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ABSTRACT

The analysis of time series for clustering and classification is becoming ever more
popular because of the increasingly ubiquitous nature of IoT, satellite constella-
tions, and handheld and smart-wearable devices, etc. Euclidean distance is un-
suitable because of potential phase shift, differences in sample duration, and com-
pression and dilation of characteristic signals. As such, several similarity mea-
sures specific to time-series have been proposed, Dynamic Time Warping (DTW)
being the most popular. Nevertheless, DTW does not respect the axioms of a
metric and therefore DTW-preserving shapelets have been developed to regain
these properties. This unsupervised approach to representation learning models
DTW properties through the shapelet transform. This article proposes constrained
DTW-preserving shapelets (CDPS), in which a limited amount of user knowledge
is available in the form of must link and cannot link constraints, to guide the repre-
sentation such that it better captures the user’s interpretation of the data rather than
the algorithm’s bias. Subsequently, any unconstrained algorithm can be applied,
e.g. K-means clustering, k-NN classification, etc, to obtain a result that fulfills the
constraints (without explicit knowledge of them). Furthermore, this representa-
tion is generalisable to out-of-sample data, overcoming the limitations of standard
transductive constrained-clustering algorithms. The proposed algorithm is stud-
ied on multiple time-series datasets, and its advantages over classical constrained
clustering algorithms and unsupervised DTW-preserving shapelets demonstrated.
An open-source implementation based on PyTorch is available to take full advan-
tage of GPU acceleration.

1 INTRODUCTION

Time series are produced in different domains such as finance, weather forecasting, health, remote
sensing etc. The volume of time series data is increasing with the development of IoT, smart hand-
held devices, and personal health devices, etc. This expanse of data increases the difficulty to provide
a ground truth labeling due to the ever increasing time and cost needed. Time-series are relatively
hard to interpret, compared to images which is a data form that is natural to us. Labelling difficulty
is exacerbated when making exploratory analyses and when working in nascent domains for which
classes are not well defined. For that reason, unsupervised clustering is often preferred. However,
unsupervised approaches may lead to irrelevant or unreliable results since they have no knowledge
about the user’s requirements and are instead lead by the algorithm’s bias. Semi-supervised algo-
rithms try to remove the rigid requirements of supervised approaches but retain the ability of a user
to guide the algorithm to produce a meaningful output. This is achieved by providing a set of con-
straints to the algorithm that encode some expert knowledge. These can take many forms but this
work is concerned with must-link and cannot-link constraints since they are the easiest to interpret
and provide. A must-link constraint tells the algorithm that two points should be contained within
the same cluster, and a cannot-link the contrary. In this way the algorithm is guided to converge on a
result that is meaningful to the user without explicitly nor exhaustively labelling samples. Note that
there is no notion of class, these constraints do not define what a sample represents, they only label
pairs of samples as being the same or not.

Generally, time series are characterised by trend, shapes, distortions either to time or shape (Speran-
dio, 2019) and therefore exhibit phase shifts and warping. As such, the Euclidean distance is
unsuitable and several similarity measures specific to time-series have been proposed, for exam-
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ple compression-based measures (Keogh et al., 2004), Levenshtein Distance (Levenshtein, 1966),
Longest Common Subsequnce (Vlachos et al., 2006) and Dynamic Time Warping (DTW) (Sakoe
& Chiba, 1971; 1978). DTW is the most popular since it overcomes these problems by aligning
two series through the computation of a cost function based on Euclidean distance (Lampert et al.,
2018). Time series also exhibit complex structure which are often highly correlated (Sperandio,
2019). This makes their analysis difficult to achieve and time consuming, indeed several attempts
to accelerate DTW’s computation have been proposed (Sperandio, 2019; Cai et al., 2020). A sim-
pler approach to increase the accuracy of time-series classification was introduced by Ye & Keogh
(2009), called Shapelets. These are phase-independent discriminative sub-sequences extracted or
learnt to form features that map a time-series into a more discriminative representational space,
therefore increasing the reliability and interpretability of downstream tasks. Since DTW does not
respect the axioms of a metric, Shapelets were extended to DTW-preserving shapelets to regain these
properties. This unsupervised approach to representation learning models DTW properties through
the shapelet transform.

