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Abstract
Question Answering (QA) is a widely-used framework for developing and evaluating an intelligent
machine. In this light, QA on Electronic Health Records (EHR), namely EHR QA, can work as
a crucial milestone towards developing an intelligent agent in healthcare. EHR data are typically
stored in a relational database, which can also be converted to a directed acyclic graph, allowing two
approaches for EHR QA: Table-based QA and Knowledge Graph-based QA. We hypothesize that
the graph-based approach is more suitable for EHR QA as graphs can represent relations between
entities and values more naturally compared to tables, which essentially require JOIN operations.
In this paper, we propose a graph-based EHR QA where natural language queries are converted
to SPARQL instead of SQL. To validate our hypothesis, we create four EHR QA datasets (graph-
based VS table-based, and simplified database schema VS original database schema), based on a
table-based dataset MIMICSQL. We test both a simple Seq2Seq model and a state-of-the-art EHR
QA model on all datasets where the graph-based datasets facilitated up to 34% higher accuracy than
the table-based dataset without any modification to the model architectures. Finally, all datasets are
open-sourced1 to encourage further EHR QA research in both directions.

1. Introduction

Electronic health records (EHR) consist of heterogeneous data (e.g., demographics, diagnosis, med-
ications, and labs) stored typically in a complex relational database (RDB). An agent that can under-
stand EHR and perform complex reasoning is not only an advancement in AI research, but also has
great potential in practical applications such as clinical decision support, hospital administration,
and medical chatbots. For example, to obtain answers for questions such as “When was the last time
this patient was prescribed with an antihypertensive?” based on the information stored in the RDB,
both medical experts and ordinary users typically use a graphical user interface that provides limited
query assistance, or have to manually write queries such as “select count ( prescriptions.timestep
) from patients inner join admissions on patients.subject id = admissions.subject id inner join pre-
scriptions on admissions.hadm id = prescriptions.hadm id where prescriptions.drug = antihyper-
tensive”. It is laborious for both medical experts and ordinary users to write queries because in order

1. https://github.com/junwoopark92/mimic-sparql
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Figure 1: A subset of tables and their corresponding knowledge graph (best viewed in color). Rect-
angles and ellipses in the graph indicate entities and literal values, respectively. The color-
coded elements are the primary key or the foreign key linking two tables.

to obtain accurate answers, they have to exactly know the hospital RDB schema and the informa-
tion each table contains, and be proficient in the query language. An intelligent EHR machine that
understands the RDB information, the query language, and the natural-language questions (NLQ)
can remove significant burden off both experts and ordinary users who seek information from the
EHR.

Recently, the Question-Answering (QA) task has played a vital role in developing and evaluating
machine intelligence (Bordes et al., 2014; Antol et al., 2015; Seo et al., 2017; Zhong et al., 2017),
and we also aim to develop an intelligent EHR agent in a QA framework, namely EHR QA. As
for performing QA on RDB data (i.e., tabular data), translating NLQ to SQL (i.e., NLQ2SQL) has
become the main approach. This trend can also be seen in EHR QA, as Wang et al. released the
first NLQ2SQL dataset for EHR, namely MIMICSQL. The RDB, however, stores data typically
in a fragmented manner via complex schemas, in order to maximize the efficiency in large-scale
data processing and storage. Therefore, SQL has functions such as JOIN to aggregate information
scattered across multiple tables. This characteristic leads to decreased QA performance of the model
trained on NLQ-SQL pairs when the SQL samples are generated from complex schemas.

Although EHR data are typically stored in a relational database, it can be seen as a Directed
Acyclic Graph (DAG), or more specifically, a Knowledge Graph (KG) of clinical facts (see Fig-
ure 1), thus allowing two approaches for EHR QA: table-based QA and graph-based QA. A knowl-
edge graph is a multi-relational graph composed of entities as nodes and relations among them
as typed edges (e.g., John-/medication-amiodarone, amiodarone-/dosage-30ml). SPARQL, which is
one of query languages to extract information from KG, supports reasoning over multiple edges of
the KG to infer the right answer for the given question. Unlike SQL, SPARQL does not require spe-
cial functions (e.g., JOIN) to collect scattered information, as KG maintains relevant information in
a single graph. We actually confirm in the experiment that SPARQL queries is closer to NLQs than
SQL queries (Figure 4), and that even if the RDB schema becomes complex, the length of SPARQL
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queries does not increase significantly compared to that of SQL queries (Figure 3). Motivated by
these findings, we hypothesize that the graph-based approach could be the superior approach for
EHR QA, since graphs can represent relations between entities and values more naturally com-
pared to tables, which require JOIN operations. Despite such potential of NLQ2SPARQL, to our
knowledge, there has not been any prior study exploring the idea of NLQ2SPARQL for EHR QA,
and no NLQ-SPARQL pair datasets based on EHR. The goal and contribution of this work can be
summarized as follows:

• For an empirical comparison between the two, we construct both a table-based and a graph-based
EHR QA datasets based on MIMICSQL (Wang et al., 2020), an existing table-based EHR QA
dataset. We modify MIMICSQL to follow the original schema of MIMIC-III (Johnson et al.,
2016), thus building MIMICSQL* and its graph-based counterpart MIMIC-SPARQL*.

