
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TDDBENCH: A BENCHMARK FOR TRAINING DATA
DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Training Data Detection (TDD) is a task aimed at determining whether a specific
data instance is used to train a machine learning model. In the computer secu-
rity literature, TDD is also referred to as Membership Inference Attack (MIA).
Given its potential to assess the risks of training data breaches, ensure copyright
authentication, and verify model unlearning, TDD has garnered significant atten-
tion in recent years, leading to the development of numerous methods. Despite
these advancements, there is no comprehensive benchmark to thoroughly evalu-
ate the effectiveness of TDD methods. In this work, we introduce TDDBench,
which consists of 13 datasets spanning three data modalities: image, tabular, and
text. We benchmark 21 different TDD methods across four detection paradigms
and evaluate their performance from five perspectives: average detection perfor-
mance, best detection performance, memory consumption, and computational ef-
ficiency in both time and memory. With TDDBench, researchers can identify
bottlenecks and areas for improvement in TDD algorithms, while practitioners
can make informed trade-offs between effectiveness and efficiency when selecting
TDD algorithms for specific use cases. Our extensive experiments also reveal the
generally unsatisfactory performance of TDD algorithms across different datasets.
To enhance accessibility and reproducibility, we open-source TDDBench for the
research community.

1 INTRODUCTION

Training Data Detection (TDD) (Shi et al., 2024), also known as Membership Inference Attack
(MIA) in computer security literature (Shokri et al., 2017), aims to determine whether a specific data
instance was used to train a target machine learning model. TDD has a wide range of applications.
For example, it can be used to assess a model’s memorization of its training data and to audit the
risks of data leakage (Carlini et al., 2022b). TDD has gained even more importance in the era of deep
learning and large language models (LLMs), where models, often with billions of parameters, act as
opaque black boxes. This raises the need to examine whether model owners have illegally utilized
copyrighted material, such as books (Abd-Alrazaq et al., 2023), or personal emails (Mozes et al.,
2023). Moreover, TDD contributes to discussions on machine learning accountability in the era of
AI, as concerns grow over how these models handle sensitive data. As machine unlearning becomes
increasingly employed to remove users’ personal data from models, TDD serves as a critical tool to
validate these unlearning processes (Chen et al., 2021; Kurmanji et al., 2024).

Given the growing importance of TDD, several benchmarks have been developed to evaluate TDD
algorithms (Niu et al., 2023; He et al., 2022b; Duan et al., 2024). However, these benchmarks have
several limitations: 1). Most evaluations primarily focus on TDD algorithms for image data, leaving
other modalities like text and tabular data underexplored. 2). Many TDD methods developed in
the past two years, particularly those focused on deep learning and LLMs, are not included in these
benchmarks. 3). The effect of the target model (i.e., the model that was trained using the data) on
TDD algorithms has not been thoroughly examined. 4). Current evaluations focus primarily on the
detection performance of TDD algorithms, while practical considerations like efficiency, memory
consumption, and other factors relevant to real-world deployment are often overlooked.

To address these limitations, we introduce TDDBench, a comprehensive framework for benchmark-
ing TDD algorithms. Figure 1 provides an overview of TDDBench. The benchmark includes 13
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Figure 1: TDDBench in downstream applications and the benchmarking of TDD algorithms.

datasets across three data modalities (tabular, text, and image) and evaluates 21 state-of-the-art TDD
algorithms on 41 different target models, including the large language model Pythia-12B. We also
categorize the 21 TDD algorithms into four types based on their algorithmic characteristics, includ-
ing metric-based, learning-based, model-based, and query-based. Using this new benchmark, we
conduct extensive experiments to thoroughly assess TDD algorithms. Specifically, we aim to inves-
tigate: 1). The performance of TDD algorithms across various datasets and data modalities. 2). The
impact of the target model on TDD algorithms. 3). The limitations and areas for improvement in
TDD algorithms. 4). The performance of TDD algorithms from multiple perspectives, including
detection performance, practicality, and efficiency in terms of time and memory usage.

The experimental results reveal several key findings. First, there is a significant performance gap be-
tween different types of TDD algorithms, with model-based TDD methods generally outperforming
the others. However, this outperformance comes at a cost, as model-based methods require building
multiple reference models, leading to high computational expenses. Second, memorization of train-
ing data plays a crucial role in the performance of TDD algorithms, with larger target models—often
prone to memorization—exhibiting higher TDD success rates. Third, the performance of TDD al-
gorithms is highly dependent on knowledge of the underlying target model architecture. Overall,
our experiments show that there is no single best method across all scenarios, and notably, many
TDD algorithms perform poorly on data modalities beyond images, indicating the need for further
improvement in non-image domains.

The main contributions of this paper are threefold:

A novel and comprehensive TDD benchmark: We introduce TDDBench, a benchmark consisting
of datasets across three modalities—image, table, and text. We have open-sourced TDDBench for
the research community at https://anonymous.4open.science/r/TDDBench-8078.

New insights in TDD performance: By benchmarking 21 state-of-the-art TDD algorithms, we
provide insights into recent advancements in TDD, including strategies for reducing reliance on
model-specific knowledge and maximizing the benefits of greater computational resources.

Multi-aspect metrics: Our comprehensive evaluation of TDD performance goes beyond simple de-
tection accuracy to include practical considerations such as computational complexity, highlighting
the trade-offs necessary for deploying TDD algorithms in real-world applications.

2 TDDBENCH: TRAINING DATA DETECTION BENCHMARK ACROSS
MULTIPLE MODALITIES

2.1 PRELIMINARIES AND PROBLEM DEFINITION

Training Data Detection (TDD), also known as membership inference, is formally defined as fol-
lows: Given a target machine learning model fθ and a data point x, the objective of TDD is to
determine whether the target model used the data point during its training phase (Shokri et al., 2017;
Carlini et al., 2022a). Here, θ denotes the parameters of the target machine learning model, and fθ
is often referred to as the target model.
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In this work, we consider black-box training data detection, meaning that we have access only to
the outcomes of the target model for specific data points. There are two reasons for this assumption.
First, many real-world target models hold significant commercial value and typically do not pub-
licly disclose model parameters, making access to internal model parameters infeasible. Secondly,
existing literature has shown that white-box detection methods offer limited advantages compared
to black-box methods (Sablayrolles et al., 2019; Nasr et al., 2019).

2.2 DATA MODALITIES, DATASETS AND TARGET MODELS

TDDBench consists of 13 datasets across three data modalities: image, tabular, and text. It also
implements 11 distinct model architectures for these data modalities, resulting in a total of 41 target
models. Additionally, TDDBench incorporates 21 state-of-the-art TDD algorithms. We illustrate
the main differences between the proposed TDDBench and existing benchmarks in Table 1.

Table 1: Comparison between TDDBench and existing benchmarks. TDDBench comprehensively
includes the most algorithms and datasets across image, tabular, and text modalities, as well as
model architectures that encompass large language models.

Benchmark Coverage Data type
# algo # datasets # architectures LLM image tabular text

He et al. (2022b) 9 6 4 % ! % %

Niu et al. (2023) 15 7 7 % ! ! %

Duan et al. (2024) 5 8 8 ! % % !

TDDBench (ours) 21 13 11 ! ! ! !

Dataset. Table 2 presents a summary of the datasets in TDDBench. It includes three data modalities:
image, tabular, and text. TDDBench incorporates datasets commonly used to evaluate TDD algo-
rithms in previous literatures (Truex et al., 2019; Hui et al., 2021), such as CIFAR-10 and Purchase.
We also compile new datasets that potentially contain private or copyright-sensitive information,
including CelebA (human faces), BloodMNIST (medical), Adult (personal income), and Tweet (so-
cial networks), which are more likely to necessitate TDD for tasks like copyright verification and
unlearning confirmation. Additionally, WIKIMIA is a dataset specifically designed to evaluate TDD
algorithms on large language models.

Table 2: Benchmarking datasets used in TDDBench.

Modality Dataset #Samples #Classes Brief description

Image

CIFAR-10 (Krizhevsky et al., 2009) 60,000 10 General dataset
CIFAR-100 (Krizhevsky et al., 2009) 60,000 100 General dataset

BloodMNIST (Yang et al., 2023) 17,092 8 Medical image
CelebA (Liu et al., 2015) 202,599 2 Human face

Tabular

Purchase (Shokri et al., 2017) 197,324 100 Purchase record
Texas (Shokri et al., 2017) 67,330 100 Hospital discharge data

Adult (Asuncion et al., 2007) 48,842 2 Personal income
Student (Cortez & Silva, 2008) 4,424 3 Education information

Text

Rotten Tomatoes (Pang & Lee, 2005) 10,662 2 Movie reviews
Tweet Eval (Barbieri et al., 2020) 12,970 2 User tweets
GLUE-CoLA (Wang et al., 2018) 9,594 2 Books and journal articles

ECtHR Articles (Chalkidis et al., 2023) 5,063 13 Legal texts
WIKIMIA (Shi et al., 2024) 1,650 2 General dataset

Target Models. We select various model architectures for each data modality. Specifically, for
image datasets, we train WRN28-2 (Zagoruyko, 2016), ResNet18 (He et al., 2016), VGG11 (Si-
monyan & Zisserman, 2014), and MobileNet-v2 (Sandler et al., 2018). For the tabular datasets,
we employ Multilayer Perceptron (Rumelhart et al., 1986), CatBoost (Dorogush et al., 2018), and
Logistic Regression (Hosmer Jr et al., 2013).

For textual datasets, except WIKIMIA, in contrast to the target models for the image and tabular
modalities, which are trained from scratch, we fine-tune the open-source pre-trained language mod-
els DistilBERT (Sanh et al., 2019), RoBERTa (Liu et al., 2019), and Flan-T5 (Chung et al., 2024)
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on the text datasets, enabling us to detect fine-tuned data using the TDD algorithm. Finally, for the
WIKIMIA dataset, we use it to perform TDD on large language models, specifically focusing on the
open-sourced Pythia(Biderman et al., 2023). Training details of the target models are presented in
Appendix A.7.

In summary, we implement different target models for each data modality. Since we have four image
datasets, each with four target models, the total combination is 16 target image models. Similarly,
for tabular data, four datasets and three target models give us a total of 12 target tabular models.
For text data, four datasets and three target models provide a total of 12 target text models. Finally,
Pythia is used as the target model to examine TDD on the WIKIMIA text dataset. In total, we have
41 target models, which to our knowledge, is one of the most comprehensive benchmarks for TDD.

2.3 TDD ALGORITHMS

We implement 21 state-of-the-art TDD algorithms in TDDBench. To facilitate comparison and
discussion, we categorize these TDD algorithms into four groups based on the algorithm’s design
paradigm: metric-based, learning-based, model-based, and query-based algorithms. Table 3 pro-
vides an overview of the implemented TDD algorithms in TDDBench, outlining their categories
and detection criteria. These TDD algorithms are discussed in detail in Appendix A.6.

Table 3: Summary of training data detection methods in TDDBench.

Algorithm type Algorithm Detection criterion

Metric-based

Metric-loss (Yeom et al., 2018) Loss
Metric-conf (Song et al., 2019) Confidence

Metric-corr (Leino & Fredrikson, 2020) Correctness
Metric-ent (Shokri et al., 2017; Song & Mittal, 2021) Entropy

Metric-ment (Song & Mittal, 2021) Modified prediction entropy

Learning-based

Learn-original (Shokri et al., 2017) Prediction vector
Learn-top3 (Salem et al., 2019) Top3 confidence

Learn-sorted (Salem et al., 2019) Sorted prediction vector
Learn-label (Nasr et al., 2018) Prediction vector, true label
Learn-merge (Amit et al., 2024) Merging of various detection criteria

Model-based

Model-loss (Sablayrolles et al., 2019) Loss
Model-calibration (Watson et al., 2021) Loss

Model-lira (Carlini et al., 2022a) Scaled logit
Model-fpr (Ye et al., 2022) Scaled logit

Model-robust (Zarifzadeh et al., 2024) Confidence

Query-based

Query-augment (Choquette-Choo et al., 2021) Correctness
Query-transfer (Li & Zhang, 2021) Loss from surrogate model

Query-adv (Li & Zhang, 2021; Choquette-Choo et al., 2021) Distance from the decision boundary
Query-neighbor (Jayaraman et al., 2021; Mattern et al., 2023) Loss

Query-qrm (Bertran et al., 2024) Scaled logit
Query-ref (Wen et al., 2023) Scaled logit

Metric-based methods rely on the analysis of certain statistical properties of a target model’s out-
put, such as confidence scores, prediction probabilities, or loss values, to distinguish between train-
ing data and non-training data. Specifically, Metric-loss (Yeom et al., 2018) is the first metric-
based detection method, predicting that data points with a loss below a certain threshold are part of
the training data for the target model. Similarly, other works have proposed using the maximum con-
fidence of the target model output (denoted as Metric-conf (Song et al., 2019)), the correctness
of the target model output (denoted as Metric-corr (Leino & Fredrikson, 2020)), the entropy of
prediction probability distributions (denoted as Metric-ent (Shokri et al., 2017; Song & Mittal,
2021)), and modified entropy of the prediction (denoted as Metric-ment (Song & Mittal, 2021)).

Learning-based methods involve training an auxiliary classifier (meta-classifier) to distinguish be-
tween training data and non-training data. In the literature, neural networks (NNs) are often em-
ployed as the auxiliary classifier. The primary differences between learning-based TDD methods lie
in the choice of input features for the auxiliary classifier. Earlier work (Shokri et al., 2017) has pro-
posed using the original prediction vector of the target model (denoted as Learn-original).
Other works have suggested using the top-3 prediction confidences (denoted as Learn-top3
(Salem et al., 2019)) , the sorted prediction vector (denoted as Learn-sorted (Salem et al., 2019))
, the true label of the example combined with the prediction vector (denoted as Learn-label
(Nasr et al., 2018)) , and a mix of different detection metrics (denoted as Learn-merge (Amit
et al., 2024)). In black-box TDD scenarios, a shadow model is constructed to mimic the behavior of
the target model, providing the necessary data to train the auxiliary classifier.
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Model-based methods involve building multiple reference models, some of which are trained with
the focal data point x, while others are trained without it. The detection method then analyzes the
characteristics (such as loss distribution) of data points when they are included in training versus
when they are not. The target model’s output on the focal data point is then compared to the refer-
ence models’ characteristics to determine whether it was used in training. Compared to metric-based
and learning-based methods, model-based methods do not solely rely on the target model’s output,
but can compare it with reference models. These methods have gained significant attention in recent
years due to their superior performance. In the literature, different model-based methods utilize
reference models in various ways, including learning the loss distribution of data points (denoted
as Model-loss (Sablayrolles et al., 2019) and Model-calibration (Watson et al., 2021)),
transforming TDD into a likelihood ratio problem based on the scaled logits of prediction results
(denoted as Model-lira (Carlini et al., 2022a)), designing TDD that satisfies different false pos-
itive ratios (denoted as Model-fpr (Ye et al., 2022)), and creating more robust TDD methods
(denoted as Model-robust (Zarifzadeh et al., 2024)).

