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Abstract

Motivated by real-life supply chain management, we study a repeated newsvendor
problem in which the learner is a mediator that facilitates trades between suppliers
and retailers in a sequence of supplier/retailer interactions. At each time step, a
new supplier and retailer join the mediator’s platform with a private production
cost and utility function, respectively, and the platform proposes a unitary trading
price. The supplier accepts the proposed price if it meets or exceeds their unitary
production cost and communicates their decision to the platform; simultaneously,
the retailer decides the quantity to purchase at the proposed trading price based on
their private utility function and sends their decision to the platform. If the supplier
accepts the trading price, the transaction proceeds, and the retailer purchases their
chosen quantity of units, paying the product of this quantity and the trading price
to the supplier. The mediator’s objective is to maximize social welfare. We design
an online mediator’s pricing strategy that features sharp regret rates under some
natural assumptions, and we investigate the necessity of these assumptions, proving
that relaxing any of them leads to unlearnability.

1 Introduction

The newsvendor problem is a central topic in the analysis of supply chains. In its classical one-shot
version |Arrow et al.| [1951]], the supplier chooses and reveals a trading price. After observing the
trading price, the retailer orders a certain quantity of the good, deciding how much to order based on
a privately held utility function that depends on their needs and wants. The repeated version studied
in|Huang and So$i¢|[2010]] and |Cesa-Bianchi et al.| [2023a] generalizes this problem to a sequence of
supplier/retailer interactions.

1.1 Motivations

To the best of our knowledge, the newsvendor problem has only been studied under the assumption
that the supplier determines the trading price. This assumption falls short in many real-life applications
where an independent, third-party mediator, whose goal is to serve the interests of both parties, selects
the trading prices. The following examples illustrate markets where mediator-based pricing could
naturally arise and prove to be beneficial. Digital advertising intermediaries (e.g., ad-exchange
platforms) propose clearing prices for ad impressions or clicks to publishers, and advertisers decide
how many to purchase. Cloud computing platforms (e.g., AWS, Azure, GCP) propose pay-as-you-go
rates to data centers or resource providers, and users needing computing power decide how much of
it to use. Real estate rental intermediaries (e.g., Airbnb for short-term accommodations or corporate
housing for long-term stays) propose nightly, weekly, or monthly rates to property owners, and renters
decide the duration of their stay. Online freelance marketplaces (e.g., Upwork, Fiverr) propose hourly

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



or per-task rates to freelancers (e.g., designers, programmers), and users decide how many hours or
tasks to book. Ridesharing platforms (e.g., Uber, Lyft) select the per-mile prices of rides, drivers
decide to accept or reject the prices posted by the platform based on the cost of fuel/car maintenance,
and riders choose the distance of the ride. Lastly, microgrid energy operators propose real-time prices
to households capable of generating energy, and other households or businesses choose how much
energy to purchase.

In addition to practical motivations, this problem is also intriguing from a theoretical point of view.
Indeed, the repeated newsvendor problem is a strict generalization of the popular dynamic pricing
problem. Consequently, our proposed repeated mediated newsvendor problem strictly generalizes
bilateral trade (see Appendix [A]for a formal proof of this claim), a setting that has recently garnered
significant interest within the machine learning community [Cesa-Bianchi et al.,|2021} 2023bicl 2024,
Azar et al. 2022} (2024, [Bernasconi et al., 2024} | Boli€ et al., 2024, Bachoc et al.| 2024, |Gaucher et al.,
2025, Hajiaghayi et al.| 2025] |Deng et al., 2025]]. Notably, our tight regret guarantees also recover
optimal regret rates (up to logarithmic terms) in the important special case of bilateral trade.

All of these considerations give compelling practical and theoretical reasons to study this problem
and characterize its learnability.

1.2 Formal setting

Let USC be the set of all [0, 1]-valued upper semi-continuous functions defined on [0, 1]. Select,
for any v € USC and price p € [0, 1], u(p) € argmax,c(o, 1 (u(g) — p - q) (our theory holds
irrespectively of how this selection is made, i.e., of how ties are broken) and define u*(p) =
u(u#(p)) — p- u¥(p). Up to a simple rescaling, we can and do assume without loss of generality
that trading prices, suppliers’ costs, and quantities exchanged belong to [0, 1]. We also assume that
retailers’ utilities belong to USC, a minimal condition needed for u¥ to be Well—deﬁnedﬂ

The online learning protocol for the repeated mediated newsvendor problem (RMNP) we study
proceeds as follows.

Online learning protocol

1: foreachtimet =1,2,... do

2: A supplier with a privateE] cost Cy and a retailer with a privateE] (gross) utility Uy join the
mediator

3:  The mediator proposes a trading price P,

4:  The supplier communicates I{C; < P} (i.e., whether they accept the trade, which happens if
and only if the proposed trading price P, is no lower than their production cost C}), and the
retailer communicates Ut# (P;) (i-e., the quantity they are willing to buy at price P;, which is
the quantity that maximizes their net utility when the trading price is P;) to the mediator.

5. if Cy < P, then the retailer buys the quantity Ut#(Pt) from the supplier at a total price of

P,-UF(P)

The mediator’s reward at every round ¢t is the so-called gain from trade, defined as the sum of the
net gains of the supplier and retailerE] More precisely, when the supplier’s cost is ¢ € [0, 1] and the
buyer’s utility function is u € USC, the gain from trade at a trading price p € [0, 1] is defined as

g(p.cu) = ((p—c) - v (p)+ w*(p) )-I{c<p}.
— N~ ———

supplier’s net gain retailer’s net gain trade occurs

'This is a strictly weaker condition than the commonly assumed Lipschitzness that is still sufficient for our
theory.

The reader might wonder why the mediator doesn’t ask the two parties for their private cost and utility
before proposing a trading price. The reasons for this choice have deep roots in mechanism design dating back
to the Nobel-winning work of [Myerson and Satterthwaite|[[1983|]. We will address them in Section

3Note that, from a regret-minimization perspective, this is equivalent to setting the social welfare as the
mediator’s objective.



The goal of the mediator is to minimize the regret defined, for any time horizon T' € N, by

T
Ry = sup E|> g(p.Cr.U) = g(P,Ci, Uy)
PEA] 4= t=1

We develop our theory under four key assumptions (and will analyze the necessity of each of them).

Assumption 1.1. The model is stochastic: the sequence (C, U), (C1,U;), (Ca,Us), ... of supplier’s
costs and retailer’s utility functions is i.i.d.

Assumption 1.2. The supplier’s cost C' is independent of the retailer’s utility function U.

Assumption 1.3. The cumulative distribution function (cdf) of the supplier’s cost C'is m-Lipschitz,
for some constant m.

Assumption 1.4. E [U * (1)] = 0; i.e., the expectation of the retailer’s optimal utility at price 1 is O.

In a real-world sense, AssumptionI.1]implies that the behaviors of suppliers/retailers follow the same
general pattern over time without being influenced by past interactions. In well-known platforms,
where the number of users is high, the platform rarely sees the same supplier/retailer within a short
window, and the population of suppliers/retailers tends to be stable over time. This makes the i.i.d.
assumption reasonable.

Assumption [I.2] simply means that the supplier’s production cost does not directly influence the
retailer’s utility function. A first reason why this assumption is reasonable is related to the distinct
economic drivers of suppliers and retailers. Supply-side costs typically depend on factors like
input prices, technology, scale, and logistics, whereas demand-side utilities depend on consumer
preferences, substitution patterns, and timing. These factors are often distinct from one another.
For example, a fall in steel prices lowers bicycle-frame costs but does not necessarily change a
commuter’s willingness to pay for the bike. Another reason is that in many mediated markets, the
item traded is fixed (e.g., a specific SKU, ride, or room-night). In this case, switching a supplier
for another affects the production cost but not the retailer’s valuation of that identical item. In other
words, if it is always the same type of item that is being traded, it is realistic to assume that the
random draw of the supplier would not influence that of the retailer. Hence, this assumption models
the real-life fact that the utility earned by the retailer is only directly affected by the trading price.

Assumption [I.3]is a common, mild technical assumption that prevents highly concentrated distribu-
tions capable of generating pathological and unrealistic scenarios. In other words, it prevents large
clusters of suppliers with costs concentrated in a narrow price range, which guarantees that small
changes in the trading price lead to stable changes in the likelihood of the trade. As a counterexample,
suppose that a large proportion of rideshare drivers in a population refuel at the same gas station in a
region where fuel prices are relatively stable. In this case, many drivers have nearly identical costs,
resulting in a sharp spike in the cdf of supplier costs around the shared fuel price, which is a violation
of our assumption. As a result, a small change in the trading price could cause a large proportion
of drivers to accept a trade, causing unstable or unpredictable outcomes. We would argue that these
types of scenarios with highly concentrated distributions are not overly common in practice. Thus,
the assumption of Lipschitzness is well-justified in many real-world scenarios.

