

DL-BENCH: DEEP LEARNING SPECIFIC CODE GENERATION BENCHMARK

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep learning (DL) has revolutionized areas such as computer vision, natural language processing, and more. However, developing DL systems is challenging due to the complexity of DL workflows. Large Language Models (LLMs), such as GPT, Deepseek, Claude, Llama, Mistral, Qwen, etc., have emerged as promising tools to assist in DL code generation, offering potential solutions to these challenges. Despite this, existing benchmarks like DS-1000 are limited, as they primarily focus on small DL code snippets related to pre/post-processing tasks and lack comprehensive coverage of the full DL pipeline, including different DL phases and input data types. Similarly, MLE-bench focuses more on Machine Learning Engineering (MLE) tasks and broader ML workflows, without leveraging test cases. To address this, we introduce DL-Bench, a novel benchmark dataset designed for function-level DL code generation. DL-Bench categorizes DL problems based on three key aspects: phases such as pre-processing, model construction, and training; tasks, including classification, regression, and recommendation; and input data types such as tabular, image, and text. DL-Bench diverges from related benchmarks, DS-1000 and AICoderEval, across four dimensions: it occupies a semantically distinct region for both prompts and code embedding, emphasizes DL constructs with a higher DL/ML token ratio, and requires more complex code solutions. State-of-the-art LLMs (e.g., O3-Mini, DeepSeak-V3) achieve, on average, significantly lower 28.5% pass@1 score on DL-Bench than on DS-1000 (53.3%). This result underscores DL-Bench’s greater challenging problems set. Our taxonomy of bugs found in LLM-generated DL code highlights the distinct challenges that LLMs face when generating DL code compared to general code. Furthermore, our analysis reveals substantial performance variations across categories which emphasizes valuable insights that DL-Bench offers for potential improvement in the DL-specific generation. Our preliminary result shows that DL-Bench can enhance LLM performance as a categorization training dataset, achieving an average 4.2% improvement on DS-1000 with guided three-shot learning.

Overall, our empirical results demonstrate the utility of DL-Bench as a comprehensive benchmark while offering insights for future improvements across diverse functional categories.

1 INTRODUCTION

In recent years, machine learning (ML) and deep learning (DL) have advanced significantly and have been integrated into various fields Hordri et al. (2016); Kamilaris & Prenafeta-Boldú (2018); Gamboa (2017). DL coding has its challenges Arpteg et al. (2018), and because of its widespread use, many DL systems are developed by domain experts who are often not software developers Park et al. (2021); Singaravel et al. (2020), which amplifies the problems even more.

Recently, with the rise of Large Language Models (LLMs) such as ChatGPT, LLMs are considered among the best solutions for coding tasks Wang et al. (2021); Feng et al. (2020); Achiam et al. (2023) as demonstrated by numerous code generation benchmark datasets. However, until recently, most of these benchmarks focused on general programming tasks. Shin et al. (2023) are the first to underline the distinct challenges of generating ML/DL code compared to general code. However, their generated code evaluation relies on less suitable similarity metrics as very different code snippets can have the same functionality, and a small change in a code snippet can drastically alter its semantics.

054 A few datasets, such as MLE-bench Chan et al. (2024) or AICoderEval Xia et al. (2024), offer
 055 examples of ML-specific code generation on the ML workflow level, which does not fit the LLM’s
 056 usage, where developers need help with generating specific functions. These benchmarks often
 057 evaluate LLMs based on the final ML system’s performance (e.g., accuracy, F1, etc.). Among these,
 058 DS-1000 Lai et al. (2023) provides small (a few lines) ML-specific code snippets, primarily focused
 059 on pre/post-processing tasks. It also does not provide any categorizations, such as ML tasks, DL
 060 phases, or input types, which could provide valuable insights for code generation improvement.

061 To address these gaps, we introduce DL-Bench, a novel dataset designed to benchmark DL-specific
 062 code generation at a functional level. Each entry includes the code generation prompt, the ground-
 063 truth code at the function level, and an extensive set of unit tests. Unlike DS-1000 and MLE-bench,
 064 DL-Bench provides a more comprehensive and diverse set of function-level samples that cover all
 065 phases in the DL pipeline for various ML tasks and input data types. These entries are categorized
 066 into three aspects: (1)*The DL/ML pipeline stages*: pre/post-processing, model construction, training,
 067 inference, and evaluation, (2)*The DL/ML tasks*: classification, object detection, image segmentation,
 068 time-series prediction, recommendation, and regression, and (3)*The input data types*: text, image,
 069 and array. These categorizations enable a more in-depth evaluation and analysis of future techniques
 070 in generating DL-specific code.

071 We qualitatively compare DL-Bench with its most related benchmarks (DS-1000 and AICoderEval) by
 072 examining four aspects of dataset divergence. First, we show that DL-Bench occupies a semantically
 073 distinct region of the embedding space, hence contains novel problem domains and different solution
 074 patterns. Second, we reveal that DL-Bench emphasizes DL constructs heavily. Third, we demonstrate
 075 that DL-Bench problems require more complex solutions, hence are more challenging for LLMs.
 076 Finally, state-of-the-art LLMs (e.g., O3-Mini, DeepSeak-V3) struggle to solve DL-Bench’s problems
 077 with significantly lower **28.5%** pass@1 score on DL-Bench than on DS-1000 (53.3%).

078 Furthermore, our qualitative analysis indicates that the difficulty of generating code varies significantly
 079 across categories. For example, O3-Mini reaches an accuracy of 39.4% for pre/post-processing tasks
 080 but only 30.4% for model construction. The pass@1 rate varies even more among task types, ranging
 081 from 53.1% for recommendation tasks to 26.3% for segmentation tasks on O3-Mini. These large
 082 gaps in performance across categories highlight the importance of insights that DL-Bench can bring
 083 to help improve the LLM DL code generation capability. Additionally, we construct a bug taxonomy
 084 of the issues found in the generated DL code. When compared to LLM-generated general code,
 085 LLM-generated DL code exhibits a higher frequency of *deviation from the prompt* issues and a new
 086 issues category *arithmetic and logical errors*.

087 Finally, we demonstrate a potential usage where DL-Bench can be used to guide few-shot prompting.
 088 In this usage, DL-Bench, on average, can consistently improve represented LLMs by **4.2%** on
 089 DS-1000. DL-Bench’s data is available in our Kaggle repository¹. The evaluation code is also
 090 available in our GitHub repository².

092 2 RELATED WORKS

094 There are multiple benchmarks that contain code samples for data science tasks, such as JuICe Agashe
 095 et al. (2019), PandasEval and NumPyEval Zan et al. (2022), and JuPyT5 Chadel et al. (2022). None
 096 of them contains any test cases, so similarity metrics such as the BLEU score are used for evaluation
 097 of generated code. Unlike these benchmarks, DL-Bench contains multiple test cases for each entry,
 098 which enable better evaluation metrics such as pass@1 for generated code. Shin et al. Shin et al.
 099 (2023) explore the effectiveness of neural code generation by selecting ML/DL-specific samples from
 100 JuICeAgashe et al. (2019). However, similar to JuICe, they evaluate generated code using similarity
 101 metrics, which is not suitable for generated code evaluation. DL-Bench contains test cases that better
 102 evaluate the correctness of the generated code. Recently, MLE-bench Chan et al. (2024) contains ML
 103 engineering workflows in Kaggle competitions. Similarly, AICoderEval Xia et al. (2024) presents a
 104 broader ML workflow benchmark. These workflow-level benchmarks focus on complete solutions
 105 and do not provide evaluations of approaches that serve developers who need a specific function.