Query-based methods involve using additional data instances, particularly those close to the focal
data point x, to query the target model. Compared to the other three types of detection meth-
ods, query-based methods leverage more output information from the target model to estimate the
likelihood that the focal data point was used in model training. Specifically, we consider a data
augmentation-based query method (denoted as Query-augment (Choquette-Choo et al., 2021)),
a neighbor-based method (denoted as Query-neighbor (Jayaraman et al., 2021; Mattern et al.,
2023)), a surrogate model-based method (denoted as Query-transfer (Li & Zhang, 2021)), an
adversarial learning-based method (denoted as Query-adv (Li & Zhang, 2021; Choquette-Choo
et al., 2021)), a quantile regression model- based method (denoted as Query-qrm (Bertran et al.,
2024)), and a reference-model-based query method (denoted as Query-ref (Wen et al., 2023)).

It is also worth noting that different types of TDD methods may have varying requirements and
assumptions for executing the detection. For example, metric-based methods have the fewest as-
sumptions, relying solely on the target model’s output for prediction. In contrast, some model-based
and query-based methods require additional auxiliary data to build reference models for prediction.
In TDDBench, to ensure a fair comparison, we provide auxiliary data for methods that need it,
ensuring that each method achieves its best possible detection performance.

3 EXPERIMENT RESULTS AND ANALYSES

Having compiled TDDBench, we now benchmark the performance of TDD algorithms. Since TDD
algorithms can largely be categorized into four types based on their design paradigms, our exper-
imental analysis is conducted at the category level. This allows us to systematically compare the
strengths and weaknesses of each type of TDD algorithm.

We conduct experiments in three modalities including image, tabular, and text, to answer the follow-
ing questions: Q1: What is the overall performance of the TDD algorithm across different datasets
and model architectures? Q2: How does the target model impact the performance of the TDD al-
gorithm, including model size and training-data memorization? Q3: How does the TDD algorithm
perform when knowledge about the target model architecture is limited? Q4: How does the TDD
algorithm perform in terms of overall performance, practicality, efficiency, and other factors?

3.1 EXPERIMENT SETTING

Evaluation Protocol. We follow prior literatures in TDD evaluation (Carlini et al., 2022a; Ye et al.,
2022). Specifically, given a dataset in TDDBench, we divide the dataset into a target dataset and an
auxiliary dataset in a 50:50 ratio. For the target dataset, we further split it into two halves, where
the first half serves as the training dataset to train the target model (e.g., an image classifier), and
the remaining half is not used in training the target model. Therefore, the training dataset serves
as the positive examples for training data detection, while the remaining data serves as the negative
examples.

For TDD algorithms, such as model-based and learning-based methods that require training refer-
ence models or shadow models, we follow the approach in (Carlini et al., 2022a; Wen et al., 2023) by
randomly partitioning the target dataset multiple times to train various reference and shadow models.
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The auxiliary dataset, also referred to as the population dataset in (Ye et al., 2022) and the shadow
dataset in (Shokri et al., 2017), is available at the user’s discretion for use in the TDD algorithms.
The auxiliary and target datasets do not overlap, ensuring that the auxiliary data is not accidentally
used in training the target model. This characteristic allows for the training of quantile regression
model and reference model that exclude the focal data point x, which are utilized in certain TDD
algorithms.

Target Model Implementation. We implement target models as described in Section 2.2. Tech-
niques such as early stopping, data augmentation, and dropout are utilized to maximize the target
model’s predictive accuracy (e.g., for tasks like image classification or sentiment analysis). The
training and test accuracy of the target models, along with detailed training information, can be
found in Appendix A.7.

TDD Method Implementation. For the metric-based TDD methods, as they rely solely on the
target model’s prediction outcome, the implementation is straightforward. For the learning-based
TDD methods, we construct a two-layer neural network with 64 and 32 hidden units as the auxiliary
classifier. The learning rate is set to 0.001, using the Adam optimizer, and training continues until the
validation accuracy does not improve for 30 epochs or until a maximum of 500 epochs is reached.
For the model-based TDD methods, we train 16 reference models. Finally, for the query-based
TDD methods, including Query-neighbor, Query-augment, and Query-ref, we limit the
detection algorithms to a maximum of 10 additional queries per data point.

Evaluation Metrics, Mean, and Standard Deviation. TDD is framed as a binary classification
problem that determines whether a data point was used in training the target model. Accordingly,
we primarily use AUROC to evaluate the performance of TDD algorithms. Additionally, we include
nine supplementary metrics, such as Precision, Accuracy, and TPR@1% FPR, with detailed experi-
mental results provided in Appendix A.10. To ensure the robustness of the experimental results, we
perform multiple random partitions for each dataset and independently repeat the experiments five
times. We then report the average performance of all TDD algorithms. Standard deviations across
the five repeated experiments are also measured, and due to page limitations, the complete standard
deviation results are reported in Appendix A.9.

3.2 OVERALL DETECTION PERFORMANCE ACROSS DIFFERENT DATASETS AND MODELS

The main results from benchmarking TDD algorithms are presented in Tables 4 and 5. Specifically,
Table 4 reports the average performance of TDD methods across different datasets, controlling for
the same target model architecture within each modality. Table 5, on the other hand, presents the
average performance of TDD methods across different target model architectures, benchmarked on
CIFAR10 for image data, Purchase for tabular data, and Rotten Tomatoes for text data. Additionally,
results involving large language models are illustrated in Figure 4(c) in Section 3.3.2. The results
lead to several key findings:

Overall performance is not satisfactory. In most experimental settings, the AUC scores range
between 0.5 and 0.6. From an AUC perspective, this is clearly unsatisfactory, as it indicates a high
rate of false negatives and false positives. In other words, data points used by the target model
are frequently misclassified as not being used, and vice versa. This is concerning and highlights
the urgent need for advancing the performance of TDD methods. For model-based and query-
based methods, whose results may be influenced by the number of reference models and queries,
we perform a robust analysis by varying the number of reference models and queries. The results
remain largely consistent across different configurations, as shown in Appendix A.8.

Model-based TDD methods achieve generally better detection performance. Across datasets
and target models, model-based detection algorithms consistently outperform other methods. For
instance, as shown in Table 4, all five model-based algorithms achieve an average performance near
or above 0.65 across all 12 datasets, whereas the performance of metric-based and learning-based
methods is substantially lower. Overall, these results highlight the performance advantage of model-
based TDD methods.

Data’s task label information is useful. Some TDD methods leverage the focal data point’s ground
truth label (e.g., image class label or sentiment class), while others do not. Experimental results
demonstrate that incorporating label information significantly improves detection performance. For
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instance, Metric-ment consistently outperforms Metric-ent by utilizing data labels. Simi-
lar improvements are observed with Learn-label compared to Learn-original, where the
former benefits from leveraging the label information while the latter does not.

Hybrid method has potential. Notably, Query-ref, which generates crafted query data for the
image modality, achieves the best performance among all 21 TDD algorithms. While categorized as
query-based, this method also trains reference models, similar to model-based methods, making it a
hybrid of query-based and model-based approaches. This highlights the potential of combining the
merits of different methods to enhance detection accuracy.

Table 4: AUROC of TDD algorithms across different datasets. WRN28-2, Multilayer Perceptron,
and DistilBERT are trained on image, tabular, and text datasets, respectively. The last column of
each table displays the average performance of the corresponding TDD algorithm across different
datasets. Complete results with standard deviations are provided in Table 21 in the Appendix A.9.

Modality Image Tabular Text Avg.Dataset CIFAR-10 CIFAR-100 BloodMNIST CelebA Purchase Texas Adult Student Rotten Tweet CoLA ECtHR

Metric-loss 0.635 0.858 0.527 0.509 0.619 0.629 0.500 0.566 0.582 0.566 0.571 0.521 0.590
Metric-conf 0.635 0.858 0.527 0.509 0.619 0.629 0.500 0.566 0.582 0.566 0.571 0.521 0.590
Metric-corr 0.552 0.708 0.517 0.507 0.551 0.610 0.501 0.560 0.557 0.550 0.550 0.519 0.557
Metric-ent 0.628 0.848 0.525 0.508 0.616 0.563 0.498 0.520 0.561 0.528 0.519 0.507 0.568
Metric-ment 0.635 0.858 0.527 0.509 0.620 0.630 0.500 0.566 0.582 0.566 0.571 0.522 0.591
Learn-original 0.631 0.870 0.508 0.503 0.652 0.597 0.502 0.531 0.558 0.529 0.568 0.506 0.580
Learn-top3 0.628 0.851 0.526 0.503 0.677 0.573 0.500 0.520 0.561 0.528 0.531 0.502 0.575
Learn-sorted 0.628 0.850 0.529 0.508 0.666 0.573 0.501 0.520 0.561 0.528 0.510 0.501 0.573
Learn-label 0.633 0.882 0.515 0.507 0.656 0.669 0.503 0.590 0.584 0.570 0.622 0.517 0.604
Learn-merge 0.656 0.893 0.523 0.507 0.684 0.686 0.502 0.595 0.584 0.569 0.620 0.530 0.612
Model-loss 0.664 0.852 0.560 0.522 0.725 0.767 0.509 0.670 0.773 0.756 0.752 0.655 0.684
Model-calibration 0.639 0.763 0.553 0.520 0.684 0.718 0.508 0.648 0.695 0.714 0.699 0.638 0.648
Model-lira 0.690 0.937 0.536 0.512 0.755 0.753 0.503 0.634 0.753 0.728 0.737 0.604 0.679
Model-fpr 0.647 0.852 0.552 0.516 0.697 0.723 0.507 0.641 0.679 0.722 0.708 0.635 0.657
Model-robust 0.635 0.889 0.552 0.520 0.711 0.762 0.509 0.669 0.766 0.745 0.746 0.621 0.677

Query-augment 0.573 0.761 0.517 0.502 0.612 0.612 0.500 0.560 0.570 0.551 0.561 0.518 0.570
Query-transfer 0.522 0.622 0.503 0.502 0.529 0.581 0.499 0.522 0.530 0.530 0.526 0.510 0.531
Query-adv 0.615 0.838 0.508 0.514 0.620 0.579 0.500 0.563 0.571 0.551 0.568 0.519 0.579
Query-neighbor 0.511 0.553 0.497 0.501 0.533 0.612 0.500 0.535 0.533 0.556 0.550 0.522 0.534
Query-qrm 0.532 0.574 0.510 0.505 0.523 0.530 0.500 0.526 0.524 0.521 0.511 0.512 0.522
Query-ref 0.735 0.941 0.566 0.526 N/A N/A N/A N/A N/A N/A N/A N/A 0.692

Table 5: AUROC of TDD algorithms across different target model architectures. MLP stands for
Multilayer Perceptron, and LR stands for Logistic Regression. The last column of each table dis-
plays the average performance of the corresponding TDD algorithm across different model archi-
tectures. Complete results with standard deviations are provided in Table 22 in the Appendix A.9.

Dataset CIFAR10(Image) Purchase(Tabular) Rotten-tomatoes(Text) Avg.Target model WRN28-2 ResNet18 VGG11 MobileNet-v2 MLP CatBoost LR DistilBERT RoBERTa Flan-T5

Metric-loss 0.635 0.659 0.684 0.592 0.619 0.948 0.640 0.582 0.571 0.517 0.645
Metric-conf 0.635 0.659 0.684 0.592 0.619 0.948 0.640 0.582 0.571 0.517 0.645
Metric-corr 0.552 0.557 0.574 0.548 0.551 0.636 0.622 0.557 0.542 0.513 0.565
Metric-ent 0.628 0.654 0.680 0.582 0.616 0.943 0.594 0.561 0.555 0.509 0.632
Metric-ment 0.635 0.659 0.685 0.592 0.620 0.950 0.642 0.582 0.571 0.517 0.645
Learn-original 0.631 0.623 0.694 0.533 0.652 0.935 0.644 0.558 0.546 0.515 0.633
Learn-top3 0.628 0.653 0.680 0.582 0.677 0.967 0.660 0.561 0.555 0.509 0.647
Learn-sorted 0.628 0.654 0.680 0.578 0.666 0.963 0.661 0.561 0.555 0.509 0.646
Learn-label 0.633 0.612 0.707 0.557 0.656 0.954 0.701 0.584 0.565 0.520 0.649
Learn-merge 0.656 0.628 0.727 0.528 0.684 0.968 0.716 0.584 0.566 0.518 0.657
Model-loss 0.664 0.709 0.729 0.607 0.725 0.975 0.776 0.773 0.656 0.602 0.721
Model-calibration 0.639 0.671 0.690 0.595 0.684 0.865 0.719 0.695 0.622 0.592 0.677
Model-lira 0.690 0.749 0.780 0.601 0.755 0.995 0.761 0.753 0.630 0.569 0.728
Model-fpr 0.647 0.684 0.712 0.619 0.697 0.976 0.724 0.679 0.623 0.589 0.695
Model-robust 0.635 0.677 0.704 0.602 0.711 0.983 0.796 0.766 0.639 0.574 0.709

Query-augment 0.573 0.575 0.633 0.542 0.612 0.696 0.664 0.570 0.546 0.512 0.592
Query-transfer 0.522 0.522 0.533 0.507 0.529 0.587 0.574 0.530 0.515 0.506 0.533
Query-adv 0.615 0.621 0.666 0.583 0.620 0.727 0.662 0.571 0.552 0.516 0.613
Query-neighbor 0.511 0.512 0.509 0.509 0.533 0.820 0.530 0.533 0.527 0.504 0.549
Query-qrm 0.532 0.537 0.541 0.530 0.523 0.946 0.632 0.524 0.528 0.506 0.580
Query-ref 0.735 0.800 0.843 0.656 N/A N/A N/A N/A N/A N/A 0.759

3.3 THE IMPACT OF TARGET MODEL

In this section, we examine the impact of the target model on TDD detection performance.

3.3.1 DATA MEMORIZATION AND OVERFITTING

A common view is that the effectiveness of TDD is closely tied to the level of training-data memo-
rization or overfitting exhibited by the target model during training (Yeom et al., 2018; Long et al.,
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2018). The disparity between the target model’s accuracy on the training set and the test set, known
as the train-test accuracy gap, serves as an indicator of data memorization in prior literature (Car-
lini et al., 2022a). In our experiments, we document the train-test gaps of 12 distinct target models
in Table 4, along with the corresponding performance of all detection methods. Specifically, the
training of target models is repeated five times with different random training samples. Figure 2 il-
lustrates the performance of various detection algorithms across different train-test gaps, with error
bars representing 95% confidence intervals obtained from five independent trials. It is evident that
the performance of all TDD methods is positively correlated with the train-test accuracy gap of the
target model.

Takeaway. It is crucial for future advanced TDD algorithms to evaluate the generalizability of target
models and report TDD performance when the train-test gap is small.
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Figure 2: TDD algorithm performance (AUROC) versus the target model’s train-test accuracy gap.
The reported performance is averaged across all datasets.

3.3.2 TARGET MODEL SIZE

We examine the impact of target model size on TDD performance. Specifically, in our experiment,
we vary the number of layers in the ResNet architecture for image data, the number of hidden units
in the MLP for tabular data, and the parameter sizes of the large language model Pythia for text data.

Due to limitations in computing resources, TDD on large models often does not involve the creation
of shadow models or reference models. Drawing from prior studies (Shi et al., 2024; Duan et al.,
2024), we utilize multiple detection methods suitable for pretrained large language models. Detailed
descriptions of these detection methods can be found in Appendix A.2. Additionally, due to the lack
of specific information regarding the training data used for large language models, we utilize the
WIKIMIA (Shi et al., 2024), which collects training and non-training data for the large language
model based on the model’s release timeline to evaluate the TDD method in large language models.

