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ABSTRACT

Time series forecasting plays a crucial role in numerous real-world applications.
Existing works mostly assume clean and regular historical sequences for predict-
ing future ones. However, real-world time series data often contain anomalous
subsequences that deviate from the regular patterns of the entire series, posing
challenges to accurate forecasting. In this paper, we propose RockTS, a novel
end-to-end framework for robust time series forecasting based on Information
Bottleneck and Optimal Transport, which integrates the detection and imputation
of anomalous subsequences into the forecasting task through a unified optimiza-
tion objective. RockTS first introduces a detection process for anomalous patterns
based on Information Bottleneck, which compresses representations of time se-
ries while retaining the information more relevant for effective forecasting. It then
imputes the detected anomalous regions with normal patterns through a novel re-
construction strategy based on Optimal Transport for forecasting. Experiments
on multiple real-world and synthetic datasets demonstrate that RockTS achieves
superior robustness and forecasting performance.

1 INTRODUCTION

Time series forecasting plays a crucial role in extensive real-world applications, such as weather
forecasting, energy management, financial investment, and traffic flow estimation. Deep learn-
ing models have achieved remarkable success in time series forecasting tasks. Models based on
multilayer perceptrons (MLP) (Xu et al., 2024; Zeng et al., 2023), convolutional neural networks
(CNN) (Wu et al., 2022; Luo & Wang, 2024), and Transformers Chen et al. (2024); Liu et al. (2024)
have been continuously emerging. They achieve predictions of the future by learning complex pat-
terns and dependencies in historical time series data.

Real-world time series data may contain anomalous subsequences that deviate from the normal pat-
terns of the entire series occasionally Schmidl et al. (2022), due to sensor failures, transmission dis-
turbances, malicious attacks, etc. Indeed, anomalous subsequences may lead to challenges in time
series forecasting. As shown in Figure 1(a), anomalous subsequences in the historical data make the
model misjudge the patterns of the time series, which in turn leads to significant prediction errors.
Unfortunately, most existing robust time series forecasting methods Wang et al. (2023b); Fraikin
et al. (2024); Wang et al. (2022) primarily focus on addressing issues of point-wise anomalies or
distribution shift. They address point-wise anomalies by using robust loss functions and sample
selection strategies for specific kinds of anomalies Cheng et al. (2024). Alternatively, they address
distribution shifts by integrating a self-adaptation stage prior to forecasting Arik et al. (2022). How-
ever, anomalous subsequences are more complex compared with point-wise anomalies Cheng et al.
(2024), as they display diverse lengths or patterns. Further, the anomalous subsequences may fall
within the same probability distribution Nam et al. (2024); Paparrizos et al. (2022) as the entire
series. Therefore, these methods struggle to withstand the interference caused by anomalous subse-
quences. Consequently, addressing the forecasting challenge in the context of data with anomalous
subsequences becomes highly significant.

To address the negative impact of such complex and diverse anomalous subsequences on time se-
ries forecasting, an intuitive strategy is to perform an additional data cleaning process to filter the
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Figure 1: Example of the prediction results on ETTh2 of PatchTST. RockTS converts the anomalous
subsequence to normal and uses the same predictor as PatchTST.

anomalous subsequences in the data before they enter the forecasting model Li et al. (2022); Bohlke-
Schneider et al. (2020). However, such strategy models the data cleaning task and the prediction task
separately and independently, failing to fully consider the specific requirements of the forecasting
task when cleaning data. As a result, they struggle to accurately capture anomalous subsequences
that are detrimental to the forecasting task, and their cleaning process may potentially hinder the
forecasting process as they may introduce additional noise for prediction Cheng et al. (2024).

To achieve robust time series forecasting on data that may contain anomalous subsequences, we
propose a novel end-to-end framework based on Information Bottleneck and Optimal Transport
(RockTS), for robust time series forecasting. The main idea of RockTS is to integrate the detection
and imputation for anomalous subsequences into forecasting tasks using a unified optimization ob-
jective. It first detects the anomalous subsequences in time series using a novel adaptive detector
based on Information Bottleneck (IB) Tishby & Zaslavsky (2015), and then imputes the detected re-
gions into the normal patterns by a reconstruction strategy based on Optimal Transport (OT). Finally,
the imputed series is fed into the predictor for the collaborative learning of detection, imputation,
and forecasting tasks.

To integrate anomalous subsequence detection in the forecasting process, RockTS innovatively in-
troduces an adaptive detector based on IB to locate the anomalous subsequences in time series
through masking from the data. To address the issue of insufficient consideration of prediction
requirements in the normal detection process, we leverage IB to compress representations while
retaining relevant information for effective prediction. We optimize the detection process by: 1)
minimizing mutual information between the original and the remaining series after masking to filter
regions useless for prediction, while 2) maximizing mutual information between the remaining se-
ries after masking and future series to retain forecasting-relevant regions. This trade-off optimizes
the locations to cover anomalous subsequences that negatively affect the prediction, thus allowing
the detector to efficiently locate the anomalous subsequences by the mask locations.

To better impute anomalous subsequence regions in the forecasting process, preserving the patterns
of the original time series and avoiding the re-emergence of anomalous subsequences are two critical
points. We innovatively propose a reconstruction strategy based on OT to achieve this. We first use
a reconstruction network to impute the detected regions with continuous values. Then, we use a
transport matrix that models the correlation among time points to further adjust these imputed time
series, such that they preserve the patterns of the original time series. Moreover, we set a higher
transport cost for the detected regions to constrain the transport matrix, to prevent the re-emergence
of anomalous subsequences caused by over-optimization of the reconstruction loss.

Our contributions can be summarized as follows:

• We propose RockTS, a novel end-to-end framework for robust time series forecasting that
for the first time directly addresses the issue of anomalous subsequences in time series.

• We introduce an adaptive detector based on the information bottleneck to detect the anoma-
lous subsequences in the forecasting process, and retain forecasting-relevant regions.

• We design a reconstruction strategy based on OT to impute the masked regions into the nor-
mal patterns in forecasting, while avoiding the re-emergence of anomalous subsequences.

• We apply RockTS on multiple real-world datasets and synthetic datasets injected with
anomalous subsequences. RockTS exhibits strong robustness and superior forecasting per-
formance, withstanding interference from various types of anomalous subsequences.
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2 RELATED WORK

2.1 TIME SERIES FORECASTING

Time series forecasting primarily involves predicting future sequences based on historical sequences.
Statistical methods, such as ARIMA Box & Jenkins (1968) and VARSims (1980), mainly capture
simple temporal patterns but struggle with modeling complex dependencies, which limits their pre-
diction performance. In contrast, deep learning methods have rapidly advanced due to the neural
networks’ powerful ability to model complex patterns. RNN-based and CNN-based methods fo-
cus on capturing local temporal dependencies Wu et al. (2022); Wang et al. (2023a); Flunkert et al.
(2017); Lin et al. (2023). Transformer-based methods, leveraging the global modeling capability
of Attention mechanisms, excel at capturing complex and long-term temporal dependencies. Meth-
ods like Informer Zhou et al. (2021), Autoformer Wu et al. (2021), and Triformer Cirstea et al.
(2022) reduce the time and space complexity of Attention from quadratic to linear. Others focus on
modeling temporal characteristics such as non-stationarity Liu et al. (2022), frequency Zhou et al.
(2022), multi-scale patterns Chen et al. (2024), and channel correlations Liu et al. (2024). MLP-
based methods have gained attention due to their lightweight architectures and high efficiency Zeng
et al. (2023); Xu et al. (2024); Wang et al. (2024). However, existing forecasting methods are signifi-
cantly impacted by anomalous subsequences, often leading to a misjudgment of time series patterns.
RockTS adaptively detects anomalous subsequences and transforms them into normal patterns that
are conducive to accurate forecasting.