• We test the state-of-the-art EHR QA model called TREQS (Wang et al., 2020), on both MIMICSQL*
and MIMIC-SPARQL* where TREQS gained a 5.1% boost in predicting the correct relations be-
tween entities, and a 3.6% boost in predicting the correct answer.

• We carefully analyze the reason for the graph-based method’s superiority over the table-based
method, presenting histograms in which the overall length of SQLs increases when the RDB
schema becomes complex, and an experiment in which the number of correct SQLs decreases
when the number of JOINs increases compared to SPARQL.

• To the best of our knowledge, this is the first work to propose and empirically demonstrate the
graph-based EHR QA. In order to encourage further EHR QA research in both the table-based
and graph-based directions, we open-source both MIMICSQL* and MIMIC-SPARQL*.

Generalizable Insights about Machine Learning in the Context of Healthcare

This work is closely related to healthcare from three perspectives. First, the development of an agent
that can understand EHR and interact with humans in natural language can provide various conve-
niences to healthcare workers and consumers. Second, through the task of QA, we can quantitatively
evaluate how well the machine understands medical data. Lastly, by extending the table QA dataset
to the graph QA dataset, we can explore what is more suitable data structure for performing QA on
the complex EHR.

2. Background

2.1. Electronic Health Records QA

QA is a discipline in the fields of information retrieval and natural language processing, concerned
with building systems that automatically answer questions posed by humans in natural language.
In the medical domain especially, EHR QA is a research area with great potential for real-world
impact, as it provides an interface where both medical experts and ordinary users can easily query
clinical facts and statistics via natural language.

Recent QA research can generally be categorized into unstructured and structured QAs. The for-
mer mainly handles free-text, both unimodal (e.g., machine reading comprehension (MRC) datasets
(Rajpurkar et al., 2016; Nguyen et al., 2016)) and multi-modal (e.g., Visual Question Answering
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(VQA) (Antol et al., 2015; Johnson et al., 2017)). Structured QA can largely be divided into table-
based QA (Neelakantan et al., 2015; Zhong et al., 2017) and graph-based QA (Berant et al., 2013;
Yih et al., 2015). EHR generally consist of multiple sources of information such as patient demo-
graphics, diagnosis history, medication records, lab results, clinical notes, radiology images, etc.
Such heterogeneous information is usually stored in a relational database, which can also be seen
as a Directed Acyclic Graph (DAG) of clinical fact, or more specifically a Knowledge Graph (see,
for example, Figure 1). Therefore, we view EHR QA as a type of structured QA, allowing both a
table-based and a graph-based approaches.

Previously, Pampari et al. constructed emrQA, an MRC dataset based on clinical notes.emrQA,
however, focuses only on the free-text notes, thus not suitable for training machines to leverage the
structural properties of EHR. Recently, (Wang et al., 2020) used MIMIC-III (Johnson et al., 2016),
a publicly available EHR dataset, to construct MIMICSQL, a table-based (i.e., text-to-SQL) QA
dataset. However, while constructing MIMICSQL, they preprocessed the tables of MIMIC-III such
that the original schema was heavily modified. Therefore the final dataset (questions and tables) does
not reflect the complex, yet interesting structure of MIMIC-III, thus losing real-world applicability
and the value as a tool for fostering machine intelligence.

2.2. Question-to-Query Generation

To solve a structured QA, the widely used approach is a Natural Language Question-to-Query
(NLQ2Query) generation, which is a sub-task of semantic parsing. The semantic parsing aims at
translating a natural language text to a logical form, which is a formal semantic representation of
the given natural text. For various applications, it is desirable for the logical forms to be immedi-
ately executable by the applications, such as SQL queries in the database and SPARQL queries in
the knowledge graph.

Recently, NLQ2SQL generation has attracted significant attention and demonstrated success-
ful results in various applications, including WikiSQL (Zhong et al., 2017; Xu et al., 2017) for
Wikipedia, GeoQuery (Finegan-Dollak et al., 2018) for US geograpy and Spider (Yu et al., 2018)
for domain generalization. In the literature of NLQ2SQL, the standard approach is the sequence-
to-sequence (Seq2Seq) based method. Seq2Seq based methods (Sutskever et al., 2014; Dong and
Lapata, 2016; McCann et al., 2018) have an encoder and a decoder, where both components use a
sequence model such as the LSTM. More specifically, Seq2Seq based methods, which are trained
with NLQ-SQL pairs, first encode input questions into vector representations and then decode the
corresponding SQL queries conditioned on the encoded vectors.

Naturally, these successes led to the work (Wang et al., 2020) in the medical field with abundant
EHR data. Note that the wide use of medical jargons and abbreviations create significant challenge,
making it difficult to translate natural questions to the SQL form. They cause various problems
including difficult decoding and the Out-of-Vocabulary (OOV), where the model has to translate
words that are unseen in training dataset. To deal with the OOV problem, a pointer generating mech-
anism (See et al., 2017) is added to the Seq2Seq methods, where the decoder generates placeholder
tokens and copies a word from the input question to substitute the placeholder token. TREQS is
the state-of-the-art model proposed by Wang et al. for EHR QA, which uses the pointer generating
mechanism and two attention mechanisms: the temporal attention on questions, and the dynamic
attention on SQL, and attentive-copy techniques. This model is able to handle the unique challenges
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Table 1: Basic statistics of MIMICSQL* and MIMIC-SPARQL*. The values in the parentheses are from
the original MIMICSQL and its counterpart MIMIC-SPARQL.