The results of the experiments are illustrated in Figure 4. It is observed that, in most cases, the
performance of the detection method improves as the size of the model increases. This aligns with
the expectation that an increase in model size typically enhances model memorization (Carlini et al.,
2023; Arpit et al., 2017). However, an exception occurs when the number of layers in the ResNet
model is expanded from 34 to 50, resulting in a decline in the detection method’s performance. One
potential explanation for this anomaly is that the integration of residual connections in ResNet helps
alleviate issues related to excessive memorization stemming from the increased depth of the model.

Takeaway. TDD algorithms generally demonstrate improved performance as the model size in-
creases, highlighting their potential in the era of large models.

3.4 PERFORMANCE WHEN KNOWLEDGE ABOUT THE TARGET MODEL IS LIMITED

In the above experiments, we assumed that despite the black-box setting, TDD algorithms had some
knowledge about the target model’s training algorithm. However, in real-world scenarios, it is pos-
sible that the data owner may lack detailed knowledge about the target model’s architecture, leading
to significant differences between the reference and shadow models constructed by the TDD method
and the actual target model. To explore this issue, we assess the performance of TDD when the
reference and shadow models differ from the target model.
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Figure 3: TDD algorithm performance (AUROC) versus model size, measured by the number of
layers in ResNet, the number of hidden units in MLP, and the number of parameters in large language
models Pythia.

The results, presented in Table 14, show a noticeable decline in detection performance when
the data owner has limited knowledge about the target model’s architecture. For example,
Learn-original exhibits a 5.3% performance decline when using ResNet18 as the shadow
model. This performance degradation can be attributed to discrepancies between the shadow and
target models, which result in biased input features for training the auxiliary classifier.

Takeaway. The overall performance of TDD algorithms, without knowledge of the target model’s
training algorithm, remains unsatisfactory. This underscores the ineffectiveness of TDD algorithms
on most datasets when information about the target model is limited.

Table 6: TDD algorithm performance (AUROC) when the reference or shadow models are different
from the target model (i.e., when knowledge about the target model is limited). Complete results
with standard deviations are provided in Table 23 in Appendix A.9.

Target model WRN28-2(CIFAR-10) MLP(Purchase) DistilBERT(Rotten-tomatoes) Avg.Shadow/reference model WRN28-2 ResNet18 VGG11 MobileNet-v2 MLP CatBoost LR DistilBERT RoBERTa Flan-T5

Learn-original 0.631 0.578 0.632 0.539 0.652 0.651 0.564 0.558 0.560 0.546 0.591
Learn-top3 0.628 0.628 0.628 0.628 0.677 0.646 0.515 0.561 0.561 0.561 0.603
Learn-sorted 0.628 0.629 0.628 0.629 0.666 0.656 0.532 0.561 0.561 0.561 0.605
Learn-label 0.633 0.591 0.644 0.563 0.656 0.651 0.551 0.584 0.584 0.580 0.604
Learn-merge 0.656 0.581 0.651 0.509 0.684 0.517 0.595 0.584 0.584 0.580 0.594

Model-loss 0.664 0.657 0.641 0.632 0.725 0.608 0.611 0.773 0.607 0.589 0.651
Model-calibration 0.639 0.634 0.617 0.614 0.684 0.579 0.588 0.695 0.595 0.587 0.623
Model-lira 0.690 0.659 0.666 0.610 0.755 0.686 0.588 0.753 0.602 0.553 0.656
Model-fpr 0.647 0.668 0.638 0.664 0.697 0.645 0.643 0.679 0.557 0.567 0.641
Model-robust 0.635 0.639 0.633 0.621 0.711 0.632 0.625 0.766 0.624 0.591 0.648

Query-augment 0.573 0.555 0.575 0.552 0.612 0.612 0.612 0.570 0.569 0.565 0.580
Query-transfer 0.522 0.529 0.518 0.518 0.529 0.535 0.529 0.530 0.529 0.514 0.525
Query-qrm 0.532 0.532 0.533 0.532 0.523 0.625 0.622 0.524 0.524 0.528 0.548
Query-ref 0.735 0.740 0.722 0.708 N/A N/A N/A N/A N/A N/A 0.726

3.5 PERFORMANCE TRADEOFF OF TDD ALGORITHMS

Table 7: Quantitative evaluation of different types of TDD algorithms including the average and best
AUROC, maximum runtime and memory usage.

Algorithm type Average performance Best performance Running time(s) Memory usage(MB)

Metric-based 0.626 0.645 232 0
Learning-based 0.646 0.657 2,107 855
Model-based 0.706 0.728 4,089 13,680
Query-based 0.604 0.759 40,963 13,680

Most evaluations of TDD algorithms primarily focus on detection accuracy. However, other factors,
such as computational efficiency, are equally important in real-world applications. For instance,
model-based methods, which require building numerous reference models, may be too costly in
terms of time and memory when applied to large AI models. Therefore, in TDDBench, we empha-
size the computational complexity of running different TDD algorithms. Specifically, we document
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the maximum runtime and memory usage for each type of TDD algorithm. This provides a holistic
evaluation beyond detection accuracy. We present an overall assessment of the four types of TDD
algorithms in Table 7. Evidently, each type of TDD algorithm has its own advantages and disadvan-
tages. While model-based methods offer the best average performance, they come with significantly
higher running time and memory usage. Therefore, data owners performing TDD must strike a bal-
ance between practicality, resource utilization, and detection accuracy, depending on their specific
scenario. For instance, in resource-constrained environments, metric-based methods are a suitable
choice for TDD, as they require minimal computational resources and fewer assumptions compared
to other methods.

Takeaway. None of the TDD algorithms are satisfactory, as performance improvements often ne-
cessitate increased consumption of computing resources.

4 RELATED WORK

Training data detection (TDD) is commonly employed to assess privacy risks in machine learning
models (Murakonda & Shokri, 2020). It has been applied across various domains, including image
classification (Hui et al., 2021), text generation (Shejwalkar et al., 2021), graph neural networks
(Wu et al., 2021), and recommendation systems (Zhang et al., 2021). TDD has a wide range of
applications such as dataset copyright protection (Maini et al., 2021) and for verifying machine
unlearning (Chen et al., 2021). Shokri et al., 2017 introduce the first TDD algorithm, utilizing
shadow models to help identifying differences in the model’s predictions for training data versus
other data. Yeom et al., 2018 demonstrate that satisfactory results could be achieved by utilizing
only the loss of the target model on the sample. Carlini et al., 2022a criticize methods based solely
on the target model’s output, arguing that they overlook the inherent characteristics of the data,
which can lead to biased estimates regarding whether a sample belongs to the training dataset. They
propose training multiple reference models to better understand how the sample’s characteristics
influence metrics like loss. There is a rapidly growing body of literature on TDD methods, and we
provide a brief summarization in Section 2.3.

Existing benchmarking works. He et al., 2022b evaluate 9 TDD algorithms on image data, while
Niu et al., 2023 expand the evaluation to 15 algorithms, focusing on how sample differences within
datasets affect TDD performance. Duan et al., 2024 investigate five TDD algorithms on large lan-
guage models (LLMs) and find that current TDD algorithms perform poorly in this context. In
summary, existing TDD benchmarks have limited coverage of data modalities and algorithms, un-
derscoring the need for a more comprehensive analysis of TDD algorithms. This paper, along with
the developed TDDBench, aims to address this gap by providing in-depth insights into the develop-
ment and performance tradeoff in state-of-the-art TDD algorithms.

5 CONCLUSIONS

In this article, we introduce TDDBench, a novel and comprehensive training data detection bench-
mark. Unlike existing benchmarks, TDDBench extends evaluations across multiple data modalities,
including image, tabular, and text. It also includes large language models and benchmarks 21 state-
of-the-art TDD algorithms. Our comprehensive evaluation sheds critical light on the development
of TDD algorithms and helps both researchers and practitioners reconsider the trade-offs involved
in using TDD algorithms. For example, our evaluation shows that model-based TDD algorithms
outperform others but at the cost of higher time and memory complexity. Additionally, all exist-
ing TDD algorithms experience performance degradation when the target model avoids overfitting.
Based on our findings with TDDBench, we believe future work on TDD algorithms should
focus on, but not be limited to: (1) designing TDD algorithms that are robust against target
models less prone to overfitting, (2) developing TDD algorithms that can effectively address
defense countermeasures, (3) creating TDD algorithms that require minimal knowledge of the
target model’s architecture and data access, (4) achieving a better balance between perfor-
mance and practical considerations such as computational complexity, and (5) tailoring algo-
rithms to specific application contexts or training methods, such as training data detection for
recommendation systems and semi-supervised models.
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A APPENDIX

A.1 TRAINING DATA DETECTION ON VISION TRANSFORMER MODELS

In this section, we showcase the performance of the TDD algorithm on vision transformer models.
Specifically, we trained ViT (Dosovitskiy, 2020) and Swin (Liu et al., 2021b) models on the CIFAR-
10 dataset and evaluated the TDD algorithm’s effectiveness on these models. As shown in Table 8
and Table 9, the TDD algorithm remains effective on vision transformer models, and model-based
algorithms continue to have clear advantages over other types of methods.

Table 8: TDD performance across different metrics on ViT (Dosovitskiy, 2020) trained on CIFAR-
10 dataset. MA(membership advantage) (Jayaraman et al., 2021) equals the difference between the
true positive rate and the false positive rate. For all metrics except for FPR and FNR, higher values
indicate better performance of the corresponding TDD algorithm.

Algorithm Precision Recall F1-score Acc FNR ↓ FPR ↓ MA TPR@1%FPR TPR@10%FPR AUROC

Metric-loss 0.555 0.811 0.659 0.583 0.190 0.644 0.167 0.010 0.119 0.599
Metric-conf 0.555 0.811 0.659 0.583 0.190 0.644 0.167 0.010 0.119 0.599
Metric-corr 0.555 0.796 0.654 0.581 0.204 0.633 0.162 0.000 0.000 0.581
Metric-ent 0.536 0.499 0.517 0.536 0.501 0.428 0.071 0.011 0.114 0.543
Metric-ment 0.555 0.810 0.659 0.583 0.190 0.644 0.167 0.011 0.121 0.599
Learn-original 0.522 0.675 0.589 0.532 0.325 0.612 0.063 0.013 0.122 0.537
Learn-top3 0.539 0.477 0.506 0.536 0.523 0.405 0.072 0.010 0.116 0.541
Learn-sorted 0.539 0.474 0.504 0.536 0.526 0.402 0.072 0.010 0.116 0.541
Learn-label 0.552 0.787 0.649 0.577 0.213 0.634 0.153 0.015 0.141 0.597
Learn-merge 0.556 0.799 0.655 0.583 0.201 0.634 0.165 0.016 0.138 0.604
Model-loss 0.596 0.718 0.651 0.617 0.283 0.483 0.235 0.056 0.244 0.672
Model-calibration 0.578 0.764 0.658 0.606 0.236 0.553 0.212 0.046 0.222 0.653
Model-lira 0.562 0.735 0.637 0.584 0.265 0.567 0.168 0.052 0.219 0.631
Model-fpr 0.611 0.594 0.603 0.610 0.406 0.374 0.220 0.036 0.231 0.651
Model-robust 0.603 0.666 0.633 0.615 0.334 0.436 0.231 0.056 0.255 0.671

Query-augment 0.557 0.771 0.646 0.581 0.229 0.609 0.162 0.003 0.067 0.594
Query-transfer 0.525 0.738 0.614 0.538 0.262 0.662 0.077 0.009 0.102 0.538
Query-adv 0.564 0.793 0.659 0.593 0.207 0.608 0.186 0.008 0.119 0.590
Query-neighbor 0.504 0.393 0.442 0.505 0.607 0.383 0.010 0.001 0.061 0.506
Query-qrm 0.555 0.801 0.656 0.583 0.199 0.636 0.165 0.000 0.000 0.597
Query-ref 0.676 0.558 0.611 0.649 0.442 0.260 0.298 0.089 0.308 0.718

Table 9: TDD performance across different metrics on Swin (Liu et al., 2021b) trained on CIFAR-
10 dataset. MA(membership advantage) (Jayaraman et al., 2021) equals the difference between the
true positive rate and the false positive rate. For all metrics except for FPR and FNR, higher values
indicate better performance of the corresponding TDD algorithm.

Algorithm Precision Recall F1-score Acc FNR ↓ FPR ↓ MA TPR@1%FPR TPR@10%FPR AUROC

Metric-loss 0.571 0.855 0.685 0.609 0.146 0.636 0.218 0.009 0.116 0.621
Metric-conf 0.571 0.855 0.685 0.609 0.146 0.636 0.218 0.009 0.116 0.621
Metric-corr 0.560 0.915 0.695 0.601 0.085 0.713 0.202 0.000 0.000 0.601
Metric-ent 0.547 0.690 0.611 0.562 0.310 0.566 0.124 0.009 0.115 0.573
Metric-ment 0.571 0.856 0.685 0.609 0.144 0.638 0.218 0.009 0.117 0.621
Learn-original 0.548 0.685 0.609 0.563 0.315 0.559 0.126 0.010 0.132 0.577
Learn-top3 0.553 0.625 0.587 0.562 0.375 0.501 0.124 0.009 0.116 0.573
Learn-sorted 0.553 0.624 0.586 0.562 0.376 0.500 0.124 0.009 0.116 0.573
Learn-label 0.571 0.857 0.686 0.610 0.143 0.638 0.219 0.024 0.169 0.638
Learn-merge 0.574 0.838 0.681 0.610 0.162 0.618 0.220 0.020 0.172 0.643
Model-loss 0.623 0.693 0.656 0.639 0.307 0.416 0.278 0.076 0.275 0.704
Model-calibration 0.581 0.810 0.676 0.615 0.190 0.580 0.230 0.061 0.224 0.668
Model-lira 0.590 0.772 0.669 0.621 0.228 0.531 0.241 0.083 0.278 0.686
Model-fpr 0.615 0.636 0.625 0.621 0.364 0.394 0.242 0.058 0.275 0.670
Model-robust 0.606 0.760 0.674 0.635 0.240 0.489 0.271 0.083 0.300 0.705
Query-augment 0.567 0.847 0.679 0.603 0.153 0.640 0.206 0.009 0.019 0.618
Query-transfer 0.542 0.850 0.662 0.570 0.150 0.711 0.139 0.009 0.105 0.560
Query-adv 0.577 0.932 0.713 0.627 0.068 0.677 0.254 0.008 0.155 0.645
Query-neighbor 0.505 0.422 0.460 0.506 0.578 0.410 0.012 0.002 0.079 0.507
Query-qrm 0.567 0.866 0.686 0.606 0.134 0.655 0.211 0.000 0.000 0.623
Query-ref 0.639 0.842 0.726 0.689 0.158 0.464 0.378 0.128 0.383 0.759
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A.2 TRAINING DATA DETECTION ALGORITHMS IN LARGE LANGUAGE MODELS

In this section, we present the performance of the TDD algorithm on various sizes of Llama models
(Touvron et al., 2023). The experimental results in Table 10 indicate that the performance of the
TDD algorithm improves as the model size increases, which aligns with the results observed for
the detection results on Pythia (corresponds to Figure 4 in Section 3.3.2) . Additionally, we offer a
brief introduction to the TDD algorithms for large language models; for more detailed information,
please refer to the related works.