2.2 ROBUST TIME SERIES FORECASTING

Real-world time series often exhibit various types of anomalous patterns, making robust time se-
ries forecasting a mainstream approach to address it Cheng et al. (2024); Arik et al. (2022); Fraikin
et al. (2024); Kim et al. (2025). For robust forecasting against point anomalies, RobustTSF Cheng
et al. (2024) identifies informative samples by evaluating the variance between the original input
time series and its trend component, followed by employing a robust loss function to improve the
forecasting process. For distribution shift robustness, several innovative mechanisms have been pro-
posed to mitigate distribution shifts caused by the non-stationarity of time series, offering better
adaptability to changing data distributionsArik et al. (2022); Wang et al. (2022). For robust forecast-
ing with missing data, T-Rep Fraikin et al. (2024) enhances model resilience by learning temporal
embeddings and leveraging pretraining techniques to address the challenges posed by missing val-
ues. However, existing robust time series forecasting methods primarily target simple scenarios,
such as point anomalies or basic distribution shifts, and struggle to handle complex and diverse
anomalous subsequences. To address this limitation, RockTS, based on Information Bottleneck and
Optimal Transport (OT) theory, adaptively detects and imputes anomalous subsequences during the
forecasting process, significantly enhancing the robustness of predictions.

3 PRELIMINARIES

Problem Formulation. Given the historical time series x = {x1, ..., xL}, with xi ∈ R denoting
the observation at the timestamp i, and L is the size of look-back window, the goal of time series
forecasting is to predict the future values y = {xL+1, . . . , xL+F }, where F is the forecast horizon.

In this paper, we investigate algorithms for robust time series forecasting. We define an anomalous
subsequence as xs,e = {xs, ..., xe} with length e− s+1 ≥ 1 that deviates from the normal patterns
in x. The objective of robust time series forecasting is to accurately predict y even when the input
data x contains possible anomalous subsequences {xsi,ei}ni=1, where n is the number of anomalous
subsequences.

4 METHODOLOGY

To achieve robust time series forecasting on data that may contain anomalous subsequences, we
propose a robust time series forecasting model based on Information Bottleneck and Optimal Trans-
port, RockTS. As shown in Figure 2, RockTS employs a detect-impute-forecast workflow. Initially,
an adaptive detector based on IB is used to identify the anomalous subsequences within the time
series, and then the time series is masked based on the detection results. Next, the masked se-
quence is imputed by a reconstruction module based on OT, generating the reconstructed series.
Finally, the reconstructed series is fed into the prediction module to generate the prediction results.
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Throughout this workflow, RockTS integrates the detection, imputation, and prediction tasks into a
unified optimization objective. In the following parts, we describe robust forecasting based on IB
and reconstruction based on OT in detail.
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Figure 2: Overall structure of RockTS. RockTS employs a detect-impute-forecast workflow that
uses the IB-based detector to identify the anomalous subsequences in time series, and then uses the
OT reconstruction module to impute these detected regions. Finally, the prediction module is used
to generate the prediction series. The detection, imputation, and prediction tasks are integrated into
a unified optimization objective by this framework.

4.1 ROBUST FORECASTING BASED ON INFORMATION BOTTLENECK

Information Bottleneck Based Detector. Anomalous subsequences in time series display diverse
lengths and patterns, and may be within the same distribution as normal series, which poses a signif-
icant challenge for direct detection. They can affect the model’s analysis of the time series’ complex
patterns and dependencies, which limits the prediction performance.

To eliminate the effect of anomalous subsequences on the prediction, we propose an IB-based detec-
tor to identify these anomalous subsequences by learning to mask them from data. To achieve this,
we employ a perturbation mask M = {mi}Li=1 to extract a masked series xm, where mi ∈ {0, 1}
and L denotes the length of the input data x, and the masked series xm = x⊙M, where ⊙ means the
elements multiplication. With the concept that an optimal representation contains minimal original
information from the input but keeps sufficient relevant information necessary for the forecasting
task, we try to find a compressed xm by masking irrelevant or anomalous subsequences from the
original series x, encapsulating only the information useful for the future series y. Formally, the
objective of finding the optimal masked series xm is defined by:

x∗
m := argmin

P(xm|x)
α I (x;xm)︸ ︷︷ ︸

Compactness

− I (y;xm)︸ ︷︷ ︸
Predictiveness

, (1)

where I(. ; .) denotes mutual information between series pairs and α is a hyperparameter that gov-
erns the trade-off between minimality and sufficiency constraints. The first part in Equation 1 is the
compactness term to optimize the masking process, ensuring the thorough filtering of anomalous
subsequences useless for forecasting. The latter part is the predictiveness term, which constrains
the retention of forecasting-relevant information. Note that I(y;xm) = H(y) − H(y|xm), where
the entropy H(y) is a statistic of time series and remains constant. Therefore, the process of max-
imizing the mutual information I (y;xm) between the compressed masked series xm and the target
future series y can be reformulated as minimizing the conditional entropy H (y|xm) of y given xm:

x∗
m := argmin

P(xm|x)
α I (x;xm) +H (y|xm) . (2)

Learning to Mask by Compactness and Predictiveness. The compactness term I (x;xm) aims
to ensure that the masked series contains the necessary information for the prediction with minimal
information retained, thereby removing anomalous subsequences that are irrelevant to the prediction
or even negatively impact prediction performance. However, directly optimizing mutual information
I (x;xm) may lead to the retaining of a significant amount of low-entropy components in xm that

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

contains less information, which is inconsistent with our desired objective of retaining more high-
entropy components that contains necessary information. Therefore, directly optimizing mutual
information cannot achieve the goal of compactness.

To address this problem, we consider the upper bound to simplify the optimization objective based
on it.

I (x;xm) ≤ Ex[DKL[Pθ(xm|x)||Q(xm)]], (3)

where DKL is the Kullback–Leibler divergence. The derivation for the upper bound is detailed in
Appendix B. Additionally, we define pθ ∼ Pθ as the detector with parameter θ which generates a
vector of probabilities to extract the proper xm from x. Further, the Q(xm) is defined as the prior
distribution to regulate the detector. With these definitions established, the upper bound can be
further simplified as discussed in the following paragraph.

Specifically, we train an extractor pθ to generate a vector of probabilities λ = pθ(x) ∈ [0, 1]L,
where each element λi corresponds to the probability of retaining the corresponding element of x in
xm and mi ∼ Bernoulli(λi). Further, we define Q{M} as the Bernoulli distribution with a sparsity
parameter τ ∈ (0, 1), which regulates the generation of λ, aligning it with the prior distribution
Q{M} ∼

∏L
i=1 Bernoulli(τ). Thus, we transform the problem of obtaining xm into generating

forecasting-relevant attribution scores λ by optimizing θ. The original compactness term term in
Equation 1 is transformed into a more tractable loss LM as follows:

LM = Ex[DKL[Pθ(M|x)||Q(M)]] =

L∑
i=1

[
λi log

(
λi

τ

)
+ (1− λi) log

(
1− λi

1− τ

)]
. (4)

The loss LM effectively limits the average number of non-zero elements in the mask while avoiding
the destruction of compactness caused by directly minimizing mutual information. To prevent the
mask M that causes xm to be discontinuous, we further introduce a continuity term to enhance the
continuity of xm, thus the final loss for compactness is:

LM =

L∑
i=1

[
λi log

(
λi

τ

)
+ (1− λi) log

(
1− λi

1− τ

)]
+

1

L
·
L−1∑
i=1

√
(λi+1 − λi)

2
, (5)

where the second part is the continuity term.

As described in Equation 2, the predictiveness term is defined as minimizing the conditional entropy
H (y|xm), which is equivalent to maximizing the conditional probability P (y|xm). Depending on
different assumptions regarding the error distribution, this objective can be transformed into mini-
mizing either Mean Squared Error (MSE) or Mean Absolute Error (MAE) between the prediction
ŷ obtained from xm and ground truth y (Bishop & Nasrabadi, 2006). In alignment with current
mainstream practices in the field, we adopt MSE as the optimization loss for the predictiveness term
in Equation 1.