1¹<https://kaggle.com/datasets/b4b26b3d3ffe9930789d43da1377265a445add5023f87c9dc4bfcf4b50f93a62>

2²<https://anonymous.4open.science/r/DL-Bench-71ED/>

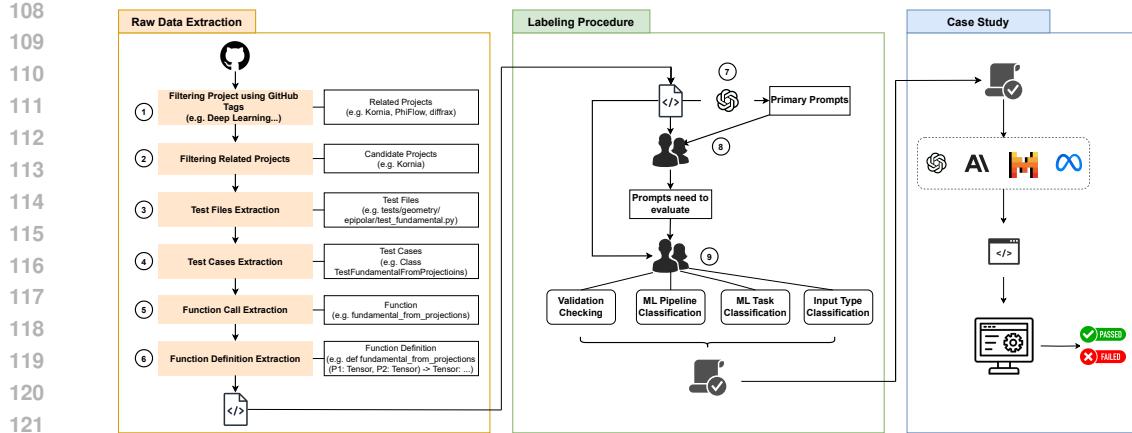


Figure 1: DL-Bench construction procedure

Create a prompt using the provided code and its docstring, incorporating the function or class name, inputs, and outputs.

1. Code: [CODE] 2. Docstring: [DOCSTRING]

Figure 2: Template of generating prompt from code

DS-1000 Lai et al. (2023) contains problems sourced from StackOverflow for localized data science tasks such as pre-/post-processing.

There have been multiple general code generation benchmarks such as HumanEval Chen et al. (2021), AiXBench Hao et al. (2022), MultiPL-E Cassano et al. (2022), MBPP Austin et al. (2021), Spider benchmark Yu et al. (2018), CoderEval Yu et al. (2024), APPS benchmark Hendrycks et al. (2021), and RepoEval Zhang et al. (2023). All the above-mentioned benchmarks focus on general programming.

DL-Bench differs from prior work in three key aspects: (1) it focuses on ML/DL tasks rather than general data science or ML engineering, (2) we categorize the data by ML phases, task types, and data types, and (3) our granularity is at the function level rather than at the script or workflow level. For example, one of our prompts instructs the generation of a `maximum_weight_matching` function, which performs a precise weight matching operation tailored to a DL-specific need. Moreover, unlike the other datasets, DL-Bench is based on GitHub repositories containing real code and tests.

3 BENCHMARK CONSTRUCTION

DL-Bench consists of 520 instances of AI and DL data points (filtered from over 2,000 raw data points). The data is curated from 30 GitHub repositories (selected from an initial pool of 160 related repositories). DL-Bench is released with a GNU license to ensure legal usage of code from these 30 repositories.

The construction process of DL-Bench consists of two main phases: The Raw Data Extraction and the Labeling Procedure. The raw data extraction involves six semi-automatic steps. Since DL-Bench is designed to have diverse and realistic code samples, the first step ① is to construct DL-Bench from code crawled from highly rated GitHub repositories (i.e., with the most stars), updated after the training cutoff of GPT-4o to mitigate data leakage, filtered using 30 DL-related terms such as “neural-networks”, “pytorch”, “computer-vision”. We then manually select (step ②) 160 high quality candidate DL projects (i.e., involve the integration of DL and AI-related frameworks, comprehensive test cases, clear and well-written docstrings, and detailed contribution guidelines). We then employed a bespoke utility to extract the test files and then test cases from each repository (step ③ and ④). By performing static analysis, we were able to track and collect all of the functions under test in step ⑤ to form the raw data that is the base of DL-Bench.

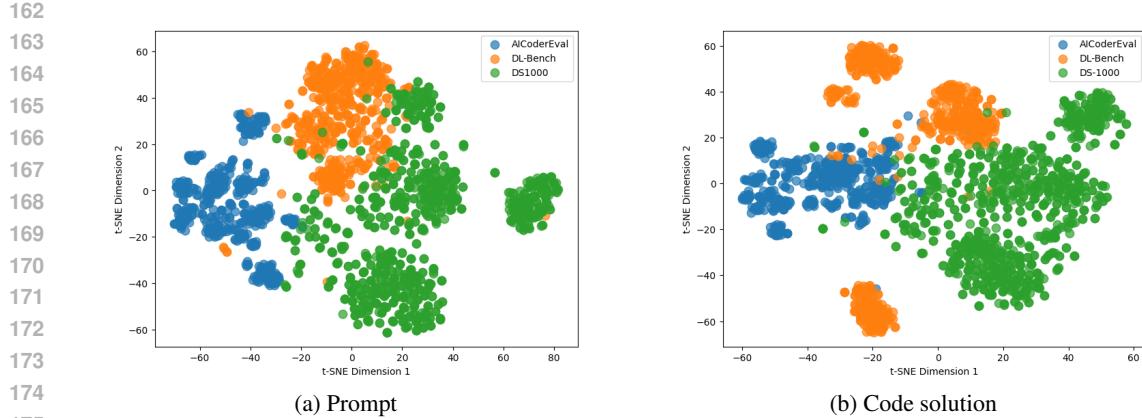


Figure 3: Prompt and code solution embeddings projection for DL-Bench, DS-1000, and AICoderEval

Once the raw data is extracted, the labeling procedure starts. To speed up the task of constructing the prompt for each code sample, we utilize LLM (i.e., GPT-4o) as a code-explanation tool Nam et al. (2024) to generate the first prompt candidate for each function under test (step ⑦). Four co-authors were then tasked with manually filtering (step ⑧) each entry to ensure that each function is highly relevant (i.e., contributes to a DL task such as image recognition, utilizes at least one recognized DL framework, and implements a relatively advanced and sophisticated algorithm). Finally, we conduct a manual labeling process involving four co-authors (step ⑨) to refine the prompt and label each code sample with the appropriate category from our three chosen types of categories: DL pipeline phases, ML task types, and input types. Due to space limitations, a more detailed description of each step is included in the appendix.

4 QUANTITATIVE ANALYSIS

To differentiate DL-Bench from prior benchmarks and demonstrate its potential, we perform a quantitative comparison between DL-Bench and its related benchmarks (DS-1000 and AICoderEval). We first analyze the data in each benchmark to show that DL-Bench contains novel and challenging DL-specific problems that require more complex solutions. Then we empirically show that DL-Bench is more challenging to solve than DS-1000 by comparing the performance of representative LLMs.

4.1 DL-BENCH CONTAINS DISTINCTIVE AND MORE CHALLENGING PROBLEMS AND SOLUTIONS WHEN COMPARED TO DS-1000 AND AICODER EVAL.

In this section, we evaluate how DL-Bench diverges from its closest data-science and ML benchmarks, DS-1000 and AICoderEval. First, we contrast the semantic spaces of their input prompts and code solutions by comparing embedding distributions. Second, we gauge each benchmark’s DL orientation by tracking the prevalence of DL-specific tokens in the reference code. Finally, we measure code complexity to provide a holistic view of DL-Bench’s problems relative difficulty.

Semantic Comparison: To compare the semantic prompt space, we embed each natural-language prompt with the `all-MiniLM-L6-v2` sentence-transformer Li et al. (2020). The average cosine similarity values between DL-Bench and related benchmarks are relatively low (**0.188** for DS-1000 and **0.184** for AICoderEval). Such notable semantic divergence in DL-Bench’s input prompts from related benchmarks indicates that DL-Bench covers distinct domains or task formulations. Additionally, when projecting the embeddings into two dimensions using t-SNE Van der Maaten & Hinton (2008) (Figure 3a), the visualization reveals separable clusters corresponding to DL-Bench and DS-1000. This distinct clustering further supports the semantic uniqueness of DL-Bench and highlights its complementary role in benchmark diversity.

To demonstrate the distinctiveness of DL-Bench’s solutions, we compare the semantic representation of its ground-truth code with that of DS-1000 and AICoderEval. To this end, we use `CodeBERT` Feng et al. (2020) to generate code embeddings for each reference implementation, and apply cosine similarity computation. DL-Bench problems require code solutions that are semantically different from DS-1000 and AICoderEval, with the average cosine similarity of **0.538** and **0.638** respectively. This indicates each benchmark covers a distinct set of tasks and requires different solution patterns. Figure 3b visualizes these differences by applying t-SNE to the ground-truth code embedding space.

216 Table 1: Pass@1 (%) scores for various SOTA LLMs on DS-1000 and DL-Bench.
217

Benchmark	O3-Mini	DeepSeek-V3	GPT-4o	Claude 3.5 Sonnet	Llama 3.1 70B	Mixtral 8*22B	QwenCoder	Avg.
DL-Bench	35.1	30.5	30.2	30.5	26.7	23.9	22.8	28.5
DS-1000	61.0	61.7	51.1	61.9	40.9	39.3	57.3	53.3

218
219
220
221
222 The projection reveals separated clusters for DL-Bench, DS-1000, and AICoderEval, providing
223 further evidence that DL-Bench offers complementary coverage and contributes novel content to
224 existing DL/ML code generation benchmarks.