Finally, Assumption [I.4] naturally states that if a good reaches the highest possible price of 1, then
the retailer has no opportunity for profit and thus will not purchase any amount, resulting in zero
utility. For example, a rideshare rider may open the Uber app to check whether the fare is below their
personal threshold that they are willing to pay. At the maximum fare, it will exceed their threshold,
making it likely the user will either walk or switch to a different service, such as Lyft. This behavior
corresponds to a capped utility function, where utility vanishes beyond a certain price. One scenario
in which this assumption is violated is when demand is inelastic: for instance, if a retailer must buy a
certain quantity of the good no matter the cost. Following our previous example, the rider may be
willing to purchase a ride at the maximum price if no alternative transportation options exist, e.g. if
Uber is the only available service. That being said, such cases typically require a pure monopoly over
a market or an emergency setting, which are relatively uncommon.

Hence, Assumptions [I.THT.4]are well-motivated by real-world factors. We further investigate each
assumption in Theorem 5.1] showing that they are not only justified but necessary for learnability.



1.3 Overview of our results

Our contributions are fourfold.

1. We prove that the mediated newsvendor mechanism is incentive compatible, individually rational,
and budget balanced (Theorem [2.T)).

2. We present an algorithm (Algorithm [I)) for the repeated mediated newsvendor problem and prove
that, under Assumptions , the algorithm achieves a (’)(TQ/ 3) regret (Theorem .

3. We prove the optimality of Algorithmby establishing a matching lower bound of order Q(TZ/ 3),
showing that its rate is unimprovable, up to logarithmic terms (Theorem [.T)).

4. We investigate the necessity of Assumptions[I.THI.4] proving that lifting any one of them makes
the problem unlearnable, even if the remaining three hold (Theorem[5.1)).

1.4 Techniques and challenges

In this section, we outline the main challenges arising from the analysis of our setting, as well as the
techniques we employed to overcome them.

Uncountable action space. First, the action space is uncountably infinite, a hurdle that usually
prevents online learning techniques from working without further assumptions. One typical condition
that enables online learning algorithms to work in such action spaces is that the expected reward
function is Lipschitz, which opens the door to using discretization methods. However, in our setting,
the expected reward function is not even one-sided Lipschitz (a weaker regularity condition that is
still typically sufficient to guarantee learnability) without further assumptions. We overcome this
obstacle by showing that, under the mild condition that the distribution of the supplier’s cost is not
too concentrated, we can in fact ensure that the expected reward function is one-sided Lipschitz,
thereby unlocking discretization methods. Importantly, the validity of this mild assumption is not
a limitation of our analysis, as we show that the problem becomes unlearnable when the cdf of the
supplier’s cost is not Lipschitz (Theorem [5.T)).

Severely limited feedback. Even under the assumption that the cdf of the supplier’s cost is
Lipschitz, significant challenges remain. In particular, the mediator cannot implement standard
bandit algorithms—despite the rich body of literature on this topic—because the available feedback
is too limited to reconstruct standard bandit feedback. Indeed, whenever a trade occurs, the reward
function equals the sum of the supplier’s net gain (P; — Cy) U (P;) and the retailer’s net gain U;(P;).
However, the mediator only learns a threshold about the supplier’s cost C;—specifically, that it is
below the posted price P;. Moreover, instead of observing the retailer’s net gain U} (P;), the mediator

only receives the quantity Ut# (P;) that the retailer wishes to purchase at price P;. Consequently, one
must find a way to reconstruct the supplier’s net utility from the threshold feedback and the retailer’s
net utility from the quantity purchased.

A first hint on how this feedback can be used comes from Step 1 of the proof sketch of Theorem [3.3]
which indicates that when the supplier’s cost is independent of the retailer’s utility function, the
expected reward function at any price p € [0, 1] is equal to E[U#(p)|E[(p — C)"| + E[I{C <
p}E[U*(p)]. Thus, if one could reliably estimate the terms E[(p — C)"| and E[U*(p)], then
the feedback available to the mediator after each interaction would in fact allow them to estimate
the (expected) reward, turning the original problem into, essentially, a bandit problem. Under the
assumption that the suppliers’ costs and retailers’ utilities form an i.i.d. process, we design a strategy
where, first, we run an initial phase to construct optimistic estimates of the terms E [(p -C )*] and

E [U* (p)] , and then subsequently run a UCB-type bandit algorithm with the available feedback.

The last missing and crucial ingredient is to determine kow to run the first phase to build these
optimistic estimates for the terms that we do not have direct access to. To do this, we leverage
the celebrated Envelope Theorem of [Milgrom and Segal (see Appendix [F) and show that, via
an integration procedure, we can approximately and optimistically reconstruct the net utilities
E[(p — C)T] and E[U*(p)] at any price p. This reconstruction uses the mediator’s feedback by
querying prices at points arranged on a uniform grid, which may be located far from p.



We conclude this section by remarking that the assumptions that led us to this strategy are not merely
limitations of our analysis. Indeed, as shown in Theorem [5.1} carefully constructed impossibility
results imply that relaxing any of them leads to unlearnability.

1.5 Related work

The newsvendor problem first appeared in Edgeworth|[[1888]] and was later formalized by |Arrow et al.
[1951]]—we refer the reader to|Choi|[2012]] for a survey of the many variants of Arrow’s model.

A game-theoretic formulation of the newsvendor problem with competing retailers was proposed by
Parlar| [[1988|]—see also|Lippman and McCardle|[[1997]], Mahajan and van Ryzin|[2001]], Netessine
et al. [2006]. [Wang and Gerchakl [2003]] use a Stackelberg game to model a situation where an
assembler has to buy components from different suppliers. [Lariviere and Porteus| [2001] study a
model where a supplier and a retailer interact through a price-only contract, and compare its efficiency
with the efficiency of an integrated system. |Adida and DeMiguel| [2011]] consider a competitive
inventory model with several suppliers and several retailers, and prove equilibrium uniqueness under
some symmetry conditions. We refer the reader to Cachon and Netessine|[2006] for a survey of the
literature on game-theoretic models in supply chain analysis and to Silbermayr [2020] for a more
recent and specific survey on newsvendor games.

The mediated newsvendor problem is a strict generalization of the bilateral trade problem. The litera-
ture on bilateral trade is extremely rich and has experienced a steady growth since the fundamental
work of Myerson and Satterthwaite| [[1983]]. Classically, bilateral trade has been explored in the
one-shot setting, mainly from a game-theoretic and approximation perspective [Colini-Baldeschi
et al., 2016, 2017, Blumrosen and Mizrahi, 2016, [Brustle et al., 2017, |Colini-Baldeschi et al., [2020),
Babaioff et al.| 2020, Diitting et al.,[2021} Deng et al.| 2022, Kang et al., 2022} |Archbold et al., 2023].
For a fairly complete overview on this literature, see, e.g., Cesa-Bianchi et al.|[2023c]]. On the other
hand, a recent stream of literature has explored bilateral trade in a repeated setting through the lens of
online learning. Given its greater relevance to our work, we focus on this literature.

In|Cesa-Bianchi et al.|[2021]], |Azar et al.| [2022]], Cesa-Bianchi et al.| [2023clbl], Bernasconi et al.
[2024], Cesa-Bianchi et al.|[2024], Bacchiocchi et al.|[[2025]], (Gaucher et al.|[2025]], Bachoc et al.
[2024], Bolic et al.| [2024]], [Bachoc et al.| [2025alb]], (Cesari and Colomboni| [2025]], the authors
examined the repeated bilateral trade problem where sellers and buyers trade non-divisible items. At
each interaction with a new seller-buyer pair, the platform proposes a trading price, and the current
item is traded if and only if the proposed price exceeds the seller’s private valuation and is below the
buyer’s. When a trade occurs, the buyer pays the posted price to the seller, the seller transfers the item
to the buyer, and the platform is rewarded with the gain from trade, i.e., the sum of the seller’s and
buyer’s utility. In/Cesa-Bianchi et al.|[2021}2023c], the authors investigated and obtained sharp regret
bounds when sellers’ and buyers’ valuations for the non-divisible items being traded—represented by
two random sequences of numbers (.S;);en, (B:)ten—Tform two i.i.d. sequences, while also showing
that the adversarial case is unlearnable in general. |Azar et al.|[2022]] managed to obtain learnability
in the adversarial case by relaxing the notion of regret to that of 2-regret. When the platform can post
two different prices to sellers and buyers, but is still not allowed to subsidize trades, |Cesa-Bianchi
et al.| [2023b}, 2024] achieved learnability using the usual notion of regret when the adversary belongs
to the class of smoothed adversaries. Bernasconi et al.| [[2024] managed to achieve learnability in the
adversarial case by allowing the platform to subsidize trade, as long as the subsidization comes from
revenue obtained from previous seller and buyer interactions, |(Chen et al.|[2025] improved on these
results, and Lunghi et al.|[2026] explored trade offs between budget violations and attainable regrets
regimes. |Bacchiocchi et al.|[2025] investigated an asynchronous protocol for bilateral trade when
sellers are queried only when a buyer is already secured. |Gaucher et al.|[2025] studied a contextual
version of bilateral trade problem. Bachoc et al|[2024]] proposed a variant of the gain from trade
as reward to promote a fair division of profits among sellers and buyers. |Babaioff et al.| [2024],
Lunghi et al.|[2025] explored bilateral trade with multiple buyers. [Boli¢ et al.| [2024]] investigated
and characterized learnability in the i.i.d. setting when, at each time step, the two traders do not have
predetermined seller and buyer roles, but can switch from one to the other depending on the proposed
trading price. This last setting has been further investigated with contextual information in Bachoc
et al.|[2025alb] and with the different objective of maximizing volume instead of gain from trade in
Cesari and Colomboni| [2025]].