Lpred = ||y − ŷ||2F (6)

Implementation of Framework. We establish a framework to learn the detector pθ that encodes
the input x into a score vector λ, to parameterize the stochastic mask M. The specific implemen-
tation process is as follows: we first map the input sequence x to Z ∈ RL×D through a linear
transformation, where D denotes the hidden dimensions. We then feed Z into self-attention to cap-
ture the long-term dependencies. Leaving out attention head indices for brevity, let Q = WQZ,
K = WKZ and V = WVZ be the transformed query, key and value matrices, where WQ,WK

and WV ∈ RD×D. Thus the attention matrix A ∈ RL×L that describing the relationships among
time-point features and hidden features E ∈ RL×D are given by:

A = Softmax(
QKT
√
D

),E = AV. (7)

Masks for anomalous patterns are generated by calculating the similarity between E and Z with
cross attention. The hidden features E are used as the query, and the input Z is used as the key and
value for cross-attention. Then, a linear transformation followed by a sigmoid function is applied to
convert it into a score matrix λ ∈ RL:

λ = σ(CrossAttention(E,Z)WT
b), (8)

5
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where Wb ∈ R1×D and σ() is the sigmoid function. Further, to generate a deterministic binary
mask from the stochastic probabilities λ and enable end-to-end optimization, we apply the Gumbel-
Softmax with Straight-Through Estimation and get the hard mask M:

M = GumbelSoftmax(λ). (9)

Then we obtain the masked sequence xm = x ⊙ M. Next, with the reconstruction strategy based
on OT, we impute xm to keep its continuity, which is described in detail in Section 4.2. Thus, we
transform the xm into reconstructed series x′ with normal patterns.

To derive the prediction of future series, the reconstructed series x′ is segmented into Np non-
overlapping patches x′ ∈ RNp×Lp , where Lp = L/Np is length of patches. The patches x′ are
mapped to the latent space dimension D through a linear projection Wp and add a learnable position
embedding Wpos to generate Z′ ∈ RNp×D:

Z′ = Wpx
′ +Wpos (10)

Then, Z′ will be fed into a vanilla Transformer encoder, which includes a multi-head attention block,
BatchNorm layers, and a feed-forward network with residual connections. Based on the representa-
tion from the encoder, we finally use a flatten layer with a linear head to obtain the prediction result
ŷ ∈ RF , which is used to compute the prediction loss in Equation 6 during training.

4.2 COST-AWARE RECONSTRUCTION STRATEGY BASED ON OT

In the Section 4.1, we propose an adaptive detector to detect the anomalous subsequences in time
series and generate a masked series xm. However, the masked series is incomplete, and the empty
values disrupt the continuity of the time series, affecting the model’s ability to learn the patterns of
time series and leading to unstable results. Therefore, it is necessary to impute it before prediction.
RockTS uses reconstruction to impute the masked time series. To impute the masked regions into
normal patterns while preventing the re-emergence of anomalous subsequences, we build an OT
problem for the reconstruction strategy and optimize this OT problem via a neural network. Thus
the model can learn the reconstruction strategy for the masked sequences end-to-end.
OT-Based Reconstruction. We formulate the optimization process for imputation as an optimal
transport problem. First, to restore the continuity of the masked series xm, We transform xm through
a network G combining a Transformer encoder and a linear head, and denote the result as x̃. We take
the distribution of reconstruction series x̃ ∈ RL as the source distribution and take the distribution
of original series x as the target distribution. The OT problem sets a transport strategy P ∈ RL×L

to transform the source distribution to the target distribution to make the reconstructed series has the
same overall information as the original series with a minimum cost ||P⊙C||1, where C ∈ RL×L.
Pi,j denotes the ratio of x̃i transporting to xj , and Ci,j denotes the cost of transporting from x̃i to
xj . Thus PTx̃ denotes the distribution after applying the transport strategy P to x̃, which should
be close to x, and the sum of each row of P should be 1. Thus, we formulate ||PTx̃ − x||1 as an
optimization goal and the PT1⃗ = 1⃗ as a constraint in this OT problem. To reconstruct series that do
not contain anomalous subsequences, we set C as follows:

Ci,j =

{
1− λj , Mj = 0

0, Mj = 1
(11)

where M is the mask vector generated from the IB-based detector. The cost matrix C assigns
costs exclusively to regions detected as anomalous subsequences. Specifically, the cost assigned to
transporting to a region increases with the probability that the detector identifies it as an anoma-
lous subsequence. This approach effectively suppresses the recovery of original patterns in regions
identified as anomalous during the reconstruction process. Thus we formulate an OT problem as:

min β ||P⊙C||1 + ||PTx̃− x||1,

s.t. PT · −→1 =
−→
1 ,

(12)

where β is a hyperparameter belonging to [0, 1], and
−→
1 denotes a unit vector with length L.

Optimization of OT-based Reconstruction. We propose learning to optimize the above OT prob-
lem by constructing a neural network to get a suitable transport strategy P. We use x̃ obtained by
xm through network G as the source distribution for transport. To get a better transport strategy P

6
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Figure 3: The transport matrix p is obtained by transforming attention matrix A. The optimization
objectives for OT-based reconstruction is minimizing the cost of transport and the distance between
the transported distribution and source distribution.

that can make the transport result conform to the normal pattern of the time series, we model the
correlation between the time points, as shown in Figure 3. In Section 4.1, we have obtained the
attention matrix A that models the relationships and importance between time-point features. We
non-linearly transform it by an MLP-network H to generate the transport matrix P.

We use P to migrate the elements in x̃, and get the reconstructed series x′ ∈ RL. We take x′ as an
input to the predictor to get forecasting results as discussed in Section 4.1. To meet the constraint in
Equation 12, we use softmax for P, and the transformation process is specified as:

x′ = softmax(P)Tx̃. (13)

We use the MAE loss to optimize the transport result x′ close to the target distribution x. To avoid the
anomalous subsequences in x being reproduced in x′ due to over-optimization of the reconstruction
loss, we calculate the total cost of the transport process and include it in the loss function. Therefore,
we can introduce the optimization objective of the OT problem to the loss function:

LOT =
1

L

L∑
i=0

|xi − x′|+ β

L∑
i=0

L∑
j=0

Pi,j ⊙Ci,j . (14)

4.3 OVERALL LEARNING OBJECTIVE.

RockTS is optimized end-to-end and the learning objective is trained by minimizing the total loss:

L = αLM + LOT + Lpred (15)

where α ∈ [0, 1] is a hyperparameter for multi-loss balance. In summary, the philosophy of RockTS
is that when a subsequence is anomalous that is useless for prediction, we mask it and impute it
into normal pattern. When a subsequence is in normal mode, RockTS keeps its information for
prediction tasks. The detection and imputation processes are trained end-to-end together with the
prediction task, enabling the learning of forecasting-relevant information in the framework.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Evaluation Datasets. To conduct comprehensive and fair comparisons for different models, we
conducted experiments on eight well-known forecasting benchmarks as the evaluation datasets, in-
cluding Weather, Traffic, Electricity, Solar, and ETT (4 subsets). In addition, to further evaluate
the robustness of the model on data that contains anomalous subsequences, we construct synthetic
datasets by injecting six types of anomalous subsequences: vmirror, hmirror, scale, outlier, noise and
pattern into above real-world datasets. The specific descriptions of these anomalous subsequences
are detailed in the Appendix A.2.
Baselines. We compare our model with nine state-of-the-art models for comprehensive evalua-
tions, including Transformer-based models: iTransformer Liu et al. (2024), PatchTST Chen et al.
(2024) and PathFormer Nie et al. (2023); CNN-based model: TimesNet Wu et al. (2022) and Mod-
ernTCN Luo & Wang (2024); MLP-based models: FITS Xu et al. (2024), TIDE Das et al. (2023),
TimerMixer Wang et al. (2024) and DLinear Zeng et al. (2023).
Implementation Details. Consistent with previous works Nie et al. (2023), we adopted Mean
Squared Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics. We use the look-
back window length L = 512 and predict the future values with lengths F = {96, 192, 336, 720}.
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Table 1: The average results of four prediction lengths in real-world datasets.
Models ours ITransformer PatchTST Pathformer TimesNet ModernTCN Dlinear TiDE FITS TimeMixer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.345 0.368 0.362 0.391 0.349 0.381 0.357 0.375 0.490 0.464 0.361 0.430 0.357 0.379 0.360 0.381 0.357 0.377 0.356 0.380
ETTm2 0.248 0.303 0.269 0.329 0.256 0.314 0.253 0.309 0.317 0.358 0.265 0.324 0.267 0.332 0.255 0.315 0.254 0.313 0.257 0.318
ETTh1 0.399 0.417 0.439 0.448 0.419 0.436 0.417 0.426 0.582 0.533 0.424 0.433 0.423 0.437 0.433 0.446 0.408 0.427 0.427 0.441
ETTh2 0.343 0.382 0.374 0.406 0.351 0.395 0.360 0.395 0.409 0.438 0.346 0.414 0.431 0.447 0.338 0.393 0.335 0.386 0.347 0.394
Traffic 0.403 0.257 0.428 0.282 0.397 0.275 0.416 0.264 0.623 0.333 0.431 0.306 0.434 0.295 0.418 0.284 0.429 0.302 0.410 0.279

