
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DL-BENCH: DEEP LEARNING SPECIFIC CODE GENERA-
TION BENCHMARK

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning (DL) has revolutionized areas such as computer vision, natural
language processing, and more. However, developing DL systems is challenging
due to the complexity of DL workflows. Large Language Models (LLMs), such as
GPT, Deepseek, Claude, Llama, Mistral, Qwen, etc., have emerged as promising
tools to assist in DL code generation, offering potential solutions to these challenges.
Despite this, existing benchmarks like DS-1000 are limited, as they primarily
focus on small DL code snippets related to pre/post-processing tasks and lack
comprehensive coverage of the full DL pipeline, including different DL phases
and input data types. Similarly, MLE-bench focuses more on Machine Learning
Engineering (MLE) tasks and broader ML workflows, without leveraging test cases.
To address this, we introduce DL-Bench, a novel benchmark dataset designed for
function-level DL code generation. DL-Bench categorizes DL problems based on
three key aspects: phases such as pre-processing, model construction, and training;
tasks, including classification, regression, and recommendation; and input data
types such as tabular, image, and text. DL-Bench diverges from related benchmarks,
DS-1000 and AICoderEval, across four dimensions: it occupies a semantically
distinct region for both prompts and code embedding, emphasizes DL constructs
with a higher DL/ML token ratio, and requires more complex code solutions. State-
of-the-art LLMs (e.g., O3-Mini, DeepSeak-V3) achieve, on average, significantly
lower 28.5% pass@1 score on DL-Bench than on DS-1000 (53.3%). This result
underscores DL-Bench’s greater challenging problems set. Our taxonomy of
bugs found in LLM-generated DL code highlights the distinct challenges that
LLMs face when generating DL code compared to general code. Furthermore,
our analysis reveals substantial performance variations across categories which
emphasizes valuable insights that DL-Bench offers for potential improvement in the
DL-specific generation. Our preliminary result shows that DL-Bench can enhance
LLM performance as a categorization training dataset, achieving an average 4.2%
improvement on DS-1000 with guided three-shot learning.
Overall, our empirical results demonstrate the utility of DL-Bench as a compre-
hensive benchmark while offering insights for future improvements across diverse
functional categories.

1 INTRODUCTION

In recent years, machine learning (ML) and deep learning (DL) have advanced significantly and
have been integrated into various fields Hordri et al. (2016); Kamilaris & Prenafeta-Boldú (2018);
Gamboa (2017). DL coding has its challenges Arpteg et al. (2018), and because of its widespread
use, many DL systems are developed by domain experts who are often not software developers Park
et al. (2021); Singaravel et al. (2020), which amplifies the problems even more.

Recently, with the rise of Large Language Models (LLMs) such as ChatGPT, LLMs are considered
among the best solutions for coding tasks Wang et al. (2021); Feng et al. (2020); Achiam et al.
(2023) as demonstrated by numerous code generation benchmark datasets.However, until recently,
most of these benchmarks focused on general programming tasks. Shin et al. (2023) are the first to
underline the distinct challenges of generating ML/DL code compared to general code. However, their
generated code evaluation relies on less suitable similarity metrics as very different code snippets can
have the same functionality, and a small change in a code snippet can drastically alter its semantics.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A few datasets, such as MLE-bench Chan et al. (2024) or AICoderEval Xia et al. (2024), offer
examples of ML-specific code generation on the ML workflow level, which does not fit the LLM’s
usage, where developers need help with generating specific functions. These benchmarks often
evaluate LLMs based on the final ML system’s performance (e.g., accuracy, F1, etc.). Among these,
DS-1000 Lai et al. (2023) provides small (a few lines) ML-specific code snippets, primarily focused
on pre/post-processing tasks. It also does not provide any categorizations, such as ML tasks, DL
phases, or input types, which could provide valuable insights for code generation improvement.

To address these gaps, we introduce DL-Bench, a novel dataset designed to benchmark DL-specific
code generation at a functional level. Each entry includes the code generation prompt, the ground-
truth code at the function level, and an extensive set of unit tests. Unlike DS-1000 and MLE-bench,
DL-Bench provides a more comprehensive and diverse set of function-level samples that cover all
phases in the DL pipeline for various ML tasks and input data types. These entries are categorized
into three aspects: (1)The DL/ML pipeline stages: pre/post-processing, model construction, training,
inference, and evaluation, (2)The DL/ML tasks: classification, object detection, image segmentation,
time-series prediction, recommendation, and regression, and (3)The input data types: text, image,
and array. These categorizations enable a more in-depth evaluation and analysis of future techniques
in generating DL-specific code.

We qualitatively compare DL-Bench with its most related benchmarks (DS-1000 and AICoderEval) by
examining four aspects of dataset divergence. First, we show that DL-Bench occupies a semantically
distinct region of the embedding space, hence contains novel problem domains and different solution
patterns. Second, we reveal that DL-Bench emphasizes DL constructs heavily. Third, we demonstrate
that DL-Bench problems require more complex solutions, hence are more challenging for LLMs.
Finally, state-of-the-art LLMs (e.g., O3-Mini, DeepSeak-V3) struggle to solve DL-Bench’s problems
with significantly lower 28.5% pass@1 score on DL-Bench than on DS-1000 (53.3%).

Furthermore, our qualitative analysis indicates that the difficulty of generating code varies significantly
across categories. For example, O3-Mini reaches an accuracy of 39.4% for pre/post-processing tasks
but only 30.4% for model construction. The pass@1 rate varies even more among task types, ranging
from 53.1% for recommendation tasks to 26.3% for segmentation tasks on O3-Mini. These large
gaps in performance across categories highlight the importance of insights that DL-Bench can bring
to help improve the LLM DL code generation capability. Additionally, we construct a bug taxonomy
of the issues found in the generated DL code. When compared to LLM-generated general code,
LLM-generated DL code exhibits a higher frequency of deviation from the prompt issues and a new
issues category arithmetic and logical errors.

Finally, we demonstrate a potential usage where DL-Bench can be used to guide few-shot prompting.
In this usage, DL-Bench, on average, can consistently improve represented LLMs by 4.2% on
DS-1000. DL-Bench’s data is available in our Kaggle repository1. The evaluation code is also
available in our GitHub repository2.

2 RELATED WORKS

There are multiple benchmarks that contain code samples for data science tasks, such as JuICe Agashe
et al. (2019), PandasEval and NumPyEval Zan et al. (2022), and JuPyT5 Chandel et al. (2022). None
of them contains any test cases, so similarity metrics such as the BLEU score are used for evaluation
of generated code. Unlike these benchmarks, DL-Bench contains multiple test cases for each entry,
which enable better evaluation metrics such as pass@1 for generated code. Shin et al.Shin et al.
(2023) explore the effectiveness of neural code generation by selecting ML/DL-specific samples from
JuICeAgashe et al. (2019). However, similar to JuICe, they evaluate generated code using similarity
metrics, which is not suitable for generated code evaluation. DL-Bench contains test cases that better
evaluate the correctness of the generated code. Recently, MLE-bench Chan et al. (2024) contains ML
engineering workflows in Kaggle competitions. Similarly, AICoderEval Xia et al. (2024) presents a
broader ML workflow benchmark. These workflow-level benchmarks focus on complete solutions
and do not provide evaluations of approaches that serve developers who need a specific function.

1https://kaggle.com/datasets/b4b26b3d3ffe9930789d43da1377265a445add5023f87c9dc4bfcf4b50f93a62
2https://anonymous.4open.science/r/DL-Bench-71ED/

2

https://kaggle.com/datasets/b4b26b3d3ffe9930789d43da1377265a445add5023f87c9dc4bfcf4b50f93a62/
https://anonymous.4open.science/r/DL-Bench-71ED/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Filtering Project using GitHub
Tags

(e.g. Deep Learning...)

Filtering Related Projects

Related Projects
(e.g. Kornia, PhiFlow, diffrax)

Candidate Projects
(e.g. Kornia)

Test Files Extraction
Test Files

(e.g. tests/geometry/
epipolar/test_fundamental.py)

Test Cases Extraction
Test Cases
(e.g. Class

TestFundamentalFromProjectioins)

Function Call Extraction Function
(e.g. fundamental_from_projections)

Function Definition Extraction
Function Definition

(e.g. def fundamental_from_projections
(P1: Tensor, P2: Tensor) -> Tensor: ...)

1

2

3

4

5

6

Raw Data Extraction

Prompts need to
evaluate

7

Primary Prompts

9

8

ML Pipeline
Classification

ML Task
Classification

Validation
Checking

Labeling Procedure Case Study

Input Type
Classification

Figure 1: DL-Bench construction procedure

Create a prompt using the provided code and its docstring,
incorporating the function or class name, inputs, and outputs.

1. Code: [CODE] 2. Docstring: [DOCSTRING]

Figure 2: Template of generating prompt from code

DS-1000 Lai et al. (2023) contains problems sourced from StackOverflow for localized data science
tasks such as pre-/post-processing.

There have been multiple general code generation benchmarks such as HumanEval Chen et al. (2021),
AiXBench Hao et al. (2022),MultiPL-E Cassano et al. (2022),MBPP Austin et al. (2021),Spider
benchmark Yu et al. (2018),CoderEval Yu et al. (2024),APPS benchmark Hendrycks et al. (2021), and
RepoEval Zhang et al. (2023). All the above-mentioned benchmarks focus on general programming.

DL-Bench differs from prior work in three key aspects: (1) it focuses on ML/DL tasks rather than
general data science or ML engineering, (2) we categorize the data by ML phases, task types, and data
types, and (3) our granularity is at the function level rather than at the script or workflow level. For
example, one of our prompts instructs the generation of a maximum weight matching function,
which performs a precise weight matching operation tailored to a DL-specific need. Moreover, unlike
the other datasets, DL-Bench is based on GitHub repositories containing real code and tests.

3 BENCHMARK CONSTRUCTION

DL-Bench consists of 520 instances of AI and DL data points (filtered from over 2,000 raw data
points). The data is curated from 30 GitHub repositories (selected from an initial pool of 160 related
repositories). DL-Bench is released with a GNU license to ensure legal usage of code from these 30
repositories.