225 **DL-relevance Analysis:** To measure DL-Bench’s DL/ML relevancy, we compute a domain-relevance
226 metric based on the DL/ML tokens ratio in the reference code. Averaged across instances, DL-Bench
227 attains a ratio of **0.785**, far exceeding DS-1000 (0.131) and AICoderEval (0.437). Put differently,
228 more than three-quarters of the lexical footprint in DL-Bench code is devoted to DL/ML concepts,
229 whereas only one-eighth in DS-1000 and less than half in AICoderEval references such terms.

230 **Solution Complexity:** To gauge the relative complexity of DL-Bench’s problems, we compare three
231 structural metrics: lines of code (LOC), cyclomatic complexity, and cognitive complexity (extracted
232 with *radon* Lacchia (2025)). On average, solutions in DL-Bench span **14.8 LOC**, nearly double
233 AICoderEval (8.5) and more than quadruple DS-1000 (3.6). Cognitive complexity follows a similar
234 pattern (**4.26** vs. 0.31 and 0.008), underscoring more complex nested structures and longer call chains
in DL-Bench.

235 **Finding 1:** DL-Bench’s problems focus on DL-specific domain and occupy a distinct semantic
236 space. Furthermore, DL-Bench contains difficult problems that require significantly more complex
237 code solutions that pose significant challenges to advanced LLMs.

238 4.2 PERFORMANCES OF SOTA LLMs ON DL-BENCH AND DS-1000

239 This analysis investigates how the existing ML code generation benchmark (DS-1000) and DL-Bench
240 evaluate seven representative LLMs covering a spectrum of parameter scales, licensing regimes, and
241 training specializations. Since AICoderEval has not been published and does not provide sufficient
242 and reliable evaluation scripts, we have decided to exclude it from this evaluation. A commonly
243 used pass@k Lyu et al. (2024), which measures the likelihood that at least one of the k-generated
244 solutions passes all test cases, is used in this evaluation. To minimize non-determinism and improve
245 reproducibility, we set the temperature to zero for all LLMs Bommasani et al. (2021). We also
246 run the experiment on DL-Bench five times, and the standard deviation is small between 0.7% and
247 1.8%, indicating that the zero-temperature induces more stable performance for comparison. We
248 intentionally avoided using specialized prompt strategies, opting instead for vanilla prompts to focus
249 on the model’s baseline performance. However, the use of advanced prompt engineering strategies
250 could yield different results. In a later section, we demonstrate a potential usage of DL-Bench as a
251 guided few-shot dataset. Table 1 shows the pass@1 of SOTA LLMs on DL-Bench and DS-1000.
252 Our evaluation shows that even the most advanced model, such as O3-Mini, struggles with ML/DL-
253 specific code generation. Specifically, O3-Mini achieves 61.0% pass@1 in DS-1000 but only 35.1%
254 pass@1 on DL-Bench. Similarly, all other tested LLMs get much lower pass@1 scores in DL-
255 Bench than DS-1000. We also compute pass@3 and pass@5 of the seven LLMs on DL-Bench
256 (complete table is provided in the Appendix). O3-Mini benefits the most when having additional
257 candidates; however, its performance on DL-Bench is still low at 40.2% pass@5 rate. The overall weak
258 performance of these models highlights the ongoing challenges in generating reliable, executable
259 ML/DL-specific code, supporting the need for deeper analysis to identify problematic areas that
260 DL-Bench can provide.

261 Our separability and ranking agreement analysis between DL-Bench and DS-1000 yielded a huge
262 (more than 2.0) Cohen’s-d effect size of **3.13** and a large (more than 1.0) Fisher’s ratio of **4.9**, confirming
263 that DL-Bench is markedly more challenging with significantly lower and distinct distribution of
264 pass@1 scores. However, the average Spearman correlation of **0.50** ($p = 0.25$) shows that the ranking
265 of models is moderately consistent with DS-1000. This suggests that DL-Bench presents harder
266 problems and contains additional aspects that can capture slightly different relative performance
267 among LLMs.

268 To analyze the effect of data leakage, we experiment with “live versions” of DL-Bench. Table 2
269 shows the SOTA LLMs’ performance on DL-Bench with different cutoff dates. As the recency of
data increases, the models’ performance declines. This result indicates that more recent data is less

270
271
Table 2: Pass@1 (%) scores for various SOTA LLMs on Live DL-Bench

272 Model	273 Overall	274 After Oct 2023	275 After Jan 2024	276 After May 2024	277 After Sep 2024
Claude 3.5 Sonnet	30.5	30.4	30.0	28.3	27.6
DeepSeek V3	30.5	31.4	29.6	27.3	27.5
GPT-4o	30.2	31.4	29.5	26.3	25.7
LLaMA 3.1 70B	26.7	27.8	27.5	26.1	25.0
Mistral 8×22B	23.9	24.4	23.8	22.6	23.1
O3-mini	35.1	35.8	32.8	29.6	30.5
Qwen Coder 2.5	22.8	23.6	22.7	23.6	24.2

279
Table 3: Pass@1 (%) scores on DL-Bench across stages, ML/DL tasks, and input data types
280

281 Category	282 O3-Mini	283 DeepSeek-V3	284 GPT-4o	285 Claude 3.5 Sonnet	286 Llama 3.1 70B	287 Mixtral 8×22B	288 QwenCoder	289 Avg.
290 Stages in pipeline								
291 Pre/Post Processing	39.4	33.9	34.5	33.2	30.2	27.3	24.6	31.9
292 Model Construction	30.4	26.7	23.9	24.4	19.9	16.8	14.2	22.3
293 Training	31.2	28.4	30.4	26.2	28.0	26.6	27.4	28.3
294 Inference	38.4	26.4	28.9	27.1	26.1	26.9	23.4	28.1
295 Evaluation & Metrics	35.6	28.6	25.4	31.2	24.7	23.9	23.8	27.6
296 ML tasks								
297 Classification	35.9	25.7	27.6	28.6	23.5	29.0	23.1	27.6
298 Regression	40.0	20.8	26.5	26.9	11.8	20.9	12.8	22.8
299 Object Detection	29.8	21.2	27.7	20.2	10.8	9.7	9.4	18.4
300 Image Segmentation	26.3	27.1	13.8	17.0	19.2	14.2	21.4	19.8
301 Time Series Prediction	38.8	19.3	35.4	27.5	19.3	19.3	19.3	25.5
302 Recommendation	53.1	34.4	45.2	56.9	33.4	45.7	39.4	44.1
303 General	35.7	33.0	31.4	29.9	31.0	26.8	22.8	30.1
304 Input data types								
305 Image	33.5	30.1	27.6	25.9	21.8	18.7	16.8	24.9
306 Text	51.8	27.6	39.1	43.7	33.7	43.7	27.6	38.1
307 Structured Array	36.9	28.3	27.3	28.5	24.9	28.5	21.2	27.9
308 Others	34.5	30.9	33.6	30.9	32.0	28.6	28.9	31.3

296 likely to be leaked and pose greater challenges for LLMs. To mitigate the effect of data leakage, we
297 plan to add more “live versions” of DL-Bench in the future.

298 **Finding 2:** Our evaluation indicates that current SOTA LLMs struggle to generate correct, executable
299 code for ML/DL tasks with an average pass@1 score of **28.5%** on DL-Bench. Although
300 O3-Mini is the strongest among the tested models, it still falls short of meeting practical standards
301 with a pass@1 score of only **35.1%**. Empirically, DL-Bench presents more challenging problems
302 and contains different aspects that captures a slightly different ranking among LLMs.

304 5 QUALITATIVE ANALYSIS

306 This section provides a deeper analysis of which kinds of DL-specific code are harder to generate,
307 and the common issues that generated DL-specific code has.

308 5.1 WHICH KINDS OF DL-SPECIFIC CODE POSE A GREATER CHALLENGE FOR SOTA LLMs?

309 We analyze the performance differences among categorizations that DL-Bench provides. Table 3
310 presents the pass@1 scores that each LLM achieves for generated code in each categorization that
311 DL-Bench provides: stages in DL/ML pipeline, ML tasks, and input data types. Among all LLMs,
312 the most advanced LLM, O3-Mini, consistently outperforms others in all categorizations. However,
313 in object detection and recommendation, DeepSeek-V3 and Claude 3.5 perform better.