Weather 0.223 0.251 0.258 0.278 0.224 0.261 0.225 0.258 0.329 0.336 0.239 0.274 0.246 0.300 0.241 0.280 0.244 0.281 0.225 0.263
Solar 0.187 0.219 0.233 0.262 0.207 0.294 0.204 0.228 0.233 0.290 0.233 0.290 0.230 0.295 0.235 0.269 0.232 0.268 0.203 0.261

Electricity 0.158 0.250 0.178 0.270 0.159 0.253 0.168 0.261 0.195 0.296 0.164 0.259 0.166 0.264 0.164 0.259 0.169 0.265 0.185 0.284

Table 2: The average results of four prediction lengths in datasets injected with anomalies.
Models ours ITransformer PatchTST Pathformer TimesNet ModernTCN Dlinear TiDE FITS TimeMixer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.379 0.393 0.400 0.419 0.398 0.405 0.396 0.404 0.468 0.452 0.408 0.417 0.388 0.405 0.391 0.405 0.389 0.403 0.473 0.445
ETTm2 0.270 0.320 0.307 0.353 0.289 0.337 0.281 0.325 0.337 0.365 0.307 0.357 0.332 0.388 0.289 0.344 0.288 0.342 0.293 0.347
ETTh1 0.429 0.440 0.465 0.475 0.451 0.460 0.462 0.470 0.518 0.491 0.456 0.456 0.441 0.458 0.450 0.462 0.440 0.458 0.515 0.499
ETTh2 0.345 0.386 0.396 0.426 0.366 0.396 0.356 0.399 0.448 0.447 0.370 0.412 0.560 0.524 0.356 0.401 0.352 0.400 0.382 0.422
Traffic 0.427 0.276 0.502 0.355 0.451 0.290 0.505 0.302 0.621 0.333 0.769 0.472 0.718 0.451 0.735 0.454 0.722 0.447 0.470 0.327

Weather 0.239 0.262 0.437 0.315 0.250 0.281 0.476 0.327 0.462 0.351 0.521 0.358 0.522 0.491 0.625 0.387 0.596 0.346 0.273 0.287
Solar 0.211 0.238 0.265 0.327 0.226 0.290 0.251 0.295 0.281 0.334 0.279 0.329 0.262 0.331 0.266 0.303 0.268 0.305 0.214 0.273

Electricity 0.175 0.263 0.186 0.284 0.226 0.296 0.217 0.291 0.314 0.394 0.247 0.344 0.255 0.355 0.268 0.355 0.270 0.355 0.296 0.382

5.2 MAIN RESULTS

Results in Real-world Datasets. Table 1 shows the prediction performance of different models
on real-world datasets. RockTS leads on most datasets, achieving an average MSE reduction of
8%. RockTS exhibits significant advantages without injected anomalous subsequences, because
sensor data inherently contains anomalies. Through end-to-end training, RockTS accurately detects
such anomalies and converts them to normal patterns, reducing their interference and improving
performance. Thus, RockTS adapts to a wide range of prediction scenarios.

Result in Datasets Injected with Anomalous Subsequences. We inject anomalous subsequences
in datasets at a ratio of 10% to further evaluate models’ robustness against anomalous subsequences.
As shown in Table 2, RockTS outperforms all baselines across datasets injected with anomalous
subsequences, achieving a MSE reduction of 21% in average. The full results are in Appendix H.

5.3 ABLATION STUDIES

Detection Based on IB. In Table 3, We performed two forms of ablation experiments on IB-based
detction (IB-D): 1.replacing it with detecting randomly (Random-D) and 2.removing it which means
that no regions are detected and the original series are directly used for prediction. We evaluate their
effect on four datasets injuected with anomalous subsequences. The experimental results illustrate
that our detection based on IB yields enhancements across all four datasets.

Reconstruction Based on OT. We also perform ablation studies for OT-based reconstruction (OT-
R) by replacing it with simple reconstruction (R). Specifically, we remove the process of transport
matrix-based adjustment, directly minimize the reconstruction error between x and x̃, and use x̃ for
the prediction task. Table 3 demonstrates that the model performance decreases when the OT-based
reconstruction is removed, which proves that the OT-based reconstruction is effective in imputating
the masked regions into normal patterns, helping to achieve more robust forecasting.

Table 3: Ablations on IB-based dectection and OT-based imputation.
Design ETTh1 ETTm2 Electricity Traffic

IB-D Random-D OT-R R MSE MAE MSE MAE MSE MAE MSE MAE

✓ ✓ 0.429 0.440 0.270 0.320 0.177 0.264 0.427 0.276

✓ ✓ 0.455 0.462 0.287 0.334 0.231 0.304 0.452 0.290

✓ ✓ 0.439 0.447 0.276 0.321 0.196 0.289 0.445 0.288

0.451 0.460 0.289 0.337 0.226 0.296 0.451 0.290

5.4 MODLE ANALYSIS

Visualization. We illustrate prediction showcases on two datasets with anomalous subsequences for
RockTS and using only the predictor in Figure 4. Obviously, the framework of RockTS effectively
improves the robustness of the model in the face of data containing anomalous subsequences, by
effectively detecting and transforming anomalous patterns in the purple areas into normal patterns.
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Figure 4: Prediction showcases of RockTS and predictor only.

Anomalous Subsequences Ratio. To explore the effect of the anomalous subsequences on different
models, we inject six kinds of anomalous subsequences into ETTm2 and ETTh2 at the ratio from
2% to 20% with steps of 2%, respectively. Figure 5 illustrates the performance changes of different
models and RockTS has significant advantages for different anomalous subsequences ratios.
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Figure 5: Models’ performance when the ratio of anomalous subsequences gradually increases.

Replacement of Predictors. We port our detect-impute-forecast framework to mainstream fore-
casting models: iTransformer and DLinear. As shown in Table 4, our framework significantly im-
proves the robust prediction capability of them. Specifically, in the case of DLinear on ETTh2,
our framework enhances its prediction accuracy by 30%. Moreover, We also append the effects
of an independent data cleaning prior to prediction that employs the widely-used Isolation Forest
algorithm Liu et al. (2008) for detection and SAITS Du et al. (2023) for imputation. Although
data cleaning provides some weak improvements in such scenarios, our framework improves the
prediction effectiveness more significantly.

