
Unless explicitly stated otherwise, assume you are driving a car in France.
Select all correct answers to the following question from the available options. Detail your
reasoning step by step based on road signs, markings, signals, and relevant driving rules.
Then, provide the letters corresponding to your answer in the format: ’Answer(s): <letters>’
Question: To go straight, can I stay in this lane?
Options: {A: Yes, B No.}

Question Output 1: LLaVA-OV fine-tuned with CoT

Model:
Reasoning: If I want to go straight, the road markings indicate that I am correctly positioned,
as I can either continue straight or turn right. The left lane is the lane for turning left.
Therefore, I will not need to change lanes.
Answer(s): A.

Question Output 2: LLaVA-OV fine-tuned with CoT and oracle relevant entities

Human:

The relevant entities for this problem are: directional arrow .
Model:
Reasoning: The lane I am in is intended for users wishing to turn right. This is indicated
by the directional arrow on the road markings. Therefore, I cannot stay in this lane if my
intention is to go straight.
Answer(s): B.

In Example 1 above, the simple chain-of-thought model acknowledges the existence of a directional
arrow as road marking, but incorrectly hallucinates its direction, leading to the wrong answer. The
“Oracle” model QPRV-EA, being fed with an image patch showing the arrow, is able to identify its
direction and correctly answer the question. The ground truth explanation is the following:
“The road markings indicate that the right lane can only be used for turning right. Therefore, I must
position myself in the left lane to go straight or to the left.”
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Question Example 2

Human:
Unless explicitly stated otherwise, assume you are driving a car in France.
Select all correct answers to the following question from the available options. Detail your
reasoning step by step based on road signs, markings, signals, and relevant driving rules.
Then, provide the letters corresponding to your answer in the format: ’Answer(s): <letters>’
Question: This light is flashing, I must yield to this car:
Options: {A: Yes, B No.}

Question Output 1: LLaVA-OV fine-tuned with CoT

Model:
The relevant entities for this problem are: car [0.617, 0.664, 0.754, 0.798], traffic light [0.652,
0.398, 0.679, 0.521]. Reasoning: This car is stopped at the traffic light, so it does not have the
right of way. Therefore, I do not need to yield to it while waiting for the light to turn green.
Answer(s): B.

Question Output 2: LLaVA-OV fine-tuned with CoT with relevant entities (labels+bbox)

Human:
The relevant entities for this problem are: traffic light [0.682, 0.344, 0.717, 0.662], vehicle
[0.623, 0.640, 0.805, 0.784], stop line marking [0.616, 0.721, 0.655, 0.804], stop sign [0.640,
0.585, 0.661, 0.628], traffic light [0.555, 0.603, 0.564, 0.635].
Model:
Reasoning: The traffic light is malfunctioning, and the vehicle that wants to turn left must
stop at the stop line marking. It is not a priority, so I do not have to yield to it. The stop sign
is also present.
Answer(s): B.

In example 2, we compare providing the entities and bounding box coordinates as input (QPRB-EA),
or letting the model detect them itself (QP-RBEA). Both models reach the same answer, but the
second one’s reasoning is wrong: it fails to identify a key entity (the stop line marking or the stop sign),
leading to an incorrect reasoning even though the answer is correct. This highlights the importance of
accurate entity detection in the reasoning process. The ground truth explanation is the following:
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“This traffic light is flashing, and there is no sign under the light. However, I can see that the vehicle on
the right has a stop line marking and a stop sign. There is also another traffic light visible. Therefore,
I do not have to yield to the right.”

Question Example 3

Human:
Unless explicitly stated otherwise, assume you are driving a car in France.
Select all correct answers to the following question from the available options. Detail your
reasoning step by step based on road signs, markings, signals, and relevant driving rules.
Then, provide the letters corresponding to your answer in the format: ’Answer(s): <letters>’
Question: After these signs, will I be able to overtake this truck:
Options: {A: Yes, B No.}

Question Output 1: LLaVA-OV fine-tuned with CoT

Model:
Reasoning: The left lane is a storage lane that allows for left turns. It is strictly prohibited to
use this type of lane for overtaking the truck. I therefore give up on making this maneuver.
Answer(s): B.
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Question Output 1: LLaVA-OV fine-tuned with CoT and relevant entities (labels+bbox+crops)

Model:
The relevant entities for this problem are: speed limit sign [0.508, 0.294, 0.547, 0.401], truck
[0.367, 0.304, 0.461, 0.546].
Human:

The relevant entities for this problem are: speed limit sign , truck

.

Model:
Reasoning: The prohibition signs must be read separately. The speed limit sign of 90 km/h
applies to all road users. The second sign prohibits overtaking for vehicles transporting goods
over 3.5 tons. Therefore, I will be able to overtake this truck.
Answer(s): A.

Example 3 shows a case where despite an imperfect entity detection (“speed limit sign” instead of
“no overtaking sign”, adding the image patches allows the model to correctly identify the important
sign to answer the question. This is enabled by our cropping strategy that adds 70% of the image
patch to increase the context and account for imperfect entity detection. On the contrary, the baseline
QP-EA hallucinates the presence of a storage lane for turning left and answers incorrectly.

The ground truth explanation is: This no overtaking sign prohibits goods transport vehicles from
overtaking. It does not apply to me. Furthermore, I am driving on a one-way road with 2 lanes, so I
can use the left lane to overtake. It is clear, as confirmed by a quick glance in the rearview mirror. I
can therefore proceed with my maneuver while ensuring that I respect the speed limit of 90 km/h.

D Impact Statement

Impact. The benchmark and method expose critical failure modes in current VLMs, such as poor
utilization of localization signals, and propose a scalable alternative to address them by using automat-
ically extracted entities. Beyond academic benchmarks, these findings have practical implications for
safety-critical applications like autonomous driving and AI-assisted training systems, where explain-
ability and visual grounding are essential. We release all data and code to encourage reproducibility
and further research. Overall, we believe the dataset’s release will significantly contribute to the
development of more grounded, interpretable, and trustworthy vision-language systems.

Potential risks. As DRIVINGVQA is derived from real-world driving theory tests, there exists a risk
that models trained on it could be exploited to automatically answer or tutor for such exams, potentially
bypassing fair evaluation standards. Being also restricted to only French data, driving theory exams
are also regularly updated to reflect new traffic laws, technologies, or societal expectations. Over
time, certain questions may become outdated or misaligned with updated regulations.

Ethical compliance. All data are sourced from openly available French driving theory content, freely
accessible online without login. No private user data was used. The dataset adheres to the NeurIPS
Code of Ethics.
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