MIMICSQL* MIMIC-SPARQL*

# of patients 100
# of Question-Query pairs 10,000
Avg. TP question length 18.40
Avg. NL question length 16.45
# of unique words in TP questions 6,696 (6,693) 6,525 (6,525)
# of unique words in NL questions 7,331 (7,329) 7,160 (7,160)
Avg. SQL/SPARQL length 44,68 (21.04) 28.98 (27.28)
Max # of INNER JOINs 5 (2) -
Max depth of graph - 5 (3)
# of triples - 173,096 (257,187)

in EHR QA and is robust to the unseen questions. TREQS demonstrated its effectiveness on the
EHR NLQ2SQL dataset (MIMICSQL).

Compared to the table-based QA where information is stored in tables, we can think of graph-
based QA where information is stored in knowledge graphs (KG). Recently, QA over KG (KGQA)
is actively studied and also cast into the semantic parsing (He and Golub, 2016; Liang et al., 2017;
Yin et al., 2018; Cheng and Lapata, 2018; Guo et al., 2018; Saha et al., 2019). As SQL is used
for retrieving information from tables, SPARQL is a popular query language used to retrieve infor-
mation in a KG. Then naturally, by modifying the NLQ2SQL framework to NLQ2SPARQL, we
can tackle the QA over KG using the well-established Seq2Seq based methods. SPARQL queries,
which does not involve collecting scattered information (i.e., JOIN in SQL), are more concise and
shorter than SQL queries for the same natural language questions. This is advantageous for query
generation because there is less possibility of error propagation in Seq2Seq framework with au-
toregressive characteristics. Thus, we assume that SPARQL may be the more suitable logical form
than SQL for the NLQ2Query task. To demonstrate this assumption, we construct NLQ-SPARQL
pairs and compare the statics of the SPARQL to that of SQL. Actually, as shown in Figure 4, when
the number of JOINs increases, which suggests the difficulty of the question, we see that the av-
erage length of SPARQL per JOIN is similar to that of the natural language question compared to
SQL. Furthermore, we evaluate the state-of-the-art EHR QA model TREQS in both NLQ2SQL and
NLQ2SPARQL settings where the model showed consistent performance increase in the latter.

3. Dataset

To the best of our knowledge, there is no existing dataset for graph-based EHR QA (i.e., NLQ2SPARQL).
In this section, we address the schema issue of MIMICSQL and create MIMICSQL* that preserves
the true structure of MIMIC-III.

3.1. MIMICSQL to MIMICSQL*

Wang et al. chose a subset of information from MIMIC-III; among the total twenty six tables, they
chose nine (Patients, Admissions, Diagnoses, Prescriptions, Procedures, Labs, Diagnosis Descrip-
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(c) mimicsql and mimic-sparql (d) mimicsql* and mimic-sparql*

(b) mimic-sparql and mimic-sparql*(a) mimicsql and mimicsql*

Figure 2: Histograms of query length for MIMICSQL, MIMIC-SPARQL, MIMICSQL* and,
MIMIC-SPARQL*. We compared the histograms of each dataset for four cases. (a) and
(b): When the schema becomes complex while following the original schema of MIMIC-
III, the length of the query in both SQL and SPARQL increases. (c) and (d): When com-
paring SPARQL and SQL between datasets of the same level, the length of the SQL is
increased significantly compared to that of SPARQL.

tions, Procedure Descriptions, and Lab Descriptions). Then they merged those nine tables into five
(Demographics, Diagnoses, Procedures, Prescriptions, and Labs) in order to simplify the informa-
tion structure, which leads to simplified SQL structure. By doing so, they compromised database
normalization, such as JOINing Diagnoses with Diagnosis Descriptions, thus causing duplicate col-
umn values in multiple rows. To collect NLQ-SQL pairs, Wang et al. (2020) first define NLQ-SQL
templates in the same manner with Pampari et al. (2018); they automatically generate the com-
plete NLQ-SQL pairs (template questions), by randomly sampling the condition values from the
five tables. However, these template-based NLQ-SQL pairs have some drawbacks such as not being
linguistically diverse as natural questions asked by humans, and being grammatically awkward or
inaccurate. To generate more natural questions, the authors refine template questions into natural
questions that a medical expert might ask by employing human annotators with clinical knowledge.
Consequently, as shown in Table 1, the natural questions has more diverse vocabulary than the tem-
plate questions, while having a slightly shorter average question length. These statistics indicate that
for the semantically same questions, the natural versions are a bit less descriptive than the template
versions, while the expression of natural versions is more diverse. Both the template version and the
natural version consist of 8, 000 samples for training, 1, 000 for validation, and 1, 000 for testing.