The construction process of DL-Bench consists of two main phases: The Raw Data Extraction and
the Labeling Procedure. The raw data extraction involves six semi-automatic steps. Since DL-Bench
is designed to have diverse and realistic code samples, the first step 1 is to construct DL-Bench
from code crawled from highly rated GitHub repositories (i.e., with the most stars), updated after
the training cutoff of GPT-4o to mitigate data leakage, filtered using 30 DL-related terms such as
“neural-networks”, “pytorch”, “computer-vision”. We then manually select (step 2) 160 high quality
candidate DL projects (i.e., involve the integration of DL and AI-related frameworks, comprehensive
test cases, clear and well-written docstrings, and detailed contribution guidelines). We then employed
a bespoke utility to extract the test files and then test cases from each repository (step 3 and 4). By
performing static analysis, we were able to track and collect all of the functions under test in step 5
to form the raw data that is the base of DL-Bench.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Prompt (b) Code solution

Figure 3: Prompt and code solution embeddings projection for DL-Bench, DS-1000, and AICoderEval

Once the raw data is extracted, the labeling procedure starts. To speed up the task of constructing the
prompt for each code sample, we utilize LLM (i.e., GPT-4o) as a code-explanation toolNam et al.
(2024) to generate the first prompt candidate for each function under test (step 7). Four co-authors
were then tasked with manually filtering (step 8) each entry to ensure that each function is highly
relevant (i.e., contributes to a DL task such as image recognition, utilizes at least one recognized DL
framework, and implements a relatively advanced and sophisticated algorithm). Finally, we conduct a
manual labeling process involving four co-authors (step 9) to refine the prompt and label each code
sample with the appropriate category from our three chosen types of categories: DL pipeline phases,
ML task types, and input types. Due to space limitations, a more detailed description of each step is
included in the appendix.

4 QUANTITATIVE ANALYSIS

To differentiate DL-Bench from prior benchmarks and demonstrate its potential, we perform a
quantitative comparison between DL-Bench and its related benchmarks (DS-1000 and AICoderEval).
We first analyze the data in each benchmark to show that DL-Bench contains novel and challenging
DL-specific problems that require more complex solutions. Then we empirically show that DL-Bench
is more challenging to solve than DS-1000 by comparing the performance of representative LLMs.

4.1 DL-BENCH CONTAINS DISTINCTIVE AND MORE CHALLENGING PROBLEMS AND
SOLUTIONS WHEN COMPARED TO DS-1000 AND AICODEREVAL.

In this section, we evaluate how DL-Bench diverges from its closest data-science and ML benchmarks,
DS-1000 and AICoderEval. First, we contrast the semantic spaces of their input prompts and code
solutions by comparing embedding distributions. Second, we gauge each benchmark’s DL orientation
by tracking the prevalence of DL-specific tokens in the reference code Finally, we measure code
complexity to provide a holistic view of DL-Bench’s problems relative difficulty.
Semantic Comparison: To compare the semantic prompt space, we embed each natural-language
prompt with the all-MiniLM-L6-v2 sentence-transformer Li et al. (2020). The average cosine
similarity values between DL-Bench and related benchmarks are relatively low (0.188 for DS-1000
and 0.184 for AICoderEval). Such notable semantic divergence in DL-Bench’s input prompts
from related benchmarks indicates that DL-Bench covers distinct domains or task formulations.
Additionally, when projecting the embeddings into two dimensions using t-SNE Van der Maaten &
Hinton (2008) (Figure 3a), the visualization reveals separable clusters corresponding to DL-Bench
and DS-1000. This distinct clustering further supports the semantic uniqueness of DL-Bench and
highlights its complementary role in benchmark diversity.
To demonstrate the distinctiveness of DL-Bench’s solutions, we compare the semantic representation
of its ground-truth code with that of DS-1000 and AICoderEval. To this end, we use CodeBERT Feng
et al. (2020) to generate code embeddings for each reference implementation, and apply cosine
similarity computation. DL-Bench problems require code solutions that are semantically different
from DS-1000 and AICoderEval, with the average cosine similarity of 0.538 and 0.638 respectively.
This indicates each benchmark covers a distinct set of tasks and requires different solution patterns.
Figure 3b visualizes these differences by applying t-SNE to the ground-truth code embedding space.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Pass@1 (%) scores for various SOTA LLMs on DS-1000 and DL-Bench.

Benchmark O3-Mini DeepSeek-V3 GPT-4o Claude 3.5 Sonnet Llama 3.1 70B Mixtral 8*22B QwenCoder Avg.
DL-Bench 35.1 30.5 30.2 30.5 26.7 23.9 22.8 28.5
DS-1000 61.0 61.7 51.1 61.9 40.9 39.3 57.3 53.3

The projection reveals separated clusters for DL-Bench, DS-1000, and AICoderEval, providing
further evidence that DL-Bench offers complementary coverage and contributes novel content to
existing DL/ML code generation benchmarks.
DL-relevance Analysis: To measure DL-Bench’s DL/ML relevancy, we compute a domain-relevance
metric based on the DL/ML tokens ratio in the reference code. Averaged across instances, DL-Bench
attains a ratio of 0.785, far exceeding DS-1000 (0.131) and AICoderEval (0.437). Put differently,
more than three-quarters of the lexical footprint in DL-Bench code is devoted to DL/ML concepts,
whereas only one-eighth in DS-1000 and less than half in AICoderEval references such terms.
Solution Complexity: To gauge the relative complexity of DL-Bench’s problems, we compare three
structural metrics: lines of code (LOC), cyclomatic complexity, and cognitive complexity (extracted
with radon Lacchia (2025)). On average, solutions in DL-Bench span 14.8 LOC, nearly double
AIcoderEval (8.5) and more than quadruple DS-1000 (3.6). Cognitive complexity follows a similar
pattern (4.26 vs. 0.31 and 0.008), underscoring more complex nested structures and longer call chains
in DL-Bench.

Finding 1: DL-Bench’s problems focus on DL-specific domain and occupy a distinct semantic
space. Furthermore, DL-Bench contains difficult problems that require significantly more complex
code solutions that pose significant challenges to advanced LLMs.

4.2 PERFORMANCES OF SOTA LLMS ON DL-BENCH AND DS-1000

This analysis investigates how the existing ML code generation benchmark (DS-1000) and DL-Bench
evaluate seven representative LLMs covering a spectrum of parameter scales, licensing regimes, and
training specializations. Since AICoderEval has not been published and does not provide sufficient
and reliable evaluation scripts, we have decided to exclude it from this evaluation. A commonly
used pass@k Lyu et al. (2024), which measures the likelihood that at least one of the k-generated
solutions passes all test cases, is used in this evaluation. To minimize non-determinism and improve
reproducibility, we set the temperature to zero for all LLMs Bommasani et al. (2021). We also
run the experiment on DL-Bench five times, and the standard deviation is small between 0.7% and
1.8%, indicating that the zero-temperature induces more stable performance for comparison. We
intentionally avoided using specialized prompt strategies, opting instead for vanilla prompts to focus
on the model’s baseline performance. However, the use of advanced prompt engineering strategies
could yield different results. In a later section, we demonstrate a potential usage of DL-Bench as a
guided few-shot dataset. Table 1 shows the pass@1 of SOTA LLMs on DL-Bench and DS-1000.
Our evaluation shows that even the most advanced model, such as O3-Mini, struggles with ML/DL-
specific code generation. Specifically, O3-Mini achieves 61.0% pass@1 in DS-1000 but only 35.1%
pass@1 on DL-Bench. Similarly, all other tested LLMs get much lower pass@1 scores in DL-
Bench than DS-1000. We also compute pass@3 and pass@5 of the seven LLMs on DL-Bench
(complete table is provided in the Appendix). O3-mini benefits the most when having additional
candidates; however, its performance on DL-bench is still low at 40.2% pass@5 rate. The overall weak
performance of these models highlights the ongoing challenges in generating reliable, executable
ML/DL-specific code, supporting the need for deeper analysis to identify problematic areas that
DL-Bench can provide.
Our separability and ranking agreement analysis between DL-Bench and DS-1000 yielded a huge
(more than 2.0) Cohen’s-d effect size of 3.13 and a large (more than 1.0) Fisher’s ratio of 4.9, confirm-
ing that DL-Bench is markedly more challenging with significantly lower and distinct distribution of
pass@1 scores. However, the average Spearman correlation of 0.50 (p = 0.25) shows that the ranking
of models is moderately consistent with DS-1000. This suggests that DL-Bench presents harder
problems and contains additional aspects that can capture slightly different relative performance
among LLMs.
To analyze the effect of data leakage, we experiment with “live versions” of DL-Bench. Table 2
shows the SOTA LLMs’ performance on DL-Bench with different cutoff dates. As the recency of
data increases, the models’ performance declines. This result indicates that more recent data is less

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Pass@1 (%) scores for various SOTA LLMs on Live DL-Bench

Model Overall After Oct 2023 After Jan 2024 After May 2024 After Sep 2024
Claude 3.5 Sonnet 30.5 30.4 30.0 28.3 27.6
DeepSeek V3 30.5 31.4 29.6 27.3 27.5
GPT-4o 30.2 31.4 29.5 26.3 25.7
LLaMA 3.1 70B 26.7 27.8 27.5 26.1 25.0
Mistral 8×22B 23.9 24.4 23.8 22.6 23.1
O3-mini 35.1 35.8 32.8 29.6 30.5
Qwen Coder 2.5 22.8 23.6 22.7 23.6 24.2

Table 3: Pass@1 (%) scores on DL-Bench across stages, ML/DL tasks, and input data types

Category O3-Mini DeepSeek-V3 GPT-4o Claude 3.5 Sonnet Llama 3.1 70B Mixtral 8×22B QwenCoder Avg.
Stages in pipeline

Pre/Post Processing 39.4 33.9 34.5 33.2 30.2 27.3 24.6 31.9
Model Construction 30.4 26.7 23.9 24.4 19.9 16.8 14.2 22.3
Training 31.2 28.4 30.4 26.2 28.0 26.6 27.4 28.3
Inference 38.4 26.4 28.9 27.1 26.1 26.9 23.4 28.1
Evaluation & Metrics 35.6 28.6 25.4 31.2 24.7 23.9 23.8 27.6

ML tasks

Classification 35.9 25.7 27.6 28.6 23.5 29.0 23.1 27.6
Regression 40.0 20.8 26.5 26.9 11.8 20.9 12.8 22.8
Object Detection 29.8 21.2 27.7 20.2 10.8 9.7 9.4 18.4
Image Segmentation 26.3 27.1 13.8 17.0 19.2 14.2 21.4 19.8
Time Series Prediction 38.8 19.3 35.4 27.5 19.3 19.3 19.3 25.5
Recommendation 53.1 34.4 45.2 56.9 33.4 45.7 39.4 44.1
General 35.7 33.0 31.4 29.9 31.0 26.8 22.8 30.1

Input data types

Image 33.5 30.1 27.6 25.9 21.8 18.7 16.8 24.9
Text 51.8 27.6 39.1 43.7 33.7 43.7 27.6 38.1
Structured Array 36.9 28.3 27.3 28.5 24.9 28.5 21.2 27.9
Others 34.5 30.9 33.6 30.9 32.0 28.6 28.9 31.3

likely to be leaked and pose greater challenges for LLMs. To mitigate the effect of data leakage, we
plan to add more “live versions” of DL-Bench in the future.