The contribution of this article is to introduce constrained DTW-preserving shapelets (CDPS), in
which a time-series representation is influenced by a limited amount of user knowledge (must link
and cannot link constraints) to better capture the user’s interpretation of the data rather than the
algorithm’s bias. Subsequently, any unconstrained algorithm can be applied to the embedding, e.g.
K-means clustering, k-NN classification, etc, to obtain a result that fulfills the constraints (without
explicit knowledge of them). The proposed embedding process is studied in a constrained clustering
setting, on multiple datasets, and its advantages over COP-KMeans (Wagstaff et al., 2001) and
unsupervised DTW-preserving shapelets demonstrated (Lods et al., 2017).

The representational embedding that is learnt by CDPS is generalisable to out-of-sample data, over-
coming the limitations of standard constrained-clustering algorithms such as COP-KMeans. It is
interpretable, since the learnt shapelets can themselves be visualised as time-series. Finally, since
CDPS results in a vectorial representation of the data, they and the constraints can be analysed using
norm-base measures, something that is not possible when using DTW as a similarity measure (Lam-
pert et al., 2018). This opens up the possibility of measuring constraint informativeness (Davidson
& Ravi, 2006) and constraint consistency (Wagstaff et al., 2006) in time-series clustering. Such
measures, and notions of density, are needed to develop novel interactive and active constrained
clustering processes for time-series.

The rest of this article is organised as follows: in Section 2 the literature on shapelets is reviewed,
in Section 3 the Constrained DTW-Preserving Shapelets (CDPS) algorithm is presented with defini-
tions and notations, in Section 4 CDPS is evaluated in comparison to constrained and unconstrained
approaches and the results are discussed, and finally in Section 5 the conclusions are drawn.

2 RELATED WORK

Shapelets were originally defined as a method to extract subsequences of time-series that are discov-
ered such that they discriminate between the time-series using a tree based classifier (Ye & Keogh,
2009; 2011). As such, the shapelets themselves were chosen from a set of candidate shapelets,
which is exhaustive and contains all possible sub-sequences of the times series in the dataset. Rak-
thanmanon & Keogh (2013) propose to first project the time-series into a symbolic representation to
increase the speed of discovering the shapelets. Subsequently, Mueen et al. (2011) introduce logical
shapelets, which combines shapelets with complex rules of discrimination to increase the reliabil-
ity of the discovered shapelets and their ability to discriminate between the time-series. Sperandio
(2019) present a detailed review of early shapelet approaches.

Lines et al. (2012) proposed a new way of handling shapelets that separated classification from the
transformation, which was later extended by Hills et al. (2014). The authors introduce the concept
of the shapelet transform that aims to transform the raw data into a vectorial representation, where
the shapelets define the bases of the representation space. The authors showed that this separation
leads to stronger and more accurate classification results even with non-tree based approaches.

In order to overcome the exhaustive search for optimal shapelets, Grabocka et al. (2014) introduce
the concept of learning shapelets. In this approach the optimal shapelets are learnt by minimis-
ing a classification objective function. The authors consider shapelets to be features to be learnt
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instead of searching for a set of possible candidates, they report that this method provides a sig-
nificant improvement in accuracy compared to previous approaches. Shah et al. (2016) increase
accuracy by learning more relevant and representative shapelets. This is achieved by using DTW
similarity instead of Euclidean distance, since it is better adapted to measure the similarity between
the shapelets and the time-series. Another approach for learning shapelets is to optimise the partial
AUC (Yamaguchi et al., 2020), in which shapelets are learnt in conjunction with a classifier for
pAUC optimisation.

The approaches discussed this far have been supervised. Zakaria et al. (2012) introduced the first
approach for clustering time-series with shapelets, called unsupervised-shapelets or u-shapelets. U-
shapelets best partition a subset of the time series from the rest of the data set, which is repeated
until no further improvements can be made. As such, this method suffers from the exhaustive search
strategy as seen with early supervised approaches. U-shapelets have been used in several works
since their initial introduction (Ulanova et al., 2015; Zakaria et al., 2016). Since these unsupervised
methods take a similar approach to the original supervised shapelets, they have the same drawbacks.
To overcome these, Zhang et al. (2016) propose to combine learning shapelets with unsupervised
feature selection methods to auto-learn the optimal shapelets.

All these approaches learn to optimally discriminate time-series, either in a supervised or unsu-
pervised manner. Learning DTW-preserving shapelets (LDPS) expands the learning paradigm for
shapelets by integrating additional constraints on the learnt representation. In LDPS these con-
strain the representational space to model the DTW distances between the time-series. The learning
process learns shapelets that form this space and transform a time-series into a high-dimensional
Euclidean space in which DTW properties are preserved.