Table 10: The performance of the TDD algorithm across different sizes of Llama models.

Algorithm Target Model
Llama-7b Llama-13b Llama-30b Llama-65b

Neighbor 0.555 0.552 0.566 0.586
LOSS 0.666 0.678 0.704 0.707
PAC 0.679 0.689 0.704 0.714
Zlib 0.683 0.697 0.718 0.721
MIN-K% 0.697 0.715 0.737 0.737
Reference 0.802 0.809 0.833 0.831

Loss (Yeom et al., 2018) refers to the Metric-loss mentioned in the article. Instead of using
cross-entropy as in classification models, the log likelihood of each text under the target model
serves as the basis for detection in pretraining language models.

Zlib (Carlini et al., 2021) calibrates the sample’s loss under the target model using the sample’s zlib
compression size.

MIN-K% (Shi et al., 2024) utilizes the k% of tokens with the lowest likelihoods as the detection
basis, rather than average loss.

Reference (Carlini et al., 2021) borrows from model-based approaches, utilizing the reference
model to help correct the detection basis derived from the prediction results of the target model.
Reference models for TDD in large language models are typically open-source and have architec-
tures similar to the target model, thus avoiding the significant computational cost of training the
reference model from scratch.

Neighbor, or Query-neighbor (Mattern et al., 2023), supplements the detection information
provided by the sample point x with the loss of the target model on the neighboring samples of x.

PAC, short for Polarized Augment Calibration (Ye et al., 2024), introduces a new detection metric
called polarized distance through data augmentation. This metric helps determine whether data has
been trained by large language models.

A.3 MORE DISCUSSION REGARDING THE EVALUATED DATA IN TDDBENCH

A.3.1 TRAINING DATA DETECTION PERFORMANCE ACROSS LARGE-SCALE DATASETS

Table 11: Large-scale datasets used in TDDBench.

Dataset #Samples #Classes Brief description

ImageNet-1K (Russakovsky et al., 2015) 1,331,167 1000 General dataset

FairJob (Vladimirova et al.) 1,072,226 2 Click prediction

In this section, we demonstrate the performance of the TDD algorithm on two large-scale datasets:
ImageNet-1K (Russakovsky et al., 2015) and FairJob (Vladimirova et al.). ImageNet-1K is widely
used for evaluating image classification models, while FairJob is designed to learn click prediction
models and assess prediction bias between different gender groups. The statistics of these datasets
are as follows.
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Table 12: TDD performance across different metrics on WRN28-2 trained on ImageNet-1K dataset.
MA(membership advantage) (Jayaraman et al., 2021) equals the difference between the true positive
rate and the false positive rate. For all metrics except for FPR and FNR, higher values indicate better
performance of the corresponding TDD algorithm.

Algorithm Precision Recall F1-score Acc FNR ↓ FPR ↓ MA TPR@1%FPR TPR@10%FPR AUROC

Metric-loss 0.570 0.693 0.626 0.586 0.307 0.522 0.171 0.009 0.143 0.608
Metric-conf 0.570 0.693 0.626 0.586 0.307 0.522 0.171 0.009 0.143 0.608
Metric-corr 0.601 0.445 0.511 0.575 0.555 0.295 0.150 0.000 0.000 0.575
Metric-ent 0.534 0.341 0.416 0.521 0.659 0.298 0.043 0.009 0.113 0.521
Metric-ment 0.572 0.692 0.627 0.588 0.308 0.517 0.175 0.010 0.145 0.610
Learn-original 0.514 0.447 0.478 0.512 0.553 0.424 0.024 0.000 0.116 0.509
Learn-top3 0.540 0.357 0.430 0.526 0.643 0.305 0.053 0.009 0.120 0.526
Learn-sorted 0.543 0.335 0.414 0.527 0.665 0.282 0.053 0.010 0.125 0.526
Learn-label 0.510 0.182 0.269 0.504 0.818 0.175 0.007 0.009 0.096 0.495
Learn-merge 0.578 0.676 0.623 0.591 0.324 0.494 0.182 0.010 0.150 0.613
Model-loss 0.631 0.699 0.664 0.645 0.301 0.409 0.291 0.056 0.300 0.704
Model-calibration 0.612 0.719 0.661 0.632 0.281 0.455 0.263 0.055 0.267 0.689
Model-lira 0.616 0.663 0.639 0.625 0.337 0.413 0.250 0.049 0.264 0.676
Model-fpr 0.622 0.698 0.657 0.637 0.302 0.425 0.273 0.033 0.273 0.685
Model-robust 0.622 0.701 0.659 0.637 0.299 0.426 0.275 0.050 0.284 0.694

Query-augment 0.575 0.491 0.529 0.564 0.509 0.363 0.128 0.013 0.142 0.562
Query-transfer 0.589 0.421 0.491 0.563 0.579 0.294 0.127 0.013 0.142 0.565
Query-adv 0.580 0.442 0.502 0.576 0.558 0.290 0.153 0.008 0.152 0.580
Query-neighbor 0.532 0.551 0.542 0.533 0.449 0.485 0.066 0.000 0.000 0.537
Query-qrm 0.572 0.702 0.630 0.587 0.298 0.529 0.173 0.000 0.000 0.616
Query-ref 0.635 0.558 0.594 0.620 0.442 0.319 0.240 0.032 0.199 0.658

Table 13: TDD performance across different metrics on MLP trained on FairJob dataset.

Algorithm Precision Recall F1-score Acc FNR ↓ FPR ↓ MA TPR@1%FPR TPR@10%FPR AUROC

Metric-loss 0.521 0.219 0.309 0.509 0.781 0.201 0.018 0.010 0.097 0.500
Metric-conf 0.521 0.219 0.309 0.509 0.781 0.201 0.018 0.010 0.097 0.500
Metric-corr 0.000 0.000 0.000 0.500 1.000 0.000 0.000 0.000 0.000 0.500
Metric-ent 0.523 0.224 0.314 0.510 0.776 0.204 0.020 0.010 0.098 0.500
Metric-ment 0.523 0.222 0.312 0.510 0.778 0.203 0.019 0.010 0.097 0.500
Learn-original 0.525 0.190 0.279 0.509 0.810 0.173 0.018 0.013 0.094 0.500
Learn-top3 0.520 0.217 0.306 0.508 0.783 0.200 0.016 0.004 0.017 0.500
Learn-sorted 0.521 0.209 0.298 0.508 0.791 0.192 0.016 0.012 0.095 0.500
Learn-label 0.519 0.214 0.303 0.508 0.786 0.199 0.015 0.010 0.019 0.499
Learn-merge 0.523 0.213 0.303 0.509 0.787 0.194 0.019 0.013 0.102 0.500
Model-loss 0.509 0.475 0.492 0.509 0.525 0.458 0.017 0.013 0.108 0.507
Model-calibration 0.526 0.262 0.350 0.513 0.738 0.236 0.026 0.011 0.116 0.509
Model-lira 0.502 0.412 0.453 0.502 0.588 0.408 0.004 0.011 0.098 0.490
Model-fpr 0.530 0.105 0.176 0.506 0.895 0.093 0.012 0.012 0.110 0.502
Model-robust 0.000 0.000 0.000 0.500 1.000 0.000 0.000 0.000 0.000 0.500

Query-augment 0.530 0.007 0.014 0.500 0.993 0.006 0.001 0.007 0.007 0.500
Query-transfer 0.583 0.004 0.008 0.501 0.996 0.003 0.001 0.004 0.073 0.492
Query-adv 0.000 0.000 0.000 0.500 1.000 0.000 0.000 0.000 0.000 0.500
Query-neighbor 0.518 0.228 0.317 0.508 0.772 0.213 0.016 0.005 0.071 0.507
Query-qrm 0.501 0.993 0.666 0.500 0.007 0.993 0.000 0.000 0.000 0.500
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Specifically, we train a WRN28-2 model with ImageNet-1K and an MLP on the FairJob dataset
as the target models, and record the detection performance of the TDD algorithm on these two
models. As shown in Table 12 and Table 13, the performance of the TDD algorithm on large-
scale datasets is not ideal. Notably, the algorithm achieves only about 50% AUROC on the FairJob
dataset, indicating almost no detection capability. One possible explanation is that the large-scale
dataset enhances the target model’s generalization ability, reducing the gap between the training and
test sets and weakening the TDD algorithm’s performance.

A.3.2 TRAINING DATA DETECTION WITH DIFFERENT SPLIT RULES

In the main experiment of our paper, we align with most existing literatures on TDD by assuming
that the detection algorithm has access to the entire target dataset for training both the reference
model and the shadow model. However, in this section, we impose constraints on the data access
permissions available to the detection algorithm. We assume that the dataset used to train the refer-
ence and shadow models, which we refer to as the reference dataset, is derived from different split
rules. Specifically, we consider four types of data access permissions for a detector: (1) The detector
can access the entire target dataset, consistent with our initial experimental setup. (2) The detector
can access only a portion (50%) of the target dataset. (3) The detector cannot access the target
dataset but is aware of its data distribution. It can obtain reference data, which does not intersect
with the target dataset, for use with the TDD algorithm. (4) The reference dataset is from a bi-
ased distribution, with the majority (80%) from half of the target dataset’s categories and a minority
(20%) from the other half.

We evaluated the performance of various TDD detection algorithms under these four scenarios. No-
tably, some algorithms, like Model-loss, only function under the first assumption. Others, such as
metric-based methods, are designed to operate without relying on the reference dataset and are un-
affected by different data partitioning rules. Our experimental results indicate that data partitioning
significantly impacts the performance of TDD algorithms. Specifically, when the detector only has
access to a biased data distribution, the performance of the TDD algorithm is minimized.

Future direction. A promising research direction is to explore methods to enhance TDD algorithm
performance when the detector’s data access is limited.

Table 14: TDD algorithm performance (AUROC) with different split rules. Reference data access
ranges from 1 to 4, indicating the highest to lowest data permissions. ’N/A’ indicates that the corre-
sponding TDD algorithm is not applicable to the related split rule, while ’-’ indicates that the TDD
algorithm is not affected by the split rule.

Dataset CIFAR10(Image) Purchase(Tabular) Rotten-tomatoes(Text)
Reference data access 1 2 3 4 1 2 3 4 1 2 3 4

Metric-loss 0.635 - - - 0.620 - - - 0.582 - - -
Metric-conf 0.635 - - - 0.620 - - - 0.582 - - -
Metric-corr 0.552 - - - 0.551 - - - 0.557 - - -
Metric-ent 0.628 - - - 0.616 - - - 0.561 - - -
Metric-ment 0.635 - - - 0.620 - - - 0.582 - - -

Learn-original 0.631 0.606 0.635 0.613 0.652 0.654 0.656 0.649 0.558 0.572 0.570 0.496
Learn-top3 0.628 0.648 0.651 0.645 0.677 0.683 0.687 0.633 0.561 0.575 0.572 0.428
Learn-sorted 0.628 0.648 0.651 0.646 0.667 0.645 0.686 0.671 0.561 0.575 0.572 0.543
Learn-label 0.634 0.606 0.658 0.613 0.656 0.668 0.663 0.654 0.584 0.593 0.590 0.557
Learn-merge 0.656 0.594 0.667 0.635 0.684 0.689 0.689 0.659 0.584 0.594 0.593 0.409

Model-loss 0.664 N/A N/A N/A 0.725 N/A N/A N/A 0.773 N/A N/A N/A
Model-calibration 0.639 0.601 0.657 0.596 0.684 0.640 0.680 0.621 0.695 0.673 0.657 0.594
Model-lira 0.690 N/A N/A N/A 0.755 N/A N/A N/A 0.753 N/A N/A N/A
Model-fpr 0.647 0.634 0.666 0.626 0.697 0.677 0.684 0.638 0.679 0.699 0.655 0.586
Model-robust 0.635 N/A N/A N/A 0.711 N/A N/A N/A 0.766 N/A N/A N/A

Query-augment 0.573 0.568 0.577 0.586 0.612 0.612 0.613 0.613 0.570 0.574 0.578 0.581
Query-transfer 0.522 0.532 0.506 0.508 0.529 0.526 0.528 0.520 0.530 0.519 0.515 0.507
Query-adv 0.615 - - - 0.620 - - - 0.571 - - -
Query-neighbor 0.511 - - - 0.533 - - - 0.533 - - -
Query-quantile 0.532 - - - 0.523 - - - 0.524 - - -
Query-canary 0.735 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
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A.3.3 TRAINING DATA DETECTION WITH DIFFERENT SIZES OF DATA POINTS

To examine the effect of the size of evaluated data points on the TDD algorithm, we varied the size
of the target dataset and assessed the algorithm’s performance on target models trained with these
different dataset sizes. As shown in Figure 1, the model-based method consistently delivers the best
detection performance across various sizes, which is consistent with earlier findings. Furthermore,
there is no strong correlation between data size and the performance of the TDD algorithm.
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Figure 4: TDD algorithm performance (AUROC) versus data size, measured by the number of data
points in the target dataset.

A.4 TRAINING DATA DETECTION ACROSS DIFFERENT TRAINING METHODS

Research on TDD algorithms has primarily concentrated on two types of training methods. The first
is supervised learning, which forms the basis for most TDD algorithms, covering various fields such
as image (Carlini et al., 2022a), table (Shokri et al., 2017), and text (Amit et al., 2024). This is also
the setting for our main experiments. The second type is self-supervised learning, which typically
focuses on detecting whether the pre-trained corpus of large language models can be identified. This
type of algorithm is also known as pretraining data detection (Shi et al., 2024), and our experiments
on Llama and Pythia evaluated the TDD algorithm’s performance in this setting.

Table 15: TDD performance on WRN28-2 trainied with semi-supervised method FixMatch (Sohn
et al., 2020).

Dataset CIFAR-10 CIFAR-100
Algorithm Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Metric-loss 0.624 0.560 0.805 0.661 0.714 0.598 0.721 0.653
Metric-conf 0.624 0.560 0.805 0.661 0.714 0.598 0.721 0.653
Metric-corr 0.533 0.487 0.910 0.635 0.683 0.531 0.786 0.634
Metric-ent 0.643 0.567 0.870 0.687 0.736 0.587 0.820 0.684
Metric-ment 0.624 0.561 0.804 0.661 0.714 0.602 0.712 0.652

Learn-original 0.641 0.564 0.889 0.690 0.737 0.585 0.832 0.687
Learn-top3 0.643 0.569 0.862 0.685 0.733 0.591 0.801 0.680
Learn-sorted 0.643 0.568 0.865 0.686 0.734 0.591 0.804 0.681
Learn-label 0.617 0.550 0.835 0.664 0.722 0.584 0.778 0.668
Learn-merge 0.621 0.560 0.789 0.655 0.717 0.607 0.712 0.655

Model-loss 0.620 0.561 0.775 0.651 0.721 0.606 0.726 0.661
Model-calibration 0.604 0.546 0.774 0.641 0.690 0.555 0.737 0.633
Model-lira 0.614 0.555 0.778 0.648 0.720 0.628 0.685 0.655
Model-fpr 0.597 0.555 0.664 0.605 0.694 0.613 0.625 0.619
Model-robust 0.589 0.526 0.868 0.655 0.726 0.605 0.745 0.668
Query-augment 0.575 0.515 0.888 0.652 0.694 0.576 0.697 0.631
Query-transfer 0.531 0.496 0.589 0.539 0.595 0.453 0.699 0.550
Query-adv 0.607 0.561 0.753 0.643 0.749 0.649 0.769 0.704
Query-neighbor 0.505 0.473 0.582 0.522 0.515 0.393 0.470 0.428
Query-qrm 0.611 0.562 0.710 0.628 0.697 0.595 0.671 0.631
Query-ref 0.642 0.540 0.735 0.623 0.738 0.548 0.711 0.619

In this part, we investigate whether the TDD algorithm can be applied to different training algo-
rithms, focusing on image datasets due to the scarcity of relevant studies. Specifically, we con-
duct experiments on CIFAR-10 and CIFAR-100 to explore the suitability of TDD algorithms for
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Table 16: TDD performance on self-supervised image models: MAE, DINO, and MOCO.