Finding 2: Our evaluation indicates that current SOTA LLMs struggle to generate correct, exe-
cutable code for ML/DL tasks with an average pass@1 score of 28.5% on DL-Bench. Although
O3-Mini is the strongest among the tested models, it still falls short of meeting practical standards
with a pass@1 score of only 35.1%. Empirically, DL-Bench presents more challenging problems
and contains different aspects that captures a slightly different ranking among LLMs.

5 QUALITATIVE ANALYSIS

This section provides a deeper analysis of which kinds of DL-specific code are harder to generate,
and the common issues that generated DL-specific code has.

5.1 WHICH KINDS OF DL-SPECIFIC CODE POSE A GREATER CHALLENGE FOR SOTA LLMS?
We analyze the performance differences among categorizations that DL-Bench provides. Table 3
presents the pass@1 scores that each LLM achieves for generated code in each categorization that
DL-Bench provides: stages in DL/ML pipeline, ML tasks, and input data types. Among all LLMs,
the most advanced LLM, O3-Mini, consistently outperforms others in all categorizations. However,
in object detection and recommendation, DeepSeek-V3 and Claude 3.5 perform better.
Stages in pipeline: Among stages in the DL/ML pipeline, pre/post processing generated code has the
highest average pass@1 score of 31.9%. Code in these stages varies significantly because it prepares
and cleans the input and formats output data for various models. This makes samples of this type the
most available in training data and could explain the higher pass@1 scores. On the other hand, LLMs
struggle to generate code for the model construction stage, with the lowest average pass@1 score of
22.3%. This is because the code for this stage is more complex, often longer, and project-specific.

Finding 3: LLMs perform best (average pass@1 score of 31.9%) in pre/post processing stages
and worst (average pass@1 score of 22.3%) in model construction. These differences could be due
to the high availability of training data for pre/post processing stages, and the more complex and
project-specific nature of code in model construction,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Operation/
Calculation Error

LLM Bug Taxonomy
in Code Generation
for Deep Learning

Hallucinated Objects Wrong AttributeMissing Corner
Cases Performance Issue Prompt Missing

Information Constant Value ErrorWrong Input Type

Incorrect ML/DL
Function

Library Arguments

Type Mismatch
Problem

Tensor Shape
Mismatch

Not DL-Related

Shape and
Dimension
Mismatch

Incorrect DL/ML
Functionality

Incorrect DL library
or framework Usage

Not DL-Related

Shape and
Dimension Errors in

Operations

Incorrect Algebraic
Calculations

Data Type Casting
Issue

Not DL-Related

Incorrect Usage of
DL Modules

Missing or Undefined
DL Modules

Not DL-Related

Incorrect API Usage

Wrong DL Module
Import

Not DL-Related

Tensor Type and
Value Edge Cases

Shape and
Dimension Edge

Cases

Not DL-Related

DL Performance
Issue

Not DL-Related

Not Defining Correct
DL Library

Not DL-Related

Incorrect Tensor
Constant Value

Misinterpretation

Figure 4: Taxonomy of bugs in DL generated code. (Only categories with DL-related subcategories).

Figure 5: Distribution of bugs in general code vs. DL code generated by LLM

ML tasks: Table 3 presents a significant disparity in the pass@1 score of generated code across
ML tasks. Notably, scores for the recommendation task are the highest (44.1% average), with the
best score of 56.9% for Claude 3.5 Sonnet. On the other end of the scale, object detection and
image segmentation tasks’ scores are the lowest (averaged 18.4% and 19.8% respectively). These
results indicate that each ML task type has its characteristics that LLMs can or cannot yet capture.
Specifically, image processing code for object detection and image segmentation remains challenging.

Finding 4: Different ML/DL tasks vary in complexity, affecting LLMs’ code generation abilities
with varying pass@1 scores averaged from 44.1% to 18.4%. Each LLM can have its strengths and
weaknesses when generating code for different ML tasks.

Input data types: Across different types of input, the result in Table 3 indicates a more consistent
pass@1 of all LLMs, except for textual data, where LLMs exhibit better performance (averaged
38.1%). We assume that most textual input data types are tokenized and converted before being
processed in the DL model, which makes functions that deal directly with textual input data types
quite standard and easier to generate. On the other hand, performance for image-related tasks perform
the worst with averaged score of 24.9%. This can be attributed to the inherent complexity and lack of
consistent structure in image data, such as varying shapes, resolutions, and channel configurations
(e.g., grayscale vs. RGB).

Finding 5: Among input data types, image data with more complex structures is the hardest to
generate code for, with the lowest average pass@1 score of 24.9%. In contrast, textual data tasks
achieved higher performance (average 38.1%), likely due to more deterministic coding in the
pre-processing stages.

5.2 WHAT ARE THE COMMON BUGS IN GENERATED DL-SPECIFIC CODE?
To investigate this question, we build a taxonomy of common bug patterns and issues that arise in DL
code generated by GPT-4o (the best model at the time of analysis). This taxonomy is an expansion
of Tambon et.al Tambon et al. (2024)’s bug taxonomy for LLM-generated regular code. Following

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Distribution of stages in DL/ML pipeline for DS-1000 (predicted) and DL-Bench (actual).

Stage in pipeline Pre/Post Processing Model Construction Training Inference Evaluation
DL-Bench (actual) 210(40.3%) 119(22.8%) 75(14.4%) 59(11.3%) 57(10.9%)
DS-1000 (predicted) 932(93.2%) 35(3.5%) 14(1.4%) 14(1.4%) 5(0.5%)

the same procedure as our labeling process, three authors manually investigate all GPT-4o failures
and categorize them following Tambon et.al’s taxonomy. At the same time, the annotators identify
the DL-specific sub-categories for each failure. The result is the taxonomy presented in Fig 4. The
appendix gives a detailed explanation of each bug type and sub-category.
Differences in failures of the DL and general generated code: Tambon et. alTambon et al.
(2024) analyzed failures when CodeGen models generate code for the general tasks. Figures 5
show the distributions of the bug types when generating general code vs DL code. On the one
hand, misinterpretation (purple) is a common bug when generating both general code and DL code;
however, due to more complex logic and arithmetic requirements, LLMs more often make this
mistake when generating DL code. On the other hand, since GPT4o is much more capable compared
to CodeGen models used by prior work, errors such as incomplete generation (green), silly mistake
(dark gray), and syntax error (yellow) occur at a much lower rate.
Additionally, we introduce several new categories of bugs that only arise in DL code generation.
Firstly, errors in arithmetic and logical operations(light blue) occur when incorrect calculations or
flawed logical code are generated. Secondly, performance(light brown) issues involve inefficiently
generated code with slow execution times, excessive memory consumption, or suboptimal utilization
of resources. Lastly, prompt missing information(light purple) occurs when the prompts are missing
details to fully address the problem at hand, resulting in incomplete or partially implemented solutions.
These new categories identify important challenges that are unique to DL code generation.

Finding 6: Misinterpretation is a common issue in both generated general code and DL code;
however, due to more complex logic and arithmetic requirements, LLMs are more likely to make
this mistake when generating DL code. Errors in arithmetic and logical operations, performance,
and prompt missing information emerged as new issues that are specific to DL code generation.

Bugs in human-written compared to LLM-generated DL code: Prior study Islam et al. (2019)
has identified the most common types of bugs in human-written DL code (including logic errors,
API misuse, and data-related issues), with API misuse and data flow bugs being the most prevalent
issues in TensorFlow and Pytorch, respectively. Although API misuse remains a frequent issue in DL
generated code, data structural problems, such as tensor mismatches and dimensional errors, occur
more frequently. Human-written and LLM-generated DL code both often contain logic errors. This
similarity may stem from the fact that LLMs are trained on human-written code, thereby inheriting
logical structures and concepts from human programmers.

Finding 7: Due to LLMs’ weaknesses, LLM-generated DL code contains more data structural
problems, such as tensor and dimension mismatches. However, due to reliance on human-generated
training data, LLM-generated DL code shared bug patterns such as logic and API misuse errors.

6 DISCUSSION: DL-BENCH IN PRACTICE

One usage of the categorized data in DL-Bench is to train classifiers that can provide DL-specific
categorization for other unlabeled datasets(e.g., DS-1000) to improve their quality. To test this
potential usage, we train a BERT classifier to predict the stage-in-pipeline for each input prompt.
The classifier uses the BERT tokenizer, BERT encoder, and a linear classifier. The optimization is
performed with AdamW (η = 2×10−5, B = 8, E = 10), and five-fold cross-validation confirms
stable generalization (average weighted F1=0.56± 0.06).
To verify the accuracy, we conducted manual labeling of 100 instances, which shows our classifier has
a high accuracy of 95.0± 5.3% (with 99% confidence). This indicates a high level of generalization
of DL-Bench categorization when applied to other DL-related benchmarks. Table 4 presents the
predicted distribution for DS-1000 as well as the actual distribution for DL-Bench. The distribution
differences further distinguish DL-Bench and DS-1000. Where DS-1000 mainly focuses on pre/post-
processing, DL-Bench contains data from all stages of the DL/ML pipeline.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Pass@1 rates for improved prompting techniques with DL-Bench’s insight.

Dataset Prompting Technique O3-Mini DeepSeek-V3 QwenCoder GPT-4o Claude 3.5 Sonnet Llama 3.1 70b Mixtral 8*22B Avg.

DS-1000
Zero-Shot 61.0 61.7 57.3 51.1 61.9 40.9 39.3 53.3
Three-Shot 50.2 62.6 57.5 54.2 64.8 51.4 42.0 54.6
Stage-Predicted Three-Shot 54.3 64.1 58.9 57.7 66.4 54.0 47.6 57.5

DL-Bench

Zero-Shot 35.1 30.5 30.2 30.5 26.7 23.9 22.8 28.5
Three-Shot 37.1 32.3 24.5 33.4 32.3 27.8 27.2 30.7
Stage-Predicted Three-Shot 38.2 34.1 26.3 35.2 33.6 29.6 28.1 32.2

Finding 8: DL-Bench could complement other DL-related benchmarks by providing training data
for categorization classification. Such a stage classifier can have a high accuracy (95.0± 5.3% at
99% confidence when extending DS-1000).