Although MIMICSQL can serve as a basic clinical QA dataset, their tables are unnormalized and
dissimilar from the tables used in actual hospitals. In other words, a machine trained on MIMICSQL
would not generalize well to an actual hospital environment, since it was trained in an unrealistic
problem space. Therefore, to preserve the schema of MIMIC-III, we normalize MIMICSQL tables
back to the original nine tables, following the original schema. We also modified the SQL part of
MIMICSQL’s NLQ-SQL pairs, such that the new tables and columns were correctly reflected. For
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example, in MIMICSQL, a patient’s name and age are stored in the Demographic table. However, the
original schema requires a JOIN operation to find a patient’s age by their names, since they are stored
in two separate tables, namely Admissions and Patients respectively. This modification increased the
average number of tokens of SQL from 21.04 to 44.68, due to the added JOIN operations. We denote
this modified dataset as MIMICSQL*.

3.2. Table to Knowledge Graph

Knowledge Graphs (KG) are a set of triples that describe the relationship between two entities or
between an entity and a literal value (Chakraborty et al., 2019). To extract triples from the nine
tables of MIMICSQL*, we defined a simple algorithm to map each column to either an entity, a
literal, or a relation. The primary or foreign key columns of a table are defined as entities, and non-
key columns (i.e., property columns) are defined as literals. For example, in the Patients table of
Figure 1, the values of SUBJ ID are defined as entities that can have child nodes. The values of
Name, DOB (Date-of-Birth), and Gender are defined as literals that cannot have child nodes. The
column names of the non-key columns become relations, e.g., /Name links between SUBJ ID/12
and “John”. Lastly, the relation between a primary key and a foreign key is derived from the table
name (e.g., /Admission links between SUBJ ID/12 and ADM ID/231). The final KG consists of
173,096 triples and has a max depth of five.
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Figure 3: SQL & SPARQL Pair: The highlighted parts in SQL and SPARQL correspond to each
other. SQL requires explicit JOIN operations when linking information across tables,
whereas SPARQL just hops between nodes.

3.3. SQL to SPARQL

In order to create NLQ-SPARQL pairs from NLQ-SQL pairs, we treat the SELECT clause and the
WHERE clause of SPARQL separately. First, we copy the aggregation function (e.g., MAX, AV-
ERAGE) and the columns from the SELECT part of SQL, and fill the SPARQL template. Then we
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extract the condition columns, comparison operator, and condition values from the WHERE part
of SQL. In order to fill the WHERE clause of SPARQL, which consists of triples between vari-
ables, we find the shortest distance between the variable in the KG2. As for combining comparison
operators (e.g., >, <, =) with triples, equal operators are handled by replacing the variable with
values, whereas all other operators are handled by adding filter statements. An example of SQL-
to-SPARQL conversion is depicted by Figure 3. After the conversion, we checked the semantic
equivalence of SQLs and SPARQLs by querying them to the tables and the KG, where we con-
firmed a 100% match. The KG and SPARQL queries comprise the graph-based EHR-QA dataset
MIMIC-SPARQL*. Note that we also constructed MIMIC-SPARQL based on the five tables of
MIMICSQL for further empirical analysis. Table 1 describes the basic statistics of MIMICSQL*,
MIMIC-SPARQL*, MIMICSQL, and MIMIC-SPARQL.

4. Experiments

This section describes the setting and results of experiments to demonstrate the superior EHR QA
performance of the graph-based approach compared to the table-based approach. All datasets and
codes will be open-sourced after the review period.

4.1. Experiments Setting

4.1.1 Comparison Methods. We employed two encoder-decoder based approaches: Seq2Seq
model (Luong et al., 2015) and TREQS (Wang et al., 2020). Seq2Seq uses a bidirectional LSTM
encoder and an LSTM decoder with an attention mechanism, but it cannot handle out-of-vocabulary
(OOV) tokens that frequently occur in medical data. Proposed with MIMICSQL, TREQS is a state-
of-the-art NLQ2SQL translation model for clinical questions, equipped with the copying mecha-
nism (See et al., 2017) to address the OOV issue, and the attention mechanism (Bahdanau et al.,
2015) to help SQL token generation.

The LSTM-based Seq2Seq model was implemented with PyTorch. As for TREQS, we used
the official code released by the original authors, rather than implementing from scratch. In order
to carefully compare the grammatical difference between two query languages without modifying
the model architecture, we utilized the official code3 of TREQS and hyperparameters described
in (Wang et al., 2020). We only tuned hyperparameters that are irrelevant to the model size. The
number of trainable parameters of TREQS is 2, 795, 907 and Seq2Seq is 3, 844, 096 throughout
all experiments. As shown in Table 4, the hyperparameters are chosen to optimize the model for
the dataset without increasing the model size and sampled from uniform distribution. We train all
models from scratch to 20 epochs. The development set is utilized to select the best configuration.
In the test time, we employ a beam search algorithm to generate the output query sentences where
the beam size is set to 5. Training both models required an average of one hour on a TITAN-Xp
GPU.
4.1.2 Dataset Descriptions. The datasets used in the experiment are grouped according to three
criteria. First, the QA datasets are categorized into NLQ-SQL pairs (MIMICSQL and MIMICSQL*)
and NLQ-SPARQL pairs (MIMIC-SPARQL and MIMIC-SPARQL*) depending on the type of a