3 CONSTRAINED DTW-PRESERVING SHAPELETS

The methods discussed in the previous section fall under two categories of learning: supervised
and unsupervised. This section proposes Constrained DTW-Preserving Shapelets (CDPS), which
learns shapelets in a semi-supervised manner. Therefore allowing expert knowledge to influence the
transformation learning process, while also preserving DTW properties and the interpretability of
shapelets. The necessary preliminaries are presented in Section 3.1, CDPS’s cost function in Section
3.2, and the overall algorithm in Section 3.3.

3.1 DEFINITIONS AND NOTATIONS

Here the definitions and notations for time-series, shapelets and shapelet transform that will be used
throughout this article are presented.

Time series: is an ordered set of real-valued variables. Let T = {T1, T2, . . . , TN} be a set
of N uni-dimensional time series (for simplicity, nevertheless CDPS is easily extended to multi-
dimensional time series). LTS is the length of a time series such that T is composed of LTS elements
(each time-series may have different lengths), such that

T = T,1, . . . , T,LTS . (1)

A segment of a time series T at the mth element with length L is denoted as
T,m:L = {T,m, . . . , T,L}.

Shapelet: is an ordered set of real-valued variables, with a length smaller, or equal, to that of
the shortest time series in the dataset. Let a Shapelet be denoted as S having length LS. Let
S = {S1, .., SK} be a set of K shapelets, where Sk = Sj,1:LS . In our work, the set S can have
shapelets with different lengths, but for the simplicity we will use shapelets with same length in the
formulation.

Euclidean score: is the similarity score between a shapelet Sk and a time series subsequence
T,m:LS , such that

D,k,m =
1




∑

=1

(T,m+− − Sk,)2. (2)
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Euclidean Shapelet Match: represents the matching score between shapelet Sk and a time series
T, such that

T ,k = min
m∈{1:LTS−LS+1}

D,k,m. (3)

Shapelet transform: is the mapping of time series T using Euclidean shapelet matching with
respect to the set of shapelets S. Where the new vectorial representation is

T  = {T ,1, .., T ,K}. (4)

Constraint Sets: this work focuses on instance level constraints, which specify that two samples are
the same using a Must-Link (ML) constraint or are different using a Cannot-Link (CL) constraint.
Taking two time-series instances T and Tj, if they are linked with an ML constraint then they must
be in the same cluster ∀ k ∈ {1, . . . , K}, T ∈ Ck⇔ Tj ∈ Ck , where K is the number of clusters
and Ck is the assigned cluster, and a CL constraint states that they cannot be in the same cluster, i.e.
∀ k ∈ {1, . . . , K}, ¬(T ∈ Ck ∧ Tj ∈ Ck).

3.2 OBJECTIVE FUNCTION

In order to achieve a guided constrained learning approach, a new objective function is introduced
based on contrastive learning (Hadsell et al., 2006) that extends the loss function used in LDPS
(Lods et al., 2017) to also preserve DTW properties in the transformed space.

The loss between two time-series takes the form

L(T, Tj) =
1

2

�

DTW(T, Tj) − β||T  − T j||2
�2
+ ϕ,j, (5)

where DTW(T, Tj) is the dynamic time warping similarity between time-series T and Tj, || · ||2
is the L2 norm, and β scales the time-series distance in the embedded space (||T  − T j||2) to the
corresponding DTW similarity. The term ϕ,j is inspired by the contrastive loss and is defined such
that

ϕ,j =







αDst2
,j
, if (, j) ∈ ML,

γmx(,Dst,j)2, if (, j) ∈ CL,
0, otherwise,

(6)

where α, γ are the weights of the must-link and cannot-link constraints respectively, and where 
is the minimum distance between samples for them to be considered well separated in the embedded
space. The overall loss function is therefore defined such that

L(T ) =
2

K(K − 1)

K
∑

=1

K−1
∑

j=+1

L(T, Tj). (7)

The derivation of the gradient of L(T ), ∇L(T, Tj), is given in Appendix A.