Few-shot prompting emerged as a way to improve vanilla zero-shot prompting. However, guided
shots from the same code category could potentially provide even more uplift in performance. To
gauge the potential, we perform a preliminary experiment with three-shot prompting where the shots
are random reference samples, or samples in the same DL stage as the question. Since the stage the
prompt belongs to is not available, we use the previously described classifier to predict the stage.
Table 5 shows the pass@1 rate for SOTA LLMs using the three prompting approaches on DL-Bench
and DS-1000. For three-shot prompting, we perform the experiment twice and present the average
pass@1 rates. Zero-shot, without any examples, performs the worst with an average pass@1 rate of
53.3% on DS-1000 and 28.5% on DL-Bench. By including three examples, three-shot prompting
has a better average pass@1 rate of 54.6% on DS-1000 and 30.7% on DL-Bench. When providing
shots for each prompt, we made sure that the shots do not overlap with the prompt. When each
query is paired with snippets that belong to the same predicted stage of the DL pipeline, the pass@1
rate improves significantly. Averaged across models, stage-predicted three-shot prompting yields a
4.2% and 3.7% boost over zero-shot in DS-1000 and DL-Bench. This indicates the value of having
lower granularity categorization in a dataset, which can enable more sophisticated prompting and
fine-tuning techniques, which in turn provide uplift in LLMs’ performance.

Finding 9: Classifiers built using DL-Bench categorization data can provide targeted shots in few-
shot prompting to improve code generation performance. Overall, stage-predicted three-shot yields
up to 4.2% and 3.7% boost over zero-shot techniques in DS-1000 and DL-Bench respectively.

7 LIMITATIONS AND THREATS TO VALIDITY

Even with the temperature parameter set to zero, our experiments still utilized non-deterministic
models. While a lower temperature reduces randomness, it does not fully eliminate variability in the
models’ outputs Ouyang et al. (2023); Song et al. (2024). Also, even if we used the commonly used
pass@k metric to evaluate model performance, prior research Shiri Harzevili et al. (2024) shows that
passing all test cases does not guarantee complete code correctness (e.g., in edge cases).
We sourced data from various repositories related to DL and AI, but did not include all possible
repositories or tags. Expanding the dataset could capture a wider range of use cases and code patterns.
Data labeling was performed by four annotators, achieving strong inter-rater reliability. Despite this,
some labeling conflicts persisted and were addressed through discussions to reach a consensus.

8 CONCLUSION

In this paper, we introduce DL-Bench, a benchmark for deep learning tasks related to code generation.
The dataset comprises 520 instances, gathered from the most starred and recently updated GitHub
repositories. We categorize the data based on the pipeline stage, ML task, and input data type.
Additionally, our quantitative analysis of the performance of four state-of-the-art LLMs on DL-Bench
reveals that DL code generation is challenging and DL-Bench can provide more insight to help
improve the generation process. Using our taxonomy of issues found in LLM-generated DL code,
the qualitative analysis reveals the distinct challenges that LLMs face when generating DL code
compared to general code as well as the similarities and differences between human-written and
LLM-generated DL code. Our discussion shows potential usages of DL-Bench’s categorization data
outside of benchmarking usages. DL-Bench’s data is available in our Kaggle repository.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer. Juice: A large scale distantly supervised
dataset for open domain context-based code generation. arXiv preprint arXiv:1910.02216, 2019.

Anders Arpteg, Björn Brinne, Luka Crnkovic-Friis, and Jan Bosch. Software engineering challenges
of deep learning. In 2018 44th euromicro conference on software engineering and advanced
applications (SEAA), pp. 50–59. IEEE, 2018.

Maram Assi, Safwat Hassan, and Ying Zou. Unraveling code clone dynamics in deep learning
frameworks. arXiv preprint arXiv:2404.17046, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Pro-
gram synthesis with large language models. ArXiv, abs/2108.07732, 2021. URL https:
//api.semanticscholar.org/CorpusID:237142385.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e:
A scalable and extensible approach to benchmarking neural code generation. arXiv preprint
arXiv:2208.08227, 2022.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning
agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Shubham Chandel, Colin B Clement, Guillermo Serrato, and Neel Sundaresan. Training and
evaluating a jupyter notebook data science assistant. arXiv preprint arXiv:2201.12901, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé, Jared Kaplan, Harrison
Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick
Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, David W. Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin, Suchir
Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew M. Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. ArXiv, abs/2107.03374, 2021. URL https://api.
semanticscholar.org/CorpusID:235755472.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Ziyang Chen and Stylios Moscholios. Using prompts to guide large language models in imitating a
real person’s language style. arXiv preprint arXiv:2410.03848, 2024.

10

https://api.semanticscholar.org/CorpusID:237142385
https://api.semanticscholar.org/CorpusID:237142385
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

P Kingma Diederik. Adam: A method for stochastic optimization. (No Title), 2014.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

John Cristian Borges Gamboa. Deep learning for time-series analysis. arXiv preprint
arXiv:1701.01887, 2017.

Yiyang Hao, Ge Li, Yongqiang Liu, Xiaowei Miao, He Zong, Siyuan Jiang, Yang Liu, and He Wei.
Aixbench: A code generation benchmark dataset. arXiv preprint arXiv:2206.13179, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

Nur Farhana Hordri, Siti Sophiayati Yuhaniz, and Siti Mariyam Shamsuddin. Deep learning and its
applications: A review. In Conference on Postgraduate Annual Research on Informatics Seminar,
pp. 1–5, 2016.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.

Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. A comprehensive study on deep
learning bug characteristics. In Proceedings of the 2019 27th ACM joint meeting on european
software engineering conference and symposium on the foundations of software engineering, pp.
510–520, 2019.

Andreas Kamilaris and Francesc X Prenafeta-Boldú. Deep learning in agriculture: A survey. Com-
puters and electronics in agriculture, 147:70–90, 2018.

Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid networks.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
6399–6408, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Michele Lacchia. Introduction to Code Metrics — Radon Documentation. Radon Project / ReadThe-
Docs, 2025. URL https://radon.readthedocs.io/en/latest/intro.html. Ac-
cessed: 2025-09-24.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science
code generation. In International Conference on Machine Learning, pp. 18319–18345. PMLR,
2023.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence
embeddings from pre-trained language models. arXiv preprint arXiv:2011.05864, 2020.

Yang Liu and Meng Zhang. Neural network methods for natural language processing, 2018.

11

https://radon.readthedocs.io/en/latest/intro.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhi-Cun Lyu, Xin-Ye Li, Zheng Xie, and Ming Li. Top pass: Improve code generation by pass@
k-maximized code ranking. arXiv preprint arXiv:2408.05715, 2024.

Matej Madeja, Jaroslav Porubän, Michaela Bačı́ková, Matúš Sulı́r, Ján Juhár, Sergej Chodarev, and
Filip Gurbál’. Automating test case identification in java open source projects on github. arXiv
preprint arXiv:2102.11678, 2021.

Nikoleta Manakitsa, George S. Maraslidis, Lazaros Moysis, and George F. Fragulis. A review of
machine learning and deep learning for object detection, semantic segmentation, and human action
recognition in machine and robotic vision. Technologies, 12(2), 2024. ISSN 2227-7080. doi:
10.3390/technologies12020015. URL https://www.mdpi.com/2227-7080/12/2/15.

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers. Using
an llm to help with code understanding. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pp. 1–13, 2024.

Shuyin Ouyang, Jie M Zhang, Mark Harman, and Meng Wang. Llm is like a box of chocolates: the
non-determinism of chatgpt in code generation. arXiv preprint arXiv:2308.02828, 2023.

Soya Park, April Yi Wang, Ban Kawas, Q Vera Liao, David Piorkowski, and Marina Danilevsky.
Facilitating knowledge sharing from domain experts to data scientists for building nlp models.
In Proceedings of the 26th International Conference on Intelligent User Interfaces, pp. 585–596,
2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha.
A systematic survey of prompt engineering in large language models: Techniques and applications.
arXiv preprint arXiv:2402.07927, 2024.

Iqbal H Sarker. Machine learning: Algorithms, real-world applications and research directions. SN
computer science, 2(3):160, 2021.

Jiho Shin, Moshi Wei, Junjie Wang, Lin Shi, and Song Wang. The good, the bad, and the missing:
Neural code generation for machine learning tasks. ACM Transactions on Software Engineering
and Methodology, 33(2):1–24, 2023.

Nima Shiri Harzevili, Mohammad Mahdi Mohajer, Moshi Wei, Hung Viet Pham, and Song Wang.
History-driven fuzzing for deep learning libraries. ACM Transactions on Software Engineering
and Methodology, 2024.

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt generation for large
language models of code. In International Conference on Machine Learning, pp. 31693–31715.
PMLR, 2023.

Sundaravelpandian Singaravel, Johan Suykens, Hans Janssen, and Philipp Geyer. Explainable deep
convolutional learning for intuitive model development by non–machine learning domain experts.
Design Science, 6:e23, 2020. doi: 10.1017/dsj.2020.22.

Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The good, the bad, and the greedy:
Evaluation of llms should not ignore non-determinism. arXiv preprint arXiv:2407.10457, 2024.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Florian Tambon, Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh, Michel C Des-
marais, and Giuliano Antoniol. Bugs in large language models generated code. arXiv preprint
arXiv:2403.08937, 2024.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

12

https://www.mdpi.com/2227-7080/12/2/15

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien Nguyen. Does bleu score work for
code migration? In 2019 IEEE/ACM 27th International Conference on Program Comprehension
(ICPC), pp. 165–176. IEEE, 2019.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Prasoon Kumar Vinodkumar, Dogus Karabulut, Egils Avots, Cagri Ozcinar, and Gholamreza
Anbarjafari. A survey on deep learning based segmentation, detection and classification for
3d point clouds. Entropy, 25(4), 2023. ISSN 1099-4300. doi: 10.3390/e25040635. URL
https://www.mdpi.com/1099-4300/25/4/635.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859,
2021.

Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu. Time
series data augmentation for deep learning: A survey. arXiv preprint arXiv:2002.12478, 2020.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Yinghui Xia, Yuyan Chen, Tianyu Shi, Jun Wang, and Jinsong Yang. Aicodereval: Improving ai
domain code generation of large language models. arXiv preprint arXiv:2406.04712, 2024.

Rui Xie. Frontiers of deep learning: From novel application to real-world deployment. arXiv preprint
arXiv:2407.14386, 2024.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang
Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative pre-
trained models. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, pp. 1–12, 2024.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen,
and Jian-Guang Lou. Cert: continual pre-training on sketches for library-oriented code generation.
arXiv preprint arXiv:2206.06888, 2022.