Table 4: Effect of porting our framework to different predictors, compared to data cleaning methods.
Datasets ETTh2 ETTm2 Electricity Solar

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Dlinear

base 0.560 0.524 0.332 0.388 0.255 0.355 0.262 0.331

+ours 0.361 0.398 0.314 0.377 0.242 0.349 0.256 0.313

+data clean 0.551 0.517 0.321 0.382 0.250 0.351 0.259 0.326

iTransformer

base 0.396 0.426 0.307 0.353 0.186 0.284 0.265 0.327

+ours 0.374 0.409 0.291 0.338 0.170 0.260 0.229 0.265

+data clean 0.382 0.419 0.293 0.347 0.184 0.283 0.259 0.327

More Experiments. We show the sensitivity and efficiency analyses in Appendix D and E.

6 CONCLUSION

In this paper, we proposed RockTS, a novel end-to-end framework for robust time series forecasting
that addresses the challenge of Anomalous subsequences in real-world data. RockTS integrates the
detection and imputation of anomalous subsequences into forecasting through a unified optimization
objective. RockTS shows superior performance in both real-world and synthetic data.
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7 REPRODUCIBILITY STATEMENT

Reproducibility statement Our work meets reproducibility requirements. Specifically, you can
obtain our code from the anonymous link: https://anonymous.4open.science/r/
RockTS-D08F.
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Archibald Fraikin, Adrien Bennetot, and Stéphanie Allassonnière. T-rep: Representation learning
for time series using time-embeddings. In ICLR, 2024.

HyunGi Kim, Siwon Kim, Jisoo Mok, and Sungroh Yoon. Battling the non-stationarity in time
series forecasting via test-time adaptation. arXiv preprint arXiv:2501.04970, 2025.

Wenkai Li, Cheng Feng, Ting Chen, and Jun Zhu. Robust learning of deep time series anomaly
detection models with contaminated training data. CoRR, abs/2208.01841, 2022.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang. Segrnn:
Segment recurrent neural network for long-term time series forecasting. CoRR, abs/2308.11200,
2023.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee international
conference on data mining, pp. 413–422. IEEE, 2008.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. In NeurIPS, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In ICLR, 2024.

10

https://anonymous.4open.science/r/RockTS-D08F
https://anonymous.4open.science/r/RockTS-D08F
https://openreview.net/forum?id=pCbC3aQB5W
https://doi.org/10.1016/j.eswa.2023.119619
https://doi.org/10.1016/j.eswa.2023.119619


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time
series analysis. In ICLR, 2024.

Youngeun Nam, Susik Yoon, Yooju Shin, Minyoung Bae, Hwanjun Song, Jae-Gil Lee, and
Byung Suk Lee. Breaking the time-frequency granularity discrepancy in time-series anomaly
detection. In WWW, pp. 4204–4215, 2024.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/forum?id=Jbdc0vTOcol.

John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin.
TSB-UAD: an end-to-end benchmark suite for univariate time-series anomaly detection. Proc.
VLDB Endow., 15(8):1697–1711, 2022.

Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly detection in time series: A
comprehensive evaluation. Proc. VLDB Endow., 15(9):1779–1797, 2022.

Christopher A Sims. Macroeconomics and reality. Econometrica: journal of the Econometric
Society, 1980.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In ITW,
pp. 1–5, 2015.

Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. MICN: multi-
scale local and global context modeling for long-term series forecasting. In ICLR, 2023a.

Rui Wang, Yihe Dong, Sercan. Arik, and Rose Yu. Koopman neural operator forecaster for time-
series with temporal distributional shifts. In ICLR, 2023b.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang, and
Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. In ICLR,
2024.

Yingjie Wang, Xianrui Zhong, Fengxiang He, Hong Chen, and Dacheng Tao. Huber additive models
for non-stationary time series analysis. In ICLR, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. In NeurIPS, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In ICLR, 2022.

Zhijian Xu, Ailing Zeng, and Qiang Xu. FITS: modeling time series with 10k parameters. In ICLR,
2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In AAAI, pp. 11121–11128, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI, vol-
ume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In ICML, pp. 27268–27286,
2022.

11

https://openreview.net/forum?id=Jbdc0vTOcol


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A IMPLEMENTATION DETAILS

A.1 EVALUATION DATASETS

We use the following 8 multivariate time-series datasets for downstream forecasting task: ETT
datasets1 contain 7 variates collected from two different electric transformers from July 2016 to July
2018. It consists of four subsets, of which ETTh1/ETTh2 are recorded hourly and ETTm1/ETTm2
are recorded every 15 minutes. Electricity2 contains the electricity consumption of 321 customers
from July 2016 to July 2019, recorded hourly. Solar3 collects production from 137 PV plants in
Alabama, recorded every 10 minutes. Traffic4 contains road occupancy rates measured by 862
sensors on freeways in the San Francisco Bay Area from 2015 to 2016, recorded hourly. Weather5

collects 21 meteorological indicators, such as temperature and barometric pressure, for Germany in
2020, recorded every 10 minutes. We split each evaluation dataset into train-validation-test sets and
detailed statistics of evaluation datasets are shown in Table 5.

Table 5: The statistics of evaluation datasets.
Dataset Domain Frequency Timestamps Split Dims
ETTh1 Energy 1 hour 14400 6:2:2 7

ETTh2 Energy 1 hour 14400 6:2:2 7

ETTm1 Energy 15 mins 57600 6:2:2 7

ETTm2 Energy 15 mins 57600 6:2:2 7

Electricity Energy 10 mins 26304 7:1:2 321

Solar Energy 10 mins 52560 7:1:2 137

Traffic Traffic 1 hour 17544 7:1:2 862

Weather Environment 10 mins 52696 7:1:2 21

A.2 ANOMALOUS SUBSEQUENCE INJECTION

To evaluate the robustness of the model on data that contains anomalous subsequences, we con-
struct synthetic datasets by injecting six types of anomalous subsequences: vmirror, hmirror, scale,
outlier, noise and pattern into real-world datasets. Specific examples of the injected anomalous sub-
sequences are shown in Figure 6. The lookback windows use the time series injected with anomalous
subsequences, while the prediction windows use the original time series as the ground truth.
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Figure 6: Anomalous subsequence injection. The blue lines represent the time series, while the
orange areas intervals the anomalous subsequence we generated.

1https://github.com/zhouhaoyi/ETDataset
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://dl.acm.org/doi/abs/10.1145/3209978.3210006
4https://pems.dot.ca.gov/
5https://www.bgc-jena.mpg.de/wetter/
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A.3 BASELINES

We compare our model with nine state-of-the-art models for comprehensive evaluations, including
Transformer-based models: iTransformer Liu et al. (2024), PatchTST Chen et al. (2024) and Path-
Former Nie et al. (2023); CNN-based model: TimesNet Wu et al. (2022) and ModernTCN Luo &
Wang (2024); MLP-based models: FITS Xu et al. (2024), TIDE Das et al. (2023), TimerMixer Wang
et al. (2024) and DLinear Zeng et al. (2023). The specific code base for these models is listed in
Table 6.

Table 6: Code repositories for baselines.
Model Types Models Code Repositories

Transformer-based
iTransformer https://github.com/thuml/iTransformer

PatchTST https://github.com/yuqinie98/PatchTST

Pathformer https://github.com/decisionintelligence/pathformer

CNN-based TimesNet https://github.com/thuml/TimesNet

ModernTCN https://github.com/luodhhh/ModernTCN

MLP-based

FITS https://github.com/VEWOXIC/FITS

TIDE https://github.com/google-research/google-research/tree/master/tide

TimeMixer https://github.com/kwuking/TimeMixer

DLinear https://github.com/honeywell21/DLinear

B THEORETICAL ANALYSIS

In Section 7, we transformed the compactness term of the Information Bottleneck from mutual in-
formation minimization to its upper bound minimization form. In this section, we provide a detailed
explanation of this derivation process. First, the mutual information I(x;xm) is defined as:

I(x;xm) = H(xm)−H(xm|x) = Ex,xm
[log

P(xm|x)
P(xm)

] (16)

Note that we introduced a trainable network Pθ(xm|x) to generate xm. Meanwhile, since P(xm)
is intractable, we leverage the non-negativity property of the Kullback-Leibler (KL) divergence to
derive a variational approximation Q(xm) as a substitute for P(xm).