314 **Stages in pipeline:** Among stages in the DL/ML pipeline, *pre/post processing* generated code has the
315 highest average pass@1 score of **31.9%**. Code in these stages varies significantly because it prepares
316 and cleans the input and formats output data for various models. This makes samples of this type the
317 most available in training data and could explain the higher pass@1 scores. On the other hand, LLMs
318 struggle to generate code for the *model construction* stage, with the lowest average pass@1 score of
319 **22.3%**. This is because the code for this stage is more complex, often longer, and project-specific.

320 **Finding 3:** LLMs perform best (average pass@1 score of 31.9%) in pre/post processing stages
321 and worst (average pass@1 score of 22.3%) in model construction. These differences could be due
322 to the high availability of training data for pre/post processing stages, and the more complex and
323 project-specific nature of code in model construction,

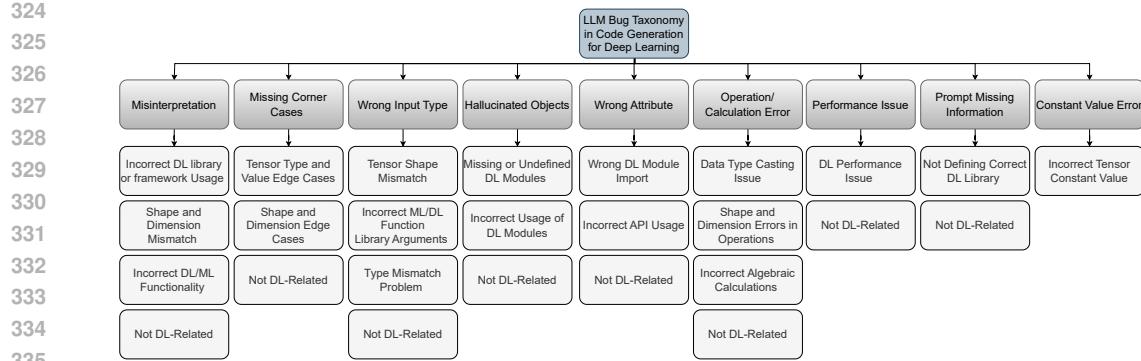


Figure 4: Taxonomy of bugs in DL generated code. (Only categories with DL-related subcategories).

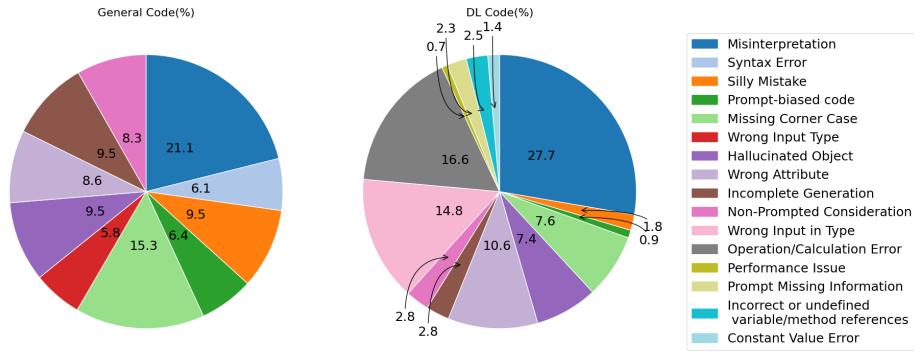


Figure 5: Distribution of bugs in general code vs. DL code generated by LLM

ML tasks: Table 3 presents a significant disparity in the pass@1 score of generated code across ML tasks. Notably, scores for the *recommendation* task are the highest (44.1% average), with the best score of 56.9% for Claude 3.5 Sonnet. On the other end of the scale, *object detection* and *image segmentation* tasks' scores are the lowest (averaged 18.4% and 19.8% respectively). These results indicate that each ML task type has its characteristics that LLMs can or cannot yet capture. Specifically, image processing code for object detection and image segmentation remains challenging.

Finding 4: Different ML/DL tasks vary in complexity, affecting LLMs' code generation abilities with varying pass@1 scores averaged from 44.1% to 18.4%. Each LLM can have its strengths and weaknesses when generating code for different ML tasks.

Input data types: Across different types of input, the result in Table 3 indicates a more consistent pass@1 of all LLMs, except for textual data, where LLMs exhibit better performance (averaged 38.1%). We assume that most textual input data types are tokenized and converted before being processed in the DL model, which makes functions that deal directly with textual input data types quite standard and easier to generate. On the other hand, performance for image-related tasks perform the worst with averaged score of 24.9%. This can be attributed to the inherent complexity and lack of consistent structure in image data, such as varying shapes, resolutions, and channel configurations (e.g., grayscale vs. RGB).

Finding 5: Among input data types, image data with more complex structures is the hardest to generate code for, with the lowest average pass@1 score of 24.9%. In contrast, textual data tasks achieved higher performance (average 38.1%), likely due to more deterministic coding in the pre-processing stages.

5.2 WHAT ARE THE COMMON BUGS IN GENERATED DL-SPECIFIC CODE?

To investigate this question, we build a taxonomy of common bug patterns and issues that arise in DL code generated by GPT-4o (the best model at the time of analysis). This taxonomy is an expansion of Tambon et.al Tambon et al. (2024)'s bug taxonomy for LLM-generated regular code. Following

378 Table 4: Distribution of stages in DL/ML pipeline for DS-1000 (predicted) and DL-Bench (actual).
379

380 Stage in pipeline	381 Pre/Post Processing	382 Model Construction	383 Training	384 Inference	385 Evaluation
386 DL-Bench (actual)	387 210(40.3%)	388 119(22.8%)	389 75(14.4%)	390 59(11.3%)	391 57(10.9%)
392 DS-1000 (predicted)	393 932(93.2%)	394 35(3.5%)	395 14(1.4%)	396 14(1.4%)	397 5(0.5%)

384
385 the same procedure as our labeling process, three authors manually investigate all GPT-4o failures
386 and categorize them following Tambon et.al’s taxonomy. At the same time, the annotators identify
387 the DL-specific sub-categories for each failure. The result is the taxonomy presented in Fig 4. The
388 appendix gives a detailed explanation of each bug type and sub-category.

389 **Differences in failures of the DL and general generated code:** Tambon et. alTambon et al.
390 (2024) analyzed failures when CodeGen models generate code for the general tasks. Figures 5
391 show the distributions of the bug types when generating general code vs DL code. On the one
392 hand, *misinterpretation* (purple) is a common bug when generating both general code and DL code;
393 however, due to more complex logic and arithmetic requirements, LLMs more often make this
394 mistake when generating DL code. On the other hand, since GPT4o is much more capable compared
395 to CodeGen models used by prior work, errors such as *incomplete generation* (green), *silly mistake*
396 (dark gray), and *syntax error* (yellow) occur at a much lower rate.

397 Additionally, we introduce several new categories of bugs that only arise in DL code generation.
398 Firstly, *errors in arithmetic and logical operations*(light blue) occur when incorrect calculations or
399 flawed logical code are generated. Secondly, *performance*(light brown) issues involve inefficiently
400 generated code with slow execution times, excessive memory consumption, or suboptimal utilization
401 of resources. Lastly, *prompt missing information*(light purple) occurs when the prompts are missing
402 details to fully address the problem at hand, resulting in incomplete or partially implemented solutions.
403 These new categories identify important challenges that are unique to DL code generation.

404 **Finding 6:** *Misinterpretation* is a common issue in both generated general code and DL code;
405 however, due to more complex logic and arithmetic requirements, LLMs are more likely to make
406 this mistake when generating DL code. *Errors in arithmetic and logical operations, performance,*
407 and *prompt missing information* emerged as new issues that are specific to DL code generation.

408 **Bugs in human-written compared to LLM-generated DL code:** Prior study Islam et al. (2019)
409 has identified the most common types of bugs in human-written DL code (including logic errors,
410 API misuse, and data-related issues), with API misuse and data flow bugs being the most prevalent
411 issues in TensorFlow and Pytorch, respectively. Although API misuse remains a frequent issue in DL
412 generated code, data structural problems, such as tensor mismatches and dimensional errors, occur
413 more frequently. Human-written and LLM-generated DL code both often contain logic errors. This
414 similarity may stem from the fact that LLMs are trained on human-written code, thereby inheriting
415 logical structures and concepts from human programmers.

416 **Finding 7:** Due to LLMs’ weaknesses, LLM-generated DL code contains more data structural
417 problems, such as tensor and dimension mismatches. However, due to reliance on human-generated
418 training data, LLM-generated DL code shared bug patterns such as logic and API misuse errors.