Antonia Zapf, Stefanie Castell, Lars Morawietz, and André Karch. Measuring inter-rater reliability
for nominal data–which coefficients and confidence intervals are appropriate? BMC medical
research methodology, 16:1–10, 2016.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou,
and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval and
generation. arXiv preprint arXiv:2303.12570, 2023.

13

https://www.mdpi.com/1099-4300/25/4/635

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix
Table of Contents:

• Appendix A: Related Works
• Appendix B: Dataset Statistics
• Appendix C: Detailed benchmark construction procedure
• Appendix D: Candidate Prompt Filtering Criteria
• Appendix E: Final Data Filtering and Validation Criteria
• Appendix F: Data Categories and Labels
• Appendix G: LLM Bug Types and DL-specific Subtypes
• Appendix H: Distribution of Failures in Generated DL Code
• Appendix I: More results

A RELATED WORKS

Code Generation Benchmarks for Data Science and ML/DL: Several benchmarks have been
developed to evaluate code generation models in the context of data science and ML/DL tasks.
JuICe Agashe et al. (2019), PandasEval and NumPyEval Zan et al. (2022), and JuPyT5 Chandel et al.
(2022) provide datasets from Jupyter notebooks or data science libraries, with a focus on realistic
usage scenarios. However, most of these benchmarks rely on similarity-based metrics such as BLEU
for evaluation, due to the lack of accompanying test cases. In contrast, DL-Bench includes multiple
assert-based test cases for each entry, enabling more reliable evaluation via metrics like pass@1.
JuPyT5 introduces the DSP benchmark with 1119 pedagogically curated problems featuring mark-
down context, assert-based unit tests, and implicit data dependencies, making it suitable for evaluating
notebook-based code generation. Similarly, CERT provides PandasEval and NumPyEval for struc-
tured, API-heavy data science tasks and shows performance gains by anonymizing user-defined
elements. JuICe offers a large-scale dataset from Jupyter notebooks with manually curated test sets
derived from nbgrader assignments, although its evaluation also depends on similarity metrics.
Shin et al. Shin et al. (2023) focus specifically on ML/DL tasks using JuICe samples but still evaluate
with similarity scores, which do not reliably indicate functional correctness. In contrast, DL-Bench
offers task-level test cases for each function, allowing more precise evaluation of LLM performance
in ML/DL scenarios.
DS-1000 Lai et al. (2023) collects 1000 data science problems from StackOverflow, primarily focusing
on tasks like data preprocessing or transformation, with the support of test cases. However, the tasks
are often limited to isolated code snippets rather than complete function-level implementations. MLE-
Bench Chan et al. (2024) captures ML engineering workflows in the context of Kaggle competitions,
focusing on end-to-end pipelines but lacking fine-grained test-based evaluation. AICoderEval Xia
et al. (2024) further abstracts the evaluation to workflow-level code generation, treating setup and
implementation as a black-box output, which can obscure the model’s capabilities at the component
level.
General Code Generation Benchmarks: Benchmarks like HumanEval Chen et al. (2021),
MBPP Austin et al. (2021), APPS Hendrycks et al. (2021), AiXBench Hao et al. (2022), MultiPL-
E Cassano et al. (2022), Spider Yu et al. (2018), CoderEval Yu et al. (2024), and RepoEval Zhang et al.
(2023) have been widely used to evaluate LLMs on general-purpose programming. These benchmarks
span various tasks such as competitive programming, repository-level generation, multi-language
support, and SQL query generation from natural language. However, they are primarily focused on
general programming capabilities and do not capture the domain-specific challenges of ML/DL code.
Distinctive Features of DL-Bench: DL-Bench differs from prior work in several key ways. First,
it focuses exclusively on ML and DL software development tasks, offering function-level prompts
that reflect real needs in the ML pipeline. Second, it categorizes each function based on the ML
pipeline stage (e.g., preprocessing, model training), task type (e.g., classification, regression), and
input data type (e.g., image, text, tabular), offering a richer annotation scheme. Third, unlike most
benchmarks, DL-Bench is sourced from real GitHub repositories, ensuring practical relevance, and
each entry includes assert-based test cases, enabling robust and reproducible evaluation using metrics
like pass@1.
Overall, DL-Bench complements existing benchmarks by providing a granular, test-driven, and
ML/DL-focused dataset that enables more realistic evaluation of LLMs in domain-specific develop-
ment scenarios.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B DATASET STATISTICS

Pre/Post
Processing:

210

Model
Construction:

119

Training:
75

Inference:
59

Evaluation:
57

Stage in Pipeline

(a) Pipeline stages

Classification:70

Regression:14

Object
Detection:39

Image
Segmentation:38

Time-series
Prediction:24

Recommendation:17

General:
318

Task Type

(b) Task types

Image:
238

Text:28

Structured
Array:

83

Others:
171

Data Types

(c) Data types

Figure 6: Distribution of code samples in each category

DL-Bench consists of 520 instances of AI and DL data points (filtered from over 2,000 raw data
points). The data is curated from 30 GitHub repositories (selected from an initial pool of 160 related
repositories). To ensure an accurate evaluation of code generation techniques under test, each prompt
instance in DL-Bench is accompanied by at least three test cases (six test cases on average). One
of DL-Bench’s contributions is the categories that we assign to each data point. As mentioned in
Section 3, each data point is assigned a label for which stage of the ML pipeline it belongs to, a label
for which ML task it helps solve, and a label for the type of input data. This information enables
users of our benchmark to perform an in-depth analysis of their proposed technique with respect to
multiple ML-specific aspects. We demonstrate this in our empirical study presented in Section 4 later.

Write a Python function draw_point2d to set [x, y]
coordinates in an image tensor (grayscale or multi-

channel) to a given color, returning the modified image.

Figure 7: An example prompt for Pre/Post processing

Create the `__init__` method for the FCNN class initializes a
fully connected neural network with input/output units,

activation functions, and hidden layer sizes. If not provided,
default hidden_units to (32, 32).

Figure 8: An example prompt for Model Construction

Fig 6 represents the distribution of DL-Bench’s data in each categorization. In terms of the stages
in the ML pipeline (Fig (a)), our dataset well covers the five stages of the ML pipeline with the
pre/post-processing stage having the most (210) representative samples. Fig 7 lists the prompt to
generate a pre/post-processing “draw point2d” function that can be used to highlighting key points
of interest in output images. The model construction stage contains the second-most (119) samples
such as the one shown in Fig 8. This example shows the prompt to generate the “ init ” method for
a fully connected neural network (FCNN). Other ML stages have an equal share of samples. This
indicates a balanced dataset that covers all ML stages.

Create a Python function to_image that accepts an input of
type Union[torch.Tensor, PIL.Image.Image,

np.ndarray] and returns a tv_tensors.Image. The function
should check the input type and convert it accordingly

Figure 9: Example of General Task

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

 Create a Python function classification_metrics that
 takes ground_truth and retrieved dictionaries and returns
 per class precision, recall, and F1 scores. Class 1 is assigned

to duplicate file pairs while class 0 is for non-duplicate file
pairs.

Figure 10: An example of Classification Task.

Most of our data serve more than one ML task type, hence 318 (over 61%) instances are labeled
as General as shown in Fig (b). For example, Fig 9 shows to image function handles data type
conversions and pre-processing to standardize image inputs, without performing any specific machine
learning task. However, for the cases that serve a specific ML task, our dataset covers all ML tasks
evenly with 14 to 70 instances each. Among these, the classification task has the most representative
of 70 data points. For example, Fig 10 shows a classification task, calculating precision, recall, and F1
scores for both duplicate and non-duplicate file pairs to evaluate the performance of a classification
model. On the other hand, The regression task is not as popular with only 14 data points.
Image data is the most popular input data type with 238 instances (nearly 46%) as shown in Fig (c). In
some cases where the input data to the function is missing or not the input to the model, we categorize
them into the Others category which contains 171 instances. An example of such cases is presented in
Fig 8, where the initialization method constructs a new neural network model, however, information
on the input type of such networks is not available. Textual data has the least instances since most of
the time, textual data is tokenized and presented as either a data array or general tensor.

B.1 SEMANTIC DIVERSITY ANALYSIS BETWEEN DL-BENCH AND DS-1000 AND
AICODEREVAL

We gathered tokens from influential DL and ML papers to capture the specialized terminology used
in this field. Key sources include foundational works like Attention Is All You Need Vaswani et al.
(2017), Deep Residual Learning forImage Recognition He et al. (2016), YOLOv4: Optimal Speed and
Accuracy of Object Detection Bochkovskiy et al. (2020), BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding Devlin et al. (2019), EfficientNet: Rethinking Model
Scaling for Convolutional Neural Networks Tan & Le (2019), Learning Transferable Visual Models
From Natural Language Supervision Radford et al. (2021), Neural Machine Translation by Jointly
Learning to Align and Translate Bahdanau et al. (2014), and Sequence to Sequence Learning with
Neural Networks Sutskever et al. (2014).
From these papers, we extracted common DL tokens from their GitHub repositories and source code,
focusing on terms frequently used in DL models and architectures. Examples include:

• Architecture Terms: cnn, rnn, transformer, lstm, gru, autoencoder, resnet,
mobilenet, efficientnet

• Optimization: backpropagation, gradient descent, adam, rmsprop, sgd,
momentum, learning rate

• Components: dropout, batchnorm, layernorm, relu, softmax, attention,
dense layer, conv2d

• Training: epoch, batch, overfitting, underfitting, weight decay,
cross entropy, loss

• Processing: tokenizer, embedding, feature map, convolution, padding,
pooling, strides

• Other Common Terms: activation, tensor, inference, regularization,
initialization, hyperparameter, weight matrix

The list of all terms is available in our repository.
To quantify the presence of these DL/ML-specific terms, we computed a DL-relevance ratio for
each instance in our benchmark datasets. Let di denote the description of instance i, and T (di) its
preprocessed token set. The DL-relevance ratio ri is defined as:

ri =
|{t ∈ T (di) | t contains a DL/ML keyword}|

|T (di)|

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

This metric captures the proportion of DL/ML-related tokens in each textual description, providing a
quantitative measure of the DL specificity of each benchmark. For example, a code snippet containing
terms like conv2d, batchnorm, softmax, and dropout would have a higher relevance ratio
than one primarily focused on generic algorithmic operations.

