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Abstract

Diffusion models have recently delivered state-of-the-art performance for MRI
reconstruction with improved robustness. However, these models fail when there is
a large distribution shift, and their long inference times impede their clinical utility.
Recently, regularization by denoising diffusion process (RED-diff) was introduced
for solving general inverse problems. RED-diff uses a variational sampler based
on a measurement consistency loss and a score matching regularization. In this
paper, we extend RED-diff to MRI reconstruction. RED-diff formulates MRI
reconstruction as stochastic optimization, and outperforms diffusion baselines in
PSNR/SSIM with 3× faster inference while using the same amount of memory.
The code is publicly available at https://github.com/NVlabs/SMRD.

1 Introduction

Magnetic Resonance Imaging (MRI) is a widely used non-invasive imaging technique due to its
ability to generate high-quality images. However, acquiring clinical MRI data requires long scan
times. Imaging can be accelerated by using multiple receiver coils, and by reducing the amount of
captured data with Fourier domain (k-space) undersampling [1, 2]. Recently, unrolled methods that
alternate between measurement consistency and a neural-network based regularization have shown
superior performance as a data-driven approach. [3, 4, 5]

Generative diffusion models gained popularity for MRI reconstruction due to their high sample
quality, improving robustness over unrolled methods under distribution shifts [6, 7, 8, 9]. Diffusion
models can be pretrained for MRI to serve as the data prior and the pretrained model can be used
in a plug-and-play fashion by incorporating the forward model at inference time. This approach
allows for universally solving downstream reconstruction tasks without the need for re-training or
fine-tuning. However, diffusion models still fail dramatically under large distribution shifts such as
scan parameter change, or anatomy change between training and testing [9]. Furthermore, inference
time for diffusion models is much larger than end-to-end approaches due to the sequential denoising
procedure during reverse diffusion, impeding their clinical utility [7].

Recently, [10] proposed regularization by denoising diffusion (RED-diff) for solving generic inverse
problems. RED-diff uses a variational sampler based on a measurement consistency loss and a score
matching regularization. In this paper, for the first time, we propose to extend RED-diff for MRI
reconstruction.

Contributions. Our contributions can be summarized as follows:

NeurIPS 2023 Workshop on Deep Learning and Inverse Problems.

https://github.com/NVlabs/SMRD


Algorithm 1 RED-diff: regularization by denoising diffusion process for MRI reconstruction

Input: k-space data y; acquisition model A = ΩFS; {αt, σt, λt}Tt=1
Initialize: µ = xzf = A−1y

1: for t = T, ..., 1 do
2: ϵ ∼ N (0, I)
3: xt = αtµ+ σtϵ
4: loss = ∥Aµ− y∥2 + λt(sg[ϵθ(xt; t)− ϵ])Tµ
5: µ← OptimizerStep(loss)
6: end for
7: return µ

• We propose regularization by denoising diffusion processes for MRI reconstruction (RED-
diff), a variational inference method for MRI reconstruction using pre-trained diffusion
models.

• We evaluate RED-diff for MRI reconstruction on FastMRI and Mridata, and show that it
achieves state-of-the-art performance across different acceleration rates and anatomies.

• RED-diff achieves 3× faster inference while using the same amount of memory and improv-
ing reconstruction performance.

2 Background

2.1 Diffusion Models

Diffusion models are a recent class of generative models showing remarkable sample quality for
computer vision tasks [11]. Diffusion models consist of two processes: a forward process that
gradually adds noise to input images and a reverse process that learns to generate images by iterative
denoising. A popular class of diffusion models uses the variance preserving stochastic differential
equation (VP-SDE) [12]. The forward and reverse process is characterized by the noise schedule β(t)
with t ∈ [0, T ] where t is the timestep. β(t) is designed such that the final distribution of xT at the
end of the process converges to a standard Gaussian distribution.

The reverse generative process requires estimating the score function∇xt
log p(xt), which denotes

the score function of diffused data at time t. ∇xt
log p(xt) can be estimated by training a joint neural

network, denoted as ϵθ(xt; t), via denoising score matching [13]. For denoising score matching,
diffused samples are generated by

xt = αtx0 + σtϵ (1)

where ϵ ∼ N (0, I), x0 ∼ pdata is the data distribution, σt = 1 − e−
∫ t
0
β(s)ds, and αt =

√
1− σ2

t ,
and ϵθ(xt; t) ≈ −σt∇xt

log p(xt).