Finally, divisible items have also been recently proposed and studied in a different welfare maximiza-
tion setting for dynamic pricing in|Cesa-Bianchi et al.|[2025].

2 Incentive compatibility, individual rationality, and budget balance

In this section, we show that the mediated newsvendor mechanism is incentive compatible, individu-
ally rational, and budget balanced—that is, the supplier and retailer gain nothing by misrepresenting
their cost or utility function to the mediator, they never lose money by participating in a trade, and
the mediator cannot subsidize or siphon welfare from trades[]

Incentive compatibility. We say that the mediated newsvendor mechanism is incentive compatible
if, letting c be the supplier’s cost, u the retailer’s utility, and p the proposed trading price, it is a
dominant strategy for the supplier to accept a trade at price p if and only if ¢ < p, and it is a dominant
strategy for the retailer to select the quantity u (p).

Individual rationality. We say that the mediated newsvendor mechanism is individually rational if
the net utilities of the supplier and the retailer are non-negative. Here, given a production cost ¢, an
order quantity ¢, and a trading price p, the ner utility of the supplier is defined as (¢gp — qc)I{c < p},
and the net utility of the retailer is defined as u(q) — pq.

Budget balance. We say that the mediated newsvendor mechanism is budget balanced if, whenever
a payment of x needs to be transferred from the retailer to the supplier, the retailer is asked for exactly
x, and the sum z is transferred in its entirety to the supplier.

Theorem 2.1. The mediated newsvendor mechanism is incentive compatible, individually rational,
and budget balanced.

Proof sketch (full proof in Appendix[B). We separately prove the three claims in the statement of
Theorem 2.1} To show incentive compatibility, we prove that any attempt by either the retailer or the
supplier to misreport their private information—whether by over- or under-reporting it—Ileads to a
decrease in their respective utilities. Next, individual rationality follows directly from the fact that
suppliers will never accept a trade when their costs exceed the offered price, and that retailers are
assumed to optimize their net utility, ensuring it is always non-negative (since they always have the
option to abstain from purchasing, resulting in a utility of 0). Finally, the budget-balanced property
can be derived from its definition within the context of this setting. O

We remark that incentive compatibility, individual rationality, and budget balance are three of the
four classic desiderata in bilateral trade mechanisms like the newsvendor problem. The fourth one
is market efficiency, that is, the ability to make the supplier and retailer trade every time they have
the opportunity to do so—i.e., whenever there exists a p such that ¢ < p and u*(p) > 0. The
Nobel-winning work on bilateral trade of [Myerson and Satterthwaite| [[1983]] shows that, in general,
the above four properties cannot hold simultaneously. Therefore, Theorem [2.1] yields a maximal set
of properties that any bilateral trade mechanism can satisfy and is thus unimprovable.

3 A no-regret algorithm for RMNP

In this section, we present our Algorithm[T]and provide an upper bound on its regret.

To lighten the notation, we begin by introducing the following confidence radii that we repeatedly
use. Foreach K € N, ¢ € (0,1), and T, n € N, we define

s = 1+ \/211?(81(/5) and  Erpeq(n) = w _

“Note that he result does not follow directly from Assumption since even in an i.i.d. setting, participants
can benefit from misreporting their valuations. E.g., in first-price auctions, bidders have an incentive to under-
report despite i.i.d. draws and one-shot participation. Thus, it is essential to analyze the mechanism, not just the
generation of valuations, to assess incentive compatibility, individual rationality, and budget balance.



We are now ready to present our algorithm. Algorithm|[I]takes the time horizon 7', a discretization
parameter K € N and a confidence parameter 6 € (0, 1) as input. Then, it builds a grid of (K + 1)-
equispaced points 0 = py < p; < --- < px = 1 and spends the first K2 rounds by posting the
K prices po, p1, - - -, Pk —1 in a round-robin fashion. Afterwards, for any j € {0,1,..., K — 1}, it
uses this information to build upper confidence bounds F; + (x5 (resp. G + (k,s) for E[U*(p;)]
(resp. E [(pj -C )ﬂ ). These two terms will be useful to build estimates of the two multiplicative
terms we will use to reconstruct the expected reward p — E [g (p,C,U )] when evaluated at the points
Po,P1s- - -, Pr—1. After those K2 rounds, the algorithm follows an upper confidence bound strategy
on the reward function, leveraging the previous estimates, and the bandit feedback it collects along
the way.

Algorithm 1
input: Time horizon T" € N, discretization parameter K € N, and confidence parameter 6 € (0, 1)
init: Set VJ S {O, ey K},pj = %,A](O) = BJ(O) = NJ(O) =0

1: for eachtimet =1,2,... do

2:  ift < K? thenselect I; :=t — 1 (mod K)

3:  ift > K? then

4: Update Vj € {0,..., K —1}, §i—1(

NN(t(t11) +&r, Ké(Nj(t—l))> (Gj +Ck.5)

= (7
( ij(t(tll) +&r s (N;(t—1 ))) (Fj + Ck.8)
where, Vj € [K], F} = Zf(:;il M andVj € [K —1],G Zﬂ L M
: Select I; € argmaxje{ova_l}gt_l(j)
6:  Post price P, := py, and receive feedback I{C; < P,} and U7 (P,)
7. UpdateVj € {0,..., K — 1}, N;(t) = N;(t — 1) + I{j = I,},
Ar, (Nr, () = Ar, (N, (t—1 ))+Ut (P), B, (Np,(t)) = By, (N, (t—1)) +I{C, < P}

+

To provide regret guarantees for Algorithm |1} we begin by proving a lemma that allows us to relate
the retailer’s optimal net gain u* (that appears in the gain for trade) with the retailer’s desired quantity
function u? (that appears in the feedback the learner receives), for any (gross) utility function
u € USC.

Lemma 3.1. Ifu € USC, then, for any selection of u* and any 0 < p; < py < 1, it holds that

u*(p1) —u*(p2) = /m u# (N dX .

1

Proof sketch (full proof in Appendix[C). The key idea of the proof is leveraging Milgrom and Segal's
Envelope Theorem, which establishes an integral representation of some transformation of a func-
tion in terms of another transformation of the same function. A careful derivation applied to the
transformations u* and u* of u leads to the result.

Before stating and proving our regret upper bound for Algorithm [I] (Theorem [3.3)), we require a
second technical lemma, whose economic interpretation is that the retailer’s net gain decreases as the
price increases, and so does the quantity that the retailer decides to buy.

Lemma 3.2. For any u € USC, the functions v* and u¥ are monotonically non-increasing.

Proof sketch (full proof in Appendix|[C). The monoton1c1ty of u* is a direct consequence of the pre-
vious Lemma The same property can be proven for u* through a derivation involving a lower
bounding, for any 0 < p1 < p2 < 1, on the product (p; — p1) (u# (p1) — u#(p2)), by exploiting
some elementary properties of u* and u#. O

Theorem 3.3. Assume that Assumptions[[.IHI.4| hold. If we run Algorithm[I|with time horizon T,
discretization parameter K := [T 1 3] and confidence parameter § := 1 , then

Ry = O(T*3).



Proof sketch (full proof in Appendix[C). The proof rests on four key ideas: 1. Although the learner
does not observe the realized reward gained when posting a price, the expected reward associated
with that price can be expressed as a function of terms that can be estimated either directly or
indirectly, 2. An initial phase can be used to estimate the terms that cannot be directly observed, 3.
The discretization error can be carefully controlled, and 4. The regret suffered during the second (and
main) phase can be managed by leveraging the feedback relative to the terms that can be directly
observed.

Step 1. Understanding the expected reward. The keystone of this analysis is rewriting the expected
reward at a price p as E[U# (p)| E[(p — C)+]| + E[I{C < p}] E[U*(p)]. Recall that the feedback

received by posting a price p at time ¢ is U} (p) and I{C; < p}. Thus, the two terms E [U#(p)] and
E[I{C < p}] can be directly estimated using the observed feedback, whereas the terms E[(p— C)) |
and E[U*(p)] cannot.

Step 2. Estimating the “hidden” terms. Algorithm spends the first K2 rounds cycling over the K
grid points po, . . . px—1 and gathering feedback samples. These samples can be used in a non-trivial
way to build high-probability, optimistic estimates of E[(p — C) | and E[U*(p)] for every grid
point p.

Step 3. Controlling the discretization error. The discretization error can be controlled by combining
our two Lemmas [3.T]and [3.2] with the Lipschitzness assumption on the supplier’s cdf, obtaining, for
any j € {0,..., K} and any p € [pj, p;j+1], that ‘f(p) - f(pj)‘ =0(%).

