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Abstract—After years of development, Neural Machine
Translation (NMT) has produced richer translation results
than ever over various language pairs, becoming a new
machine translation model with great potential. For the NMT
model, it can only translate words/characters contained in
the training data. One problem on NMT is handling of the
low-frequency words/characters in the training data. In this
paper, we propose a method for removing characters whose
frequencies of appearance are less than a given minimum
threshold by decomposing such characters into their compo-
nents and/or pseudo-characters, using the Chinese character
decomposition table we made. Experiments of Japanese-
to-Chinese and Chinese-to-Japanese NMT with ASPEC-JC
(Asian Scientific Paper Excerpt Corpus, Japanese-Chinese)
corpus show that the BLEU scores, the training time and
the number of parameters are varied with the number of
the given minimum thresholds of decomposed characters.
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I. INTRODUCTION

Machine translation’s performance has greatly improved
from Statistical Machine Translation (SMT), due to the
appearance of Neural Machine Translation (NMT). For
NMT, one problem is handling of the low-frequency
words/characters in the vocabulary of the training data [1].
For the NMT models, as the vocabulary size increases, the
computational complexity becomes enormous. Therefore,
in a general word-level NMT model, the vocabulary size
(the number of different characters) is usually limited
to about tens of thousands of words, and the remaining
low-frequency words are uniformly treated as unknown
words. The increasing of unknown words leads to reduce
translation performance, therefore the handling of low
frequency words is a big problem in NMT.

Byte Pair Encoding (BPE) made the NMT model ca-
pable of open-vocabulary translation by encoding low-
frequency and unknown words as sequences of subword
units, was proposed by Sennrich et al. [2], to be used to
solve the low frequency words’ problem.

However, Chinese mainly uses Chinese characters
(Hanzi) which are logograms. Many Chinese words are
written with one or two Chinese characters, as a result, it is
difficult to divide a Chinese word into high-frequency sub-
word units. Therefore, it is considered that the character-
level is suitable for NMT between Japanese and Chinese.

For character-level NMT, there is also an advantage that
errors and fluctuations do not occur in the process of
dividing sentences into words (word segmentation).

Compared with the word-level NMT, the vocabulary
size is kept small in character-level NMT, but there
are still many characters of extremely low-frequency in
the vocabulary. At word-level, the method of replacing
a low-frequency word having low statistical reliability
with another word of related high-frequency has been
attempted [3], but such a substitution is difficult for char-
acters. Therefore, we devised a method for reducing low-
frequency characters for character-level NMT between
Japanese and Chinese by dividing low-frequency Chi-
nese characters into constituent elements of the character
(radicals: traditionally recognized components of Chinese
characters) and pseudo partial characters. We investigated
the effects of the method on translation results, and the
number of the parameters of the model by experiments.

We used Luong’s NMT system as the base system
[4], which follows an encoder-decoder architecture with
global attention at the character level. In our case, we
chose the character-level NMT as the baseline, because the
character-level NMT between Japanese and Chinese has
better translation performance than the word-level NMT.

The main contributions of this paper are the follow-
ing. We created a Chinese character composition table
for finding its constituent elements. We demonstrate the
possibility to improve the translation performance of NMT
systems by dividing the Chinese and Japanese characters
into constituent elements and share them with the other
characters in the vocabulary, without changing the neural
network architecture. We believe this capability makes our
approach applicable to different NMT architectures.

In the remainder of this paper, Section II presents
the related work of this paper. Section III gives a brief
explanation of the architecture of the NMT that we used
as the base system and ASPEC-JC (Asian Scientific Paper
Excerpt Corpus, Japanese-Chinese) corpus. Section IV
describes the proposed method, how to divide the Chinese
and Japanese characters into constituent elements and
share them with the other characters in the vocabulary.
Section V reports the experimental framework and the
results obtained in the Japanese-Chinese and Chinese-
Japanese translation (with ASPEC-JC [5]). Finally, Section
VI concludes with the contributions of this paper and
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further work.

II. RELATED WORK

The characters used in a language are usually much
fewer than the words of the language. Character-level
neural language models [6] and MT are explored and
achieved respective results. Previous works, such as POS
tagging [7], name entity recognition [8], parsing [9], learn-
ing word representations [10], and character embeddings
[11], shown different advantages of using character-level
information in Natural Language Processing (NLP).