Self-supervised model Algorithm CIFAR-10 CIFAR-100
Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

MAE
Variance-onlyMI 0.515 0.516 0.492 0.504 0.517 0.517 0.540 0.528

EncoderMI 0.532 0.532 0.611 0.569 0.517 0.522 0.499 0.510
PartCrop 0.577 0.576 0.640 0.606 0.584 0.577 0.600 0.589

DINO
Variance-onlyMI 0.588 0.585 0.608 0.596 0.507 0.506 0.648 0.568

EncoderMI 0.664 0.656 0.636 0.646 0.555 0.572 0.448 0.503
PartCrop 0.591 0.607 0.538 0.570 0.606 0.669 0.411 0.509

MOCO
Variance-onlyMI 0.498 0.498 0.573 0.533 0.509 0.509 0.561 0.533

EncoderMI 0.608 0.588 0.722 0.648 0.573 0.581 0.591 0.586
PartCrop 0.788 0.865 0.669 0.755 0.772 0.829 0.678 0.746

semi-supervised and self-supervised learning, in addition to supervised learning. Notably, to our
knowledge, there are currently no studies using the TDD algorithm for unsupervised learning on
image datasets. We evaluated the TDD performance on WRN28-2 trained with the semi-supervised
method FixMatch, as well as three self-supervised image models: MAE (He et al., 2022a), DINO
(Caron et al., 2021), and MOCO (He et al., 2020). Similar to its application on large language mod-
els, using TDD on self-supervised image models requires designing specialized algorithms. Based
on previous work (Zhu et al., 2024), we assessed the detection performance of Variance-onlyMI
(Choquette-Choo et al., 2021), EncoderMI (Liu et al., 2021a), and PartCrop (Zhu et al., 2024) on
these models. For more details about these algorithms, please refer to the relevant paper.

The experimental results lead to the following conclusions: 1) The TDD detection method remains
effective in semi-supervised training, but its performance declines compared to supervised learning.
Specifically, the model-based method, which shows clear advantages in supervised learning, per-
forms moderately in the semi-supervised setting. This may be because the model-based approach
relies on training a reference model, and its performance is significantly affected when the reference
model is unaware of the semi-supervised learning method used by the target model. 2) Few TDD
algorithms are suited for self-supervised training methods, and their performance is not ideal.

Future direction. Based on these experiments, we believe that studying TDD algorithms for specific
training methods, particularly semi-supervised and self-supervised methods, is of great interest.

A.5 DEFENSE STRATEGIES AGAINST TRAINING DATA DETECTION

In the field of computer security, training data detection is known as a Membership Inference Attack,
which aims to extract private information about the training data from target models. To counteract
this detection, various measures (Baek & Shim, 2022; Ying et al., 2020) have been proposed. Since
the effectiveness of training data detection is often linked to the degree of overfitting in the target
model, many defense methods focus on reducing overfitting. These methods include dropout strate-
gies (Salem et al., 2019), label smoothing (Kaya & Dumitras, 2021), early stopping (Song & Mittal,
2021), and data augmentation (Kaya & Dumitras, 2021).

Beyond reducing model overfitting, another key defense strategy involves modifying the output
vector of the target model to lower the risk of training data leakage. For instance, Jia et al., 2019
suggests adding carefully designed noise to the model’s output vector, which does not affect the
target model’s performance but can mislead detection algorithms. Shokri et al., 2017 recommends
constraining the target model to output only prediction labels without confidence scores, rendering
many TDD algorithms ineffective.

In addition to these common methods applicable across different data types, Hayes et al., 2017 em-
ploys differential privacy to prevent external parties from determining whether specific data was
used in a generative model. Their results indicate that differential privacy can balance model us-
ability with defense effectiveness. Shejwalkar et al., 2021 proposed a defense strategy based on
knowledge distillation, demonstrating that the distilled model can better resist training data detec-
tion.

To better assess the robustness of TDD algorithms, we examine their performance when the target
model is combined with various defense strategies. Specifically, we selected four general defense
strategies: using dropout and label smoothing on the target model to mitigate overfitting, and altering
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the target model’s output vector to noise vectors and hard label. Our experimental results across
three datasets indicate that these defense strategies, particularly the addition of noise, can effectively
diminish the performance of TDD algorithms. TDD algorithms with strong performance, such as
those that are learning-based and model-based, heavily depend on the authenticity of the model’s
output vectors. Introducing small amounts of noise to the model output can significantly compromise
the effectiveness of these TDD algorithms.

Future direction. Based on these findings, we suggest that to counter potential defense mechanism
of the target model, a promising direction is to develop adaptive TDD approaches, which involve
designing more effective TDD algorithms tailored to specific defense strategies.

Table 17: TDD performance under different defense strategies.

Dataset CIFAR10(Image) Purchase(Tabular) Rotten-tomatoes(Text)
Defense None Dropout Smooth Noise Label-only None Dropout Smooth Noise Label-only None Dropout Smooth Noise Label-only

Metric-loss 0.635 0.557 0.589 0.558 N/A 0.620 0.615 0.657 0.623 N/A 0.582 0.577 0.590 0.587 N/A
Metric-conf 0.635 0.557 0.589 0.558 N/A 0.620 0.615 0.657 0.623 N/A 0.582 0.577 0.590 0.587 N/A
Metric-corr 0.552 0.547 0.557 0.549 0.552 0.551 0.558 0.556 0.551 0.551 0.557 0.546 0.555 0.554 0.557
Metric-ent 0.628 0.543 0.568 0.543 N/A 0.616 0.606 0.655 0.620 N/A 0.561 0.560 0.573 0.570 N/A
Metric-ment 0.635 0.557 0.589 0.558 N/A 0.620 0.615 0.656 0.623 N/A 0.582 0.577 0.590 0.587 N/A

Learn-original 0.631 0.540 0.493 0.539 N/A 0.652 0.617 0.605 0.659 N/A 0.558 0.558 0.574 0.572 N/A
Learn-top3 0.628 0.543 0.593 0.543 N/A 0.677 0.616 0.652 0.680 N/A 0.561 0.560 0.573 0.570 N/A
Learn-sorted 0.628 0.543 0.576 0.543 N/A 0.667 0.615 0.651 0.678 N/A 0.561 0.560 0.573 0.570 N/A
Learn-label 0.634 0.557 0.565 0.554 N/A 0.656 0.629 0.635 0.662 N/A 0.584 0.578 0.591 0.588 N/A
Learn-merge 0.656 0.559 0.609 0.559 N/A 0.684 0.630 0.664 0.690 N/A 0.584 0.577 0.593 0.592 N/A

Model-loss 0.664 0.606 0.614 0.607 N/A 0.725 0.693 0.732 0.726 N/A 0.773 0.696 0.677 0.731 N/A
Model-calibration 0.639 0.596 0.582 0.592 N/A 0.684 0.671 0.717 0.685 N/A 0.695 0.647 0.624 0.665 N/A
Model-lira 0.690 0.564 0.561 0.568 N/A 0.755 0.698 0.703 0.756 N/A 0.753 0.683 0.678 0.721 N/A
Model-fpr 0.647 0.571 0.518 0.568 N/A 0.697 0.651 0.547 0.703 N/A 0.679 0.653 0.537 0.675 N/A
Model-robust 0.635 0.611 0.642 0.613 N/A 0.711 0.692 0.761 0.712 N/A 0.766 0.692 0.708 0.730 N/A

Query-augment 0.511 0.551 0.586 0.547 0.511 0.533 0.602 0.619 0.612 0.533 0.533 0.559 0.571 0.571 0.533
Query-transfer 0.573 0.534 0.522 0.524 0.573 0.612 0.533 0.534 0.529 0.612 0.570 0.531 0.521 0.526 0.570
Query-adv 0.522 0.548 0.591 0.539 0.522 0.529 0.607 0.629 0.623 0.529 0.530 0.559 0.571 0.570 0.530
Query-neighbor 0.615 0.494 0.481 0.515 N/A 0.620 0.532 0.543 0.534 N/A 0.571 0.523 0.537 0.529 N/A
Query-qrm 0.532 0.575 0.633 0.570 N/A 0.523 0.617 0.658 0.650 N/A 0.524 0.574 0.590 0.589 N/A
Query-ref 0.735 0.604 0.750 0.497 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

A.6 DETAILS OF THE ALGORITHMS INCLUDED IN TDDBENCH

A.6.1 METRIC-BASED DECTECTION

Several studies (Carlini et al., 2019; 2021) indicate that models retain a certain degree of memory
regarding the training data during the learning process. This memorization can result in significant
differences between the model’s predictions on training and test data, which can be leveraged as
a decision basis for TDD algorithms. Specifically, Metric-loss (Yeom et al., 2018) utilizes
the loss of the target model’s prediction on data points as the detection criterion. Since the target
model is instructed to minimize training loss during optimization, a training data point typically
exhibits a lower loss than a test data point. Similarly, Metric-conf (Metric-confidence)
(Song et al., 2019) identifies that the maximum confidence of the target model’s predictions can also
serve as the detection criterion. Metric-corr (Metric-correctness) (Leino & Fredrikson,
2020) further demonstrates that even without access to the model’s prediction confidence or logits
for a specific data point, comparing the predicted label with the true label can provide an effective
detection basis. Metric-corr achieves training data detection (TDD) with fewer assumptions
than both Metric-loss and Metric-conf.

Beyond individual prediction values, the distribution of prediction results can also serve as a valu-
able detection criterion. Metric-ent (Metric-entropy) (Shokri et al., 2017; Song & Mittal,
2021) posits that the target model exhibits greater confidence in its predictions for training data,
as evidenced by a more concentrated distribution of prediction confidences across different classes.
Building on this, entropy is utilized as the detection criterion for Metric-ent. Metric-ment
(Metric-modified entropy) (Song & Mittal, 2021) further incorporates the true label of the data point
into Metric-ent to prevent the detection algorithm from predicting data points where the target
model has misclassified as its training data.

A.6.2 LEARNING-BASED DECTECTION

The metric-based algorithms design various metrics to extract detection basis from the prediction
results of the target model. However, manually designed metrics may not accurately capture the
differences between the predicted results of training and test data. A more robust approach is to use
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neural networks to automatically extract training data detection (TDD)-friendly information from
the target model’s predictions, known as learning-based detection algorithms. Learn-original
(Shokri et al., 2017) is the first algorithm to propose building an auxiliary classifier for TDD. It inputs
the prediction vector of the target model into the auxiliary classifier, aiming to directly produce a
detection result. To train the auxiliary classifier, Learn-original employs a shadow model
similar to the target model, utilizing shadow training techniques. Since the shadow model’s training
process is conducted by the detectors, they can obtain both the training and test data of the shadow
model. The predictions made by the shadow model on its training and test data are utilized to
facilitate the training of the auxiliary classifier.

Different learning-based detection algorithms primarily differ in the input features of their auxiliary
classifiers. For instance, Learn-top3 and Learn-sorted (Salem et al., 2019) utilize the top-3
prediction confidences and ranked prediction vectors as input features, respectively. Building on
Learn-original, Learn-label (Nasr et al., 2018) supplements the input features with the
true label of the data point. Learn-merge (Amit et al., 2024) further incorporates the entropy,
loss, and predicted label into the input features. It is noteworthy that while Learn-original
builds multiple shadow models, most learning-based methods utilize only one. Moreover, previous
work demonstrates that training data detection (TDD) with a single shadow model achieves perfor-
mance comparable to that of multiple shadow models. Therefore, to ensure a fair comparison among
learning-based methods, we standardize the number of shadow models to one for all learning-based
approaches.

A.6.3 MODEL-BASED DECTECTION

The two lines of TDD methods discussed above rely solely on the prediction results of the target
model, overlooking the inherent characteristics of the data points, which may introduce bias into
the detection criteria. For example, abnormal training data may exhibit higher losses than normal
test data due to inherent data characteristics (Carlini et al., 2022b;a), making it challenging for
Metric-loss to detect these data. Therefore, the design of the detection criterion must consider
data characteristics to eliminate bias.

Model-based algorithms address this issue by utilizing a set of reference models that share a similar
architecture to the target model. These reference models are used to obtain predictions for data point
x across different models, which helps to de-bias the detection criteria of the target model. To elab-
orate, Model-loss (Sablayrolles et al., 2019) calculates the mean loss of data point x across all
reference models and then subtracts the loss from the target model to eliminate bias induced by data
characteristics. In contrast, Model-calibration (Watson et al., 2021) uses only reference mod-
els that exclude data point x from its training data, allowing it to implement model-based TDD for
any new data point. Moreover, Model-lira (Carlini et al., 2022a) treats the detection process as a
likelihood ratio test, determining whether the rescaled logit value of data point x in the target model
originates from models trained on x. Building on Model-lira, Model-fpr (Ye et al., 2022)
designs a detection method that meets the specified arbitrary false positive ratio. Model-robust
(Zarifzadeh et al., 2024) introduces a robust TDD method that utilizes only one reference model.

A.6.4 QUERY-BASED DECTECTION

The motivation for query-based algorithms stems from two main reasons. Firstly, some of them aim
to implement label-only training data detection (TDD), where the target model provides only pre-
dicted labels. In such cases, the detector can depend solely on prediction correctness as the detection
criterion, which limits the ability to acquire more intricate and effective detection information. To
address this limitation, Query-augment(Query-augmentmentation) (Choquette-Choo et al.,
2021) proposes obtaining multiple neighbors of a data point x through data augmentation. The cor-
rectness of the target model on these augmented data points is then combined to form input features
for the auxiliary classifier in the learning-based algorithm. Query-transfer (Li & Zhang, 2021),
on the other hand, suggests training a surrogate model based on the prediction labels of the target
model. The surrogate model is expected to closely resemble the target model and subsequently re-
place it to provide more detailed prediction results for arbitrary data points, enabling the generation
of a more intricate detection criterion. Moreover, Query-adv(Query-adversarial) (Li & Zhang,
2021; Choquette-Choo et al., 2021) considers the distance of a data point from the target model’s
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decision boundary as a detection criterion with the aid of adversarial tools. This is based on the
assumption that training data will generally be farther from the decision boundary than test data.