C DETAILED BENCHMARK CONSTRUCTION PROCEDURE

C.1 RAW DATA EXTRACTION

This phase consists of six semi-automatic steps that crawl data from GitHub repositories to generate
a list of function definitions and their test cases.
Repository Selection: We curated our data from the top 1000 starred DL-related GitHub repositories
to include high-quality and widely used DL-related functions.
In step 1 , we filtered GitHub projects with one of 30 DL-related tags such as “neural-networks”,
“pytorch”, and “computer-vision” (we provided the complete list of tags in our repository). Specifically,
we select the tags by collecting from DL and AI-related GitHub repositories and filtering the most
relevant ones to get the final 30. In step 2 , we select 160 most relevant projects for DL-Bench
and retain only projects that: 1) are DL related (i.e., use DL libraries, or perform DL tasks like
segmentation or detection), 2) have sufficient test cases (averaging at least three per function), and 3)
include thorough documentation, such as source code docstrings or README files.
Function Extraction: One of the main design choices of DL-Bench is to include a set of reliable and
robust test cases for each benchmark entry. This is because programming languages are different
from natural languages. Specifically, generated code can fulfill all of the functional requirements but
could have a low BLEU score when compared with the ground truth codeTran et al. (2019). This
means that using text similarity metrics such as BLEU score as evaluation metrics is not the best
method to evaluate code generation techniques. Instead, test cases (functional and non-functional)
passing rate should be used to reliably access a new code generation approach.
In step 3 , we crawled selected repositories for test files using standard test file name patterns such
as tests/test file name.py Madeja et al. (2021). In step 4 , for each test file, we extract test cases
using common patterns in Python test suites, such as the @pytest decorator. Once we identified all
test cases, in step 5 , we performed call graph analysis to track and collect all functions under test
(excluding third-party function calls). The definitions of each of those functions are then extracted in
step 6 to form the bases for our ground-truth code samples.

C.2 LABELING PROCEDURE

The labeling procedure involves three semi-automatic steps to generate and refine a prompt and assign
categorizations for each entry in our DL-Bench dataset. To determine the best procedure and criteria
for our manual process, we perform a small trial run of the manual process on a small sample of the
data points. In this trial run, we ask each reviewer to provide feedback on the labeling criteria so that
when we start our full run we have the most comprehensive and accurate manual process possible.
Prompt Generation: In step 7 , we utilize two sources of data to create the code generation prompts:
1) the doc-strings provided by developers, which describe the functionality and parameters of the
code, and 2) the function definitions themselves, which can be used to generate candidate prompts.
Specifically, We take advantage of the function definitions to explain the code, and by combining
them with their respective doc-strings (when available), we generate the initial candidate prompt by
querying GPT-4o with the template as described in Fig. 2.
However, generated prompts require manual validation to ensure accuracy and relevance. This
review process is essential to refine prompts and guarantee quality for subsequent use Shrivastava
et al. (2023). We further refine prompts based on the following criteria: (1) contain clear, sufficient
information for code generation, (2) specify input and output format, and (3) cover error handling
and boundary conditions. More details are in the appendix.
If the prompt does not meet the mentioned criteria, the annotators propose and agree on changes
that bring it up to the expected quality. This reviewing process produces prompts that are not only
technically correct but also include details essential to code generation.
Our manually refining process of generated prompts mitigates the risk of data leakage since. This
process creates original natural language prompts which have not been previously exposed to any
new language model.
Data Filtering and Validation: After compiling all the data (i.e., the ground truth, test cases,
and candidate prompts), in step 8 , we manually evaluate each function meticulously, reading and
modifying the prompts following a set of criteria. Specifically, we discard general codes (e.g., those

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

for reading text files) that are not DL related. In this step, the annotators independently assess the
prompt’s clarity, relevance to DL-related tasks, and overall usability with the following criteria: (1)
serving key DL tasks, (2) utilization of popular DL frameworks, and (3) algorithms’ relevancy and
clarity.
Labeling: In step 9 , we assign labels for each data point based on the role of the function in the ML
pipeline (e.g., pre/post-processing, model construction), the ML tasks (e.g., classification, regression)
it solves, and types of data (e.g., image, text) it operates on. For each data point, three co-authors
thoroughly analyze and assign appropriate labels. We use a majority vote to finalize the labels and
modify the prompts accordingly. Specifically, we assign the following labels when appropriate to
each data point: Stage in the ML pipeline, ML task type, and Input data type.
Once each reviewer completes their assessments, the team meets to discuss any discrepancies and
reach a consensus on the final labels. Due to our detailed instructions and guidelines, we achieve a
high inter-rater reliability of 0.83 measured by Krippendorff’s alpha Zapf et al. (2016)(measures of
more than 0.8 indicating strong agreement.
The labeled data is carefully documented, including notes on the decision-making process for
transparency and future reference. Instances are organized, with labels to ensure easy retrieval and
analysis in later stages of research. To enable easier benchmark utilization (i.e., running test cases),
the relevant projects are set up in virtual environments along with appropriate dependencies and
ready-to-run testing scripts.
This rigorous review and labeling process ensures that each instance in the dataset is not only relevant
and useful but also thoroughly understood and appropriately categorized, contributing to a robust and
reliable benchmark.

D CANDIDATE PROMPT FILTERING CRITERIA

In this appendix, we describe the criteria of filtering and refining prompts to ensure clarity and
completeness.

Contains clear sufficient information for the code to be generated This assessment aims to en-
sure the prompt’s clarity and comprehensibility for a human expert. Annotators check that
the prompt includes all essential variables, functions, and definitions for high-quality code
generation, providing enough information to clearly explain the problem. The human expert
serves as the benchmark to set a high standard for future code generation. We also verify that
the prompt provides sufficient guidance, including specific coding conventions or required
components.

Specifies the input and output format Since our test cases require certain input and output formats,
it is important to check such details in the candidate prompt to enable our test cases to
function correctlySahoo et al. (2024); Chen & Moscholios (2024). In other words, without
precise definitions of the input and output specifications, the generated code might not align
with the expected test parameters, resulting in false negative results during evaluation. Error
and exception handling are also considered in this question. For example, we specifically
check whether the prompt accounts for handling cases such as “ValueError”, “TypeError”,
or other domain-specific exceptions that the function might raise. This will ensure that the
code will be correctly evaluated given our extracted test cases.

Covers error handling and boundary conditions Similar to input and output specification, error
handling and boundary conditions are often part of the required testing parameters By
ensuring that the prompt includes such details, we ensure that the passing rate truly reflects
the performance of the code generation under test.

E FINAL DATA FILTERING AND VALIDATION CRITERIA

This appendix outlines the criteria used to filter and validate data, ensuring alignment with key DL
tasks, proper use of AI frameworks, and clarity in algorithm implementation.

Serving key DL tasks The prompt and the associated function should be closely aligned with
significant DL tasks such as image recognition, regression, item recommendation, object
detection, label prediction, and natural language processing tasks. This criterion ensures
that our dataset contains all important and relevant data pointsXie (2024).

Utilization of popular DL frameworks The code should efficiently use widely recognized AI
frameworks (when appropriate), such as TensorFlow, PyTorch, or Keras. This criterion

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

ensures our dataset represents typical DL code with a heavy emphasis on reusabilityAssi
et al. (2024).

Algorithms’ relevancy and clarity The code should implement DL-specific algorithms (e.g., edge
detection algorithms, Principal component analysis, or Stochastic gradient descent). The
code should also be well-documented and easy to understand. Complex algorithms must
strike a balance between technical depth and clarity to ensure usability.

F DATA CATEGORIES AND LABELS

In this appendix, we provide details of three key sample categorizations: the stage in the ML pipeline,
the ML task type, and the input data type.

F.1 STAGE IN THE ML PIPELINE

This label indicates the stage that the code is in within the ML pipeline: Pre/post Processing, Model
Construction, Training, Inference, or Evaluation & Metrics. The annotators determine whether the
function is related to a stage by analyzing the code and comment to find information that is related to
the specific stage. For example, code that specifies a convolutional neural network (CNN) architecture
with layers such as convolutions or pooling would fall under the Model Construction category.

Pre/Post Processing Code in the pre or post-processing stage often manipulates data (input or
output). For example, pre-processing code cleans or augments input data, whereas post-
processing code augments output data for visualization. Due to the ambiguity at the function
level, we have a combined category for pre and post-processing codeWen et al. (2020).

Model Construction This stage defines the network architecture and sets up the computational
graph for deep learning models, including defining layers, activation functions, and layer
connections. Examples include defining CNN architectures and forward pass logic. Loss
functions are part of this stage, but optimization steps are in the training phaseHoward et al.
(2019).

Training The training stage optimizes the model’s parameters using a loss function and optimization
algorithm. This includes backpropagation and weight updates. Code for gradient descent
using optimizers like Adam or SGD and looping over epochs and batches falls under this
stageDiederik (2014).

Inference Inference code is used to generate labels based on a trained model. It processes new
input data and outputs results, such as classifications or detections, without changing model
parameters. This stage emphasizes speed and efficiency for real-time deploymentKirillov
et al. (2019).

Evaluation & Metrics Code in this stage assesses the performance of a trained model using various
metrics. It involves running the model on a validation/test dataset and comparing predictions
to ground truth labels to measure accuracy, precision, recall, F1-score, etc.Wu et al. (2020).

F.2 ML TASK TYPE

This label indicates the ML taskSarker (2021); Vinodkumar et al. (2023); Manakitsa et al. (2024)
that the code is serving when applicable. The annotators examine the code to determine the type of
task being solved, such as Time series Prediction, Recommendation, Image Segmentation, Object
Detection, Regression, Classification, or General. Specifically, the annotators look for patterns in the
code corresponding to each task. For instance, code that outputs bounding boxes and class labels for
objects falls under the Object Detection category. In cases where the code can be used for multiple
ML tasks (i.e., does not exclusively belong to a specific ML task), we assigned a General label.

Classification Classification tasks involve assigning input data to categories or classes. For example,
models using softmax activation in the final layer for outputs like “dog” or “cat” fall under
this category. Categorical cross-entropy loss is a common indicator.

Regression Regression tasks predict continuous values. Code indicating regression tasks often has
linear activation functions in the final layer.

Object Detection Detection tasks identify objects and their locations within images. Code that
outputs bounding boxes and class labels (e.g., YOLO, Faster R-CNN) and employs anchor
boxes or non-maximum suppression is indicative of detection tasks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Image Segmentation Segmentation tasks assign labels to each pixel in an image. Code involving
semantic or instance segmentation (e.g., U-Net, Mask R-CNN) where the output is a mask
with pixel-level classifications is a common example.

Time Series Prediction These tasks forecast future values using historical data. Code involving
recurrent neural networks (RNNs), LSTM, GRU models, and loss functions like mean
absolute error (MAE) or MSE is typical.