Step 4. Estimating the “observable” terms. In the second (and main) phase, Algorithm [T|exploits the
optimistic estimates of the “hidden” terms built in the initial phase, putting them together with natural
UCB estimates of the “observable” terms that are built sequentially. This combination provides
high-probability guarantees for the estimator §;_; maintained on Line [ of the algorithm, uniformly
across all points in the grid. More precisely, with probability at least 1 — 4, it holds that, for all

§€{0, o, K} f(p5) < Ge-1(3) < f(pj) +164/21n (35T / min(y/N;(t — 1), K).

Putting everything together. Combining the four steps above, one can prove that the regret can be
upper bounded as follows

T KT T
_ 2 /
RT—O<T§+K +K+ 10g<6><K+ KT))

which, plugging in the values of K = (Tl/ 3l and 6 = %, yields the desired result. O

4 Optimality of Algorithm

In this section, we show that, up to logarithmic terms, the performance of Algorithm [I]cannot be
improved.

Theorem 4.1. Assume that Assumptions hold. Then, the worst-case regret of any algorithm
satisfies
Ry = Q(T%3) .

Proof sketch (full proof in Appendix|D)). The key insight to obtain this result is that our setting is a
proper generalization of repeated bilateral trade (we prove this formally in Appendix [A)), a setting
where the retailer’s decision is restricted to quantities Q¢ € {0, 1}, where Q; == I{P; < B;} and B;
is the retailer’s private valuation for the good on sale. In particular, we show that repeated bilateral
trade can be seen as a particular instance of the RMINP when the retailer’s utility function Uy is a
linear function from [0, 1] to [0, 1] with slope B;. Once this reduction has been established, we can
leverage tools from bilateral trade to obtain the desired lower bound. O

As we mentioned in the proof sketch of Theorem 4.1} the RMNP is a proper generalization of the
better-understood repeated bilateral trade problem. Consequently, our algorithm and upper bound
in Section [3|apply to the bilateral trade problem too, yielding near-optimal guarantees in this more
restrictive case as well. We remark that it is typically not true that an algorithm with near-optimal
guarantees in an online learning problem is also near-optimal in all special cases of the general



problem because, in general, algorithms tailored to special cases can exploit this knowledge to obtain
better performance. Theorems [3.3]and [4.1] show that, instead, our Algorithm [I]automatically adapts
to bilateral trade, retaining its near-optimality.

5 Necessity of assumptions

The reader may wonder whether Assumptions [I.THI.4]are necessary for learnability. In this section,
we present a strong negative result showing that the learning problem becomes unlearnable if even
one of these assumptions is violated, regardless of whether the other three still hold.

Theorem 5.1. Assume that at least one of Assumptions does not hold. Then, even if the
remaining three hold, the worst-case regret of any algorithm satisfies

Ry = Q(T).

Proof sketch (full proof in Appendix[E). The four points are proved separately. For each one, we
build a family of “hard” instances, each satisfying exactly three of the four Assumptions[T.THI.4] We
then show that every algorithm suffers linear regret in at least one instance of this family. O

6 Experiments

In this section, we empirically validate our theoretical results by simulating a variety of supplier cost
distributions and retailer utility functions. Our goal is to illustrate the practical effectiveness of our
algorithm and the necessity of Assumptions 1.4

To validate our theoretical upper bound, we evaluate the regret of Algorithm [T]across several supplier
cost distributions designed to represent realistic mediated market conditions. Firstly, we use the
Uniform(0, 1) distribution as a neutral baseline for our experiments. Then, to model markets where
low-cost suppliers are prevalent but occasional high-cost suppliers exist, we consider two right-
skewed distributions: a Beta(a = 2, 8 = 5) and a Log-Normal(y = —0.5, 0 = 1) truncated to [0, 1],
with the latter assigning more probability to high-cost suppliers. Finally, to represent markets with
two distinct tiers of suppliers, we include a bimodal mixture 0.75 - Beta(2,5) + 0.25 - Beta(5, 2),
which creates a majority group of low-cost suppliers and a smaller, higher-cost group.

We also consider two realistic and prevalent families of retailer utility functions. Firstly, we model
satiable demand through the capped-linear utility function U, ;(¢) = min{ag, ag}, where the
retailer’s utility grows at a constant marginal rate a € [0, 1] until the quantity purchased reaches the
saturation threshold g € [0, 1], after which purchasing additional goods generates no further benefit.
For our experiments, we draw a from a Beta(5, 2) distribution and ¢ from a Beta(2,2) distribution.
In this scenario, retailers generally place a high value on initial purchases until inventory reaches a
moderate level, at which point acquiring more goods yields no extra value to the retailer.

Secondly, we model diminishing marginal returns using the exponential utility function Uy (q) =
(1 —e™*) /X, where A > 0 determines the overall valuation level. In this case, the marginal
gain from purchasing additional goods decreases progressively as the quantity increases. For our
experiments, we draw A from a Log-Normal(0, 0.5) distribution, resulting in retailers whose initial
marginal valuations are generally moderate and whose marginal benefits decline smoothly as the
quantity purchased increases.

Note that all supplier and retailer distributions described above satisfy Assumptions|I.THI.4] meaning
that we expect that Ry = O(T?/3) by Theorem

As expected, Algorithm[I]behaves according to the theoretical guarantees we established across all
the combinations of supplier and retailer distributions described above (see Figure E] While the
regret remains similar across seller distributions for a given utility, the capped-linear utility appears
to have a moderately lower growth rate in regret than the exponential utility.

We utilize the distributions defined in the proof of Theorem[5.1]in Appendix [E]to illustrate the linear
lower bounds empirically. In the proof sections corresponding to Assumptions [[.2]and[T.4] we relax

3For reference, we ran our experiments on a MacBook Pro with an M1 Pro chip (10-core CPU, 16-core GPU)
and 16 GB of RAM. With the given configuration, each plot takes at most around 3 minutes to generate.



Regret over Time for Different Seller Regret over Time for Different Seller Regret over Time when Lifting
Valuations with Capped-Linear Utility Valuations with Exponential Utility Assumptions 1.1-1.4

Uniform - Uniform - Lift Assumption 1.1
20000 Beta e 20000 Beta e 1600001 ——- 7/24 Lower Bound
—— Trunc Log-Normal . —— Trunc Log-Normal . Lift Assumption 1.2
—— Beta Mixture —— Beta Mixture < 140000 T/24 Lower Bound
=== Theorem 3.3 Upper Bound === Theorem 3.3 Upper Bound —— Lift Assumption 1.3
’ 15000 ’ 120000 { === T/10 Lower Bound
—— Lift Assumption 1.4
100000 { ——- T/5000 Lower Bound

15000

10000 10000 80000 1

Regret
Regret
Regret

60000

5000 5000 40000 |

20000 4

0

0 200000 400000 600000 [ 200000 400000 600000 0 200000 400000 600000
Round Round Round

Figure 1: The x-axis represents the time horizon T, and the y-axis represents the regret Ry. Each
curve shows the mean regret over 30 random trials, with the shaded bands around the curves repre-
senting the 95% confidence intervals on the regret computed under the normality assumption. The left
and center plots illustrate the algorithm’s performance across various supplier cost distributions under
capped-linear and exponential retailer utilities, respectively. They include the theoretical upper bound
from Theorem [3.3](scaled down for visualization). The right plot shows the algorithm’s performance
when each of the assumptions is removed, using the distributions from the proof of Theorem[5.1]in
Appendix [E] along with their lower bounds.

both assumptions in turn and construct two environments such that any algorithm will suffer linear
regret under at least one of them. We sample from the first environment in each pair to generate the
empirical results. For Assumption[I.1] the proof constructs two families of adversarial environments,
adapted from those in Assumption[I.2] and shows that each family’s worst-case regret is at least as
large as the regret in the corresponding Assumption [I.2]environment. Hence, we select an adversary
from the first family to generate the empirical regret of Algorithm [I] with respect to a sequence of
supplier costs and retailer utility functions that is not i.i.d. For Assumption [I.3] the proof defines an
infinite family of environments with non-Lipschitz supplier cost cdfs, showing that every learning
algorithm suffers linear regret under at least one. Thus, we select a fixed environment from this
family and display its regret in Figure|l} As expected, in each of the four configurations where one of
the Assumptions [T.THI.4]is lifted, the regret of Algorithm[I]grows linearly (see Figure[T).

7 Conclusions, limitations, and future directions

Our paper explores a repeated version of the mediated newsvendor problem. After proving that the
mediated newsvendor mechanism is incentive compatible, individually rational, and budget balanced,
we provide a comprehensive analysis of the repeated mediated newsvendor problem consisting of
matching upper and lower regret bounds of order 7%/3 under four key assumptions, along with
impossibility results if any of the assumptions are removed.