Another type of query-based algorithm does not assume that the target model only returns prediction
labels. In these algorithms, additional queries are introduced to provide more information to aid in
detection. For example, Query-neighbor (Jayaraman et al., 2021; Mattern et al., 2023) adds
random noise to the data point x and uses the difference between the loss of the target model on x
and its average loss on the neighboring points of x as the detection criterion. Query-qrm (Bertran
et al., 2024) collects a large amount of data that is explicitly not from the target model’s training
data and obtains the scaled logits of the target model on these samples to train a quantile regression
model. This quantile regression model can determine the likelihood that x is not part of the target
model’s training data. Additionally, Query-ref(Query-reference) (Wen et al., 2023) makes
extra queries for adversarial samples of x generated based on reference models. These samples help
to better reflect the differences in the predicted results of x when x is training data versus when it is
not.

Remark. Query-ref is categorized as a query-based method rather than a reference-based
method because of its innovative query sample generation strategy. It is specifically designed to
generate suitable query data for image datasets, rather than for tabular or text data.

A.6.5 HOW TO OPERATE A MODEL-BASED OR QUERY-BASED TDD ALGORITHMS

In this section, we outline the implementation of Model-based and Query-based algorithms. Specifi-
cally, we demonstrate how to train a reference model for focal data x in the Model-based algorithms,
as well as how to obtain additional query results in the Query-based algorithms. By following these
steps in Alg 1 and Alg 2, you can effectively implement both Model-based and Query-based TDD
algorithms.

Algorithm 1: How to train reference models in Model-based TDD algorithms
Input: Reference dataset D, focal data x, target model f , number of reference models N ;
Output: Whether x was used to train f

1 for N times do
2 Sample a subset from D ;
3 Train a reference model using the combined dataset D ∪ d ;
4 Obtain x’s detection metric (e.g. loss) from this reference model, which is trained with x ;
5 Train a reference model using the dataset D \ d ;
6 Obtain x’s detection metric (e.g. loss) from this reference model, which is trained without x
7 end
8 Obtain x’s detection metric from the target model f ;
9 Implement Model-based TDD using the detection criterion from reference models and target

model ;

Algorithm 2: How to obtain extra queries in Query-based TDD algorithms
Input: Focal data x, target model ∗f∗, number of queries per sample N ;
Output: Whether x was used to train f

1 for N times do
2 Modify the data point x based on the chosen data augmentation strategy (e.g., add noise,

flip) ;
3 Input the modified data d′ into the target model ∗f∗ to obtain the query results
4 end
5 Implement training data detection using the query results obtained from the different modified

data points ;
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Table 18: Training accuracy and test accuracy of target models trained on different datasets (corre-
sponds to Table 4 in Section 3.2). WRN28-2, Multilayer Perceptron, and DistilBERT are trained on
image, table, and text datasets, respectively. Typically, target models trained on datasets with more
categories exhibit smaller test accuracy and greater train-test accuracy gaps.

Modality Dataset # Classes Train accuracy Test accuracy Train-test accuracy gap

Image

CIFAR-10 10 0.981 0.877 0.104
CIFAR-100 100 1.000 0.583 0.417

BloodMNIST 8 0.989 0.955 0.034
CelebA 2 0.988 0.976 0.013

Tabular

Purchase 100 1.000 0.897 0.103
Texas 100 0.766 0.546 0.220
Adult 2 0.831 0.830 0.001

Student 3 0.855 0.735 0.121

Text

Rotten tomatoes 2 0.947 0.833 0.113
Tweet Eval 2 0.840 0.739 0.101

GLUE-CoLA 2 0.864 0.763 0.100
ECtHR Articles 13 0.476 0.438 0.038

Table 19: Training accuracy and test accuracy of target models trained with different architec-
tures(corresponds to Table 5 in Section 3.2). CIFAR-10 and Purchase datasets were used to train
image models and tabular models from scratch, respectively. The Rotten Tomatoes dataset was used
to fine-tune the pre-trained text models.

Dataset Target model Train accuracy Test accuracy Train-test accuracy gap

CIFAR-10

WRN28-2 0.981 0.877 0.104
ResNet18 0.992 0.880 0.112
VGG11 1.000 0.853 0.147

MobileNet-v2 0.934 0.845 0.089

Purchase
Multilayer Perceptron 1.000 0.897 0.103

CatBoost 1.000 0.725 0.276
Logistic Regression 0.999 0.755 0.244

Rotten tomatoes
DistilBERT 0.947 0.833 0.113
RoBERTa 0.964 0.881 0.083
Flan-T5 0.911 0.886 0.025

Table 20: Training details for various model architectures, including learning rate, weight decay,
maximum training epochs, and more. MLP stands for Multilayer Perceptron, and LR stands for Lo-
gistic Regression. ’N/A’ indicates that the model does not require consideration of the corresponding
hyperparameter.

Modality Target model Learning rate Weight decay Maximum epochs Optimizer Learning rate schedule Batch size

Image

WRN28-2 0.1 0.0005 200 SGD Cosine Annealing 256
ResNet18 0.1 0.0005 200 SGD Cosine Annealing 256
VGG11 0.1 0.0005 200 SGD Cosine Annealing 256

MobileNet-v2 0.1 0.0005 200 SGD Cosine Annealing 256

Tabular
MLP 0.001 0.0001 200 Adam N/A 256

CatBoost 0.05 N/A 10,000 N/A N/A N/A
LR N/A N/A 100 N/A N/A N/A

Text
DistilBERT 0.00002 0.01 10 AdamW N/A 32
RoBERTa 0.00002 0.01 10 AdamW N/A 32
Flan-T5 0.00002 0.01 10 AdamW N/A 32

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A.7 PERFORMANCES AND TRAINING DETAILS OF TARGET MODELS

A.8 DETECTION PERFORMANCE WITH MORE QUERIES AND REFERENCE MODELS.

In this part, we analyze the potential of the two latest types of TDD algorithms: reference-based
and query-based. Specifically, we expand the number of reference models that the reference-based
algorithm can create and the number of queries that the query-based algorithm can handle. Due
to limitations in computational resources, we opt to decrease rather than increase the number of
reference models in the text modality. We anticipate that similar conclusions can be drawn with a
larger number of reference models. The results in Figure 5 demonstrate that increasing the number of
queries or reference models can improve the TDD algorithm’s performance. Adjusting the number
of reference models has a more significant impact on the algorithm’s performance compared to
increasing the number of queries. Nevertheless, enhancing computational resources does not close
the gap in algorithm design. For instance, in tabular data, even with 256 reference models, other
algorithms fail to outperform LiRA with 16 reference models.
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Figure 5: AUROC of TDD algorithms with more queries and reference models. The abbrevia-
tions Query-nei, Q-ref, M-loss, M-cal, M-lira, M-fpr, and M-robust stand for Query-neighbor,
Query-ref, Model-loss, Model-calibration, Model-lira, Model-fpr, and
Model-robust, respectively. While an increase in available computing resources can enhance
TDD performance to some extent, the improvement is not significant. Therefore, a more cost-
effective approach is to focus on designing more powerful algorithms.

A.9 COMPLETE VERSION OF THE EXPERIMENTAL RESULTS

A.10 PERFORMANCE UNDER DIFFERENT METRICS
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Table 21: Complete version of TDD performance across different datasets (corresponds to Table 4).
WRN28-2, Multilayer Perceptron, and DistilBERT are trained on image, table, and text datasets,
respectively.

Modality Image Tabular Text Avg.Dataset CIFAR-10 CIFAR-100 BloodMNIST CelebA Purchase Texas Adult Student Rotten Tweet CoLA ECtHR

Metric-loss
0.635 0.858 0.527 0.509 0.619 0.629 0.500 0.566 0.582 0.566 0.571 0.521 0.590

(± 0.053) (± 0.004) (± 0.018) (± 0.012) (± 0.003) (± 0.013) (± 0.003) (± 0.032) (± 0.007) (± 0.005) (± 0.003) (± 0.007) (± 0.094)

Metric-conf
0.635 0.858 0.527 0.509 0.619 0.629 0.500 0.566 0.582 0.566 0.571 0.521 0.590

(± 0.053) (± 0.004) (± 0.018) (± 0.012) (± 0.003) (± 0.013) (± 0.003) (± 0.032) (± 0.007) (± 0.005) (± 0.003) (± 0.007) (± 0.094)

Metric-corr
0.552 0.708 0.517 0.507 0.551 0.610 0.501 0.560 0.557 0.550 0.550 0.519 0.557

(± 0.009) (± 0.002) (± 0.006) (± 0.002) (± 0.001) (± 0.012) (± 0.002) (± 0.022) (± 0.006) (± 0.005) (± 0.007) (± 0.005) (± 0.055)

Metric-ent
0.628 0.848 0.525 0.508 0.616 0.563 0.498 0.520 0.561 0.528 0.519 0.507 0.568

(± 0.058) (± 0.004) (± 0.018) (± 0.010) (± 0.003) (± 0.010) (± 0.003) (± 0.018) (± 0.007) (± 0.005) (± 0.003) (± 0.016) (± 0.096)

Metric-ment
0.635 0.858 0.527 0.509 0.620 0.630 0.500 0.566 0.582 0.566 0.571 0.522 0.591

(± 0.053) (± 0.004) (± 0.018) (± 0.012) (± 0.003) (± 0.013) (± 0.003) (± 0.031) (± 0.007) (± 0.005) (± 0.003) (± 0.007) (± 0.094)

Learn-original
0.631 0.870 0.508 0.503 0.652 0.597 0.502 0.531 0.558 0.529 0.568 0.506 0.580

(± 0.064) (± 0.003) (± 0.010) (± 0.007) (± 0.002) (± 0.011) (± 0.005) (± 0.024) (± 0.009) (± 0.003) (± 0.009) (± 0.007) (± 0.103)

Learn-top3
0.628 0.851 0.526 0.503 0.677 0.573 0.500 0.520 0.561 0.528 0.531 0.502 0.575

(± 0.057) (± 0.004) (± 0.016) (± 0.002) (± 0.003) (± 0.012) (± 0.004) (± 0.018) (± 0.007) (± 0.005) (± 0.020) (± 0.015) (± 0.100)

Learn-sorted
0.628 0.850 0.529 0.508 0.666 0.573 0.501 0.520 0.561 0.528 0.510 0.501 0.573

(± 0.057) (± 0.004) (± 0.016) (± 0.010) (± 0.028) (± 0.011) (± 0.004) (± 0.018) (± 0.007) (± 0.005) (± 0.022) (± 0.016) (± 0.100)

Learn-label
0.633 0.882 0.515 0.507 0.656 0.669 0.503 0.590 0.584 0.570 0.622 0.517 0.604

(± 0.056) (± 0.005) (± 0.011) (± 0.007) (± 0.005) (± 0.016) (± 0.003) (± 0.042) (± 0.009) (± 0.006) (± 0.010) (± 0.010) (± 0.104)

Learn-merge
0.656 0.893 0.523 0.507 0.684 0.686 0.502 0.595 0.584 0.569 0.620 0.530 0.612

(± 0.065) (± 0.004) (± 0.017) (± 0.001) (± 0.003) (± 0.017) (± 0.002) (± 0.040) (± 0.009) (± 0.005) (± 0.010) (± 0.004) (± 0.108)

Model-loss
0.664 0.852 0.560 0.522 0.725 0.767 0.509 0.670 0.773 0.756 0.752 0.655 0.684

(± 0.050) (± 0.004) (± 0.017) (± 0.004) (± 0.002) (± 0.011) (± 0.006) (± 0.068) (± 0.020) (± 0.010) (± 0.017) (± 0.012) (± 0.107)

Model-calibration
0.639 0.763 0.553 0.520 0.684 0.718 0.508 0.648 0.695 0.714 0.699 0.638 0.648

(± 0.040) (± 0.005) (± 0.016) (± 0.004) (± 0.002) (± 0.011) (± 0.006) (± 0.063) (± 0.012) (± 0.006) (± 0.014) (± 0.011) (± 0.082)

Model-lira
0.690 0.937 0.536 0.512 0.755 0.753 0.503 0.634 0.753 0.728 0.737 0.604 0.679

(± 0.085) (± 0.002) (± 0.009) (± 0.002) (± 0.003) (± 0.007) (± 0.002) (± 0.063) (± 0.024) (± 0.007) (± 0.014) (± 0.014) (± 0.126)

Model-fpr
0.647 0.852 0.552 0.516 0.697 0.723 0.507 0.641 0.679 0.722 0.708 0.635 0.657

(± 0.056) (± 0.002) (± 0.020) (± 0.007) (± 0.004) (± 0.015) (± 0.005) (± 0.073) (± 0.041) (± 0.008) (± 0.029) (± 0.011) (± 0.099)

Model-robust
0.635 0.889 0.552 0.520 0.711 0.762 0.509 0.669 0.766 0.745 0.746 0.621 0.677

(± 0.030) (± 0.004) (± 0.016) (± 0.003) (± 0.002) (± 0.017) (± 0.006) (± 0.061) (± 0.022) (± 0.008) (± 0.014) (± 0.013) (± 0.112)

Query-augment
0.573 0.761 0.517 0.502 0.612 0.612 0.500 0.560 0.570 0.551 0.561 0.518 0.570

(± 0.025) (± 0.010) (± 0.008) (± 0.002) (± 0.001) (± 0.011) (± 0.002) (± 0.022) (± 0.007) (± 0.006) (± 0.015) (± 0.006) (± 0.070)

Query-transfer
0.522 0.622 0.503 0.502 0.529 0.581 0.499 0.522 0.530 0.530 0.526 0.510 0.531

(± 0.008) (± 0.028) (± 0.010) (± 0.003) (± 0.004) (± 0.011) (± 0.003) (± 0.012) (± 0.011) (± 0.008) (± 0.005) (± 0.006) (± 0.036)

Query-adv
0.615 0.838 0.508 0.514 0.620 0.579 0.500 0.563 0.571 0.551 0.568 0.519 0.579

(± 0.038) (± 0.015) (± 0.008) (± 0.007) (± 0.003) (± 0.008) (± 0.003) (± 0.024) (± 0.007) (± 0.006) (± 0.014) (± 0.005) (± 0.089)

Query-neighbor
0.511 0.553 0.497 0.501 0.533 0.612 0.500 0.535 0.533 0.556 0.550 0.522 0.534

(± 0.003) (± 0.006) (± 0.004) (± 0.004) (± 0.001) (± 0.007) (± 0.005) (± 0.015) (± 0.004) (± 0.005) (± 0.010) (± 0.014) (± 0.032)

Query-qrm
0.532 0.574 0.510 0.505 0.523 0.530 0.500 0.526 0.524 0.521 0.511 0.512 0.522

(± 0.072) (± 0.163) (± 0.017) (± 0.012) (± 0.057) (± 0.080) (± 0.003) (± 0.048) (± 0.038) (± 0.028) (± 0.031) (± 0.009) (± 0.060)

Query-ref
0.735 0.941 0.566 0.526 N/A N/A N/A N/A N/A N/A N/A N/A 0.692

(± 0.108) (± 0.008) (± 0.022) (± 0.017) N/A N/A N/A N/A N/A N/A N/A N/A (± 0.176)

Table 22: Complete version of TDD performance across different target model architectures (corre-
sponds to Table 5). MLP stands for Multilayer Perceptron, and LR stands for Logistic Regression.