3.3 LEARNING PROCESS

Algorithm 1 CDPS algorithm
Input: T , ML, CL, ShapeletBlocks, nepochs, sbatch, cbatch
Output: Shapelets (the learnt shapelets), Embeddings (the new time-series representation)

1: Shapelets← INITSHAPELETS(ShapeletBlocks)
2: for ← 0 to nepochs do
3: for 1 to |T |/sbatch do
4: minibatch← BATCHSET(T , ML, CL, Sbatch, Cbatch)
5: Update Shapelets by descending the gradient ∇L(T, Tj)
6: Embeddings← SHAPELETTRANSFROM(T )

Algorithm 1 defines CDPS’s approach to learning the representational embedding. In which
ShapeletBlock is a dictionary of size Smax containing {shapelet length; shapelet number} pairs,
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where shapelet length is Lmin · bind, bind ∈ {1, . . . , Smax}, and Lmin is the minimum shapelet
length. The number of shapelets for each scale is calculated using the same approach as LDPS
(Lods et al., 2017): 10 log(LTS − LT). Cbatch defines the number of constraints in each batch dur-
ing training, the aim of this parameter is to increase the importance of the constrained time-series in
face of the large number of the unconstrained time-series. INITSHAPELETS initialises the shapelets,
which can be random or rule-based. In CDPS, shapelets are initialised by extracting all shapelet
length subsequences from the time-series and applying k-means clustering. The cluster centres are
the initial shapelets (therefore the number of clusters equals the number of shapelets). BATCHSET
takes the constraints set, the dataset and the percentage of constraints to be included to generate
the batch having both constrained and unconstrained samples. If there are insufficient constraints to
fulfill Cbatch then they are repeated.

The parameters subject to optimisation are the scale parameter β and the shapelets themselves, see
Appendix A. For speed and to take advantage of GPU acceleration, the above algorithm can be
implemented as a 1D convolutional neural network in which each layer represents a shapelet block
composed of all the shapelets having the same length followed by maxpooling in order to obtain the
embeddings.

Finally, clusters can be found in the embedding returned by Algorithm 1 using k-means clustering.

4 EVALUATION

In this section CDPS is evaluated with respect to different constraint sets under two cases: the clas-
sical constrained clustering setting in which clusters are extracted from a dataset; and the second,
which is normally not possible using classical constrained clustering algorithms, in which the con-
straints used to learn a representation are generalised to an unseen test set.

4.1 EXPERIMENTAL SETUP

Algorithm 1 is executed using mini-batch gradient descent with a batch size sbatch = 64, cbatch =
16 constraints in each batch, α = 2, γ = 5. Different values of α and γ were evaluated in prelim-
inary experiments (on different datasets) and the algorithm was found to be stable to variations. The
minimum shapelet length Lmn = 0.15 · LTS, and the maximum number of shapelets Sm = 3
are taken to be the same as used in LDPS (Lods et al., 2017). All models are trained for 500 epochs
using the Adam optimiser.

K-means and COP-KMeans (Wagstaff et al., 2001) are used as comparison methods (unconstrained
and constrained respectively) since k-means based algorithms are the most widely applied in
real-world applications, offering state-of-the-art (or close to state-of-the-art) performance. Eleven
datasets from the UCR repository (Dau et al., 2018) are used for evaluation (the same as used by the
authors of LDPS (Lods et al., 2017)) and are detailed in Table 1. The number of clusters is set to the
number of classes in each dataset. The Normalised Mutual Information (NMI), which measures the
coherence between the true and predicted labels, is measured to evaluate the resulting clusters with
0 indicating no mutual information and 1 a perfect correlation.

For the first use case, termed Transductive, the training and test sets of the UCR datasets are com-
bined, this reflects the real-world transductive case in which a dataset is to be explored and knowl-
edge extracted. In the second, termed Inductive, the embedding is learnt on the training set and its
generalised performance on the test set is evaluated. This inductive use-case is something that is
not normally possible when evaluating constrained clustering algorithms since clustering is a trans-
ductive operation and this highlights one of the key contributions of CDPS - the ability generalise
constraints to unseen data.

CDPS’s performance is evaluated on each dataset with increasing numbers of constraints, expressed
in percentages of samples that are subject to a constraint in the dataset: 5%, 10%, 15%, 20%, 25%,
30%. Each experiment is repeated 10 times, each with a different random constraint set, and each
clustering algorithm is repeated 10 times for each constraint set (i.e. there are 100 repetitions for each
percentage of constraints). The constraints are generated by taking the ground truth data, randomly
selecting two samples, and adding an ML or CL constraint depending on their class labels. This is
repeated until the correct number of constraints are collected.

5



Under review as a conference paper at ICLR 2022

Table 1: List of UCR datasets used in the study.

Dataset Train size Test size Length No. of Classes

CBF 30 900 128 3
CricketX 390 390 300 12
FaceFour 24 88 350 4
FaceAll 560 1690 131 14

FiftyWords 450 455 270 50
Lightning2 60 61 637 2
Lightning7 70 73 319 7
OSULeaf 200 242 427 6

SwedishLeaf 500 625 128 15
SyntheticContorl 300 300 60 6

Trace 100 100 275 4

4.2 RESULTS AND DISCUSSION

In this section the results of each approach (described in Section 4.1) are presented.