I(x;xm) = Ex,xm
[log

Pθ(xm|x)
P(xm)

] (17)

= Ex,xm
[log

Pθ(xm|x)
Q(xm)

] + Ex,xm
[log

Q(xm)

P(xm)
] (18)

= Ex,xm
[log

Pθ(xm|x)
Q(xm)

] + Ex|xm
[P(xm) log

Q(xm)

P(xm)
] (19)

= Ex,xm
[log

Pθ(xm|x)
Q(xm)

]− Ex|xm
[DKL[P(xm)||Q(xm)]] (20)

≥ Ex,xm [log
Pθ(xm|x)
Q(xm)

] (21)

= Ex[DKL[Pθ(xm|x)||Q(xm)]], (22)
Furthermore, we transform the problem of obtaining a subsequence xm into generating a stochastic
mask M , where xm = x ⊙ M . Additionally, we define Q(M) as a Bernoulli distribution with
a sparsity parameter τ to control the mask generation. Through this transformation, the original
compactness constraint term is converted into a more tractable loss function:

Ex[DKL[Pθ(M|x)||Q(M)]] =

L∑
i=1

[
λi log

(
λi

τ

)
+ (1− λi) log

(
1− λi

1− τ

)]
(23)

C MORE COMPARISION

In this section, we compare RockTS with other robust time series forecasting methods. However,
existing works in this direction either do not provide open-source codes or follow diverse experi-
mental settings, making it hard for a unified comparison. Thus, we select a recently proposed robust

13
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time series forecasting methods, TAFAS Kim et al. (2025), for comparison to further illustrate the
superior robustness of RockTS. Since TAFAS do not have open-source code, we report results from
its original paper and test RockTS in the same experimental settings as it to ensure a fair comparison.
Specifically, we keep the input length to 96. The results are shown in Table 7. When compared to
the robust time series forecasting method, RockTS still achieves the lowest average MSE and MAE
on most datasets.

Table 7: Comparison results with robust time series forecasting TAFAS.
Models ETTm1 ETTm2 ETTh1 ETTh2

Metric MSE MAE MSE MAE MSE MAE MSE MAE

RockTS

96 0.364 0.375 0.155 0.253 0.441 0.439 0.225 0.312
192 0.427 0.412 0.189 0.283 0.494 0.477 0.276 0.348
336 0.485 0.455 0.228 0.313 0.543 0.510 0.309 0.372
720 0.536 0.503 0.298 0.358 0.688 0.602 0.385 0.418
avg 0.453 0.436 0.218 0.302 0.541 0.507 0.299 0.363

TSFAS

96 0.377 0.397 0.156 0.262 0.429 0.444 0.232 0.320

192 0.429 0.428 0.194 0.294 0.481 0.483 0.277 0.353

336 0.487 0.461 0.232 0.323 0.529 0.519 0.318 0.382

720 0.542 0.509 0.299 0.367 0.690 0.621 0.396 0.427

avg 0.459 0.449 0.220 0.312 0.532 0.517 0.306 0.371

D SENSITIVITY

Multi-loss Balance. We use hyper-parameters α and β to balance the loss functions, and set them
to 1 by default. We performed a sensitivity analysis for them on four datasets, as shown in Figure 7.
As α and β changes, RockTS’s performance shows only Minimal changes in average MSE. From
the experimental results, it is clear that RockTS is not sensitive to the weights of the loss. Therefore,
balancing the multi-loss during training of the model is not difficult.

Sparsity of the Masks τ . τ is a significant parameter in training RockTS, which controls the
sparsity of the masks and is set to 0.9 by default. We performed a sensitivity analysis to scrutinize
the impact of varying τ on the forecasting performance. Figure 7 illustrates the relationship between
the effect of RockTS and the sparsity parameter τ on four datasets. It is worth noting that RockTS’s
performance remains stable when τ within the range of 0.7 to 0.95, suggesting that the effectiveness
of the interpreter is relatively insensitive to the selection of τ in this interval.

0.950.90.850.80.750.7
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ETTh2 ETTm2 solar electricity
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Figure 7: Sensitivity analyses on weights of the loss and sparsity of the masks on four datasets
injected with anomalous subsequences.

E EFFICIENCY

As in Table 8, RockTS takes longer about 1.3 times for tranining and 2.0–2.4 times for inference
than PatchTST (predictor only) with batch size of 1 and prediction length of 96, we also give the
confidence interval of 95%. The additional cost for the improved accuracy is reasonable, considering
the anomalous subsequences detection and the imputation. Due to the inference time per sample is
only 9.8–12.3 ms, we believe that RockTS can also be deployed in a real-time environment.
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Table 8: Comparison of efficiency with PatchTST on four real-world datasets.
Phase Model ETTh1 Weather Electricity Traffic

Train (sec/iter) RockTS 0.0098 ± 0.0003 0.0102 ± 0.0003 0.0108 ± 0.0003 0.0123 ± 0.0004
PatchTST 0.0074 ± 0.0002 0.0078 ± 0.0002 0.0086 ± 0.0003 0.0091 ± 0.0002

Inference (sec/iter) RockTS 0.0074 ± 0.0002 0.0074 ± 0.0002 0.0081 ± 0.0002 0.0087 ± 0.0002
PatchTST 0.0031 ± 0.0001 0.0036 ± 0.0001 0.0038 ± 0.0001 0.0040± 0.0001

F RESULTS DEVIATION

We have conducted RockTS three times with different random seeds and have recorded the standard
deviations, as illustrated in Table 9. It can be observed that RockTS exhibits stable performance.

Table 9: Results deviation.
Models RockTS for real-word datasets RockTS for synthetic datasets confidence interval

Metric MSE MAE MSE MAE -

ETTm1 0.345±0.003 0.368±0.002 0.379±0.004 0.393±0.005

99%

ETTm2 0.248±0.003 0.303±0.003 0.27±0.006 0.32±0.006
ETTh1 0.399±0.002 0.417±0.003 0.429±0.004 0.44±0.003
ETTh2 0.343±0.004 0.382±0.002 0.345±0.004 0.386±0.004
Traffic 0.403±0.005 0.257±0.003 0.427±0.007 0.276±0.006

Weather 0.223±0.005 0.251±0.005 0.239±0.012 0.262±0.010
Solar 0.187±0.003 0.219±0.003 0.211±0.005 0.238±0.008

Electricity 0.158±0.006 0.25±0.008 0.175±0.008 0.263±0.010

G BROADER IMPACTS

RockTS has potential positive social impacts in critical domains that rely on robust time series
forecasting, such as energy, transportation, and environmental monitoring. By mitigating the effects
of anomalous data, RockTS could improve prediction accuracy and robustness, as well as decision
making for management.
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H FULL RESULTS

In this section, we provide full results of RockTS and the compared baselines in the experiments on
real-world datasets with prediction length 96 and batch size of 16, synthetic datasets and ablation
studies.