Dataset CIFAR10(Image) Purchase(Tabular) Rotten-tomatoes(Text) Avg.Target model WRN28-2 ResNet18 VGG11 MobileNet-v2 MLP CatBoost LR DistilBERT RoBERTa Flan-T5

Metric-loss
0.635 0.659 0.684 0.592 0.619 0.948 0.640 0.582 0.571 0.517 0.645

(± 0.053) (± 0.042) (± 0.004) (± 0.057) (± 0.003) (± 0.009) (± 0.003) (± 0.007) (± 0.019) (± 0.004) (± 0.115)

Metric-conf
0.635 0.659 0.684 0.592 0.619 0.948 0.640 0.582 0.571 0.517 0.645

(± 0.053) (± 0.042) (± 0.004) (± 0.057) (± 0.003) (± 0.009) (± 0.003) (± 0.007) (± 0.019) (± 0.004) (± 0.115)

Metric-corr
0.552 0.557 0.574 0.548 0.551 0.636 0.622 0.557 0.542 0.513 0.565

(± 0.009) (± 0.006) (± 0.003) (± 0.019) (± 0.001) (± 0.001) (± 0.002) (± 0.006) (± 0.014) (± 0.002) (± 0.036)

Metric-ent
0.628 0.654 0.680 0.582 0.616 0.943 0.594 0.561 0.555 0.509 0.632

(± 0.058) (± 0.048) (± 0.004) (± 0.060) (± 0.003) (± 0.012) (± 0.003) (± 0.007) (± 0.015) (± 0.003) (± 0.118)

Metric-ment
0.635 0.659 0.685 0.592 0.620 0.950 0.642 0.582 0.571 0.517 0.645

(± 0.053) (± 0.042) (± 0.004) (± 0.056) (± 0.003) (± 0.009) (± 0.003) (± 0.007) (± 0.019) (± 0.004) (± 0.116)

Learn-original
0.631 0.623 0.694 0.533 0.652 0.935 0.644 0.558 0.546 0.515 0.633

(± 0.064) (± 0.031) (± 0.004) (± 0.017) (± 0.002) (± 0.092) (± 0.008) (± 0.009) (± 0.015) (± 0.007) (± 0.121)

Learn-top3
0.628 0.653 0.680 0.582 0.677 0.967 0.660 0.561 0.555 0.509 0.647

(± 0.057) (± 0.047) (± 0.005) (± 0.059) (± 0.003) (± 0.019) (± 0.008) (± 0.007) (± 0.015) (± 0.003) (± 0.124)

Learn-sorted
0.628 0.654 0.680 0.578 0.666 0.963 0.661 0.561 0.555 0.509 0.646

(± 0.057) (± 0.048) (± 0.004) (± 0.057) (± 0.028) (± 0.019) (± 0.008) (± 0.007) (± 0.015) (± 0.003) (± 0.124)

Learn-label
0.633 0.612 0.707 0.557 0.656 0.954 0.701 0.584 0.565 0.520 0.649

(± 0.056) (± 0.011) (± 0.005) (± 0.025) (± 0.005) (± 0.044) (± 0.005) (± 0.009) (± 0.020) (± 0.007) (± 0.121)

Learn-merge
0.656 0.628 0.727 0.528 0.684 0.968 0.716 0.584 0.566 0.518 0.657

(± 0.065) (± 0.017) (± 0.006) (± 0.005) (± 0.003) (± 0.024) (± 0.006) (± 0.009) (± 0.021) (± 0.005) (± 0.128)

Model-loss
0.664 0.709 0.729 0.607 0.725 0.975 0.776 0.773 0.656 0.602 0.721

(± 0.050) (± 0.028) (± 0.005) (± 0.045) (± 0.002) (± 0.015) (± 0.002) (± 0.020) (± 0.034) (± 0.017) (± 0.106)

Model-calibration
0.639 0.671 0.690 0.595 0.684 0.865 0.719 0.695 0.622 0.592 0.677

(± 0.040) (± 0.015) (± 0.005) (± 0.036) (± 0.002) (± 0.029) (± 0.002) (± 0.012) (± 0.028) (± 0.011) (± 0.078)

Model-lira
0.690 0.749 0.780 0.601 0.755 0.995 0.761 0.753 0.630 0.569 0.728

(± 0.085) (± 0.066) (± 0.005) (± 0.053) (± 0.003) (± 0.003) (± 0.005) (± 0.024) (± 0.028) (± 0.009) (± 0.120)

Model-fpr
0.647 0.684 0.712 0.619 0.697 0.976 0.724 0.679 0.623 0.589 0.695

(± 0.056) (± 0.033) (± 0.006) (± 0.071) (± 0.004) (± 0.013) (± 0.003) (± 0.041) (± 0.059) (± 0.008) (± 0.109)

Model-robust
0.635 0.677 0.704 0.602 0.711 0.983 0.796 0.766 0.639 0.574 0.709

(± 0.030) (± 0.011) (± 0.006) (± 0.041) (± 0.002) (± 0.011) (± 0.003) (± 0.022) (± 0.025) (± 0.017) (± 0.115)

Query-augment
0.573 0.575 0.633 0.542 0.612 0.696 0.664 0.570 0.546 0.512 0.592

(± 0.025) (± 0.009) (± 0.005) (± 0.024) (± 0.001) (± 0.002) (± 0.004) (± 0.007) (± 0.020) (± 0.009) (± 0.057)

Query-transfer
0.522 0.522 0.533 0.507 0.529 0.587 0.574 0.530 0.515 0.506 0.533

(± 0.008) (± 0.007) (± 0.014) (± 0.003) (± 0.004) (± 0.001) (± 0.003) (± 0.011) (± 0.011) (± 0.004) (± 0.027)

Query-adv
0.615 0.621 0.666 0.583 0.620 0.727 0.662 0.571 0.552 0.516 0.613

(± 0.038) (± 0.026) (± 0.031) (± 0.042) (± 0.003) (± 0.002) (± 0.005) (± 0.007) (± 0.020) (± 0.007) (± 0.063)

Query-neighbor
0.511 0.512 0.509 0.509 0.533 0.820 0.530 0.533 0.527 0.504 0.549

(± 0.003) (± 0.004) (± 0.004) (± 0.003) (± 0.001) (± 0.015) (± 0.002) (± 0.004) (± 0.004) (± 0.005) (± 0.092)

Query-qrm
0.532 0.537 0.541 0.530 0.523 0.946 0.632 0.524 0.528 0.506 0.580

(± 0.072) (± 0.083) (± 0.088) (± 0.060) (± 0.057) (± 0.007) (± 0.004) (± 0.038) (± 0.035) (± 0.007) (± 0.136)

Query-ref
0.735 0.800 0.843 0.656 N/A N/A N/A N/A N/A N/A 0.759

(± 0.108) (± 0.085) (± 0.013) (± 0.103) N/A N/A N/A N/A N/A N/A (± 0.107)
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Table 23: Complete version of TDD performance across various shadow and reference models (cor-
responds to Table 14). MLP stands for Multilayer Perceptron, and LR stands for Logistic Regres-
sion.

Target model WRN28-2(CIFAR-10) MLP(Purchase) DistilBERT(Rotten-tomatoes) Avg.Shadow/reference model WRN28-2 ResNet18 VGG11 MobileNet-v2 MLP CatBoost LR DistilBERT RoBERTa Flan-T5

Learn-original
0.631 0.578 0.632 0.539 0.652 0.651 0.564 0.558 0.560 0.546 0.591

(± 0.064) (± 0.030) (± 0.061) (± 0.015) (± 0.002) (± 0.005) (± 0.008) (± 0.009) (± 0.007) (± 0.006) (± 0.051)

Learn-top3
0.628 0.628 0.628 0.628 0.677 0.646 0.515 0.561 0.561 0.561 0.603

(± 0.057) (± 0.057) (± 0.057) (± 0.057) (± 0.003) (± 0.023) (± 0.007) (± 0.007) (± 0.007) (± 0.007) (± 0.059)

Learn-sorted
0.628 0.629 0.628 0.629 0.666 0.656 0.532 0.561 0.561 0.561 0.605

(± 0.057) (± 0.058) (± 0.057) (± 0.058) (± 0.028) (± 0.019) (± 0.048) (± 0.007) (± 0.007) (± 0.007) (± 0.058)

Learn-label
0.633 0.591 0.644 0.563 0.656 0.651 0.551 0.584 0.584 0.580 0.604

(± 0.056) (± 0.024) (± 0.060) (± 0.014) (± 0.005) (± 0.005) (± 0.009) (± 0.009) (± 0.009) (± 0.007) (± 0.045)

Learn-merge
0.656 0.581 0.651 0.509 0.684 0.517 0.595 0.584 0.584 0.580 0.594

(± 0.065) (± 0.022) (± 0.063) (± 0.017) (± 0.003) (± 0.019) (± 0.025) (± 0.009) (± 0.009) (± 0.008) (± 0.061)

Model-loss
0.664 0.657 0.641 0.632 0.725 0.608 0.611 0.773 0.607 0.589 0.651

(± 0.050) (± 0.045) (± 0.039) (± 0.025) (± 0.002) (± 0.001) (± 0.002) (± 0.020) (± 0.008) (± 0.008) (± 0.061)

Model-calibration
0.639 0.634 0.617 0.614 0.684 0.579 0.588 0.695 0.595 0.587 0.623

(± 0.040) (± 0.033) (± 0.032) (± 0.019) (± 0.002) (± 0.001) (± 0.002) (± 0.012) (± 0.007) (± 0.007) (± 0.043)

Model-lira
0.690 0.659 0.666 0.610 0.755 0.686 0.588 0.753 0.602 0.553 0.656

(± 0.085) (± 0.064) (± 0.067) (± 0.025) (± 0.003) (± 0.003) (± 0.002) (± 0.024) (± 0.009) (± 0.010) (± 0.075)

Model-fpr
0.647 0.668 0.638 0.664 0.697 0.645 0.643 0.679 0.557 0.567 0.641

(± 0.056) (± 0.061) (± 0.053) (± 0.056) (± 0.004) (± 0.003) (± 0.003) (± 0.041) (± 0.007) (± 0.008) (± 0.055)

Model-robust
0.635 0.639 0.633 0.621 0.711 0.632 0.625 0.766 0.624 0.591 0.648

(± 0.030) (± 0.036) (± 0.034) (± 0.022) (± 0.002) (± 0.001) (± 0.002) (± 0.022) (± 0.010) (± 0.006) (± 0.053)

Query-augment
0.573 0.555 0.575 0.552 0.612 0.612 0.612 0.570 0.569 0.565 0.580

(± 0.025) (± 0.019) (± 0.025) (± 0.016) (± 0.001) (± 0.002) (± 0.001) (± 0.007) (± 0.008) (± 0.011) (± 0.026)

Query-transfer
0.522 0.529 0.518 0.518 0.529 0.535 0.529 0.530 0.529 0.514 0.525

(± 0.008) (± 0.018) (± 0.013) (± 0.017) (± 0.004) (± 0.001) (± 0.001) (± 0.011) (± 0.010) (± 0.006) (± 0.012)

Query-qrm
0.532 0.532 0.533 0.532 0.523 0.625 0.622 0.524 0.524 0.528 0.548

(± 0.072) (± 0.072) (± 0.074) (± 0.070) (± 0.057) (± 0.003) (± 0.003) (± 0.038) (± 0.037) (± 0.039) (± 0.061)

Query-ref
0.735 0.740 0.722 0.708 N/A N/A N/A N/A N/A N/A 0.726

(± 0.108) (± 0.100) (± 0.093) (± 0.074) N/A N/A N/A N/A N/A N/A (± 0.088)

Table 24: TDD performance across different metrics on WRN28-2 trained on CIFAR-10 dataset.
MA(membership advantage) (Jayaraman et al., 2021) equals the difference between the true positive
rate and the false positive rate. For all metrics except for FPR and FNR, higher values indicate better
performance of the corresponding TDD algorithm.

Algorithm Precision Recall F1-score Acc FNR ↓ FPR ↓ MA TPR@1%FPR TPR@10%FPR AUROC

Metric-loss
0.579 0.905 0.706 0.623 0.095 0.659 0.246 0.009 0.132 0.635

(± 0.030) (± 0.039) (± 0.033) (± 0.045) (± 0.039) (± 0.057) (± 0.091) (± 0.005) (± 0.014) (± 0.053)

Metric-conf
0.579 0.905 0.706 0.623 0.095 0.659 0.246 0.009 0.131 0.635

(± 0.030) (± 0.039) (± 0.033) (± 0.045) (± 0.039) (± 0.057) (± 0.091) (± 0.005) (± 0.014) (± 0.053)

Metric-corr
0.528 0.982 0.687 0.552 0.018 0.877 0.105 0.000 0.000 0.552

(± 0.004) (± 0.041) (± 0.013) (± 0.009) (± 0.041) (± 0.025) (± 0.018) (± 0.000) (± 0.000) (± 0.009)

Metric-ent
0.574 0.878 0.694 0.614 0.122 0.649 0.229 0.012 0.133 0.628

(± 0.032) (± 0.073) (± 0.046) (± 0.050) (± 0.073) (± 0.028) (± 0.101) (± 0.001) (± 0.015) (± 0.058)

Metric-ment
0.579 0.901 0.705 0.624 0.099 0.654 0.247 0.010 0.133 0.635

(± 0.029) (± 0.044) (± 0.035) (± 0.046) (± 0.044) (± 0.050) (± 0.091) (± 0.005) (± 0.015) (± 0.053)

Learn-original
0.570 0.872 0.688 0.611 0.128 0.650 0.222 0.015 0.162 0.631

(± 0.031) (± 0.128) (± 0.065) (± 0.051) (± 0.128) (± 0.031) (± 0.102) (± 0.005) (± 0.031) (± 0.064)

Learn-top3
0.576 0.877 0.695 0.616 0.123 0.645 0.232 0.012 0.130 0.628

(± 0.033) (± 0.071) (± 0.046) (± 0.051) (± 0.071) (± 0.033) (± 0.102) (± 0.001) (± 0.013) (± 0.057)

Learn-sorted
0.575 0.875 0.694 0.615 0.125 0.645 0.230 0.012 0.132 0.628

(± 0.032) (± 0.070) (± 0.046) (± 0.050) (± 0.070) (± 0.032) (± 0.101) (± 0.001) (± 0.014) (± 0.057)

Learn-label
0.573 0.925 0.708 0.618 0.075 0.689 0.237 0.015 0.156 0.633

(± 0.027) (± 0.061) (± 0.038) (± 0.045) (± 0.061) (± 0.036) (± 0.090) (± 0.005) (± 0.031) (± 0.056)

Learn-merge
0.580 0.908 0.708 0.625 0.092 0.658 0.250 0.020 0.178 0.656

(± 0.030) (± 0.039) (± 0.034) (± 0.046) (± 0.039) (± 0.054) (± 0.093) (± 0.008) (± 0.041) (± 0.065)

Model-loss
0.581 0.811 0.676 0.611 0.189 0.589 0.222 0.050 0.211 0.664

(± 0.026) (± 0.053) (± 0.022) (± 0.032) (± 0.053) (± 0.086) (± 0.065) (± 0.015) (± 0.027) (± 0.050)