2.2 Diffusion Models for Accelerated MRI Reconstruction

The forward model for accelerated MRI with compressed sensing [1] and parallel imaging [2] is
given by

y = ΩFSx0 + ν (2)
where y is the measurement, x0 is the real image, S are sensitivity maps, F is the Fourier transform,
Ω is the subsampling mask, ν ∼ N (0, σ2

νI), and A = ΩFS is the forward model.

In MRI reconstruction, the real image x from measurements y can be reconstructed by sampling from
the posterior distribution p(x0|y). This can be achieved by leveraging diffusion models as data priors
assuming the conditional score function p(xt|y) is available [7]. The conditional score function can
be obtained using Bayes rule:

∇xt log p(xt|y) = ∇xt log p(y|xt) +∇xt log p(xt) (3)

where ∇xt log p(xt) is estimated by the diffusion model as discussed in Section 2.1. However,
the likelihood term ∇xt log p(y|xt) is often intractable to estimate. Due to the intractability of the
likelihood, previous works often resort to approximations [7] or projections onto the measurement
subspace [14].
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Anatomy Brain Knee Timing
R R = 4 R = 12 R = 16 (sec/iter)

Zero-filled 27.8/0.81 24.5/0.63 24.0/0.60 -
CSGM-Langevin 36.3/0.78 31.4/0.82 31.8/0.79 0.344
RED-diff 37.1/0.83 33.2/0.78 32.7/0.77 0.114

Table 1: Reconstruction PSNR/SSIM for fastMRI brain and Mridata knee dataset.

3 RED-diff for MRI Reconstruction

To sidestep the challenges of approximating the likelihood term ∇xt
log p(y|xt), [10] recently

proposed RED-diff, a variational inference approach based on KL minimization for solving general
inverse problems. RED-diff considers the following KL objective:

KL(q(x0|y)∥p(x0|y)) = −Eq(x0|y)[log p(y|x0)]+KL(q(x0|y)∥p(x0)) + log p(y) (4)

where q := N (µ, σ2I) is a variational distribution. Upon inspection of Equation 4, it is observed
that the objective is a composition of the variational bound that is often used for training variational
autoencoders [15], and the observation likelihood log p(y) which is constant with respect to q, and
thus can be ignored. Then, it can be shown that performing KL minimization amounts to minimizing
the following score-matching loss [10]:

Proposition 1. The KL minimization with respect to q in Eq. 4 is equivalent to minimizing the score
matching loss:

min
{µ,σ}

Eq(x0|y)

[
∥y −Ax0∥22

2σ2
ν

]
+

∫ T

0

β(t)

2
Eq(xt|y)

[∥∥∇xt log q(xt|y)−∇xt log p(xt)
∥∥2
2

]
dt, (5)

where q(xt|y) = N (αtµ, (α
2
tσ

2 + σ2
t )I) produces samples xt by drawing x0 from q(x0|y) and

applying the forward process in Eq. 1.

Equation 5 is composed of a measurement consistency loss obtained by the definition of p(y|x0),
and a score-matching regularization term imposed by the diffusion prior. The score-matching term
is obtained by expanding the KL term in terms of the score-matching objective as shown in [16].
The integral is evaluated on a diffused trajectory, namely xt ∼ q(xt|y) for t ∈ [0, T ], which is the
forward diffusion process applied to q(x0|y). As q(x0|y) admits a Gaussian form, it can be shown
that q(xt|y) is also a Gaussian in the form q(xt|y) = N (αtµ, (α

2
tσ

2 + σ2
t )I) [17]. As a result, the

conditional score function ∇xt
log q(xt|y) can be computed analytically. We refer the reader to [10]

for further details.