2. Since we know the schema of MIMIC-III, we can create a relation graph and apply Dijkstra’s algorithm.
3. https://github.com/wangpinggl/TREQS
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logical form. Note that NLQs are the same for all datasets, and therefore any performance dif-
ference is solely caused by whether we use the graph-based or table-based approach. The second
criterion is whether to follow the original schema of MIMIC-III. MIMICSQL is constructed with
a simplified MIMIC-III schema, whereas MIMICSQL* maintains the original schema of MIMIC-
III. Since the knowledge graph is created by converting the MIMIC-III tables, MIMIC-SPARQL and
MIMIC-SPARQL*were converted from their respective counterparts, MIMICSQL and MIMICSQL*.
Lastly, there are two versions of NLQ, namely template questions and natural language questions.
As described in Section 3.1, the NLQ-SQL pairs in MIMICSQL were constructed based on human-
defined SQL templates. As seen in Table 1, the template questions are less diverse compared to the
natural questions in terms of linguistic expression, making it easier for the model to understand the
intent of the question. While natural questions are more similar to human language than template
questions are, it is generally more difficult for the model to understand the intent.

To demonstrate the performance between SPARQL and SQL, we compare the performance
of models trained with MIMICSQL against MIMIC-SPARQL, and MIMICSQL* against MIMIC-
SPARQL*. Additionally, we found an improved method to tokenize SQLs of MIMICSQL. In the
SQL queries provided in the original MIMICSQL, the table name and the column name are not
separated and are considered as a single token. This makes it difficult for the model to learn the
relationship between the SELECT clause and FROM clause. Thus, we separate the table name from
the column name. The effectiveness of this tokenization is explained in Section 4.2.
4.1.3 Evaluation Metrics. We use the following three metrics to measure the question answering
performance of the models. Table 2 shows the ground truth SQL and four SQL examples to elaborate
how each metric is measured.

• Logic Form Accuracy (Zhong et al., 2017) (AccLF ) is calculated by comparing the generated
SQL/SPARQL queries with the true SQL/SPARQL queries token-by-token. This is the most strict
way of measuring the model performance.

• Execution Accuracy (AccEX ) is calculated based on the correctness of the answer retrieved by
querying the tables/KG with the generated SQL/SPARQL. This is a more lenient way of mea-
suring the model performance, since the model can generate incorrect SQL/SPARQL queries but
still get the correct answer by luck.

• Structural Accuracy (AccST ) is similar to AccLF , but disregards the condition value tokens (e.g.,
numeric values or string values). We use AccST to evaluate how well the model understands the
relations between columns/entities, and successfully converts NLQ to SQL/SPARQL structure,
with less emphasis on the exact condition values (similar to how models are evaluated for the
Spider dataset (Yu et al., 2018)).

4.2. Experiments Results

4.2.1 SQL vs SPARQL. As shown in Table 3, regardless of the type of NLQ (template or nat-
ural), the SQL dataset (MIMICSQL) shows competitive performance to its SPARQL counterpart
(MIMIC-SPARQL) when using the simplified schema (i.e., five tables). When using the original
MIMIC-III schema, however, the graph-based approach (MIMIC-SPARQL*) consistently outper-
forms the table-based approach (MIMICSQL*). It is noteworthy that the AccST gap between SQL
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Table 2: Four pseudo-SQL examples of measuring AccLF , AccEX , and AccST

Ground Truth select max(age) from patients where Gender = “F” and DoB > 2020 LF EX ST

Predicted SQL1 select max(age) from patients where Gender =“F” and DoB > 2020 X X X
Predicted SQL2 select max(age) from patients where DoB > 2020 and Gender = “F” 7 X X
Predicted SQL3 select max(age) from patients where DoB > 2021 and Gender = “M” 7 7 X
Predicted SQL4 select max(age) from patients where DoB > 2021 and Diagnosis = “F” 7 7 7

Table 3: Medical QA performance on template (Top) and natural (Bottom) questions evaluated with
logic form accuracy (AccLF ), execution accuracy (AccEX ) and the structural accuracy
(AccST ). In addition to MIMICSQL, we include MIMICSQL (Paper), the performance
reported in Wang et al. (2020) and explained in Appendix .1

Method Dataset # of Tables Development Testing
Template Question AccLF AccEX AccST AccLF AccEX AccST

Seq2Seq

MIMICSQL (Paper)

5

0.098 0.372 - 0.160 0.323 -
MIMICSQL 0.327 (±0.118) 0.429 (±0.075) 0.467 (±0.028) 0.410 (±0.120) 0.455 (±0.083) 0.546 (±0.022)
MIMIC-SPARQL 0.337 (±0.117) 0.383 (±0.073) 0.877 (±0.029) 0.426 (±0.120) 0.463 (±0.089) 0.892 (±0.016)

MIMICSQL* 9
0.298 (±0.156) 0.407 (±0.099) 0.455 (±0.017) 0.348 (±0.158) 0.418 (±0.104) 0.512 (±0.020)