Besides, subword-based representations (the middle
of word-based and character-based representations) have
been explored in NMT [2], and are applied to English and
other western languages, where most of the words consist
of several or a dozen characters. Contrastingly, Chinese
characters, which are used in Chinese, Japanese and some
other Asian languages, are typical logograms. A logogram
is a character that represents a concept or thing, namely
a word; and thus, it is difficult to split those words into
subwords. Recently, Meng et al. [12] found that character-
based models consistently outperform subword-based and
word-based models for deep learning-based Chinese NLP
works.

For Chinese-Japanese NMT, the sub-character level
information improved the translation performance [13],
by using sub-character sequences on either the source or
target side. However, about their character decomposition,
it still needs to be explored. Du and Way [14] trained
factored NMT models using “Pinyin” sequences on the
source side. Pinyin, is the official romanization system
for Chinese. This work only applied to Chinese source-
side NMT. Zhang and Matsumoto [15] also attempted
to use a factored encoder for Japanese-Chinese NMT
system using radical information. They did not achieve
good results in Chinese-to-Japanese NMT. Wang et al.
[16] directly applied a BPE algorithm to sequences before
building NMT models. This method has only been tested
in the Chinese-English direction and is not comprehensive
enough.

III. NEURAL MACHINE TRANSLATION AND
ASPEC-JC CORPUS

A. Neural Machine Translation

NMT completely adopts the neural network approach to
compute the conditional probability p(y|x) of the target
sentence y for the given source sentence x. We follow
the NMT architecture by Luong et al. [4], which we will
briefly describe here. This NMT system is implemented as
a global attentional encoder-decoder neural network with
Long Short-Term Memory (LSTM), and we simply use it
at the character level.

The encoder is a bi-directional neural network with
LSTM units that reads an input sequence x =
(x1, . . . , xm) and calculates a forward sequence of hid-
den states (

−→
h 1, . . . ,

−→
hm) and a backward sequence

(
←−
h 1, . . . ,

←−
hm). The hidden states

−→
hj and

←−
h j are con-

catenated to obtain the annotation vector hj .

The decoder is a recurrent neural network with LSTM
units that predicts a target sequence y = (y1, . . . , yn).
Every word (or character in case of character-level NMT)
yi is predicted based on a recurrent hidden state si,
the previously predicted word (or character) yi−1, and a
context vector ci. ci is computed as the weighted sum of
the annotations hj . Finally, the weight of each annotation
hj is computed through an alignment (or attention) model
αij , which models the probability that yi is aligned to xj .
The forward states of the encoder is expressed as below:

−→
h j = tanh(

−→
WExj +

−→
U
−→
h j−1) (1)

where E ∈ Rm×Vx is a word embedding matrix,−→
W ∈ Rn×m and

−→
U ∈ Rn×n are weight matrices; m, n

and Vx are the word embedding size, the number of hidden
units, and the vocabulary size of the source language,
respectively.

B. ASPEC-JC Corpus

We implement our system with the ASPEC-JC corpus,
which was constructed by manually translating Japanese
scientific papers into Chinese [5]. The Japanese scientific
papers are either the property of the Japan Science and
Technology Agency (JST) or stored in Japan’s Largest
Electronic Journal Platform for Academic Societies (J-
STAGE).

ASPEC-JC is composed of three parts: training data
(672,315 sentence pairs), development data (2,090 sen-
tence pairs), development-test data (2,148 sentence pairs)
and test data (2,107 sentence pairs) on the assumption that
it would be used for machine translation research.

ASPEC-JC contains both abstracts and some parts of
the body texts. ASPEC-JC only includes “Medicine”,
“Information”, “Biology”, “Environmentology”, “Chem-
istry”, “Materials”, “Agriculture” and “Energy” 8 fields
because it was difficult to include all the scientific fields.
These fields were selected by investigating the important
scientific fields in China and the use tendency of literature
databases by researchers and engineers in Japan. In these
fields, sentences belonging to the same article are not
included.