Our research encourages further exploration of this setting. A minor limitation of our work is that our
regret guarantees in Theorem [3.3]are tight up to logarithmic factors, hence further research is needed
to determine the precise upper or lower bound. Additionally, one could investigate a fair variant of
this setting in the spirit of Bachoc et al.|[2024]], where the instantaneous objective of the learner is the
minimum between the supplier’s and retailer’s utilities rather than their sum. A further avenue could
be to explore a contextual setting where a context vector is available to the learner at each round,
to capture shared shocks (e.g., seasonal effects) that influence both suppliers and retailers. Another
interesting extension could be to examine a weakly-budget balanced version of this setting where
the learner can post two potentially distinct prices to the retailer and the supplier. A final intriguing
line of research would be to consider a bargaining mechanism for the supplier where, instead of
simply accepting/rejecting the proposed trading price, they are allowed to counter. We leave all these
interesting directions to future research.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and introduction are supported by theorems
and formal proofs in the main part and appendix of this paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section [
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Theorems [2.1] [3.3] f.1]and [5.1] and corresponding proofs.
Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the Experiments section (Section [6), we run an implementation of Algo-
rithm|[T] (as presented in Section[3)) over fully specified and reproducible instances.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the code and explain how to run it.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All experimental details are described in Section [6]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All experimental details are described in Section [6]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All experimental details are described in Section [6]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in this paper fully conforms to the NeurIPS Code of
Ethics. There are no ethical concerns related to data collection, experiments, or other aspects
of the work, as it focuses primarily on theoretical analysis.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on theoretical advancements in sequential decision-making
and does not have direct societal applications. As such, it does not explicitly discuss potential
positive or negative societal impacts. The work is foundational in nature and does not involve
technologies that could be misused or present ethical concerns in its current form.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper focuses on theoretical algorithmic advancements in online learning
and does not involve the release of models, data, or other resources that could pose risks
for misuse. Therefore, no safeguards are necessary, as there is no high-risk data or models
associated with the work.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: No assets have been used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No assets have been created.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA|

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20


https://neurips.cc/Conferences/2025/LLM

A RMNP is a generalization of bilateral trade (For Section 1)

Theorem A.l. The repeated mediated newsvendor problem is a proper generalization of the repeated
bilateral trade problem.

Proof. To prove this claim, it suffices to show that any instance of the bilateral trade problem can be
mapped to an instance of the RMNP such that the feedback and reward under both environments is
identical.

To do this, consider an arbitrary instance of the bilateral trade problem, denoted by (S, B:)ien. We
define a corresponding instance (C;, U;)¢en of the RMNP as follows: Vi € N, let C; := S; and let
U; € USC be defined, Vq € [0, 1], by Uz(q) == B; - q.

First, we observe that the associated RMNP problem has the same action space [0, 1] as the bilateral
trade problem.

Next, we show that, for any posted price p € [0, 1], the learner receives the same feedback under the
instance (Cy, Up)¢en as under (S, By)en.

Suppose that the learner posts a trading price p € [0, 1] at time ¢ € N. Then, in the case of bilateral
trade, the learner observes I{S; < p} from the seller and I{p < B} from the buyer. In the
corresponding RMNP instance, the learner observes I{C; < p} = I{S; < p} from the supplier and

{1} ifp< B,
U/ (p) € argmax (Uy(q) — p- q) = argmax (B, - ¢ —p-q) = { {0}  ifp > By
q€[0,1] q€[0,1] [0,1] ifp= B,

from the retailer. If we assume that in the case of a tie (i.e., B; = p), the retailer selects the maximum
quantity possible, namely 1, then the observed feedback is precisely

1 ifp< By
U7 (p) = max | argmax (U, —p- :{ ) =I{p < B;}.
¢ (p) <q§[0,1] (Ueq) —p Q)> 0 ifp> B, {p < Bi}

Thus, the feedback received under (Ct, Uy )ten is identical to that received under (St, B:)ten.

Finally, we show that the reward function under (Cy, Uy );en is the same as the reward function under
(St, Bt)ten.

Fix any p € [0, 1] and any ¢ € N. In the case of the bilateral trade problem, the reward function under
(St, Bt)ten is defined as

GFT(p,Si, By) = (By — S¢) I{ Sy < p < By}
In the case of the RMNP, the reward function under (C}, U;)¢en is defined as

9(p.C,U) = ((p = C) - UF () + U7 () - H{C: < p}.
Now, for every p € [0, 1], observe that
Ui (p) = Ut (Ut#(p)> —p-Uf(p) =B - U (p) —p- U () = (B: — p) {p < By}

Hence,
9(p,C,U) = ((0 = C) - UF () + UF (9)) - T{C1 < p}
=((p—=S)Hp < B} + (B, —p){p < B;}) - I{S; < p}
= (B — Si) {p < B} I{S; < p}
(Bt — St) I{S: <p < B}
= GFT(p, St, Bt)

Therefore, the reward function under (Cy, Uy):en is identical to that under (S, By)ien. Since
(St, Bt)ten is an arbitrary instance of the bilateral trade problem, it follows that the bilateral trade
problem is a special case of the RMNP. Equivalently, the RMNP is a proper generalization of the
bilateral trade problem. O

21



B Missing details for Section 2]

Theorem B.1 (Theorem[2.1] restated). The mediated newsvendor mechanism is incentive compatible,
individually rational, and budget balanced.

Proof. Let c be the supplier’s cost, u the retailer’s utility, p the proposed trading price, b the decision
disclosed by the supplier at price p (1 if accepted, O if refused), and g the quantity disclosed by the
retailer at price p.

Incentive Compatibility. We begin by proving that the mediated newsvendor mechanism is incen-
tive compatible.

* Supplier’s incentive. Consider the supplier’s possible decisions:

If b = 0, the supplier gains nothing. However, if ¢ < p, the supplier could achieve positive

gains by accepting the trade, i.e., by reporting b = 1. Hence, refusing the trade when ¢ < p
can only decrease the supplier’s net utility.

Ifb = 1, the supplier’s utility is p — ¢, which is negative when p < c. In contrast, by refusing
the trade (i.e., reporting b = 0), the utility is zero. Thus, accepting a trade when p < ¢ can
only decrease the supplier’s net utility.

Finally, if p = c, the supplier is indifferent between accepting and refusing the trade, as both
yield zero utility.

Therefore, reporting truthfully, i.e., b= I{c < p}, is a dominant strategy for the supplier.

* Retailer’s incentive. Next, we show that no deviation from ¢ = u*(p) improves the
retailer’s utility. By definition:

u (p) € argmax(u(q) —p- q).
q€[071]

Thus, for any deviation § # u* (p), we have:
w(@) —p-q < u(u?(p)) —p-u¥(p).

Additionally, the retailer’s choice of quantity ¢ does not affect the supplier’s acceptance
decision, which depends solely on the mediator’s chosen price p. Therefore, reporting any ¢
that deviates from the truthful choice u# (p) can only decrease the retailer’s utility.

Individual Rationality. Next, we show that the mechanism is individually rational for both parties.

* Supplier’s rationality. The supplier’s net utility when a trade does not occur (p < ¢) is
zero, while when a trade does occur (¢ < p), their net utility is:

(qp — qo)l{c < p} = q(p — )l{p — ¢ 2 0} > 0.
Thus, the supplier never incurs negative utility.

* Retailer’s rationality. Since the retailer selects quantity:

u#(p) € argmax(u(q) —p- q),
qe[ovl]
it follows that:
u(u?(p)) —p-u¥(p) > u(0) —p-0 =wu(0) >0

Thus, the retailer also never incurs negative utility.

Budget Balance. Lastly, we observe that the mechanism is budget balanced: the total amount the
retailer pays is exactly the amount transferred to the supplier. Specifically, the supplier receives
precisely the retailer’s payment p - u (p).
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C Missing details for Section 3]

Lemma C.1 (Lemma Restated). If u € USC, then, for any selection of u™ and any 0 < p; <
po < 1it holds that

u*(p1) —u*(p2) = /p2 u(N)dX .

1

Proof. This is a corollary of the celebrated Envelope Theorem [Milgrom and Segall |2002]]. For
completeness, We report a version of this result as Theorem [F.1]in Appendix [F Using the notation
from Theorem | define the function f: [O 1]2 — R by (¢, p) — u(gq) — pq. We observe that, for
every p € [0, 1], the function q — f(q,p) is upper semi-continuous (being the sum of two upper
semi-continuous functions). Furthermore, the function (¢q,p) — 0,f(¢,p) = —q is continuous.
Hence, for any selection z°: [0, 1] — [0, 1] satisfying, for all p € [0, 1],

z°(p) € argmax f(q,p),
qE[O,l]

the function V': [0, 1] — [0, 1], p = max,eo,1) f(g, p) satisfies, for all p € [0, 1],

Vip /af J,A) dA

The conclusion then follows by observing the following: for every A € [0,1], we have
Opf(z°(N), A) = —°(N); for every p € [0, 1], we have u*(p) = V(p); and for every p € [0, 1], u#
is a selection satisfying u™ (p) € argmax,co.1) f(¢,p) - O

Lemma C.2 (Lemma Restated). For any u € USC, the functions u* and u? are monotonically
non-increasing.