419 6 DISCUSSION: DL-BENCH IN PRACTICE

420 One usage of the categorized data in DL-Bench is to train classifiers that can provide DL-specific
421 categorization for other unlabeled datasets(e.g., DS-1000) to improve their quality. To test this
422 potential usage, we train a BERT classifier to predict the *stage-in-pipeline* for each input prompt.
423 The classifier uses the BERT tokenizer, BERT encoder, and a linear classifier. The optimization is
424 performed with AdamW ($\eta = 2 \times 10^{-5}$, $B = 8$, $E = 10$), and five-fold cross-validation confirms
425 stable generalization (average weighted $F_1 = 0.56 \pm 0.06$).

426 To verify the accuracy, we conducted manual labeling of 100 instances, which shows our classifier has
427 a high accuracy of $95.0 \pm 5.3\%$ (with 99% confidence). This indicates a high level of generalization
428 of DL-Bench categorization when applied to other DL-related benchmarks. Table 4 presents the
429 predicted distribution for DS-1000 as well as the actual distribution for DL-Bench. The distribution
430 differences further distinguish DL-Bench and DS-1000. Where DS-1000 mainly focuses on pre/post-
431 processing, DL-Bench contains data from all stages of the DL/ML pipeline.

432 Table 5: Pass@1 rates for improved prompting techniques with DL-Bench’s insight.
433

434 Dataset	435 Prompting Technique	436 O3-Mini	437 DeepSeek-V3	438 QwenCoder	439 GPT-4o	440 Claude 3.5	441 Sonnet	442 Llama 3.1 70b	443 Mixtral 8*22B	444 Avg.
435 DS-1000	Zero-Shot	61.0	61.7	57.3	51.1	61.9	40.9	39.3	53.3	
	Three-Shot	50.2	62.6	57.5	54.2	64.8	51.4	42.0	54.6	
	Stage-Predicted Three-Shot	54.3	64.1	58.9	57.7	66.4	54.0	47.6	57.5	
437 DL-Bench	Zero-Shot	35.1	30.5	30.2	30.5	26.7	23.9	22.8	28.5	
	Three-Shot	37.1	32.3	24.5	33.4	32.3	27.8	27.2	30.7	
	Stage-Predicted Three-Shot	38.2	34.1	26.3	35.2	33.6	29.6	28.1	32.2	

439
440 **Finding 8:** DL-Bench could complement other DL-related benchmarks by providing training data
441 for categorization classification. Such a stage classifier can have a high accuracy ($95.0 \pm 5.3\%$ at
442 99% confidence when extending DS-1000).

443 Few-shot prompting emerged as a way to improve vanilla zero-shot prompting. However, guided
444 shots from the same code category could potentially provide even more uplift in performance. To
445 gauge the potential, we perform a preliminary experiment with three-shot prompting where the shots
446 are random reference samples, or samples in the same DL stage as the question. Since the stage the
447 prompt belongs to is not available, we use the previously described classifier to predict the stage.
448 Table 5 shows the pass@1 rate for SOTA LLMs using the three prompting approaches on DL-Bench
449 and DS-1000. For three-shot prompting, we perform the experiment twice and present the average
450 pass@1 rates. Zero-shot, without any examples, performs the worst with an average pass@1 rate of
451 53.3% on DS-1000 and 28.5% on DL-Bench. By including three examples, three-shot prompting
452 has a better average pass@1 rate of 54.6% on DS-1000 and 30.7% on DL-Bench. When providing
453 shots for each prompt, we made sure that the shots do not overlap with the prompt. When each
454 query is paired with snippets that belong to the same predicted stage of the DL pipeline, the pass@1
455 rate improves significantly. Averaged across models, stage-predicted three-shot prompting yields a
456 **4.2%** and **3.7%** boost over zero-shot in DS-1000 and DL-Bench. This indicates the value of having
457 lower granularity categorization in a dataset, which can enable more sophisticated prompting and
458 fine-tuning techniques, which in turn provide uplift in LLMs’ performance.

459 **Finding 9:** Classifiers built using DL-Bench categorization data can provide targeted shots in few-
460 shot prompting to improve code generation performance. Overall, stage-predicted three-shot yields
461 up to **4.2%** and **3.7%** boost over zero-shot techniques in DS-1000 and DL-Bench respectively.

462 7 LIMITATIONS AND THREATS TO VALIDITY

463 Even with the temperature parameter set to zero, our experiments still utilized non-deterministic
464 models. While a lower temperature reduces randomness, it does not fully eliminate variability in the
465 models’ outputs Ouyang et al. (2023); Song et al. (2024). Also, even if we used the commonly used
466 pass@k metric to evaluate model performance, prior research Shiri Harzevili et al. (2024) shows that
467 passing all test cases does not guarantee complete code correctness (e.g., in edge cases).

468 We sourced data from various repositories related to DL and AI, but did not include all possible
469 repositories or tags. Expanding the dataset could capture a wider range of use cases and code patterns.
470 Data labeling was performed by four annotators, achieving strong inter-rater reliability. Despite this,
471 some labeling conflicts persisted and were addressed through discussions to reach a consensus.

472 8 CONCLUSION

473 In this paper, we introduce DL-Bench, a benchmark for deep learning tasks related to code generation.
474 The dataset comprises 520 instances, gathered from the most starred and recently updated GitHub
475 repositories. We categorize the data based on the pipeline stage, ML task, and input data type.
476 Additionally, our quantitative analysis of the performance of four state-of-the-art LLMs on DL-Bench
477 reveals that DL code generation is challenging and DL-Bench can provide more insight to help
478 improve the generation process. Using our taxonomy of issues found in LLM-generated DL code,
479 the qualitative analysis reveals the distinct challenges that LLMs face when generating DL code
480 compared to general code as well as the similarities and differences between human-written and
481 LLM-generated DL code. Our discussion shows potential usages of DL-Bench’s categorization data
482 outside of benchmarking usages. DL-Bench’s data is available in our Kaggle repository.

483
484
485

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
489 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
490 *arXiv preprint arXiv:2303.08774*, 2023.

491 Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer. Juice: A large scale distantly supervised
492 dataset for open domain context-based code generation. *arXiv preprint arXiv:1910.02216*, 2019.
493

494 Anders Arpteg, Björn Brinne, Luka Crnkovic-Friis, and Jan Bosch. Software engineering challenges
495 of deep learning. In *2018 44th euromicro conference on software engineering and advanced*
496 *applications (SEAA)*, pp. 50–59. IEEE, 2018.

497 Maram Assi, Safwat Hassan, and Ying Zou. Unraveling code clone dynamics in deep learning
498 frameworks. *arXiv preprint arXiv:2404.17046*, 2024.

499

500 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
501 Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program
502 synthesis with large language models. *ArXiv*, abs/2108.07732, 2021. URL <https://api.semanticscholar.org/CorpusID:237142385>.

503

504 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
505 learning to align and translate. *arXiv preprint arXiv:1409.0473*, 2014.

506

507 Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and
508 accuracy of object detection. *arXiv preprint arXiv:2004.10934*, 2020.

509

510 Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
511 Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities
512 and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.

513

514 Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
515 Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e:
516 A scalable and extensible approach to benchmarking neural code generation. *arXiv preprint*
517 *arXiv:2208.08227*, 2022.

518

519 Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
520 Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning
521 agents on machine learning engineering. *arXiv preprint arXiv:2410.07095*, 2024.

522

523 Shubham Chandel, Colin B Clement, Guillermo Serrato, and Neel Sundaresan. Training and
524 evaluating a jupyter notebook data science assistant. *arXiv preprint arXiv:2201.12901*, 2022.

525

526 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé, Jared Kaplan, Harrison
527 Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
528 Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick
529 Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
530 Philippe Tillet, Felipe Petroski Such, David W. Cummings, Matthias Plappert, Fotios Chantzis,
531 Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin, Suchir
532 Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
533 Alec Radford, Matthew M. Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
534 Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
535 large language models trained on code. *ArXiv*, abs/2107.03374, 2021. URL <https://api.semanticscholar.org/CorpusID:235755472>.

536

537 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the*
538 *22nd acm sigkdd international conference on knowledge discovery and data mining*, pp. 785–794,
539 2016.

540

541 Ziyang Chen and Stylios Moscholios. Using prompts to guide large language models in imitating a
542 real person’s language style. *arXiv preprint arXiv:2410.03848*, 2024.

540 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 541 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 542 *the North American chapter of the association for computational linguistics: human language*
 543 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

544
 545 P Kingma Diederik. Adam: A method for stochastic optimization. (*No Title*), 2014.