Transductive: In which each dataset’s train and test sets are combined and used for clustering, i.e.
classic (transductive) clustering. Table 2 shows the NMI scores for CDPS (Euclidean k-means per-
formed on the CDPS embeddings) compared to k-means (on the raw time-series), COP-Kmeans
(also on the raw time-series), and LDPS (Euclidean k-means on the LDPS embeddings). Un-
constrained k-means and LDPS are presented as a reference for the constrained algorithms (COP-
kmeans and CDPS respectively) to give insight into the benefit of constraints for each. It can be seen
that LDPS outperforms or ties with k-means in almost all cases (except in the CricketX dataset).

It can also be seen that CDPS uses the information gained by constraints more efficiently, out-
performing COP-Kmeans in almost all the different constraint fractions for most datasets (with
the exception of FiftyWords, Lightning2, and CricketX). It appears that CricketX lends itself to
k-means based algorithms since, in the unconstrained setting, k-means outperforms LDPS. Never-
theless, CPDS exhibits an increase in performance as the number of constraints increase, whereas
COP-Kmeans tends to stagnate. For FiftyWords, the performance is almost tied between the un-
constrained k-means and LDPS which is also reflected in the constrained version of the algorithms
where only a slight variation can be observed. In FaceFour the constrained algorithms behave sim-
ilarly with 5% constraints but again CDPS benefits most from increasing the number of constraints
and significantly outperforms COP-KMeans with larger constraint percentages.

Thus overall, the CDPS algorithm leads to better clustering results since it is able to better exploit the
information brought to the learning process by the constraints. These bias CDPS to find shapelets
that define a representation that respects the constraints while retaining the properties of DTW.

Although the focus of this article is not to evaluate whether clustering on these datasets benefits
from constraints, it can be observed that generally better performance is found when constraints are
introduced.

Inductive: In which the embedding space is learnt on the training set and the generalisation perfor-
mance evaluated on the unseen test set. Table 3 presents the generalised NMI scores. Comparing
these to Table 2 (the transductive results) reveals that CDPS efficiently generalises constraints and
quite often demonstrates an increase in NMI.

It should be noted that when training on the train set, there are significantly fewer constraints then
when using the merged datasets for the same constraint percentage (since the training sets are sig-
nificantly smaller, see Table 1). It can therefore be concluded that even in the face of few data and
constraints, CDPS is still able to learn a generalisable representation and attain (within a certain
margin) the same clustering performance then when trained on the merged dataset. This is proba-
bly explained by the fact that having a smaller number of samples with few constraints means that
they are repeated in the mini-batches (see Section 3.3), and this allows CDPS to focus on learn-
ing shapelets that are discriminative and DTW preserving rather than trying to find shapelets that
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Figure 1: Clustering quality (NMI) as a function of the number of epochs for each dataset, using a
constraint fraction of 30%.

model larger numbers of time series. Thus the resulting representation space is more faithful to the
constraints, allowing better clustering of unseen time-series.

These two studies show that the transformed space not only preserves the desirable properties of
DTW but also implicitly models the constraints given during training. Although it was not evalu-
ated, it is also possible to use COP-Kmeans (constrained) clustering in the Inductive CDPS embed-
ding, thus allowing another mechanism to integrate constraints after the embedding has been learnt.
Although CDPS has several parameters, it has been shown that these do not need to be fine-tuned for
each dataset to achieve state-of-the-art performance (although better performance may be achieved
if this is done).

4.2.1 MODEL SELECTION

When performing clustering there is no validation data with which to determine a stopping criteria.
It is therefore important to analyse the behaviour of CDPS during training to give some general
recommendations.

Figure 1 presents the CDPS clustering quality (NMI) as a function of the number of epochs for each
dataset (using 30% constraints). It demonstrates that generally most of the models converge within
a small number of epochs, with FaceFour taking the most epochs to converge. Moreover, the quality
of the learnt representation does not deteriorate as the number of epochs increases, i.e. neither the
DTW preserving aspect nor the constraint influence dominate the loss and diminish the other as
epochs increase.

Figure 2 presents scatter-plots of the NMI and CDPS loss (both normalised to between 0 and 1) for
several datasets. In addition to the total loss, both the ML and CL losses have been included. The
general trend observed in the overall loss is that a lower loss equates to a higher NMI.