MIMIC-SPARQL* 0.333 (±0.134) 0.380 (±0.088) 0.874 (±0.022) 0.415 (±0.127) 0.461 (±0.086) 0.858 (±0.015)

TREQS

MIMICSQL (Paper)

5

0.712 0.803 - 0.802 0.825 -
MIMICSQL 0.752 (±0.025) 0.810 (±0.012) 0.982 (±0.057) 0.823 (±0.038) 0.843 (±0.038) 0.986 (±0.082)
MIMIC-SPARQL 0.735 (±0.017) 0.816 (±0.014) 0.989 (±0.008) 0.805 (±0.010) 0.841 (±0.012) 0.990 (±0.007)

MIMICSQL* 9
0.672 (±0.053) 0.789 (±0.027) 0.921 (±0.011) 0.749 (±0.047) 0.816 (±0.032) 0.952 (±0.015)

MIMIC-SPARQL* 0.745 (±0.007) 0.824 (±0.007) 0.994 (±0.001) 0.814 (±0.010) 0.848 (±0.007) 0.991 (±0.006)

Method Dataset # of Tables Development Testing
Natural Question AccLF AccEX AccST AccLF AccEX AccST

Seq2Seq

MIMICSQL (Paper)

5

0.076 0.112 - 0.091 0.131 -
MIMICSQL 0.197 (±0.031) 0.335 (±0.024) 0.360 (±0.026) 0.261 (±0.031) 0.358 (±0.030) 0.404 (±0.025)
MIMIC-SPARQL 0.179 (±0.093) 0.272 (±0.056) 0.637 (±0.019) 0.252 (±0.099) 0.338 (±0.065) 0.634 (±0.016)

MIMICSQL* 9
0.148 (±0.040) 0.301 (±0.014) 0.327 (±0.012) 0.181 (±0.040) 0.293 (±0.030) 0.347 (±0.018)

MIMIC-SPARQL* 0.185 (±0.132) 0.285 (±0.092) 0.623 (±0.039) 0.225 (±0.133) 0.321 (±0.094) 0.590 (±0.038)

TREQS

MIMICSQL (Paper)

5

0.451 0.511 - 0.486 0.556 -
MIMICSQL 0.588 (±0.005) 0.707 (±0.009) 0.825 (±0.005) 0.661 (±0.030) 0.732 (±0.024) 0.821 (±0.023)
MIMIC-SPARQL 0.585 (±0.006) 0.721 (±0.006) 0.828 (±0.008) 0.649 (±0.016) 0.729 (±0.012) 0.818 (±0.016)

MIMICSQL* 9
0.530 (±0.031) 0.689 (±0.019) 0.736 (±0.030) 0.601 (±0.031) 0.694 (±0.020) 0.743 (±0.036)

MIMIC-SPARQL* 0.577 (±0.017) 0.715 (±0.013) 0.818 (±0.011) 0.633 (±0.010) 0.722 (±0.006) 0.788 (±0.010)

and SPARQL dramatically increases when moving from the modified schema to the original, in-
dicating that the models better understand the complex relations between pieces of information
when trained on the SPARQL dataset. Furthermore, while there was a significant performance
drop when moving from MIMICSQL to MIMICSQL*, especially when using a simpler model (i.e.,
Seq2Seq), there was either marginal decrease or even slight increase in performance when mov-
ing from MIMIC-SPARQL to MIMIC-SPARQL*, indicating the effectiveness of the graph-based
approach as the knowledge structure becomes more complex.

These results support our hypothesis that the graph-based approach could be more suitable for
EHR QA as graphs can represent relations between entities and values more concisely compared
to tables, which require JOIN operations. Specifically, the statistics of the dataset in Table 1 show
that the query length of MIMICSQL* is nearly twice as long as that of MIMIC-SPARQL*. This
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is because a single JOIN in SQL requires 11 tokens (including ‘=’ and ‘.’), while a single hop
in SPARQL requires only 3 (i.e., subject, predicate, and object). This characteristic between SQL
and SPARQL is also explicitly visualized in Figure 2, where we can readily observe the drastic
change of SQL query length when moving from simple to complex schema, whereas SPARQL query
length stays relatively constant. Additionally, unlike SPARQL, SQL requires the model to learn the
hierarchy between a table and its columns, in addition to the relations between tables. Such syntactic
difference between SQL and SPARQL originates from the intrinsic difference between the relational
tables and a knowledge graph in terms of how to connect information (joining multiple tables versus
hopping across triples). This leads to the superior performance of the graph-based approach over the
table-based one especially in AccST , which only evaluates the structural accuracy (i.e., disregarding
the correctness of the condition values).

Figure 4: Left: When the complexity of the queries increases, the length of all queries increases.
The length of SPARQLs increases with a slope more similar to that of NLQs than that
of SQL queries. Right: This leads to the increased performance gap between graph-based
and table-based models for complex questions.