Proof. From Lemma forany 0 < p; < po < 1, we have that u* (p1)—u*(p2) = f;”f u#(\) dX >

0, where the inequality follows from the non-negativity of u#. This directly implies that u* is
monotonically non-increasing.

Now, to show that u# is monotonically non-increasing, consider any 0 < p; < p2 < 1 and let
¢; := u¥(p;) fori = 1, 2. Then,

(P2 —Pl)(Q1 - QZ) = (U(QQ) - p2CI2) - (U(Ch) —pQQ1) + (U(Q1) - P1(I1) - (U((h) - p1QZ)
= max (u(q) — p2q) — (u(q1) — p2q1) + max (u(q) — p1g) — (u(q1) — P1g1)

q€[0,1] q€(0,1]
>0 >0
>0,
and the conclusion follows upon dividing by po — p; > 0. ]

Theorem C.3 (Theorem[3.3] Restated). Assume that Assumptions[I.IHI.4hold. If we run Algorithm|[I]
with time horizon T, discretization parameter K = le/ 3] and confidence parameter § = 1 , then

Ry = O(T*3).

Proof. Define, for any p € [0,1], f(p) := E[g(p, C,U)]. Recalling Assumptlon | for any time
horizon T' € N, we define the pseudo-regret R suffered by a sequence of prices P ., Prupto
the time horizon 7' € N as

T
Ry = tz_:l (pzt[g?l] fo)—f (Pt)> :

Then, after a straightforward application of the Freezing Lemma we obtain that Ry = E [Rr].
This observation suggests studying the pseudo-regret to prove the regret bounds.

To prove the theorem, without any loss of generality, we may assume 7" is sufficiently large. Specifi-
cally, we notice that the crude bound 7" > 5 - 107 suffices for the following calculations. We leave
the optimization of the involved constants to the interested reader.
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Let K € Nwith2 < K and K? < T. We may assume that (Cy, U;)sen is generated in the
following way. Consider two i.i.d. families (Cy 1)en,kefo,1,.... k—1} and (U j)ten jefo,1,.... K —1}
that are independent of each other. For every ¢t € N and every j € {0,1,..., K — 1}, the distribution
of the pair (Cy ;, Uy, ;) is identical to the distribution of (C, U). Attime ¢t = 1, we set

(C1,U1) = (Cny, 0),11 UNy, (0),11)-
Then, inductively, at each time ¢+ 1 € N, when the algorithm selects the index I;; € {0,1,..., K —
1}, we set
(Ce41,Ui11) = (Cny, ()41, T0s1 UN1, (841,140 )-
By induction, the sequence (Ct, U )i is well-defined. Moreover, this sequence is i.i.d., and the

distribution of (Cy, Uy) coincides with that of (C, U) for every ¢ € N.
Now, notice that by applying Assumption|[1.2] for every p € [0, 1], we obtain that

f(p) =E[U#(p)|E[(p — C)T] + E[I{C < p}|E[U*(p)] -

Then, for any j € {0,1,..., K — 1}, if p € [p;, pj+1]. leveraging Lemma 3.2} we have that

f(p) = f(p;) =E[U*(p)] (E[(p—C)"] —E[(p; — C)T])
+E[U#(p) — U*(p))|E[(p; — C)7]
<0

+ (E[I{p; < C < p}]) E[U*(p)]

E[I{C < p;}] | E[U*(p) — U*(p;)]
<0

14+m

< (p—pj) +mp—p;) < x

where in the second-to-last inequality we used Assumption[I.3] and in the last inequality we used the
factthatp — p; < pjt1 —p; = 1/K.

Hence, for each k € {0,1,..., K — 1}, by setting Ay = max;eqo,1,.... k13 f(p;) — f(px) and
noticing that sup,c(o,1) f(p) — f(F4) < 1, we have that

T
Rr<K'+ Y <sup f(p)—f(Pt)>

t=K241 p€[0,1]

(1+m
<K? 4+ Z (Je{m ____ X 1}f(pj)—f(pzt)>

t= K2+1

:K2+(1+m Z Ap, .

t=K2+1

To declutter the notation, for each j € {0,1,..., K — 1}, define o; := E[U#(pj)], B = E[]I{C <
pi}]. er =E[U*(p;)], and ¢; == E[(p; — C)T]. Notice that, for every j € {0,1,..., K — 1}, we
have that

f(pj) =aj ¥+ Bj -5 .

Recall that for any u € USC and price p € [0, 1], u# (p) € argmax,c (o 1 (u(q) — p - q), 0 we can

consider the family (Ufj)teN,je{O,l,.“,K—l}~
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Now consider the “bad” events—events in which the estimators we defined are far from the value
they aim to estimate—defined, for any § € (0,1) and j € {0,1,..., K — 1}, by

K K-1

1
Epsj = ’ﬁ Z Z U;fi(Pi) - @j’ > (K6 s
k=1 i—j
1 K j—1
Eypsj = ‘ﬁ > HCri <pi} - 1/)3“ > (K. 5
k=1 i=0
and forany § € (0,1),5 € {0,1,...,K —1},and n € N, by
1 n
Eabn,j = {'n > U;fj(pj) — | > fT,K,é(n)} )
k=1
1 n
EB.6m,g = { - ;H{Ck,j <pj}—B = €T,K,5(n)} :

Moreover, for every § € (0, 1), define the global “bad” event

K-1 T
&= <Scp,5,jU5w,a,jU U (Ea,(;,n,jugﬁ,(;,n,j)) :

=0 n=K
Now, we make two crucial claims. First, for every § € (0, 1), we have that
P[&] <4 . (1)

Second, for any § € (0, 1), when we are in the complement of the global “bad” event &, we have
that, for every j € {0,1,...,K — 1} andeveryt € {K?* +1,K>+2,..., T},

16,/21n (3£T)
min (/AN (= 1), K) ?

F(p;) < gi-1(4) < f(pj) +

whenever ,
1
§ > 8K max (Te*K/S,e*ﬂK/?*l) ) 3)

“2111(81;()21—&—1/21n(8§(>. )

To aid readability, we defer the proofs of these two claims until after the end of this proof.

and

Now, when we are in the complement of the global “bad” event s, assuming that conditions [3] and 4]
hold, it follows from Equation (2)) that for every t € {K? + 1, K? +2,...,T},

fpj) < max  gi-1(j) = gi—1(14)

max
je{0,1,...,K—1} j€{0,1,....K—1}
/ 8KT

min ( N, — 1),K> ’

A, < 16,/21n (3£T) |
min (/N (F= 1), K)

Thus, when we are in the complement of the global “bad” event &, and conditions |3| and|§|hold, we
have that

< f(pr,) +

and consequently,

T K-1 T
D> A= > A=k}
t=K2+1 k=0 t=K2+1

25



where the last inequality follows from Jensen’s inequality. Hence, noticing that Ry < T', when[3]and
Elhold, we conclude that

Rr = E[RT] = E[RTH&S] + ]E[RT]L%]

< TPEs) + K + d+mT +164/21In <8KT> (T - 2@)
K 5 K
(1+m)T

8KT\ [T
<Té+ K2+~ +164/2In| — ) [ = +2VKT ) .
<T§—+ + I + 16 n( 5 ) (K—i— )

Now, if we set K == [T/3] and § = =, recalling that T > 5 - 107, we have thatand@hold, and
the conclusion follows by simple estimations.

To conclude the proof of Theorem [3.3] we now present the proof of the two missing claims (I)) and
that we used in the proof of Theorem
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Proof of claim (). Foranyt € {K?+1,K?+2,...,T}andany j € {0,1,..., K — 1}, we have
that

1 K K-1
72 Z Z Uk;)z(pl) QO
k=1 i=j
1 K K-1
QZZUI;#Z pz (pj)]
=1 i=
K K-1 Pi+1 Pi+1
:%Z (/ U, (ps) dA — IEI[/ U0 d)\D
k=1 i=j Pi
K K-1 Pi+1 Pi+1
:%Z (/ U, (p) dA — E{/ U, (ps d)\D
k=1 i=j pi
K K-1
1 Pi+1 pz+1
+EZ > (E [/ UL (pi d/\} E[ U,i(A)dAD
k=1 i=j i
K K-1 ]
1 Pi+1 pz+1
:KZZ(/ U (pi) dX — IE[ Uz (pi) d)\D
k=1 i=j Pi Pi
K—-1 Dit1
| Y [ 0r ) - vt ) | = 0
i=j Pi

Additionally, since U# is monotonically non-increasing (see Lemma(3.2)), using a telescopic argument,
we have that

=

o
IN

M

ﬁ\

-1 Pi+1

(U*(p:) = U (X)) dA

i

=
L

Pit+1

(U#(pz‘) - U#(pi-i-l)) dA

e

&
I
<.

IA
1»\

=
L

#(p.)—U#
(U )~ U ) = LD L

=[ =

@
I
<.