Compared with other language pairs such as English-
French, which usually comprises millions of parallel sen-
tences. ASPEC-JC corpus only has about 672k sentences.
Moreover, LSTMs+attention model is usually more robust
than the transformer model [17] on smaller datasets, due
to the smaller number of parameters [12].

IV. REDUCTION OF LOW-FREQUENCY CHARACTERS
BY CHARACTER DECOMPOSITION

During the training and translation process, the training
data contains many low-frequency characters that the
NMT model cannot translate. The low-frequency charac-
ters affect translation performance.

In this research, we decomposed low-frequency charac-
ters (mainly Chinese characters) by using high-frequency
characters and pseudo-characters, and sharing pseudo-
characters among multiple low-frequency characters. We
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devised a method to remove characters below a certain fre-
quency and checked the effect on translation performance
in the experiment.

The method of decomposing low-frequency characters
will be described below.

A. Character Decomposition

Chinese characters are logograms, but some different
types could be identified, based on the manner in which
they are formed.

They include:
• pictographs: 日 (sun), 月 (moon), 人 (person), 木

(tree),
• simple ideograms: 一 (one), 二 (two), 上 (up), 下

(down),
• compound ideographs: 林 (woods ← tree+tree), 休

(rest ← person+tree), and
• phono-semantic compounds: 銅 (copper ← semantic
金 (metal) + phonetic 同), 河 (river ← semantic 水
(water) + phonetic 可).

Phono-semantic compounds, together with compound
ideographs, form over 90% of Chinese characters; accord-
ingly, most Chinese characters consist of two or more
(sub-)characters.

Even if a character is rare, its component may be a
high-frequency character. For example, 楡 (elm) appears
only 16 times in the Japanese sentences of the ASPEC-
JC training data, whereas its component 木 (tree) appears
7780 times. If there are other low-frequency characters that
have木 as their components, the frequency of木 increases
more by decomposing the low-frequency characters. In
most cases, the higher frequency component (such as 木)
of a compound character is a radical, which is related to
the meaning of the character.

Our method decomposes low-frequency characters into
two partial characters by using the Chinese character
decomposition table (Section IV-B). If a character has
three or more parts, the method decomposes it into the
first part and the rest. Comparing the two components of
a character, the component appearing less frequently in
the training data is replaced with a pseudo-character, such
as s1, s2, . . ., sn.

The appearance frequency of the pseudo-partial charac-
ters are increased by sharing them among low-frequency
characters as follows:

楡 (elm tree) → [木 (wood), s1]
桝 (a square wooden box used to measure rice)

→ [木 (wood), s2]
炒 (fry) → [火 (fire), s1]
焔 (flame) → [火 (fire), s2]

To balance the frequency of the pseudo-characters,
we set an upper limit of the number of pseudo-partial
characters that are paired with each genuine character
component.

If the number exceeds the limit, the method decomposes
the character into two pseudo-characters as follow:

榊 (sakaki tree) → [s13, s16]

枷 (cangue) → [s19, s22]

If a low-frequency character cannot be decomposed,
it is replaced with a pair of a pseudo-character and 漢
(han) (for Chinese characters),仮 (assumed) (for Japanese
Kana) or 符 (symbol) (for symbols and other characters).

In this way, the method replaces every low-frequency
(≤ k) character with a pair of a high-frequency character
and a pseudo-character or pairs of two pseudo-characters,
in order to eliminate such low-frequency characters in the
training data.

The mappings from the low-frequency characters to
the character pairs are separately created for Japanese
and Chinese training data. The training is conducted
with the decomposed data. In testing time, low-frequency
characters in the source sentences are decomposed with
the mapping for the source language before translation.
The translated sentences are reconstructed (decoded) with
the mapping for the target language. If the reconstruction
of a character is failed, the character pair is replaced with
the space character.

B. Creation of Chinese Character Composition Table
We created a table for decomposing Chinese characters,

based on the Chinese character decomposition table of
cjklib1, the Kanji structure information table of the CHISE
project2, Jigen3 and the distribution data of the Kanji
database project4. Our table was created manually.