4.2.2 Analysis of NLQ type: Template and Natural. As mentioned in Section 3.1, MIMICSQL
provides both template questions and natural questions, thus giving us the option to either convert
template questions to SQL/SPARQL, or convert natural questions to SQL/SPARQL. As the vocab-
ulary sizes in Table 1 indicates, the linguistic patterns of template questions are less diverse than
the patterns of natural questions because template questions are generated by sampling only the
condition values based on a predefined template to create the NLQ2Query pairs. On the other hand,
the natural questions contain various phrases thanks to the refinement process by human annotators.
Naturally, the more diverse the question patterns are, the harder the task is for the model to correctly
encode the given questions to a latent space. As shown in Table 3, training the model on template
questions demonstrates superior performance compared to training the model on natural questions,
regardless of whether we use the table-based approach or the graph-based approach. It is noteworthy
that the graph-based approach demonstrated approximately 30% higher AccST than the table-based
approach. Moreover, in the natural questions, regardless of the logical form and model, all models
lose performance when the schema becomes complex from five tables to nine tables. However, in
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the template questions, TREQS trained with SPARQL maintains the performance even if the schema
becomes complex. This indicates that the graph-based approach is robust to the complexity of the
schema when the questions are straightforward enough to encode (i.e., less diverse vocabulary) as
explained in Section 3.1.

how many of the patients had other shock without mention of trauma?NLQ

select count ( distinct patients . "subject_id" ) from patients inner join admissions on patients . "subject_id"
= admissions . "subject_id" inner join diagnoses on admissions . "hadm_id" = diagnoses . "hadm_id" inner
join d_icd_diagnoses on diagnoses . "icd9_code" = d_icd_diagnoses . "icd9_code" where d_icd_diagnoses .
"long_title" = "other shock without mention of trauma"

GT
MIMICSQL*

select count ( distinct patients . "subject_id" ) from patients inner join admissions on patients . "subject_id"
= admissions . "subject_id" inner join diagnoses on admissions . "hadm_id" = diagnoses . "hadm_id" inner
join d_icd_diagnoses on diagnoses . "icd9_code" = d_icd_procedures . "icd9_code" where d_icd_diagnoses .
"long_title" = <UNK> of <UNK> of <UNK> and <UNK>

Seq2Seq
MIMICSQL*

select count ( distinct patients . "subject_id" ) from patients inner join admissions on patients . "subject_id"
= admissions . "subject_id" inner join procedures on admissions . "hadm_id" = procedures . "hadm_id" inner
join d_icd_procedures on procedures . "icd9_code" = d_icd_procedures . "icd9_code" where
d_icd_procedures . "long_title" = "other shock without mention of trauma"

TREQS
MIMICSQL*

select ( count ( distinct ?subject_id ) as ?agg ) where { ?subject_id </hadm_id> ?hadm_id. ?hadm_id
</diagnoses> ?diagnoses. ?diagnoses </diagnoses_icd9_code> ?diagnoses_icd9_code.
?diagnoses_icd9_code </diagnoses_long_title> "other shock without mention of trauma"
^^<http://www.w3.org/2001/xmlschema#string>. }

GT
MIMIC-
SPARQL*

select ( count ( distinct ?subject_id ) as ?agg ) where { ?subject_id </hadm_id> ?hadm_id. ?hadm_id
</diagnoses> ?diagnoses. ?diagnoses </diagnoses_icd9_code> ?diagnoses_icd9_code.
?diagnoses_icd9_code </diagnoses_long_title> "other other shock mention of <UNK>"
^^<http://www.w3.org/2001/xmlschema#string>. 

Seq2Seq
MIMIC-
SPARQL*

select ( count ( distinct ?subject_id ) as ?agg ) where { ?subject_id </hadm_id> ?hadm_id. ?hadm_id
</diagnoses> ?diagnoses. ?diagnoses </diagnoses_icd9_code> ?diagnoses_icd9_code.
?diagnoses_icd9_code </diagnoses_long_title> "other shock without mention of trauma"
^^<http://www.w3.org/2001/xmlschema#string>. }

TREQS
MIMIC-
SPARQL*

Figure 5: TREQS learned with MIMIC-SPARQL* correctly generated query structure and con-
dition values. However, even though it is the same architecture, when learned with
MIMICSQL*, the model incorrectly generated the structure of SQL (highlighted in red).

4.2.3 Performance Gap by Question Complexity. We can reliably say that if an SQL query
contains many JOIN operations, then the corresponding NLQ involves multiple logical connections
(i.e., reasoning) to find the answer. Thus, we can safely assume that the complexity of the NLQ is
proportional to the number of JOINs. As explained in Section 3.3, the SPARQL datatsets share the
same NLQ as the SQL datasets, and we can classify the SPARQL queries based on the number of
JOINs in the corresponding SQL queries. In addition, from the SPARQL perspective, the number
of hops between triples increases when the number of JOINs increases.