Recommendation Recommendation tasks suggest items or actions based on user data. Code
implementing collaborative or content-based filtering algorithms, matrix factorization, or
deep learning-based models for recommendations falls into this category.

General Code that is versatile and applicable to multiple ML tasks without being exclusive to a
specific one is labeled as General.

F.3 INPUT DATA TYPE

This label indicates the input data type of the function. We focus on typical ML input data types such
as Image, Text, Structured Array (i.e., tabular), and Others. The annotators analyze the processing
flow of data to assign accurate labels. For example, techniques like flipping, cropping, or adding
noise process image input. When the input data does not fit one of the typical types (image, text,
structured array), we assign the Others label.

• Image—Processing for image data includes steps like resizing, normalization, and data
augmentation. Code that resizes images (e.g., 224×224 for CNNs), normalizes pixel
values, or applies augmentations (flipping, cropping, noise addition) typically signals image
dataKrizhevsky et al. (2012).

• Text—Text processing involves tokenization, n-gram generation, stemming, lemmatization,
and embeddings. Code that handles these processes and converts text into vectors (e.g.,
using TF-IDF, Word2Vec, BERT) indicates text dataLiu & Zhang (2018).

• Structured Array—Tabular data, where rows represent data points and columns represent
features, is processed by normalization, one-hot encoding, or handling missing values. Code
that reads CSVs into DataFrames and applies these techniques indicates structured array
data, commonly used in regression or classification tasksChen & Guestrin (2016).

• Others—When input data does not match typical types (image, text, structured array), it is
labeled as Others. This includes input such as model parameters or hyperparameters. For
example, def __init__(self, weight, bias=None) initializing model compo-
nents without direct input data processing falls under this label.

G LLM BUG TYPES AND DL-SPECIFIC SUBTYPES

In this appendix, we provide details for the common types of errors in LLM-generated code as well
as our DL-specific subtypes.

Misinterpretation: Generated code deviates from the prompt intention The produced solution
does not fulfill the user’s original requirements or strays from the specified goals. This often
indicates that the LLM has misunderstood or incompletely parsed the prompt.

Incorrect DL Library or Framework Usage: The generated code does not match the re-
quested library or framework. For example, if the prompt asks for a TensorFlow
implementation of a CNN, but the LLM generates the model using PyTorch instead, or
if a user requests a NumPy-based neural network operation but the output code uses
TensorFlow functions.

Shape and Dimension Mismatch: The LLM produces code with incorrect tensor dimen-
sions that do not follow the prompt specifications. For example, if the prompt requests
a fully connected layer expecting an input of shape (64, 128), but the generated code
initializes it with an input shape of (128, 64), leading to a mismatch in matrix opera-
tions.

Incorrect DL/ML Functionality: The generated code does not implement the correct
functionality as described in the prompt. For instance, if the prompt asks for a binary
classification model using a sigmoid activation function, but the output code instead
applies a softmax activation function intended for multi-class classification, altering
the intended behavior.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Syntax Error: Missing parenthesis, semicolon, or other syntax issues Straightforward syntactic
mistakes such as unclosed quotes, unmatched braces, or misplaced punctuation prevent the
code from compiling or running properly.

Silly Mistake: Redundant conditions, unnecessary casting Simple but avoidable errors, such as
repeating the same condition twice or performing extra type conversions with no purpose.
While these do not always break the code, they reduce readability and hint at confusion in
the model’s reasoning.

Prompt-biased Code: Code overly relies on examples from the prompt The LLM anchors too
strongly to the examples provided in the prompt, resulting in a solution that works only for
the specific inputs shown rather than generalizing the logic for broader applicability.

Missing Corner Cases: Edge cases not handled The generated solution neglects special scenarios
such as empty inputs, boundary values, or invalid parameters, leading to unreliable behavior
outside of typical inputs.

Tensor Type and Value Edge Cases: These bugs occur when operations fail due to unex-
pected tensor types or values. For example, using a tensor with float32 data type
in a function that expects integers or encountering issues when dividing by zero in a
tensor.

Shape and Dimension Edge Cases: Bugs of this type happen when operations fail because
of unexpected edge-case shapes. For example, trying to perform a convolution on a
tensor with a batch size of 0 or a single dimension, such as (1, 28, 28), when a shape
like (32, 28, 28) is expected.

Wrong Input Type: Incorrect input type in function calls The code passes incompatible data
types to functions or methods (e.g., providing a string instead of a list), which causes
runtime failures or nonsensical outputs.

Tensor Shape Mismatch: The generated code provides tensors with incorrect shapes
to functions, leading to shape-related errors. For example, passing a 3D tensor
of shape (batch, height, width) to a function that expects a 4D tensor of shape
(batch, channels, height, width), causing a runtime error in deep learning frame-
works like PyTorch or TensorFlow.

Incorrect ML/DL Function Library Arguments: These occur when invalid arguments
are passed to functions. For instance, using stride=-1 in a convolution function,
which is not logically or mathematically valid.

Type Mismatch Problem: The generated code uses tensors with incompatible data types
in operations. For example, passing a tensor with data type float32 to a function
that expects int64, or attempting to index a tensor with a floating-point value instead
of an integer, leading to type-related execution failures.

Hallucinated Object: Nonexistent or undefined objects used The LLM invents objects, classes, or
modules that do not exist or have not been imported or defined. These errors result in
runtime failures or developer confusion.

Missing or Undefined DL Modules: This happens when a model, layer, or module that
hasn’t been properly defined or initialized is used. For example, attempting to forward-
pass input through a neural network layer that hasn’t been added to the model.

Incorrect Usage of DL Modules: The generated code references deep learning modules,
functions, or classes that do not exist or belong to the wrong framework. For example,
calling torch.nn.Dense() instead of torch.nn.Linear(), or attempting to
use tensorflow.layers.Conv2D instead of tf.keras.layers.Conv2D.
These hallucinated module names cause import errors or incorrect function calls.

Wrong Attribute: Incorrect/nonexistent attributes for objects or modules The LLM references
valid objects but assigns them invalid or incorrect attributes. These subtle errors often
result from misunderstandings of library APIs or typos in the generated code.

Wrong DL Module Import: Bugs of this nature arise when modules are imported incor-
rectly. For example, importing jax functions when the rest of the code is written in
PyTorch, leading to incompatibilities during execution.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Incorrect API Usage: These bugs occur when a library API function is called incorrectly.
For example, using the train() method instead of fit() for a Keras model or
passing parameters in the wrong order to an optimizer.

Non-Prompted Consideration: Non-requested features added The LLM includes functionality
unrelated to the requirements, often due to extraneous training data or contextual noise. This
bloats the code and complicates its scope.

Operation/Calculation Error: Errors in arithmetic or logical operations The LLM makes errors
in mathematical calculations or logical expressions, such as confusing addition with subtrac-
tion or mixing up operator precedence. These subtle mistakes produce incorrect results.

Data Type Casting Issues: These bugs occur when tensors or variables are cast into in-
compatible data types. For instance, casting a float32 tensor into int32 without
considering the loss of precision, which may disrupt training.

Shape and Dimension Error in Operations: The generated code performs mathematical
operations on tensors with incompatible shapes or dimensions, leading to incorrect
computations or runtime failures. For example, attempting to add two tensors of
shapes (32, 64) and (64, 32) without proper broadcasting, or performing a matrix
multiplication between tensors with mismatched inner dimensions, such as (4, 3) ×
(5, 4), causing a shape misalignment error.

Incorrect Algebraic Calculation: These bugs refer to mathematical errors in computa-
tions. For instance, incorrectly normalizing data by dividing by the mean instead of the
standard deviation, leading to improper scaling of input features.

Performance Issue: This category includes inefficiencies in the generated code that impact runtime
or resource usage. Examples include unnecessary nested loops, unoptimized algorithms, or
excessive use of memory. While the code may produce correct results, its suboptimal imple-
mentation can make it impractical for large datasets or real-time applications. Performance
issues often arise because the LLM generates a brute-force solution without understanding
optimization principles.

DL Performance Issues: These bugs refer to inefficiencies in implementation that degrade
model performance. For instance, not using GPU acceleration for operations or im-
proper batching strategies leads to high memory consumption and slow training.

Prompt Missing Information: Incomplete or unclear prompts The bug arises due to insufficient
detail or ambiguity in the input prompt, leading the LLM to make assumptions or guess
certain details when generating the code. For example, if the prompt does not specify edge
case handling or input constraints, the model may overlook these aspects entirely. This
highlights the importance of crafting precise and comprehensive prompts when using LLMs
for code generation.

Not Defining the Correct DL Library in the Prompt: This occurs when the prompt or
instructions fail to specify the appropriate library or framework. For example, a user
asks a language model to generate PyTorch code but does not explicitly state this,
leading to TensorFlow code generation instead.

Incorrect or Undefined Variable/Method References : Variables or methods that are not de-
fined or incorrectly referenced The LLM generates code that includes references to
variables or methods that do not exist or are improperly used, leading to runtime errors such
as NameError or AttributeError.

Constant Value Error: Incorrect constant value assignment The LLM assigns incorrect or mis-
calculated constant values, such as setting a time-out period to 10ms instead of 1000ms,
leading to unexpected behavior.
Incorrect Tensor Constant Value: This type of bug arises when tensors are initialized

with incorrect values, leading to flawed model behavior. For example, initializing
weights or biases with all zeros instead of random values causes issues in training
dynamics.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

H DISTRIBUTION OF FAILURES IN GENERATED DL CODE

Table 6 presents the distribution of bugs in LLM-generated DL code. The most prevalent issue
is deviation from the prompt, accounting for the largest portion of errors. Unlike general LLM-
generated code, DL code is more prone to arithmetic and logical errors, reflecting the complexity of
numerical computations. Additionally, incorrect input types in function calls represent a significant
share of the identified bugs, highlighting a common source of failures in generated DL code.