It directly follows that

=
>+

—
IN

Pi+1 Pi+1 1
/ Ul (pi)d\ —E U U,jfi(pi)dAD + 2

Di

O

k=1 i=j Di

K ; ;
1 ) ) 741 # . ) i+1 # 1
=% E I{; <i} UlLi(pi) dA — E |I{j <} Ufi(pi)dA| | + 17
k=1 i=0 i pi
1
= (O) + E .
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1+ \/21n(8K/6)]
K

Ui (i) — 94| > (k| =P [(*)| >

k=1 i=j
1 1 21n(8K/5)
< > 4 v
<P |(o) + 2K + i74 1
K K-1 Pit1
= P[Z (ﬂ{j < i} / UE,(pi) d
k=1 i=0 Pi

_E |1 < i) b U}fi(pi)dAD > 21n(8K/5)] :

Pi

Noting that the last probablhty involves the sum of K? zero-mean independent [ 7 K] -valued
random variables, the previous inequality, together with Hoeffding’s inequality, implies that

2
2 ( 21n(8K/5)) 5
P&, < 2exp =—.
oo K2 2 4K

Analogously, we can prove that forany t € {K?+1,K2+2,...,T}andany j € {0,1,...,K —1},

)
P[Eys,5] < 1K

Moreover, forany n € {K, K +1,...,T}and any j € {0,1,..., K — 1}, we have that

1 n
]P)[goz,é,n,j} =P [ ﬁ Z UZ#] (pj) -y
k=1

k

S (0t 0~ E 02,0

> gT,K,&(n)]

2n1In(8KT/J)

)

where the last probability involves the sum of n zero-mean independent [—1, 1]-valued random
variables. Thus, once again by Hoeffding’s inequality, we have that

—2( 2nln(8KT/5))2 o

P[Eq.bn] < 2exp . = =7

An analogous argument, forany n € {K, K +1,...,T}and any j € {0,1,..., K — 1}, shows that

2
—2 («/Qn 1n(8KT/6)) 5
P[Es.5m,4] < 2exp n = 1RT -

Finally, using a union bound, we obtain that

K-1 T
]P)[g(;] =P U (5%57]‘ U 51/, 5,5 U U a,8n,; Y g@gmﬁ

3=0 n=K

=

_ T T
< (P[&p 53] T PEp sl + D Pleasnil Z Pl€s,6,n.5 >
n=K n=K

5 N
e <+ 2{4KT+ZK><

7=0 n=K

<.
I
o

=

which concludes the proof of claim (T). O
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Proof of claim @)). To prove claim (2], we assume from this point onward that we are in the comple-
ment of the global “bad” event £s and that COIIdlthIlSI andE]hold Forany j € {0,1,..., K — 1}
andany t € {K? + 1, K? +2,...T}, we have that

f(p;) = aj -+ Bj - ¢;

(S Ut ) vie) - (L35 e, <
= N;(t—1) +§T,K,5( i(t = K2 ZZ{ ki < Pi}+CKo

k=1 1:=0
(t Y1e ] K K-l
+ <Zk 1 Nj(t{—kfg <p;} + &5 (N, (E — 1))) . 721;1 3 UL (pi) + Cres
A:(N;(t—1
- (W + &1, (N (t — 1))) (G +Ck,5)
B;(N;(t—1
+ <]NJ(]t(—1))) +§T,K,5(Nj(t — 1))) (Fj + Ck.s)
= gt-1(J)
VU ) K j1
= < Nj(t—lg +érrs(N;(t—1) > <K2;;H{Clm<pz}+0<5>
Ny (t=1) . , K K-1
* <ZH Nj(]lt{?kl’; =P s (N (- 1)) ) kz::l > UF(pi) + Cico

< (aj +26r,k,6 (N;(t—1))) - (¥; + 2(k.s) + (B, +2£TK6(N] (t—1))) - (p; + 2K.5)
< a5 + Bjw; +8(CK6+§TK5( (t—l))) (gK,é‘f'fTKé(N'(t—l)))

16,/21n (2£T)
min (/N;(t = 1),K)

where in the second-to-last inequality, we used the fact that «;, 3;,¢;,%; € [0,1] and that
20k, 287, K,5 € [0,1] (by condltlon , and in the last inequality, we used Equation I| concluding
the proof of claim @.

< f(pj) +

D Missing details for Section 4]

Theorem D.1 (Theorem[4.1] Restated). Assume that Assumptions hold. Then, the worst-case
regret of any algorithm satisfies

Ry = Q(T?/3) .

Proof. In Appendix we show how to associate every instance (S, B;)ten of the bilateral trade
problem with a corresponding instance (C}, U;)ien of the RMNP such that, for any price posted by
the learner, the feedback and reward remain identical. Moreover, we notice that this correspondence
satisfies the following equivalences:

A. (S, Bt)ten is independent if and only if (C;, U;)¢en is independent.

B. (S:, Bt)ten is an identically distributed stochastic process if and only if (Cy, Uz )ten is an
identically distributed stochastic process.

C. Forallt € N, S; and B; are independent if and only if C}; and U; are independent.

D. Forall t € N, S; has a m-bounded density (i.e., it has a m-Lipschitz cdf) if and only if C
has a m-bounded density (i.e., it has a m-Lipschitz cdf).
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Consider the RMNP under Assumptions [[.THI.4 Suppose, by contradiction, that there exists a

learner’s strategy « that achieves a regret strictly less than ¢1'%/3 for all instances of this problem,
where ¢ > 11/672.

Now, consider an arbitrary instance of repeated bilateral trade (S, Bt ):cn, Where the sequence is an
i.i.d. stochastic process (iid) and, for every t € N, S; and B; are independent (iv) and admit densities
bounded by m > 24 (bd). By the reduction established in Appendix [A] there exists a corresponding
instance of the RMNP, denoted by (Cy, Uy )rcn. We observe that, by properties A and B, the sequence
(Ct, Ut)ten is an i.i.d. stochastic process, satisfying Assumption Additionally, by property C, C
and U, are independent for all £ € N, satisfying Assumption Furthermore, property D implies
that for all ¢ € N, C; admits an m-bounded density, which in turn implies that its cdf is m-Lipschitz;
thus, Assumption [I.3]is satisfied. Finally, by the structure of the reduction described in Appendix [A]
Assumption[I.4]is also satisfied:

(B,~1)-0 if1>B _

Vt €N, U*(l):(Bt—l)H{lgBt}:{O'l 1B =

Thus, (Cy, Uy)ten is an instance of the RMNP satisfying Assumptions 1.4} and therefore, by
assumption, « achieves a regret of less than ¢T?/3 under (Ct, Us)ten.

However, since the feedback and reward under (S, By )ten and under (C, Uy )ien are identical (as
shown in Appendix @), o must also achieve regret strictly less than ¢7"2/3 when run on the bilateral
trade instance (S;, B)ten. Since (S, Bt)teny Was chosen arbitrarily from the class of repeated
bilateral trade instances satisfying the (iid), (iv), and (bd) assumptions, this conclusion holds for all
instances in the class. This result contradicts the minimax lower bound established in [[Cesa-Bianchi
et al.l 2021 Theorem 4.4] (see Appendix [F), which states that no learner’s strategy can achieve regret
below ¢77%/3 for all instances of the repeated bilateral trade problem satisfying these assumptions.

Thus, no learner’s strategy can achieve regret strictly less than ¢1'>/3 across all instances of the
RMNP satisfying Assumptions Consequently, the worst-case regret of any algorithm satisfies
Ry = Q(T%/3).

O

E Missing details for Section

Theorem E.1 (Theorem[5.1] Restated). Assume that at least one of Assumptions does not
hold. Then, even if the remaining three hold, the worst-case regret of any algorithm satisfies

Proof. We prove this statement by showing that relaxing any one of the four assumptions, while
maintaining the other three, leads to linear regret.

Relaxing Assumption[1.2] We first show that any algorithm suffers linear regret when Assump-
tion is relaxed )| As detailed below, this is due to a lack-of-observability phenomenon: we
construct two environments, g and v, which are indistinguishable from the learner’s perspective but
have distinct optimal and (highly) suboptimal regions.

To do this, we let {u, }¢[0,1] be the family of utility functions defined, for every = € [0, 1], by

uz(q) = 2l{g =1}.

Observe that each utility function u,, is uniquely determined by the value x = u,(1).

SThis proof is an adaption of the proof sketch of Theorem 4.5 in|Cesa-Bianchi et al.| [2021].
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We then define the following product sets in the space of cost-utility pairs:
[ 1 (3 1

0, x * R ’
5] < qmreoal)
g 3 X Uyt T € Z 1

_87 8 x - 87 )
(4 5

:5 6
Rg— _8,8:| X{umxe _878:|}

along with their mirror reflections across the anti-diagonal, defined by the transformation 7' :
[07 ]-] X {ur}xE[O,l] — [Oa ]-] X {ux}zE[O,l]a (Ca um) — (1 - xvulfc):

Ry=T(R1), Rs=T(Rs), Rs=T(Rs).

Ry =

Ry =

We let rq, ..., ¢ denote uniform (product) measures on Ry, ..., Rg, respectively, and characterize
our two environments by

1 1
W= g(f,~1+r2+r3), u::uoT:§(7’4+T5+7'6)~

We now consider a sequence of supplier costs and retailer utilities (C,U), (Cy,Uy), (C2,Uz), ...
drawn from either p or v.