We confirmed in Table 3 that the performance drop of table-based approaches was greater than
that of graph-based when the schema became complex from the five tables to nine tables. Fig-
ure 4 presents possible explanations for this phenomenon. We classified the questions according to
complexity, and plotted the performance gap of the two models (i.e. TREQS models trained with
MIMICSQL* and MIMIC-SPARQL* respectively), for each question group as a bar graph for the
three metrics (see Right). The performance gap between two models increases for complex ques-
tions that require more than three JOINs. We assumed the different natures of SQL and SPARQL
led to this performance gap, and analyzed the sequence length of SQL and SPARQL queries per
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varying question complexity. As the complexity of question increases, the length of all types of
queries tends to increase (see Left). Note that the increase in the length of NLQs is not larger than
that of SQL queries. This is because of the syntactic nature of SQL, where the multiple keywords
for performing JOINs between tables are added. On the other hand, the SPARQL queries do not
increase in length significantly compared to the SQL queries. Through this trend, we judge that the
query structure of SPARQL is closer to NLQ than SQL.
4.2.4 Qualitative Comparison between Generated Queries. We demonstrate the qualitative
results to study the differences between the model, and the differences between the table-based and
the graph-based datasets. For the same NLQ, we present queries for six cases as shown in Figure 5.
In terms of the model, TREQS handles OOV correctly by copying the condition value in the NLQ.
However, Seq2Seq generates <UNK> tokens for the condition values in both MIMICSQL* and
MIMIC-SPARQL*, since there exist several abbreviations and rarely occurring words in the EHR.
In terms of a logical form, the models that learned SQL incorrectly create “d icd diagnoses”, which
correspond to the query structure, as “d icd procedures”. On the other hand, although the Seq2Seq
model generated condition values incorrectly due to the OOV problem, the models that learned
SPARQL generate the query structure perfectly.

5. Discussion & Limitation

From the vast amount of EHR data, retrieving desired information is laborious for both medical
experts and ordinary users. EHR QA is a meaningful task in that it provides a natural language
interface that allows users to readily extract information. In addition, it is a promising research field
that can serve telemedicine to patients in the era where the contact-free treatment becomes impor-
tant. In this work, we focused on the differences in the data structure of the relational database and
the knowledge graph, and analyzed the variation of logical forms in complex schema. Motivated by
these findings, we hypothesized that a graph-based approach is a more suitable choice for conduct-
ing complex EHR QA than a table-based approach. With extensive experiments, we empirically
demonstrated the superior performance of the graph-based approach. To encourage EHR QA re-
search in both directions, we constructed a pair of EHR QA datasets, one table-based (MIMICSQL*)
and another graph-based (MIMIC-SPARQL*). To the best of our knowledge, this is the first work
to propose and successfully demonstrate the graph-based EHR QA.

Limitations The graph-based approach, however, has its own limitation in terms of inference time
compared to the table-based approach. Note that the SQL processing time scales favorably as the
table size grows, compared to the SPARQL processing time as the graph size grows (especially
in terms of the number of edges). In this work, the average response time for both the table-based
(SQL) and the graph-based (SPARQL) approaches were less than 1 second, since both datasets were
constructed with a subset of MIMIC-III. But if we were to convert the entire MIMIC-III dataset to a
knowledge graph, then scalability might become a bottleneck when deploying the model in practice
(e.g. SPARQL taking several seconds to retrieve an answer). Note that, however, this is strictly
related to the inference phase, and not the training phase. The model training is actually faster with
SPARQL, since SPARQL queries are shorter than SQL queries on average. As future work, we
plan to extend both our datasets (MIMICSQL* and MIMIC-SPARQL*) to cover a larger subset of
MIMIC-III and to address the scalability of the graph-based approach.
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Table 4: Description of hyperparameters

Method Dataset Hyperparameters
Parameter Search space Selected value

Seq2Seq

MIMICSQL*

Batch Size 16, 32, 48 32
Step decay [0.01, 0.8] 0.1
Step size 1, 2, 5, 10 2
Learning rate [1× 10−5, 1× 10−2] 0.001

MIMIC-SPARQL*

Batch Size 16, 32, 48 16
Step decay [0.01, 0.8] 0.8
Step size 1, 2, 5, 10 2
Learning rate [1× 10−5, 1× 10−2] 0.001

TREQS

MIMICSQL*

Batch Size 16, 32, 48 16
Step decay [0.01, 0.8] 0.8
Step size 1, 2, 5, 10 2
Learning rate [1× 10−5, 1× 10−2] 0.0005

MIMIC-SPARQL*

Batch Size 16, 32, 48 48
Step decay [0.01, 0.8] 0.1
Step size 1, 2, 5, 10 2
Learning rate [1× 10−5, 1× 10−2] 0.0005

Appendix A.

.1. Performance Gap between MIMICSQL and MIMICSQL (paper)

As shown in bottom Table 3, there is performance gap between the reproduced results and the
reported results in original paper (Wang et al., 2020). In the queries provided by the original
MIMICSQL, the table name and the column name are treated as a single token when being fed
to the model. This makes it difficult for the model to learn the relationship between the SELECT
clause and FROM clause. Thus, we separate the table name from the column name and report the
effectiveness of this tokenization. Table 3 shows that training models on MIMICSQL increases per-
formance for all metrics compared to training models on MIMICSQL (paper). By simply changing
the tokenization method, the execution accuracy increased by 22% and 19% in the Seq2Seq and
TREQS that are trained with the natural questions, respectively.
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