546
 547 Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
 548 Qin, Ting Liu, Dixin Jiang, et al. Codebert: A pre-trained model for programming and natural
 549 languages. *arXiv preprint arXiv:2002.08155*, 2020.

550 John Cristian Borges Gamboa. Deep learning for time-series analysis. *arXiv preprint*
 551 *arXiv:1701.01887*, 2017.

552
 553 Yiyang Hao, Ge Li, Yongqiang Liu, Xiaowei Miao, He Zong, Siyuan Jiang, Yang Liu, and He Wei.
 554 Aixbench: A code generation benchmark dataset. *arXiv preprint arXiv:2206.13179*, 2022.

555 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 556 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 557 pp. 770–778, 2016.

558 Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
 559 Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
 560 with apps. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and*
 561 *Benchmarks Track (Round 2)*, 2021.

562
 563 Nur Farhana Hordri, Siti Sophiayati Yuhaniz, and Siti Mariyam Shamsuddin. Deep learning and its
 564 applications: A review. In *Conference on Postgraduate Annual Research on Informatics Seminar*,
 565 pp. 1–5, 2016.

566 Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
 567 Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
 568 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 1314–1324, 2019.

569
 570 Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. A comprehensive study on deep
 571 learning bug characteristics. In *Proceedings of the 2019 27th ACM joint meeting on european*
 572 *software engineering conference and symposium on the foundations of software engineering*, pp.
 573 510–520, 2019.

574 Andreas Kamlaris and Francesc X Prenafeta-Boldú. Deep learning in agriculture: A survey. *Com-*
 575 *puters and electronics in agriculture*, 147:70–90, 2018.

576
 577 Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid networks.
 578 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 579 6399–6408, 2019.

580 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
 581 tional neural networks. *Advances in neural information processing systems*, 25, 2012.

582
 583 Michele Lacchia. *Introduction to Code Metrics — Radon Documentation*. Radon Project / ReadThe-
 584 Docs, 2025. URL <https://radon.readthedocs.io/en/latest/intro.html>. Ac-
 585 cessed: 2025-09-24.

586
 587 Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
 588 Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science
 589 code generation. In *International Conference on Machine Learning*, pp. 18319–18345. PMLR,
 590 2023.

591 Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence
 592 embeddings from pre-trained language models. *arXiv preprint arXiv:2011.05864*, 2020.

593
 594 Yang Liu and Meng Zhang. Neural network methods for natural language processing, 2018.

594 Zhi-Cun Lyu, Xin-Ye Li, Zheng Xie, and Ming Li. Top pass: Improve code generation by pass@
 595 k-maximized code ranking. *arXiv preprint arXiv:2408.05715*, 2024.

596

597 Matej Madeja, Jaroslav Porub  n, Michaela Ba  kov  , Mat   Sul  , J  n Juh  r, Sergej Chodarev, and
 598 Filip Gurb  l  . Automating test case identification in java open source projects on github. *arXiv*
 599 *preprint arXiv:2102.11678*, 2021.

600 Nikoleta Manakitsa, George S. Maraslidis, Lazaros Moysis, and George F. Fragulis. A review of
 601 machine learning and deep learning for object detection, semantic segmentation, and human action
 602 recognition in machine and robotic vision. *Technologies*, 12(2), 2024. ISSN 2227-7080. doi:
 603 10.3390/technologies12020015. URL <https://www.mdpi.com/2227-7080/12/2/15>.

604 Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers. Using
 605 an llm to help with code understanding. In *Proceedings of the IEEE/ACM 46th International*
 606 *Conference on Software Engineering*, pp. 1–13, 2024.

607

608 Shuyin Ouyang, Jie M Zhang, Mark Harman, and Meng Wang. Llm is like a box of chocolates: the
 609 non-determinism of chatgpt in code generation. *arXiv preprint arXiv:2308.02828*, 2023.

610 Soya Park, April Yi Wang, Ban Kawas, Q Vera Liao, David Piorkowski, and Marina Danilevsky.
 611 Facilitating knowledge sharing from domain experts to data scientists for building nlp models.
 612 In *Proceedings of the 26th International Conference on Intelligent User Interfaces*, pp. 585–596,
 613 2021.

614

615 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 616 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 617 models from natural language supervision. In *International conference on machine learning*, pp.
 618 8748–8763. PmLR, 2021.

619 Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha.
 620 A systematic survey of prompt engineering in large language models: Techniques and applications.
 621 *arXiv preprint arXiv:2402.07927*, 2024.

622 Iqbal H Sarker. Machine learning: Algorithms, real-world applications and research directions. *SN*
 623 *computer science*, 2(3):160, 2021.

624

625 Jih   Shin, Moshi Wei, Junjie Wang, Lin Shi, and Song Wang. The good, the bad, and the missing:
 626 Neural code generation for machine learning tasks. *ACM Transactions on Software Engineering*
 627 *and Methodology*, 33(2):1–24, 2023.

628 Nima Shiri Harzevili, Mohammad Mahdi Mohajer, Moshi Wei, Hung Viet Pham, and Song Wang.
 629 History-driven fuzzing for deep learning libraries. *ACM Transactions on Software Engineering*
 630 *and Methodology*, 2024.

631

632 Disha Srivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt generation for large
 633 language models of code. In *International Conference on Machine Learning*, pp. 31693–31715.
 634 PMLR, 2023.

635 Sundaravelpandian Singaravel, Johan Suykens, Hans Janssen, and Philipp Geyer. Explainable deep
 636 convolutional learning for intuitive model development by non-machine learning domain experts.
 637 *Design Science*, 6:e23, 2020. doi: 10.1017/dsj.2020.22.

638 Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The good, the bad, and the greedy:
 639 Evaluation of llms should not ignore non-determinism. *arXiv preprint arXiv:2407.10457*, 2024.

640

641 Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
 642 *Advances in neural information processing systems*, 27, 2014.

643

644 Florian Tambon, Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh, Michel C Des-
 645 marais, and Giuliano Antoniol. Bugs in large language models generated code. *arXiv preprint*
 646 *arXiv:2403.08937*, 2024.

647 Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
 648 In *International conference on machine learning*, pp. 6105–6114. PMLR, 2019.

648 Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien Nguyen. Does bleu score work for
 649 code migration? In *2019 IEEE/ACM 27th International Conference on Program Comprehension*
 650 (*ICPC*), pp. 165–176. IEEE, 2019.

651

652 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 653 *learning research*, 9(11), 2008.

654

655 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 656 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 657 *systems*, 30, 2017.

658

659 Prasoon Kumar Vinodkumar, Dogus Karabulut, Egils Avots, Cagri Ozcinar, and Gholamreza
 660 Anbarjafari. A survey on deep learning based segmentation, detection and classification for
 661 3d point clouds. *Entropy*, 25(4), 2023. ISSN 1099-4300. doi: 10.3390/e25040635. URL
 662 <https://www.mdpi.com/1099-4300/25/4/635>.

663

664 Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-trained
 665 encoder-decoder models for code understanding and generation. *arXiv preprint arXiv:2109.00859*,
 666 2021.

667

668 Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu. Time
 669 series data augmentation for deep learning: A survey. *arXiv preprint arXiv:2002.12478*, 2020.

670

671 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
 672 comprehensive survey on graph neural networks. *IEEE transactions on neural networks and*
 673 *learning systems*, 32(1):4–24, 2020.

674

675 Yinghui Xia, Yuyan Chen, Tianyu Shi, Jun Wang, and Jinsong Yang. Aicodereval: Improving ai
 676 domain code generation of large language models. *arXiv preprint arXiv:2406.04712*, 2024.

677

678 Rui Xie. Frontiers of deep learning: From novel application to real-world deployment. *arXiv preprint*
 679 *arXiv:2407.14386*, 2024.

680

681 Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang
 682 Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative pre-
 683 trained models. In *Proceedings of the 46th IEEE/ACM International Conference on Software*
 684 *Engineering*, pp. 1–12, 2024.

685

686 Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
 687 Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
 688 and cross-domain semantic parsing and text-to-sql task. *arXiv preprint arXiv:1809.08887*, 2018.

689

690 Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen,
 691 and Jian-Guang Lou. Cert: continual pre-training on sketches for library-oriented code generation.
 692 *arXiv preprint arXiv:2206.06888*, 2022.

693

694 Antonia Zapf, Stefanie Castell, Lars Morawietz, and André Karch. Measuring inter-rater reliability
 695 for nominal data—which coefficients and confidence intervals are appropriate? *BMC medical*
 696 *research methodology*, 16:1–10, 2016.

697

698 Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou,
 699 and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval and
 700 generation. *arXiv preprint arXiv:2303.12570*, 2023.