When the underlying distribution is p, the expected gain from trade p — E [g (p,C,U )] is uniquely
maximized at p = 2, and if p € [1,1], then

1

E {g (Z’C“ Utﬂ ~E[g(p.C. U] > 5.

—_

Symmetrically, when the underlying distribution is v, the expected gain from trade is uniquely
maximized at p = 2, and if p € [0, 5], then

E {g (g,Ct,Utﬂ —E[g(p, C, Uy)] > %

All that remains is to show that, for every price p € [0, 1], the feedback (I{C < p},U#(p)) =
(I{C < p},I{p < U(1)}) is indistinguishable under the distributions p and v.

We can notice that the feedback observed indicates which block the pair (C, U) lies in:

Boo(p) = {(¢,u) : ¢ > p, u(1) <p}, Boi(p) = {(¢,u) : ¢ > p, u(1) = p},
Bio(p) = {(¢;u) - ¢ <p, u(l) <p}, Bu(p) = {(c;u) : ¢ <p, u(l) > p}.

By direct verification,

T(Boo(1 —p)) = Boo(p), T(Bo1(1 —p)) = Bio(p),
T(Bio(1 —p)) = Boi(p), T(B11(1 —p)) = Bui(p).

Hence, for any (i, j) € {0,1}2,
v(Bij(p)) = N(T_l(Bij(p))> = p(Bji(1 —p)) = p(Bi(p),
where the last equality follows by the symmetry of the rectangles. Consequently, the distribution of

the feedback is identical under both g and v.

Thus, any learner’s strategy must perform sub-optimally in at least half of the rounds within one of

the two indistinguishable worlds. Since the loss suffered in each sub-optimal round is at least %, the
1_ 1

expected per-round regret is at least % 15 = 91

Therefore, we conclude that the regret of any learner’s strategy is at least iT.
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Relaxing Assumption We now adapt the above construction to show that linear regret is
inevitable when Assumption is relaxed)’| Specifically, we introduce two families of oblivious
adversarial environments, F,, and J,,, each generating sequences of independent (but not necessarily
identically distributed) cost-utility pairs. We then show that the worst-case regret suffered by any
learner’s strategy under environments from F,, or F,, is at least as large as the regret suffered under
p or v, respectively.

Recalling that, for every 7 = 1, ..., 6, the distribution 7; is defined as the uniform measure on the
product set R;, we now construct the two adversarial families:

T T
‘FIJ' = {® ri, - (it)tE[T] S {1,2,3}T}7 Fu = {® ri, - (it)tG[T] S {4,5,6}T}

t=1 t=1

Now, for any learner’s strategy, the regret suffered against the worst adversary in J,, is lower bounded
by the (expected) regret the learner suffers when the adversary is selected uniformly at random from
the family F,,. Choosing this adversary uniformly at random from F,, is equivalent to independently
and uniformly selecting each index i; from {1,2,3}. This yields a sequence of cost-utility pairs
(C1,U1),(C5,Us), ... whose marginal distribution at each round is precisely p.

Hence, the maximum regret any learner’s strategy suffers from an adversary in F, is at least as large
as the regret suffered under the environment p.

Analogously, one can show that an adversary chosen uniformly at random from F,, is distributed
according to v. Thus, the maximum regret any learner’s strategy suffers from an adversary in F,, is
at least as large as the regret suffered under the environment v.

Combining these results, we can conclude that the regret of any learner’s strategy is at least iT.

Relaxing Assumption[I.3] To show linear regret when lifting Assumption[I.3] we construct an
infinite family of i.i.d. environments,

{Nr}xe[%%]a

and show that any learner’s strategy suffers linear regret under at least one environment in this family

23
575

ug(q) =al{g =1},  wi(q) =I{g=1}.
Then, letting §,. be the Dirac measure on xz, we set
My = (% So + %51) ® (%% + %5u1).

Under the environment .., the expected gain from trade is uniquely maximized at p = z, and if
p # x, we have that

To do this, for every = € [ } , we define two [0, 1]-valued utility functions

min{z,1 —x 2 1
E[g(x,C, U)] —E[g(p,C,U)] = {f} ft i = TO, (*)
where the inequality follows from the fact that z € [%, %] .

Since this environment is stochastic, without any loss of generality, it is enough to show that
deterministic algorithms suffer linear regret. Fix an arbitrary deterministic algorithm and a time
horizon T' € N. Let pq, ..., pr denote the sequence of posted prices. Since the interval [%, %] is
uncountable, there exists some

= [%, %] \{p1,...,p1}
Under the environment g, the price x’ is never posted. Thus, for any sequence of supplier costs and
retailer utilities (C1, Uy), (C2,Us), ... drawn from g/, inequality (1) holds at every round ¢ € [77],
implying that
1

E[g(q;/’ Ct7 Ut)] — E[g(pt, Ct, Ut)] > TO

Summing over t = 1, ..., T yields a regret of at least %T.

"This proof is an adaption of the proof of Theorem 3 in|Cesa-Bianchi et al.|[2024].
8This proof is an adaption of the proof of Theorem 4.6 in|Cesa-Bianchi et al.[[2021].
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Relaxing Assumption Finally, we show that no learner’s strategy can achieve sublinear worst-
case regret without prior knowledge of E[U*(a)] for some price a € [0, 1], even when the first three

assumptions [T.THI.3]still hold.

Define the two functions

f:10,1] = [0,1],
g —(q—0.7240.5,
h:]0,1] — [0,1],

g —(q—0.7)2 +0.65.
Then, letting A be the Lebesgue measure on [0, 1], we define
pi=AR0f, Vi=A® .
Suppose that the sequence of supplier costs and retailer utility functions (C,U), (Cy,Uy),
(Cs,Us), ... is drawn i.i.d. from p or v.
When the underlying distribution is p, the expected gain from trade p — E [g (p, C, U)] is uniquely
maximized at p = %, andifp € [%, 1} , then
Elg(2.cot)| —Elop,CoU)] >
g 7t Ut g\p, L, Uy < 9500°
On the other hand, when the underlying distribution is v, the expected gain from trade is uniquely
maximized at p = %, and if p € [0, %] then
13 3
E —,C,Us || — E C,Up)| > ——.
I:g<147 ty t):| [g(pa ty t)] = 4000

Under both distributions p and v, we have U#(p) = 0.7 — & for every price p € [0, 1]. Hence, the

feedback (I{C < p},U#(p)) is identical under both distributions, making the two cases indistin-
guishable to the learner.

Thus, any learner’s strategy must perform sub-optimally in at least half of the rounds within one
of the two indistinguishable worlds. Since the loss suffered in each sub-optimal round is at least
min (52655, 705 ) the expected per-round regret is at least & - min (5555, 7655) = 5065+

Therefore, we conclude that the regret of any learner’s strategy is at least ﬁT.

F Other results

The following is a direct consequence of Corollary 4 of Milgrom and Segall [2002].
Theorem F.1 (Envelope Theorem, Milgrom and Segal[2002). Assume that f: [0,1]% — [0,1] is such
that

s forall p € |0,1], we have that the function q — f(q,p) is upper semi-continuous.

* forall q € [0, 1], we have that the function (g, p) — Oy f(q,p) is continuous.

then, if we define

V:[0,1] —[0,1],  p+— max f(q,p)
q€(0,1]

and z°: [0,1] — [0, 1] is any selection such that for any p € [0, 1],

z°(p) € argmax f(q,p)
qe[ovl]

we have that x° is integrable, and, for any p € [0, 1],



For completeness, we also report the freezing lemma (see, e.g.,/Cesari and Colomboni| [2021]]) that
we use in the proof of Theorem [3.3]to convert pseudo-regret guarantees into regret guarantees.

Lemma F.2 (The freezing lemma). Ler (Q2, F,P) be a probability space. Let (V, Fy) and (W, Fyy)
be two measurable spaces. Let f : V x W — [0,400], V : Q = V, W : Q — W be three
measurable functions. If V and W are P-independent, then

E[f(v7 W) | V] = [E[f(va W)]]u:V
P-almost surely, where the right-hand side is the composition

[ELf (0, W)ll,ov = (v = E[f (v, W)]) o V.

Moreover, we report the repeated bilateral trade regret lower bound theorem [Cesa-Bianchi et al.,
2021}, Theorem 4.4] that we use in the proof of Theorem4.T]to establish the optimality of Algorithm|I]
for the RMNP.

Theorem E.3 (Theorem 4.1, |Cesa-Bianchi et al.|[2021). In the realistic-feedback model, for all
horizons T, the minimax regret 7. satisfies

Ry :=inf sup Rp(a) > cT?3,
o (5,B)~D

where ¢ > 11/672, the infimum is over all of the learner’s strategies «, and the supremum is over all
distributions of the seller S and buyer B such that:

(iid) (S1,B1),(S2, B2),- -+~ (S, B) is an i.i.d. sequence;
(iv) S and B are independent of each other;
(bd) S and B admit densities bounded by m > 24.
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