If there are multiple Chinese characters having the same
constituent elements as shown in Table I and Table II, they
are distinguished by numbering as follows:

Examples: 暈 (dizzy) → 日軍1
暉 (sunshine) → 日軍2
柰 (crab-apple)→ 木示1
标 (label) → 木示2

As the Table III and Table IV show, if the components
are decomposed in a simple form, the meaning becomes
weak, they are excluded from the table so that decom-
position is not performed. In the experiments with the
ASPEC-JC corpus, we excluded 102 Kanji out of 3,802
Kanji contained in Japanese sentences, and 204 Hanzi out
of 5,576 Hanzi contained in Chinese sentences.

We have manually confirmed the Chinese character
composition table, and also uploaded this table to github,
hoping that interested people can come up with sugges-
tions for improvement 5.

V. EVALUATION AND TRANSLATION RESULTS

A. Experiment Settings
We implemented our system using the OpenNMT

toolkit [18] with the ASPEC-JC corpus which had already
introduced in Section III-B.

1http://cjklib.org
2http://www.chise.org
3http://jigen.net
4http://kanji-database.sourceforge.net
5https://github.com/zhang-jinyi/Chinese-Character-Composition-Table
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Table I
EXAMPLES OF JAPANESE KANJI THAT HAVING THE SAME

CONSTITUENT ELEMENTS.

Constituent elements Japanese Kanji
弓丨 引 (draw), 弔 (hang)
朿朿 棘 (sour jujube), 棗 (jujube)
日軍 暈 (dizzy), 暉 (sunshine)
木口 束 (bind), 杏 (apricot)
土襄 壌 (soil), 壤 (soil)
口貝 唄 (song), 員 (member)
山夆 峰 (peak), 峯 (peak)

Table II
EXAMPLES OF CHINESE HANZI THAT HAVING THE SAME

CONSTITUENT ELEMENTS.

Constituent elements Chinese Hanzi
冂土 由 (by), 田 (field), 冉 (tender)
木示 标 (label), 柰 (crab-apple)
冂人 贝 (shellfish), 内 (inside)
口八 叭 (horn), 只 (only)
亻直 值 (value), 値 (value)
口贝 呗 (to chant), 员 (member)
日军 晖 (sunshine), 晕 (dizzy)

Our models have one LSTM layer, with 512 cells, and
embedding size is 512. The parameters are uniformly
initialized in (−0.1, 0.1), using plain SGD, starting with
a learning rate of 1 until epoch 6, and after that, 0.5
times for each epoch. The max-batch size is 100. The
normalized gradient is rescaled whenever its norm exceeds
1. The dropout probability is set to 0.5 to avoid overfitting.
Decoding is performed by beam search with a beam size of
five. The maximum length of a sentence is 250 by default,
but it is set to 500 because it becomes much longer at the
character level.

We segment the Chinese and Japanese sentences into

Table III
EXAMPLES OF JAPANESE KANJI THAT EXCLUDED FROM THE TABLE.

Constituent elements Japanese Kanji
乚一 七 (seven)
一乂 丈 (measure)
一卜 下 (below)
丿乚 儿 (son)
月一 且 (even)
丨丶 卜 (divination)
十一 土 (soil)

Table IV
EXAMPLES OF CHINESE HANZI THAT EXCLUDED FROM THE TABLE.

Constituent elements Chinese Hanzi
丿厶 么 (for interrogatives and adverbs)
一夕 歹 (bad)
厶月匕匕 能 (ability)
七十 车 (vehicle)

words by Jieba6 and Mecab7, respectively.
BiLingual Evaluation Understudy (BLEU) is an algo-

rithm for evaluating the quality of text that has been
machine-translated from one natural language to an-
other [19]. BLEU score is calculated with multi-bleu.perl
attached to OpenNMT after the word segmentation.
In other words, we took the word-level evaluation.

In many cases, validation perplexity (perplexity with
dev data) stopped declining in epoch 10 or 11. The average
of BLEU scores from that point to epoch 16 was taken as
the evaluation BLEU value. The baseline is the character-
level translation with the raw training data that does not
process anything.

B. Experiment Results and Discussion

Variation of BLEU scores: The low-frequency char-
acters are deleted from the training data by the character
decomposition method described in Section IV-A. Figure
1 shows the variation in BLEU scores per epoch.