701

702 **Appendix**

703 Table of Contents:

704

- 705 • Appendix A: Related Works
- 706 • Appendix B: Dataset Statistics
- 707 • Appendix C: Detailed benchmark construction procedure
- 708 • Appendix D: Candidate Prompt Filtering Criteria
- 709 • Appendix E: Final Data Filtering and Validation Criteria
- 710 • Appendix F: Data Categories and Labels
- 711 • Appendix G: LLM Bug Types and DL-specific Subtypes
- 712 • Appendix H: Distribution of Failures in Generated DL Code
- 713 • Appendix I: More results

714

715 **A RELATED WORKS**

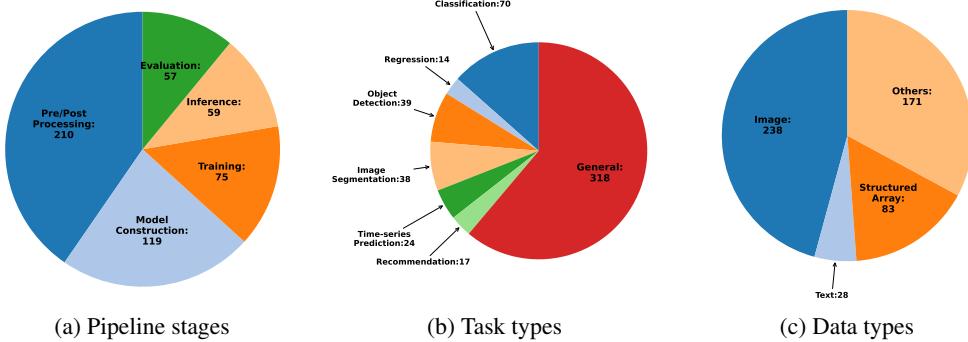
716 **Code Generation Benchmarks for Data Science and ML/DL:** Several benchmarks have been
 717 developed to evaluate code generation models in the context of data science and ML/DL tasks.
 718 JuICe Agashe et al. (2019), PandasEval and NumPyEval Zan et al. (2022), and JuPyT5 Chandel et al.
 719 (2022) provide datasets from Jupyter notebooks or data science libraries, with a focus on realistic
 720 usage scenarios. However, most of these benchmarks rely on similarity-based metrics such as BLEU
 721 for evaluation, due to the lack of accompanying test cases. In contrast, DL-Bench includes multiple
 722 assert-based test cases for each entry, enabling more reliable evaluation via metrics like pass@1.
 723 JuPyT5 introduces the DSP benchmark with 1119 pedagogically curated problems featuring mark-
 724 down context, assert-based unit tests, and implicit data dependencies, making it suitable for evaluating
 725 notebook-based code generation. Similarly, CERT provides PandasEval and NumPyEval for struc-
 726 tured, API-heavy data science tasks and shows performance gains by anonymizing user-defined
 727 elements. JuICe offers a large-scale dataset from Jupyter notebooks with manually curated test sets
 728 derived from nbgrader assignments, although its evaluation also depends on similarity metrics.
 729 Shin et al. Shin et al. (2023) focus specifically on ML/DL tasks using JuICe samples but still evaluate
 730 with similarity scores, which do not reliably indicate functional correctness. In contrast, DL-Bench
 731 offers task-level test cases for each function, allowing more precise evaluation of LLM performance
 732 in ML/DL scenarios.

733 DS-1000 Lai et al. (2023) collects 1000 data science problems from StackOverflow, primarily focusing
 734 on tasks like data preprocessing or transformation, with the support of test cases. However, the tasks
 735 are often limited to isolated code snippets rather than complete function-level implementations. MLE-
 736 Bench Chan et al. (2024) captures ML engineering workflows in the context of Kaggle competitions,
 737 focusing on end-to-end pipelines but lacking fine-grained test-based evaluation. AICoderEval Xia
 738 et al. (2024) further abstracts the evaluation to workflow-level code generation, treating setup and
 739 implementation as a black-box output, which can obscure the model’s capabilities at the component
 740 level.

741 **General Code Generation Benchmarks:** Benchmarks like HumanEval Chen et al. (2021),
 742 MBPP Austin et al. (2021), APPS Hendrycks et al. (2021), AiXBench Hao et al. (2022), MultiPL-
 743 E Cassano et al. (2022), Spider Yu et al. (2018), CoderEval Yu et al. (2024), and RepoEval Zhang et al.
 744 (2023) have been widely used to evaluate LLMs on general-purpose programming. These benchmarks
 745 span various tasks such as competitive programming, repository-level generation, multi-language
 746 support, and SQL query generation from natural language. However, they are primarily focused on
 747 general programming capabilities and do not capture the domain-specific challenges of ML/DL code.

748 **Distinctive Features of DL-Bench:** DL-Bench differs from prior work in several key ways. First,
 749 it focuses exclusively on ML and DL software development tasks, offering function-level prompts
 750 that reflect real needs in the ML pipeline. Second, it categorizes each function based on the ML
 751 pipeline stage (e.g., preprocessing, model training), task type (e.g., classification, regression), and
 752 input data type (e.g., image, text, tabular), offering a richer annotation scheme. Third, unlike most
 753 benchmarks, DL-Bench is sourced from real GitHub repositories, ensuring practical relevance, and
 754 each entry includes assert-based test cases, enabling robust and reproducible evaluation using metrics
 755 like pass@1.

756 Overall, DL-Bench complements existing benchmarks by providing a granular, test-driven, and
 757 ML/DL-focused dataset that enables more realistic evaluation of LLMs in domain-specific develop-
 758 ment scenarios.

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
B DATASET STATISTICS771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
Figure 6: Distribution of code samples in each category

DL-Bench consists of 520 instances of AI and DL data points (filtered from over 2,000 raw data points). The data is curated from 30 GitHub repositories (selected from an initial pool of 160 related repositories). To ensure an accurate evaluation of code generation techniques under test, each prompt instance in DL-Bench is accompanied by at least three test cases (six test cases on average). One of DL-Bench’s contributions is the categories that we assign to each data point. As mentioned in Section 3, each data point is assigned a label for which stage of the ML pipeline it belongs to, a label for which ML task it helps solve, and a label for the type of input data. This information enables users of our benchmark to perform an in-depth analysis of their proposed technique with respect to multiple ML-specific aspects. We demonstrate this in our empirical study presented in Section 4 later.

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
Write a Python function `draw_point2d` to set `[x, y]` coordinates in an image tensor (`grayscale` or `multi-channel`) to a given color, returning the `modified image`.

Figure 7: An example prompt for Pre/Post processing

800
801
802
803
804
805
806
807
808
809
Create the `__init__` method for the `FCNN` class initializes a fully connected neural network with `input/output units`, `activation functions`, and `hidden layer sizes`. If not provided, default `hidden_units` to `(32, 32)`.

Figure 8: An example prompt for Model Construction

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207

810
811
812
813
814
815
816
817

Create a Python function `classification_metrics` that takes `ground_truth` and `retrieved` dictionaries and returns per class precision, recall, and F1 scores. Class 1 is assigned to duplicate file pairs while class 0 is for non-duplicate file pairs.

Figure 10: An example of Classification Task.

Most of our data serve more than one ML task type, hence 318 (over 61%) instances are labeled as *General* as shown in Fig (b). For example, Fig 9 shows `to_image` function handles data type conversions and pre-processing to standardize image inputs, without performing any specific machine learning task. However, for the cases that serve a specific ML task, our dataset covers all ML tasks evenly with 14 to 70 instances each. Among these, the classification task has the most representative of 70 data points. For example, Fig 10 shows a classification task, calculating precision, recall, and F1 scores for both duplicate and non-duplicate file pairs to evaluate the performance of a classification model. On the other hand, The regression task is not as popular with only 14 data points. Image data is the most popular input data type with 238 instances (nearly 46%) as shown in Fig (c). In some cases where the input data to the function is missing or not the input to the model, we categorize them into the *Others* category which contains 171 instances. An example of such cases is presented in Fig 8, where the initialization method constructs a new neural network model, however, information on the input type of such networks is not available. Textual data has the least instances since most of the time, textual data is tokenized and presented as either a data array or general tensor.