For MRI reconstruction, RED-diff corresponds to minimizing a measurement consistency loss
equipped with a score-matching regularization term. Thus, asssuming the variance of the variational
distribution is small near zero (i.e., σ ≈ 0) we can consider the following minimization problem:

min
µ
∥Aµ− y∥2 + Et,ϵ[w(t)∥ϵθ(xt; t)− ϵ∥22] (6)

where xt = αtµ + σtϵ, and w(t) is a time-dependent weighting mechanism. To search for µ, we
use first-order stochastic optimization. We define the loss per timestep based on the instantaneous
gradient by detaching it at each timestep. Then, we can form the loss at time step t as

∥Aµ− y∥2 + λt(sg[ϵθ(xt; t)− ϵ])Tµ (7)

where λt is the weighting term, and sg denotes stopped-gradient, indicating that score is not dif-
ferentiated during the optimization. We set λt = λσt/αt, where λ is a hyperparameter. Our full
method is described in Algorithm 1. Intuitively, solving the optimization problem in Equation 6 will
find an image µ that reconstructs the observation y given the forward model A, while having a high
likelihood under the prior as imposed by the regularization. A small regularization term implies that
either the diffusion reaches the fixed point, ϵθ(xt; t) = ϵ, or the residual only contains noise with no
contribution left from the image.
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Zero-Filled Ground TruthCSGM-Langevin RED-diff
PSNR: 23.62
SSIM: 0.726

PSNR: 35.47
SSIM: 0.816

PSNR: 36.15
SSIM: 0.856

PSNR: 23.85
SSIM: 0.591

PSNR: 26.93
SSIM: 0.831

PSNR: 32.25
SSIM: 0.766

Figure 1: Example reconstruction for brain at R = 4, and knee at R = 12.

4 Results

We perform experiments with PyTorch on a NVIDIA Tesla V100 GPU [18]. We use the multi-coil
fastMRI brain dataset [19] with 1D equispaced undersampling. The matrix size for each scan is
384 × 384 with 15 coils. Sensitivity maps are estimated using ESPIRiT with a kernel width of 8
and a calibration region of 12× 12 [20]. Additionally, we use the fully-sampled 3D fast-spin echo
multi-coil knee MRI dataset from [21] with 2D Poisson Disc undersampling mask, as in [7]. Each 3D
volume has a matrix size of 320× 320× 256 with 8 coils. Sensitivity map estimation is performed
in SigPy [22] using JSENSE [23] with kernel width of 8 for each volume. We use 6 validation
volumes for fastMRI, and 3 volumes for Mridata by selecting 32 middle slices from each volume.
Both datasets have a total of 96 test slices.

For RED-diff, we use linear schedule for β(t) from 0.0001 to 0.02, and T = 1000. We adopt Adam
optimizer with initial learning rate 0.1 and no weight decay regularization, and set the momentum to
(0.9, 0.99) where λ = 0.25. We compare RED-diff with CSGM-Langevin [7]. For CSGM-Langevin
and RED-diff, we use the score function from [7] which was trained on a subset of the FastMRI
multi-coil brain dataset.

We evaluate the methods in i) the in-distribution setting on brain at R = 4, ii) the out-of-distribution
setting with knee at R = {12, 16}. Table 1 shows comparison of reconstruction methods for FastMRI
brain, and Mridata knee datasets. RED-diff outperforms CSGM-Langevin in most cases, with a
PSNR improvement of +0.7dB for brain, +1.8dB for knee, and an SSIM improvement of +0.05
for brain, while having 3× faster inference time using same amount of memory. Figure 1 shows
example reconstructions for brain at R = 4, and knee at R = 12. RED-diff produces higher quality
reconstruction in both cases. Crucially, it is observed that CSGM-Langevin is sensitive in the out-of-
distribution setting and produces hallucination artifacts, whereas RED-diff mitigates these artifacts
and produces a reconstruction with no hallucinations.

5 Conclusion

In this paper, we presented RED-diff for MRI reconstruction, a variational approach based on
KL minimization for sampling from diffusion models that sidesteps posterior approximation. Our
experiments on multiple datasets, anatomies and acceleration factors demonstrate that RED-diff
improves reconstruction quality and robustness for MRI reconstruction. In addition to improving
performance, RED-diff speeds up inference by at least 3× while using the same inference memory.
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