These show that the loss can be used as a model selection criterion without any additional knowledge
of the dataset. For practical application, the embedding can be trained for a fixed large enough
number of epochs (as done in this study) or until stability is achieved. This is in line with the typical
manner in which clustering algorithms are applied.

5 CONCLUSIONS

This article has presented CDPS, an approach for learning shapelet based time-series representations
that respect user constraints while also respecting the DTW similarity of the raw time-series. The
constraints take the form of must-link and cannot-link pairs of samples provided by the user. The
influence of the constraints on the learning process is ensured through the use of mini-batch gradient
descent in which a fraction of each batch contains samples under constraint.
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Figure 2: Relationship between NMI and CDPS Loss for each dataset. To highlight the relationship
between datasets, both loss and NMI have been scaled to between 0 and 1.

The resulting space removes many limitations inherent with using the DTW similarity measure
for time-series, particularly interpretability, constraint analysis, and the analysis of sample density.
CDPS therefore paves the way for new developments in constraint proposition and incremental
(active) learning for time-series clustering.

The representations learnt by CDPS are general purpose and can be used with any machine learning
task. The presented study focused on its use in constrained clustering. By evaluating the proposed
method on 11 public datasets, it was found that using unconstrained k-means on CPDS represen-
tations outperforms COP-Kmeans, unconstrained k-means (on the original time-series), and LDPS
with k-means. It was also shown that the representation learnt by CDPS is generalisable, something
that is not possible with classic constrained clustering algorithms. When applied to unseen data,
CDPS outperforms COP-KMeans even when the latter has been explicitly trained with constraints
defined on the test dataset (while CDPS generalises those from the training set).

Potential future directions of research are to improve the interpretability and discriminative prop-
erty of the shapelets learnt by CDPS. Therefore providing an explanation and interpretation of the
resulting clusters.
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A DERIVATION OF THE CDPS LOSS GRADIENT

This section presents the derivation of the loss function’s gradient. Let

ØDTW,j = ||T  − T j||2, DTW,j = DTW(T, Tj), L(T, Tj) =
1

2
ψ + ϕ,j,

where,

ψ =
1

2

�

DTW(T, Tj) − β||T  − T j||2
�2
,

and

ϕ,j =







αDst2
,j
, if (, j) ∈ ML,

γmx(,Dst,j)2, if (, j) ∈ CL,
0, otherwise,

where  is a predefined constant.

A.1 DERIVATION WITH RESPECT TO β

∂L(T, Tj)
∂β

=
1

2

∂ψ

∂β
+
∂ϕ

∂β
=
1

2

∂ψ

∂β
= −β[DTW,j − βØDTW,j].
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A.2 DERIVATION WITH RESPECT TO THE SHAPELETS

∂L(T, Tj)
∂Sk,

=
1

2

∂ψ

∂Sk,
+

∂ϕ

∂Sk,
.

The derivations of ψ and ϕ with respect to the shapelets Sk, will be presented separately.

Using the chain rule, the derivation with respect to ψ can be written as such that

∂ψ

∂Sk,
=

∂ψ

∂ØDTW,j

∂ØDTW,j

∂Δ,j,k

∂Δ,j,k

∂Sk,
,

where Δ,j,k = T ,k − T j,k . The derivation of each term is straight-forward:

∂ψ

∂ØDTW,j

= −2β(DTW,j − βØDTW,j),

∂ØDTW,j

∂Δ,j,k
=

Δ,j,k

ØDTW,j

, whereØDTW,j 6= 0,

and
∂Δ,j,k

∂Sk,
=
∂T ,k

∂Sk,
−
∂T j,k

∂Sk,
,

where
∂T ,k

∂Sk,
=
∂min(D,k,m)

∂Sk,
=
∑

m

∂T ,k

∂D,k,m

∂D,k,m

∂Sk,
.

Following the approximation used in LDPS (Lods et al., 2017) which gives ∂T ,k
∂D,k,m

= δm,m∗ the
above can be written as:

∂T ,k

∂Sk,
=
∑

m

δm,m∗
D,k,m

∂Sk,
,

∂ϕ

∂Sk,
=

∂ϕ

∂ØDTW,j

∂ØDTW,j

∂Δ,j,k

∂Δ,j,k

∂Sk,
,

where
∂ϕ

∂ØDTW,j

=







2αDst,j, if (, j) ∈ ML,
−2γ( − Dst,j), if (, j) ∈ CL,
0, otherwise,

where  is a predefined constant.
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