Table 10: Full results on real-world datasets.
Models RockTS ITransformer PatchTST Pathformer TimesNet ModernTCN Dlinear TiDE FITS TimeMixer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.277 0.325 0.300 0.353 0.289 0.343 0.290 0.335 0.405 0.421 0.309 0.355 0.299 0.343 0.308 0.350 0.303 0.345 0.293 0.345
192 0.327 0.356 0.345 0.382 0.329 0.368 0.337 0.363 0.508 0.473 0.342 0.556 0.335 0.365 0.338 0.367 0.337 0.365 0.335 0.372
336 0.362 0.378 0.374 0.398 0.362 0.390 0.374 0.384 0.523 0.479 0.372 0.392 0.369 0.386 0.366 0.386 0.368 0.384 0.368 0.386
720 0.416 0.412 0.429 0.430 0.416 0.423 0.428 0.416 0.523 0.484 0.421 0.418 0.425 0.421 0.426 0.419 0.420 0.413 0.426 0.417
avg 0.345 0.368 0.362 0.391 0.349 0.381 0.357 0.375 0.490 0.464 0.361 0.430 0.357 0.379 0.360 0.381 0.357 0.377 0.356 0.380

ETTm2

96 0.159 0.243 0.175 0.266 0.165 0.255 0.164 0.250 0.233 0.305 0.171 0.262 0.167 0.260 0.166 0.256 0.165 0.254 0.165 0.256
192 0.216 0.282 0.242 0.312 0.221 0.293 0.219 0.288 0.265 0.328 0.230 0.304 0.224 0.303 0.221 0.293 0.219 0.291 0.225 0.298
336 0.266 0.317 0.282 0.340 0.276 0.327 0.267 0.319 0.379 0.392 0.277 0.332 0.281 0.342 0.275 0.329 0.272 0.326 0.277 0.332
720 0.352 0.372 0.378 0.398 0.362 0.381 0.361 0.377 0.390 0.407 0.381 0.398 0.397 0.421 0.361 0.382 0.359 0.381 0.360 0.387
avg 0.248 0.303 0.269 0.329 0.256 0.314 0.253 0.309 0.317 0.358 0.265 0.324 0.267 0.332 0.255 0.315 0.254 0.313 0.257 0.318

ETTh1

96 0.361 0.386 0.386 0.405 0.377 0.397 0.372 0.392 0.470 0.470 0.377 0.402 0.375 0.399 0.393 0.418 0.376 0.396 0.372 0.401
192 0.397 0.411 0.424 0.440 0.409 0.425 0.408 0.415 0.568 0.523 0.415 0.421 0.405 0.416 0.433 0.442 0.400 0.418 0.413 0.430
336 0.415 0.425 0.449 0.460 0.431 0.444 0.438 0.434 0.595 0.547 0.437 0.434 0.439 0.443 0.426 0.442 0.419 0.435 0.438 0.450
720 0.421 0.447 0.495 0.487 0.457 0.477 0.450 0.463 0.694 0.591 0.468 0.473 0.472 0.490 0.478 0.484 0.435 0.458 0.483 0.483
avg 0.399 0.417 0.439 0.448 0.419 0.436 0.417 0.426 0.582 0.533 0.424 0.433 0.423 0.437 0.433 0.446 0.408 0.427 0.427 0.441

ETTh2

96 0.274 0.330 0.297 0.348 0.274 0.337 0.279 0.336 0.351 0.399 0.278 0.424 0.289 0.353 0.282 0.352 0.277 0.345 0.270 0.342
192 0.341 0.372 0.371 0.403 0.348 0.384 0.345 0.380 0.394 0.429 0.343 0.388 0.383 0.418 0.334 0.387 0.331 0.379 0.349 0.387
336 0.366 0.400 0.404 0.428 0.377 0.416 0.378 0.408 0.415 0.443 0.357 0.405 0.448 0.465 0.329 0.389 0.350 0.396 0.367 0.410
720 0.391 0.426 0.424 0.444 0.406 0.441 0.437 0.455 0.477 0.481 0.406 0.438 0.605 0.551 0.405 0.445 0.382 0.425 0.401 0.436
avg 0.343 0.382 0.374 0.406 0.351 0.395 0.360 0.395 0.409 0.438 0.346 0.414 0.431 0.447 0.338 0.393 0.335 0.386 0.347 0.394

Traffic

96 0.377 0.245 0.395 0.268 0.370 0.262 0.384 0.250 0.611 0.323 0.406 0.294 0.410 0.282 0.395 0.272 0.400 0.280 0.369 0.256
192 0.394 0.252 0.417 0.276 0.386 0.269 0.405 0.257 0.609 0.327 0.417 0.298 0.423 0.287 0.402 0.273 0.412 0.288 0.400 0.271
336 0.403 0.257 0.433 0.283 0.396 0.275 0.424 0.265 0.616 0.335 0.427 0.305 0.436 0.296 0.416 0.282 0.426 0.301 0.407 0.272
720 0.438 0.276 0.467 0.302 0.435 0.295 0.452 0.283 0.656 0.349 0.473 0.327 0.466 0.315 0.457 0.309 0.478 0.339 0.462 0.316
avg 0.403 0.257 0.428 0.282 0.397 0.275 0.416 0.264 0.623 0.333 0.431 0.306 0.434 0.295 0.418 0.284 0.429 0.302 0.410 0.279

Weather

96 0.147 0.185 0.174 0.214 0.149 0.196 0.148 0.195 0.193 0.244 0.149 0.204 0.176 0.237 0.173 0.225 0.172 0.225 0.147 0.198
192 0.188 0.227 0.221 0.254 0.191 0.239 0.191 0.235 0.320 0.329 0.201 0.249 0.220 0.282 0.217 0.262 0.215 0.261 0.191 0.242
336 0.240 0.269 0.278 0.296 0.242 0.279 0.243 0.274 0.363 0.366 0.257 0.291 0.265 0.319 0.253 0.293 0.261 0.295 0.244 0.280
720 0.316 0.322 0.358 0.347 0.312 0.330 0.318 0.326 0.440 0.404 0.347 0.350 0.323 0.362 0.324 0.340 0.326 0.341 0.316 0.331
avg 0.223 0.251 0.258 0.278 0.224 0.261 0.225 0.258 0.329 0.336 0.239 0.274 0.246 0.300 0.241 0.280 0.244 0.281 0.225 0.263

Solar

96 0.172 0.209 0.203 0.237 0.190 0.273 0.218 0.235 0.221 0.277 0.198 0.275 0.206 0.281 0.210 0.260 0.208 0.255 0.180 0.233
192 0.184 0.219 0.233 0.261 0.204 0.302 0.196 0.220 0.215 0.280 0.201 0.282 0.225 0.291 0.231 0.270 0.229 0.267 0.201 0.259
336 0.192 0.223 0.248 0.273 0.212 0.293 0.195 0.220 0.266 0.314 0.213 0.290 0.240 0.300 0.246 0.272 0.241 0.273 0.214 0.272
720 0.199 0.227 0.249 0.275 0.221 0.310 0.208 0.237 0.231 0.291 0.255 0.289 0.248 0.307 0.252 0.273 0.248 0.277 0.218 0.278
avg 0.187 0.219 0.233 0.262 0.207 0.294 0.204 0.228 0.233 0.290 0.233 0.290 0.230 0.295 0.235 0.269 0.232 0.268 0.203 0.261

Electricity

96 0.129 0.222 0.148 0.240 0.129 0.222 0.135 0.222 0.182 0.287 0.133 0.228 0.140 0.237 0.141 0.240 0.139 0.237 0.153 0.256
192 0.146 0.238 0.162 0.253 0.147 0.240 0.157 0.253 0.193 0.293 0.146 0.241 0.153 0.249 0.147 0.244 0.154 0.250 0.168 0.269
336 0.162 0.254 0.178 0.269 0.163 0.259 0.170 0.267 0.196 0.298 0.162 0.259 0.169 0.267 0.165 0.261 0.170 0.268 0.189 0.291
720 0.197 0.285 0.225 0.317 0.197 0.290 0.211 0.302 0.209 0.307 0.214 0.307 0.203 0.301 0.204 0.292 0.212 0.304 0.228 0.320
avg 0.158 0.250 0.178 0.270 0.159 0.253 0.168 0.261 0.195 0.296 0.164 0.259 0.166 0.264 0.164 0.259 0.169 0.265 0.185 0.284