Model-calibration
0.566 0.835 0.674 0.597 0.165 0.641 0.193 0.040 0.173 0.639

(± 0.020) (± 0.040) (± 0.018) (± 0.027) (± 0.040) (± 0.069) (± 0.054) (± 0.011) (± 0.013) (± 0.040)

Model-lira
0.591 0.810 0.682 0.622 0.190 0.567 0.243 0.120 0.300 0.690

(± 0.039) (± 0.036) (± 0.026) (± 0.049) (± 0.036) (± 0.108) (± 0.097) (± 0.059) (± 0.107) (± 0.085)

Model-fpr
0.624 0.520 0.566 0.605 0.480 0.310 0.210 0.074 0.261 0.647

(± 0.042) (± 0.074) (± 0.060) (± 0.038) (± 0.074) (± 0.027) (± 0.076) (± 0.034) (± 0.064) (± 0.056)

Model-robust
0.553 0.882 0.676 0.583 0.118 0.716 0.167 0.070 0.221 0.635

(± 0.015) (± 0.135) (± 0.039) (± 0.018) (± 0.135) (± 0.123) (± 0.036) (± 0.023) (± 0.032) (± 0.030)

Query-augment
0.539 0.917 0.679 0.567 0.083 0.783 0.135 0.004 0.071 0.573

(± 0.013) (± 0.039) (± 0.019) (± 0.022) (± 0.039) (± 0.027) (± 0.045) (± 0.003) (± 0.046) (± 0.025)

Query-transfer
0.519 0.943 0.670 0.535 0.057 0.873 0.070 0.006 0.101 0.522

(± 0.005) (± 0.033) (± 0.012) (± 0.008) (± 0.033) (± 0.019) (± 0.017) (± 0.003) (± 0.003) (± 0.008)

Query-adv
0.583 0.916 0.712 0.631 0.084 0.654 0.261 0.002 0.084 0.615

(± 0.035) (± 0.027) (± 0.031) (± 0.042) (± 0.027) (± 0.074) (± 0.084) (± 0.004) (± 0.050) (± 0.038)

Query-neighbor
0.514 0.417 0.452 0.510 0.583 0.396 0.021 0.000 0.074 0.511

(± 0.005) (± 0.115) (± 0.079) (± 0.001) (± 0.115) (± 0.116) (± 0.003) (± 0.000) (± 0.011) (± 0.003)

Query-qrm
0.518 0.583 0.522 0.529 0.417 0.525 0.057 0.000 0.000 0.532

(± 0.037) (± 0.301) (± 0.150) (± 0.058) (± 0.301) (± 0.252) (± 0.116) (± 0.000) (± 0.000) (± 0.072)

Query-ref
0.649 0.776 0.696 0.666 0.224 0.445 0.331 0.152 0.355 0.735

(± 0.075) (± 0.140) (± 0.050) (± 0.062) (± 0.140) (± 0.180) (± 0.123) (± 0.084) (± 0.152) (± 0.108)
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Table 25: TDD performance across different metrics on MLP trained on Purchase dataset.
MA(membership advantage) (Jayaraman et al., 2021) equals the difference between the true pos-
itive rate and the false positive rate. For all metrics except for FPR and FNR, higher values indicate
better performance of the corresponding TDD algorithm.

Algorithm Precision Recall F1-score Acc FNR ↓ FPR ↓ MA TPR@1%FPR TPR@10%FPR AUROC

Metric-loss
0.587 0.956 0.727 0.642 0.044 0.672 0.283 0.010 0.108 0.619

(± 0.002) (± 0.006) (± 0.003) (± 0.003) (± 0.006) (± 0.005) (± 0.007) (± 0.000) (± 0.001) (± 0.003)

Metric-conf
0.587 0.956 0.727 0.642 0.044 0.672 0.283 0.010 0.108 0.619

(± 0.002) (± 0.006) (± 0.003) (± 0.003) (± 0.006) (± 0.005) (± 0.007) (± 0.000) (± 0.001) (± 0.003)

Metric-corr
0.527 1.000 0.690 0.551 0.000 0.897 0.103 0.000 0.000 0.551

(± 0.002) (± 0.000) (± 0.001) (± 0.001) (± 0.000) (± 0.002) (± 0.002) (± 0.000) (± 0.000) (± 0.001)

Metric-ent
0.582 0.948 0.721 0.634 0.052 0.680 0.268 0.010 0.108 0.616

(± 0.002) (± 0.008) (± 0.004) (± 0.004) (± 0.008) (± 0.006) (± 0.007) (± 0.000) (± 0.001) (± 0.003)

Metric-ment
0.587 0.962 0.729 0.643 0.038 0.676 0.286 0.010 0.108 0.620

(± 0.002) (± 0.005) (± 0.003) (± 0.003) (± 0.005) (± 0.008) (± 0.007) (± 0.000) (± 0.001) (± 0.003)

Learn-original
0.582 0.956 0.724 0.635 0.044 0.686 0.270 0.016 0.151 0.652

(± 0.003) (± 0.010) (± 0.002) (± 0.002) (± 0.010) (± 0.011) (± 0.005) (± 0.002) (± 0.005) (± 0.002)

Learn-top3
0.585 0.956 0.726 0.639 0.044 0.678 0.279 0.018 0.175 0.677

(± 0.002) (± 0.006) (± 0.003) (± 0.003) (± 0.006) (± 0.005) (± 0.007) (± 0.001) (± 0.010) (± 0.003)

Learn-sorted
0.586 0.949 0.725 0.640 0.051 0.670 0.280 0.018 0.167 0.666

(± 0.003) (± 0.007) (± 0.003) (± 0.004) (± 0.007) (± 0.007) (± 0.008) (± 0.004) (± 0.034) (± 0.028)

Learn-label
0.585 0.965 0.728 0.640 0.035 0.685 0.280 0.016 0.153 0.656

(± 0.002) (± 0.003) (± 0.002) (± 0.003) (± 0.003) (± 0.006) (± 0.006) (± 0.000) (± 0.004) (± 0.005)

Learn-merge
0.589 0.953 0.728 0.644 0.047 0.665 0.288 0.020 0.187 0.684

(± 0.002) (± 0.005) (± 0.002) (± 0.003) (± 0.005) (± 0.006) (± 0.006) (± 0.001) (± 0.003) (± 0.003)

Model-loss
0.611 0.843 0.708 0.653 0.157 0.537 0.306 0.056 0.276 0.725

(± 0.006) (± 0.028) (± 0.006) (± 0.001) (± 0.028) (± 0.030) (± 0.003) (± 0.002) (± 0.003) (± 0.002)

Model-calibration
0.590 0.842 0.693 0.628 0.158 0.586 0.256 0.040 0.206 0.684

(± 0.011) (± 0.063) (± 0.016) (± 0.002) (± 0.063) (± 0.065) (± 0.003) (± 0.002) (± 0.002) (± 0.002)

Model-lira
0.614 0.913 0.734 0.670 0.087 0.573 0.340 0.134 0.378 0.755

(± 0.003) (± 0.022) (± 0.006) (± 0.002) (± 0.022) (± 0.021) (± 0.004) (± 0.009) (± 0.005) (± 0.003)

Model-fpr
0.636 0.658 0.646 0.640 0.342 0.377 0.281 0.073 0.296 0.697

(± 0.009) (± 0.035) (± 0.012) (± 0.002) (± 0.035) (± 0.032) (± 0.005) (± 0.008) (± 0.012) (± 0.004)

Model-robust
0.599 0.839 0.697 0.638 0.161 0.564 0.275 0.094 0.289 0.711

(± 0.012) (± 0.074) (± 0.018) (± 0.002) (± 0.074) (± 0.074) (± 0.005) (± 0.003) (± 0.003) (± 0.002)

Query-augment
0.563 0.963 0.711 0.609 0.037 0.745 0.218 0.000 0.000 0.612

(± 0.002) (± 0.002) (± 0.002) (± 0.001) (± 0.002) (± 0.003) (± 0.003) (± 0.000) (± 0.000) (± 0.001)

Query-transfer
0.523 0.981 0.682 0.544 0.019 0.893 0.088 0.010 0.100 0.529

(± 0.003) (± 0.008) (± 0.004) (± 0.005) (± 0.008) (± 0.002) (± 0.009) (± 0.000) (± 0.002) (± 0.004)

Query-adv
0.569 0.879 0.690 0.607 0.121 0.665 0.214 0.000 0.000 0.620

(± 0.005) (± 0.038) (± 0.008) (± 0.003) (± 0.038) (± 0.038) (± 0.006) (± 0.000) (± 0.000) (± 0.003)

Query-neighbor
0.524 0.527 0.522 0.524 0.473 0.480 0.048 0.000 0.115 0.533

(± 0.006) (± 0.094) (± 0.046) (± 0.001) (± 0.094) (± 0.093) (± 0.002) (± 0.000) (± 0.002) (± 0.001)

Query-qrm
0.516 0.313 0.282 0.529 0.687 0.255 0.058 0.000 0.000 0.523

(± 0.037) (± 0.421) (± 0.313) (± 0.064) (± 0.421) (± 0.313) (± 0.128) (± 0.000) (± 0.000) (± 0.057)
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Table 26: TDD performance across different metrics on DistilBERT trained on Rotten-tomatoes
dataset. MA(membership advantage) (Jayaraman et al., 2021) equals the difference between the
true positive rate and the false positive rate. For all metrics except for FPR and FNR, higher values
indicate better performance of the corresponding TDD algorithm.

Algorithm Precision Recall F1-score Acc FNR ↓ FPR ↓ MA TPR@1%FPR TPR@10%FPR AUROC

Metric-loss
0.549 0.828 0.660 0.578 0.172 0.672 0.156 0.011 0.121 0.582

(± 0.010) (± 0.031) (± 0.013) (± 0.009) (± 0.031) (± 0.017) (± 0.019) (± 0.003) (± 0.010) (± 0.007)

Metric-conf
0.549 0.828 0.660 0.578 0.172 0.672 0.156 0.011 0.121 0.582

(± 0.010) (± 0.031) (± 0.013) (± 0.009) (± 0.031) (± 0.017) (± 0.019) (± 0.003) (± 0.010) (± 0.007)

Metric-corr
0.529 0.947 0.678 0.557 0.053 0.833 0.113 0.000 0.000 0.557

(± 0.009) (± 0.008) (± 0.008) (± 0.006) (± 0.008) (± 0.006) (± 0.011) (± 0.000) (± 0.000) (± 0.006)

Metric-ent
0.536 0.766 0.629 0.555 0.234 0.655 0.110 0.011 0.119 0.561

(± 0.009) (± 0.061) (± 0.020) (± 0.007) (± 0.061) (± 0.050) (± 0.013) (± 0.003) (± 0.010) (± 0.007)

Metric-ment
0.549 0.828 0.660 0.578 0.172 0.672 0.156 0.011 0.121 0.582

(± 0.010) (± 0.031) (± 0.013) (± 0.009) (± 0.031) (± 0.017) (± 0.019) (± 0.003) (± 0.010) (± 0.007)

Learn-original
0.533 0.780 0.633 0.552 0.220 0.675 0.105 0.012 0.120 0.558

(± 0.010) (± 0.053) (± 0.017) (± 0.009) (± 0.053) (± 0.050) (± 0.017) (± 0.003) (± 0.007) (± 0.009)

Learn-top3
0.536 0.766 0.629 0.555 0.234 0.655 0.110 0.011 0.119 0.561

(± 0.009) (± 0.061) (± 0.020) (± 0.007) (± 0.061) (± 0.050) (± 0.013) (± 0.003) (± 0.009) (± 0.007)

Learn-sorted
0.536 0.766 0.629 0.555 0.234 0.655 0.110 0.011 0.119 0.561

(± 0.009) (± 0.061) (± 0.020) (± 0.007) (± 0.061) (± 0.050) (± 0.013) (± 0.003) (± 0.010) (± 0.007)

Learn-label
0.546 0.866 0.670 0.578 0.134 0.711 0.155 0.011 0.122 0.584

(± 0.009) (± 0.023) (± 0.012) (± 0.009) (± 0.023) (± 0.019) (± 0.018) (± 0.003) (± 0.007) (± 0.009)

Learn-merge
0.547 0.862 0.669 0.578 0.138 0.705 0.157 0.012 0.122 0.584

(± 0.010) (± 0.017) (± 0.011) (± 0.009) (± 0.017) (± 0.018) (± 0.019) (± 0.002) (± 0.009) (± 0.009)

Model-loss
0.683 0.707 0.694 0.691 0.293 0.324 0.383 0.148 0.385 0.773

(± 0.011) (± 0.061) (± 0.025) (± 0.015) (± 0.061) (± 0.033) (± 0.030) (± 0.021) (± 0.034) (± 0.020)

Model-calibration
0.606 0.777 0.680 0.639 0.223 0.500 0.277 0.106 0.234 0.695

(± 0.008) (± 0.045) (± 0.015) (± 0.006) (± 0.045) (± 0.041) (± 0.013) (± 0.011) (± 0.019) (± 0.012)

Model-lira
0.631 0.813 0.710 0.671 0.187 0.471 0.342 0.183 0.374 0.753

(± 0.007) (± 0.043) (± 0.018) (± 0.017) (± 0.043) (± 0.032) (± 0.035) (± 0.026) (± 0.048) (± 0.024)

Model-fpr
0.671 0.506 0.573 0.630 0.494 0.245 0.260 0.141 0.340 0.679

(± 0.006) (± 0.094) (± 0.062) (± 0.025) (± 0.094) (± 0.048) (± 0.049) (± 0.024) (± 0.043) (± 0.041)

Model-robust
0.651 0.797 0.715 0.684 0.203 0.429 0.368 0.162 0.375 0.766

(± 0.031) (± 0.063) (± 0.008) (± 0.021) (± 0.063) (± 0.101) (± 0.042) (± 0.028) (± 0.027) (± 0.022)

Query-augment
0.537 0.878 0.666 0.565 0.122 0.747 0.131 0.000 0.000 0.570

(± 0.008) (± 0.019) (± 0.003) (± 0.006) (± 0.019) (± 0.026) (± 0.012) (± 0.000) (± 0.000) (± 0.007)

Query-transfer
0.525 0.933 0.672 0.549 0.067 0.835 0.098 0.008 0.090 0.530

(± 0.011) (± 0.009) (± 0.011) (± 0.007) (± 0.009) (± 0.007) (± 0.014) (± 0.005) (± 0.040) (± 0.011)

Query-adv
0.537 0.881 0.667 0.566 0.119 0.750 0.131 0.000 0.000 0.571

(± 0.008) (± 0.031) (± 0.010) (± 0.005) (± 0.031) (± 0.040) (± 0.011) (± 0.000) (± 0.000) (± 0.007)

Query-neighbor
0.525 0.909 0.665 0.548 0.091 0.813 0.096 0.011 0.091 0.533

(± 0.008) (± 0.021) (± 0.010) (± 0.004) (± 0.021) (± 0.018) (± 0.007) (± 0.003) (± 0.005) (± 0.004)

Query-qrm
0.509 0.722 0.597 0.525 0.278 0.672 0.049 0.000 0.000 0.524

(± 0.023) (± 0.079) (± 0.042) (± 0.035) (± 0.079) (± 0.035) (± 0.070) (± 0.000) (± 0.000) (± 0.038)
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