The least frequency of occurrence of the baseline is 1.
The upper limit of the subscript of pseudo-characters was
basically set to 55 in both languages, but it was set to 60
when setting the least frequency of occurrence as 7000
to more in Chinese language data, because of the lack of
pseudo-characters .

In the Japanese-to-Chinese translation, when the least
frequency of occurrence was between 10 and 120, the
translation results often exceeded the baseline. Improved
about 0.5% when setting the least frequency of occurrence
to 20. On the other hand, in the case of Chinese-to-
Japanese translation, the translation result was less likely
to exceed the baseline, but it improved by about 0.3%
when setting the least frequency of occurrence to 150.
The results above are not as good as we expected.

The type of decomposed characters are 78% of Chinese
Hanzi in Chinese sentences, 47% of Japanese Kana in
Japanese sentences, 36% of Japanese Kanji in Japanese
sentences in the training data, respectively. It is conceiv-
able that this difference affects the translation results.
Unlike Chinese, Japanese Kanji only account for 36%
in Japanese, and our method only decomposes Japanese
Kanji in Japanese, which caused Japanese to be not
fully decomposed. This will result in a certain decline in
Japanese translation results in the direction of Chinese-to-
Japanese. The decomposed sentences we used as training
data became longer than before. This may be a factor that
affects the translation results. There is also a possibility
that the number of characters contained in the training
data (the vocabulary size of the NMT system) also has
a huge difference from the 6,088 characters of Chinese
to the 4,249 characters of Japanese, on the ASPEC-JC
corpus.

Variation of training time: Reducing low-frequency
characters decreases the vocabulary size, so the number
of parameters to be trained also decreases. As a result,
it is expected that the amount of memory used during

6http://github.com/fxsjy/jieba
7http://taku910.github.io/mecab
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Figure 1. Variation of the BLEU scores

training and the training time will be reduced. Figure 2
shows the number of parameters obtained from the log
data in training and the variation in the average training
time per epoch. Because experiments were conducted on
multiple systems with different configurations of CPU and
GPU, the values are relative to the results of the baseline
training on each system.

The character decomposition reduces the number of
parameters of NMT models, but increases the number
of characters. In the Japanese-to-Chinese translation, the
training time was always shorter than the baseline until
the least frequency of 1000, and the average was 3.56%
shorter in the range of the least frequency of 10 to
1000. On the other hand, the effect of shortening the
training time was not seen much in Chinese-to-Japanese
translation. The decomposed sentences become longer
than before. This makes such a result that taking more
time to calculate the models.

The results obtained above are dependent on the
ASPEC-JC corpus. For different corpora, there should be
different threshold (least frequency of occurrence) choices
and different translation results.
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Figure 2. Variation of the training time and the number of parameters

VI. CONCLUSION

In this research, we created a Chinese character com-
position table and proposed a method to reduce low-
frequency characters by decomposing low-frequency char-
acters into Chinese characters’ constituent elements and
pseudo-characters for NMT between Japanese and Chi-
nese.

Experiments of Japanese-to-Chinese and Chinese-to-
Japanese NMT systems showed that the BLEU scores
and the training time varied with the number of least fre-
quency of decomposed characters. As a result, compared
to the baseline, the BLEU value was about 0.5% higher
in Japanese-to-Chinese and 0.3% higher in Chinese-to-
Japanese. However, especially in the Chinese-to-Japanese,
in most cases, the BLEU scores were lower than the
baseline. The translation results are not very well overall.
The training time was generally shorter than the baseline
when the least frequency of occurrence was less than 1000
in the Japanese-to-Chinese translation experiment.

Because the decomposition of the Chinese characters
causes the sentence to grow longer, we should increase the
NMT model’s support for long sentences, such as using
the long sentence segmentation method for NMT [20].
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Further, we should use the popular models to train, such
as the transformer model [17].

In the future, we should improve or find a better
character decomposition method to choose the appropriate
least frequency of occurrence for different corpus, even
at the character level translation from Chinese to other
languages, or from Japanese to other languages. The use
of Chinese characters’ constituent elements may lead to
an improvement for translation performance with fewer
parameters and shorter training time.
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