Table 11: Full results on datasets injected with anomalous subsequences.
Models RockTS ITransformer PatchTST Pathformer TimesNet ModernTCN Dlinear TiDE FITS TimeMixer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.320 0.354 0.342 0.386 0.354 0.374 0.336 0.370 0.401 0.416 0.354 0.387 0.338 0.376 0.342 0.377 0.339 0.375 0.402 0.404
192 0.359 0.383 0.379 0.406 0.375 0.395 0.373 0.393 0.459 0.444 0.385 0.405 0.366 0.392 0.368 0.392 0.368 0.391 0.445 0.429
336 0.389 0.400 0.410 0.425 0.407 0.410 0.408 0.409 0.483 0.463 0.427 0.429 0.396 0.410 0.396 0.410 0.397 0.408 0.477 0.448
720 0.449 0.432 0.471 0.457 0.456 0.440 0.467 0.443 0.530 0.487 0.468 0.449 0.452 0.442 0.458 0.442 0.454 0.438 0.566 0.497
avg 0.379 0.393 0.400 0.419 0.398 0.405 0.396 0.404 0.468 0.452 0.408 0.417 0.388 0.405 0.391 0.405 0.389 0.403 0.473 0.445

ETTm2

96 0.188 0.264 0.214 0.294 0.200 0.279 0.205 0.273 0.232 0.306 0.220 0.304 0.218 0.312 0.208 0.293 0.206 0.291 0.225 0.313
192 0.239 0.301 0.284 0.336 0.257 0.318 0.251 0.306 0.295 0.343 0.271 0.335 0.275 0.354 0.256 0.323 0.254 0.322 0.248 0.316
336 0.285 0.331 0.329 0.368 0.318 0.353 0.294 0.336 0.353 0.376 0.328 0.367 0.346 0.401 0.305 0.354 0.303 0.353 0.303 0.352
720 0.367 0.382 0.400 0.412 0.381 0.396 0.373 0.383 0.469 0.436 0.411 0.424 0.489 0.485 0.386 0.404 0.387 0.404 0.395 0.408
avg 0.270 0.320 0.307 0.353 0.289 0.337 0.281 0.325 0.337 0.365 0.307 0.357 0.332 0.388 0.289 0.344 0.288 0.342 0.293 0.347

ETTh1

96 0.390 0.409 0.417 0.442 0.409 0.431 0.422 0.438 0.451 0.456 0.412 0.428 0.394 0.420 0.415 0.437 0.395 0.421 0.425 0.445
192 0.430 0.434 0.448 0.460 0.458 0.460 0.468 0.466 0.508 0.487 0.450 0.447 0.447 0.461 0.450 0.457 0.426 0.443 0.453 0.462
336 0.443 0.448 0.465 0.474 0.471 0.470 0.472 0.484 0.549 0.503 0.466 0.457 0.448 0.454 0.443 0.458 0.470 0.479 0.471 0.479
720 0.451 0.470 0.529 0.526 0.465 0.477 0.486 0.495 0.562 0.520 0.494 0.491 0.475 0.497 0.492 0.496 0.471 0.488 0.710 0.611
avg 0.429 0.440 0.465 0.475 0.451 0.460 0.462 0.470 0.518 0.491 0.456 0.456 0.441 0.458 0.450 0.462 0.440 0.458 0.515 0.499

ETTh2

96 0.293 0.349 0.325 0.379 0.306 0.358 0.302 0.359 0.376 0.402 0.316 0.373 0.360 0.419 0.301 0.367 0.300 0.362 0.343 0.390
192 0.343 0.382 0.398 0.422 0.363 0.395 0.357 0.398 0.436 0.437 0.361 0.405 0.445 0.473 0.343 0.395 0.346 0.393 0.353 0.395
336 0.357 0.394 0.438 0.449 0.367 0.404 0.377 0.400 0.466 0.462 0.367 0.415 0.541 0.525 0.363 0.394 0.359 0.407 0.363 0.419
720 0.386 0.422 0.424 0.454 0.428 0.428 0.387 0.440 0.514 0.487 0.438 0.456 0.894 0.679 0.416 0.450 0.402 0.438 0.470 0.483
avg 0.345 0.386 0.396 0.426 0.366 0.396 0.356 0.399 0.448 0.447 0.370 0.412 0.560 0.524 0.356 0.401 0.352 0.400 0.382 0.422

Traffic

96 0.404 0.263 0.465 0.338 0.427 0.275 0.420 0.290 0.598 0.321 0.760 0.478 0.697 0.445 0.706 0.445 0.698 0.442 0.448 0.327
192 0.418 0.271 0.476 0.346 0.441 0.286 0.512 0.292 0.614 0.325 0.746 0.467 0.704 0.446 0.716 0.447 0.707 0.443 0.486 0.346
336 0.426 0.274 0.505 0.356 0.447 0.288 0.526 0.304 0.614 0.330 0.769 0.464 0.716 0.450 0.736 0.453 0.720 0.445 0.447 0.319
720 0.461 0.293 0.560 0.380 0.489 0.313 0.562 0.321 0.657 0.354 0.801 0.477 0.753 0.462 0.783 0.470 0.763 0.458 0.498 0.316
avg 0.427 0.276 0.502 0.355 0.451 0.290 0.505 0.302 0.621 0.333 0.769 0.472 0.718 0.451 0.735 0.454 0.722 0.447 0.470 0.327

Weather

96 0.167 0.200 0.391 0.272 0.170 0.218 0.380 0.267 0.401 0.305 0.487 0.330 0.494 0.470 0.576 0.357 0.474 0.290 0.173 0.216
192 0.206 0.238 0.382 0.290 0.215 0.260 0.440 0.297 0.423 0.333 0.490 0.337 0.506 0.478 0.607 0.374 0.566 0.328 0.218 0.254
336 0.256 0.277 0.439 0.326 0.280 0.303 0.503 0.357 0.480 0.364 0.561 0.363 0.530 0.503 0.624 0.390 0.592 0.355 0.269 0.294
720 0.327 0.330 0.535 0.370 0.335 0.344 0.582 0.386 0.546 0.404 0.546 0.404 0.558 0.516 0.693 0.428 0.751 0.410 0.433 0.383
avg 0.239 0.262 0.437 0.315 0.250 0.281 0.476 0.327 0.462 0.351 0.521 0.358 0.522 0.491 0.625 0.387 0.596 0.346 0.273 0.287

Solar

96 0.200 0.230 0.240 0.316 0.213 0.280 0.226 0.254 0.256 0.317 0.259 0.313 0.244 0.318 0.247 0.292 0.249 0.295 0.201 0.262
192 0.210 0.239 0.268 0.322 0.226 0.290 0.248 0.299 0.291 0.344 0.276 0.327 0.260 0.330 0.262 0.301 0.267 0.305 0.210 0.270
336 0.214 0.240 0.278 0.336 0.232 0.298 0.261 0.306 0.293 0.359 0.286 0.333 0.269 0.336 0.274 0.308 0.276 0.310 0.219 0.283
720 0.219 0.242 0.272 0.333 0.233 0.293 0.269 0.323 0.284 0.317 0.295 0.343 0.274 0.341 0.279 0.310 0.279 0.310 0.225 0.278
avg 0.211 0.238 0.265 0.327 0.226 0.290 0.251 0.295 0.281 0.334 0.279 0.329 0.262 0.331 0.266 0.303 0.268 0.305 0.214 0.273

Electricity

96 0.146 0.237 0.158 0.259 0.233 0.283 0.186 0.263 0.284 0.373 0.224 0.326 0.238 0.340 0.246 0.337 0.246 0.337 0.319 0.401
192 0.162 0.251 0.174 0.274 0.211 0.281 0.202 0.274 0.312 0.395 0.233 0.333 0.245 0.346 0.255 0.345 0.256 0.345 0.255 0.352
336 0.178 0.266 0.189 0.289 0.219 0.299 0.218 0.293 0.329 0.400 0.249 0.348 0.255 0.356 0.268 0.354 0.270 0.356 0.255 0.347
720 0.214 0.297 0.221 0.315 0.242 0.319 0.263 0.333 0.331 0.409 0.280 0.370 0.282 0.378 0.305 0.382 0.306 0.382 0.357 0.426
avg 0.175 0.263 0.186 0.284 0.226 0.296 0.217 0.291 0.314 0.394 0.247 0.344 0.255 0.355 0.268 0.355 0.270 0.355 0.296 0.382
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