Table 6: Distribution of bugs in LLM generated code for deep learning

Category DL Related Categories # of Occurances

Misinterpretation: Generated code deviates from prompt intention

Incorrect DL library or framework Usage 10

120Shape and dimension mismatch 45
Incorrect DL/ML Functionality 13
Not DL-related 52

Syntax Error: Missing parenthesis, semicolon, or other syntax issues 0
Silly Mistake: Redundant conditions, unnecessary casting Not DL-related 8 8
Prompt biased Code: Code overly relies on examples from the prompt Not DL-related 4 4

Missing Corner Case: Edge cases not handled
Tensor Type and Value Edge Cases 8

33Shape and Dimension Edge Cases 15
Not DL-related 10

Wrong input type:Incorrect input type in function calls

Tensor shape mismatch 3

64Incorrect ML/DL function
library arguments 16

Type mismatch problem 23
Not DL-related 22

Hallucinated Objects: Nonexistent or undefined objects used
Missing or Undefined DL Modules 9

32Incorrect Usage of DL Modules 12
Not DL-related 11

Wrong Attribute: Incorrect/nonexistent attributes for objects or modules
Wrong DL Module import 8

46Incorrect API Usage 17
Not DL-related 21

Non-Prompted Consideration:Non-requested features added Not DL-related 12 12

Operation/Calculation Error:Errors in arithmetic or logical operations

Data Type Casting Issues 5

72Shape and Dimension Errors in Operations 28
Incorrect Algebraic Calculations 18
Not DL-related 21

Performance Issue: Poor Performance DL performance issue 2 3Not DL-related 1

Prompt missing information:Incomplete or unclear prompts Not defining correct dl library 4 10Not DL-related 6
Incorrect or undefined variable/method references:
Variables or methods that are not defined or incorrectly referenced Not DL-related 11 11
Constant Value Error:Incorrect constant value assignment Incorrect Tensor Constant Value 6 6

H.1 SOME EXAMPLES OF INCORRECT LLM-GENERATED DL CODE:

raise ValueError('Shift values must have the same batch size as the image')

 def shift_rgb(image, r_shift, g_shift, b_shift):
 ...
 for i in range(N):
 shifted_image[i, 0, :, :] += r_shift[i]
 shifted_image[i, 1, :, :] += g_shift[i]
 shifted_image[i, 2, :, :] += b_shift[i]
 ...
 return shifted_image

 def shift_rgb(...):
 ...
 shifts = [r_shift, g_shift, b_shift]
 ...
 shifted = (image + torch.stack(...).view(-1, 3, 1, 1)
 .to(image)).clamp_(min=0, max=1)
 return shifted

OriginalGenerated

Generate a Python function shift_rgb that shifts the RGB channels of an image. Inputs: an image tensor (N,
3, H, W) and tensors r_shift, g_shift, b_shift (N), representing the shift values for each channel

Figure 11: Mismatching data shapes: shifting variables need to be broadcasted to the image shape

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Example 1: Figure 11 highlights an instance of dimensional mismatches in LLM-generated DL
code. In this case, GPT-4o incorrectly assumes that each shift value can be applied directly to all
pixels in the image channel, causing a shape mismatch.

 def get_rotation_matrix2d(...):
 M[:, 0, 0] = cos_a * scale_x
 M[:, 0, 1] = -sin_a * scale_y
 M[:, 1, 0] = sin_a * scale_x
 ...
 return M

self.assert_close(M[i, 0, 1].item(), 0.7071) Absolute difference: 1.4 (up to 1e-05 allowed)

 def get_rotation_matrix2d(...):
 rotat_m[:, :2, :2] =

angle_to_rotation_matrix(angle)
 affine_m = shift_m @ rotat_m @

scale_m @ shift_m_inv
 return affine_m[:, :2, :] # Bx2x3

 Generate a Python function get_rotation_matrix2d that calculates a 2D affine rotation matrix.

Generated Original

Figure 12: Incorrect processing of parameters: The axes scales need to be applied to both sin and cos
Example 2: An example of such logic-related bugs is shown in Figure 12, demonstrating how LLMs
replicate logical reasoning errors that occur in human-written code. Here, GPT-4o applies scale x
only to the cosine, whereas the scaling factors scale x and scale y should be applied uniformly to
both the sine and cosine components of the rotation matrix. This results in improper scaling along
the axes and triggers a test failure.

def _jpeg_decode(...):
 ...
 def idct_2d(block):
 return torch.idct(block, norm='ortho',

dim=-1).idct(norm='ortho', dim=-2)
 ...
 return rgb_image

Module 'torch' has no attribute 'idct'

 Write a Python function _jpeg_decode that performs JPEG decoding

 def _jpeg_decode(...):

 image_ycbcr: Tensor = torch.stack((...) /

255.0

 ...

 return rgb_decoded

OriginalGenerated

Figure 13: Wrong usage of a third-party library.
Example 3: Figure 13 provides an example of API misuse in LLM-generated code where GPT-4o
attempts to call torch.idct, which is not implemented in PyTorch. One possible fix is to provide more
context concerning third-party libraries. For example, one could hint to LLMs to use scipy instead,
resulting in scipy.fftpack.idct(x.numpy(), norm=norm) instead.

I MORE RESULTS

This appendix provides a more extensive quantitative analysis of model performance on DL-Bench,
expanding on the summary presented in the main text. In particular, we report complete pass@k

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 7: Pass@k (%) on DL-Bench at temperature = 0.3.

Model Pass@1 Pass@3 Pass@5
O3-mini 36.7 38.1 40.2
DeepSeek V3 31.7 34.6 36.7
GPT-4o 30.5 33.9 37.9
Claude 3.5 Sonnet 30.3 32.5 35.6
LLaMA 3.1 70B 27.8 29.4 33.9
Mistral 8×22B 26.4 27.3 31.4
Qwen Coder 2.5 24.1 26.1 29.0

Table 8: Variance across five runs on DL-Bench (temperature = 0). Lower variance indicates more
stable performance.

Run / Stat O3-Mini DeepSeek V3 GPT-4o Claude 3.5 Sonnet LLaMA 3.1 70B Mistral 8×22B Qwen Coder 2.5
Run 1 36.9 31.4 31.2 30.3 27.5 26.1 23.4
Run 2 35.6 30.6 29.4 29.8 27.1 23.9 21.7
Run 3 34.6 28.5 28.3 29.9 25.8 24.0 22.7
Run 4 34.6 32.1 30.8 31.2 28.3 22.5 23.8
Run 5 33.7 30.2 31.6 31.4 25.2 23.1 22.5

AVG 35.1 30.5 30.2 30.5 26.7 23.9 22.8
VAR 1.49 1.86 1.89 0.55 1.60 1.86 0.67
STD 1.22 1.36 1.37 0.74 1.26 1.36 0.82

statistics and examine how allowing multiple generation attempts influences the success rate of each
evaluated LLM.

I.1 PASS@3 AND PASS@5 PERFORMANCE ON DL-BENCH

Table 7 presents the exact pass@3 and pass@5 scores of the seven representative LLMs when
decoding with temperature 0.3. These results reveal the extent to which each model benefits from
additional generation attempts. O3-Mini achieves the highest success rates with 38.1% pass@3
and 40.2% pass@5, gaining about two percentage points when moving from three to five attempts.
DeepSeek-V3 follows closely at 34.6% and 36.7%, while GPT-4o records 33.9% and 37.9%,
representing the largest improvement (approximately four percentage points) among all models.
Claude 3.5 Sonnet reaches 32.5% and 35.6%, and LLaMA 3.1 70B attains 29.4% and 33.9%.
Among the smaller open-weight baselines, Mistral 8×22B achieves 27.3% and 31.4%, while Qwen
Coder 2.5 delivers the lowest performance with 26.1% and 29.0%. Across all models, the absolute
improvements from pass@3 to pass@5 remain relatively limited—generally within 2–4 percentage
points—indicating that even with multiple generation attempts, current state-of-the-art LLMs continue
to face considerable difficulty in producing fully correct ML/DL-specific code on DL-Bench. This
further highlights the benchmark’s effectiveness in exposing the limitations of modern code generation
systems beyond what existing datasets such as DS-1000 can capture.

I.2 VARIANCE OF DIFFERENT RUNS

Table 8 reports the exact pass@1 scores for each of the five independent runs together with the
computed mean (AVG), variance (VAR), and standard deviation (STD). O3-Mini consistently achieves
the highest average pass@1 score (35.1%) with a variance of 1.49 and standard deviation of 1.22.
DeepSeek V3 and GPT-4o show slightly higher variability (variance 1.86 and 1.89, respectively) but
still maintain mean scores around 30%. Claude 3.5 Sonnet is the most stable, with a variance of
only 0.55 (standard deviation 0.74) around its 30.5% mean. LLaMA 3.1 70B exhibits a variance of
1.60, Mistral 8×22B also 1.86, and Qwen Coder 2.5 remains relatively steady with a variance of 0.67.
These results show that even the lowest-performing models provide reproducible outcomes across
repeated evaluations, reinforcing the robustness of the comparative analysis in the main text.

I.3 RESULTS BASED ON TIMELINE

Table 2 shows the exact pass@1 scores on DL-Bench when tasks are filtered by their publication
date relative to the October 2023 cutoff. These results reveal how each model’s accuracy shifts as
only the most recent tasks are considered. O3-Mini achieves the highest overall score at 35.1%,
but its accuracy drops to 32.8% after January 2024, declines further to 29.6% after May 2024, and

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

then rises slightly to 30.5% after September 2024. DeepSeek V3 decreases from 30.5% overall to
27.5% after September 2024, while GPT-4o falls from 30.2% to 25.7% in the same period. Claude
3.5 Sonnet shows a more moderate decline from 30.5% to 27.6%. Among the open-weight models,
LLaMA 3.1 70B drops from 26.7% to 25.0%, and Mistral 8 × 22B goes from 23.9% to 23.1%. Qwen
Coder 2.5 remains comparatively low but stable, varying only between 22.8% and 24.2%. Overall,
the consistent downward trend across most models highlights how the live version of DL-Bench
continually surfaces fresh, previously unseen challenges that cannot be solved simply by exploiting
prior training data, underscoring the benchmark’s value for continual evaluation of LLMs on emerging
ML/DL code-generation tasks.

26

	Introduction
	Related Works
	Benchmark Construction
	Quantitative Analysis
	DL-Bench contains distinctive and more challenging problems and solutions when compared to DS-1000 and AICoderEval.
	Performances of SOTA LLMs on DL-Bench and DS-1000

	Qualitative Analysis
	Which kinds of DL-specific code pose a greater challenge for SOTA LLMs?
	What are the common bugs in generated DL-specific code?

	Discussion: DL-Bench in practice
	Limitations and threats to validity
	Conclusion
	Related Works
	Dataset Statistics
	Semantic Diversity Analysis between DL-Bench and DS-1000 and AICoderEval

	Detailed benchmark construction procedure
	Raw Data Extraction
	Labeling Procedure

	Candidate Prompt Filtering Criteria
	Final Data Filtering and Validation Criteria
	Data Categories and Labels
	Stage in the ML pipeline
	ML task type
	Input data type

	LLM Bug Types and DL-specific Subtypes
	Distribution of Failures in Generated DL Code
	Some examples of incorrect LLM-generated DL code:

	More Results
	Pass@3 and Pass@5 Performance on DL-Bench
	Variance of Different Runs
	Results based on timeline