832 B.1 SEMANTIC DIVERSITY ANALYSIS BETWEEN DL-BENCH AND DS-1000 AND 833 AICODEREVAL

834 We gathered tokens from influential DL and ML papers to capture the specialized terminology used
835 in this field. Key sources include foundational works like Attention Is All You Need Vaswani et al.
836 (2017), Deep Residual Learning for Image Recognition He et al. (2016), YOLOv4: Optimal Speed and
837 Accuracy of Object Detection Bochkovskiy et al. (2020), BERT: Pre-training of Deep Bidirectional
838 Transformers for Language Understanding Devlin et al. (2019), EfficientNet: Rethinking Model
839 Scaling for Convolutional Neural Networks Tan & Le (2019), Learning Transferable Visual Models
840 From Natural Language Supervision Radford et al. (2021), Neural Machine Translation by Jointly
841 Learning to Align and Translate Bahdanau et al. (2014), and Sequence to Sequence Learning with
842 Neural Networks Sutskever et al. (2014).

843 From these papers, we extracted common DL tokens from their GitHub repositories and source code,
844 focusing on terms frequently used in DL models and architectures. Examples include:

- 845 • **Architecture Terms:** `cnn`, `rnn`, `transformer`, `lstm`, `gru`, `autoencoder`, `resnet`,
846 `mobilenet`, `efficientnet`
- 847 • **Optimization:** `backpropagation`, `gradient_descent`, `adam`, `rmsprop`, `sgd`,
848 `momentum`, `learning_rate`
- 849 • **Components:** `dropout`, `batchnorm`, `layernorm`, `relu`, `softmax`, `attention`,
850 `dense_layer`, `conv2d`
- 851 • **Training:** `epoch`, `batch`, `overfitting`, `underfitting`, `weight_decay`,
852 `cross_entropy`, `loss`
- 853 • **Processing:** `tokenizer`, `embedding`, `feature map`, `convolution`, `padding`,
854 `pooling`, `strides`
- 855 • **Other Common Terms:** `activation`, `tensor`, `inference`, `regularization`,
856 `initialization`, `hyperparameter`, `weight_matrix`

858 The list of all terms is available in our repository.

859 To quantify the presence of these DL/ML-specific terms, we computed a DL-relevance ratio for
860 each instance in our benchmark datasets. Let d_i denote the description of instance i , and $T(d_i)$ its
861 preprocessed token set. The DL-relevance ratio r_i is defined as:

$$863 r_i = \frac{|\{t \in T(d_i) \mid t \text{ contains a DL/ML keyword}\}|}{|T(d_i)|}$$

864 This metric captures the proportion of DL/ML-related tokens in each textual description, providing a
 865 quantitative measure of the DL specificity of each benchmark. For example, a code snippet containing
 866 terms like `conv2d`, `batchnorm`, `softmax`, and `dropout` would have a higher relevance ratio
 867 than one primarily focused on generic algorithmic operations.
 868

869 C DETAILED BENCHMARK CONSTRUCTION PROCEDURE

870 C.1 RAW DATA EXTRACTION

872 This phase consists of six semi-automatic steps that crawl data from GitHub repositories to generate
 873 a list of function definitions and their test cases.

874 **Repository Selection:** We curated our data from the top 1000 starred DL-related GitHub repositories
 875 to include high-quality and widely used DL-related functions.

876 In step ①, we filtered GitHub projects with one of 30 DL-related tags such as “neural-networks”,
 877 “pytorch”, and “computer-vision” (we provided the complete list of tags in our repository). Specifically,
 878 we select the tags by collecting from DL and AI-related GitHub repositories and filtering the most
 879 relevant ones to get the final 30. In step ②, we select 160 most relevant projects for DL-Bench
 880 and retain only projects that: 1) are DL related (i.e., use DL libraries, or perform DL tasks like
 881 segmentation or detection), 2) have sufficient test cases (averaging at least three per function), and 3)
 882 include thorough documentation, such as source code docstrings or README files.

883 **Function Extraction:** One of the main design choices of DL-Bench is to include a set of reliable and
 884 robust test cases for each benchmark entry. This is because programming languages are different
 885 from natural languages. Specifically, generated code can fulfill all of the functional requirements but
 886 could have a low BLEU score when compared with the ground truth code Tran et al. (2019). This
 887 means that using text similarity metrics such as BLEU score as evaluation metrics is not the best
 888 method to evaluate code generation techniques. Instead, test cases (functional and non-functional)
 889 passing rate should be used to reliably access a new code generation approach.

890 In step ③, we crawled selected repositories for test files using standard test file name patterns such
 891 as `tests/test_file_name.py` Madeja et al. (2021). In step ④, for each test file, we extract test cases
 892 using common patterns in Python test suites, such as the `@pytest` decorator. Once we identified all
 893 test cases, in step ⑤, we performed call graph analysis to track and collect all functions under test
 894 (excluding third-party function calls). The definitions of each of those functions are then extracted in
 895 step ⑥ to form the bases for our ground-truth code samples.

896 C.2 LABELING PROCEDURE

897 The labeling procedure involves three semi-automatic steps to generate and refine a prompt and assign
 898 categorizations for each entry in our DL-Bench dataset. To determine the best procedure and criteria
 899 for our manual process, we perform a small trial run of the manual process on a small sample of the
 900 data points. In this trial run, we ask each reviewer to provide feedback on the labeling criteria so that
 901 when we start our full run we have the most comprehensive and accurate manual process possible.

902 **Prompt Generation:** In step ⑦, we utilize two sources of data to create the code generation prompts:
 903 1) the doc-strings provided by developers, which describe the functionality and parameters of the
 904 code, and 2) the function definitions themselves, which can be used to generate candidate prompts.
 905 Specifically, We take advantage of the function definitions to explain the code, and by combining
 906 them with their respective doc-strings (when available), we generate the initial candidate prompt by
 907 querying GPT-4o with the template as described in Fig. 2.

908 However, generated prompts require manual validation to ensure accuracy and relevance. This
 909 review process is essential to refine prompts and guarantee quality for subsequent use Shrivastava
 910 et al. (2023). We further refine prompts based on the following criteria: (1) contain clear, sufficient
 911 information for code generation, (2) specify input and output format, and (3) cover error handling
 912 and boundary conditions. More details are in the appendix.

913 If the prompt does not meet the mentioned criteria, the annotators propose and agree on changes
 914 that bring it up to the expected quality. This reviewing process produces prompts that are not only
 915 technically correct but also include details essential to code generation.

916 Our manually refining process of generated prompts mitigates the risk of data leakage since. This
 917 process creates original natural language prompts which have not been previously exposed to any
 918 new language model.

919 **Data Filtering and Validation:** After compiling all the data (i.e., the ground truth, test cases,
 920 and candidate prompts), in step ⑧, we manually evaluate each function meticulously, reading and
 921 modifying the prompts following a set of criteria. Specifically, we discard general codes (e.g., those

918 for reading text files) that are not DL related. In this step, the annotators independently assess the
 919 prompt’s clarity, relevance to DL-related tasks, and overall usability with the following criteria: (1)
 920 serving key DL tasks, (2) utilization of popular DL frameworks, and (3) algorithms’ relevancy and
 921 clarity.

922 **Labeling:** In step ⑨, we assign labels for each data point based on the role of the function in the ML
 923 pipeline (e.g., pre/post-processing, model construction), the ML tasks (e.g., classification, regression)
 924 it solves, and types of data (e.g., image, text) it operates on. For each data point, three co-authors
 925 thoroughly analyze and assign appropriate labels. We use a majority vote to finalize the labels and
 926 modify the prompts accordingly. Specifically, we assign the following labels when appropriate to
 927 each data point: Stage in the ML pipeline, ML task type, and Input data type.

928 Once each reviewer completes their assessments, the team meets to discuss any discrepancies and
 929 reach a consensus on the final labels. Due to our detailed instructions and guidelines, we achieve a
 930 high inter-rater reliability of 0.83 measured by Krippendorff’s alpha Zapf et al. (2016)(measures of
 931 more than 0.8 indicating strong agreement.

932 The labeled data is carefully documented, including notes on the decision-making process for
 933 transparency and future reference. Instances are organized, with labels to ensure easy retrieval and
 934 analysis in later stages of research. To enable easier benchmark utilization (i.e., running test cases),
 935 the relevant projects are set up in virtual environments along with appropriate dependencies and
 936 ready-to-run testing scripts.

937 This rigorous review and labeling process ensures that each instance in the dataset is not only relevant
 938 and useful but also thoroughly understood and appropriately categorized, contributing to a robust and
 939 reliable benchmark.

940 D CANDIDATE PROMPT FILTERING CRITERIA

941 In this appendix, we describe the criteria of filtering and refining prompts to ensure clarity and
 942 completeness.

943 **Contains clear sufficient information for the code to be generated** This assessment aims to en-
 944 sure the prompt’s clarity and comprehensibility for a human expert. Annotators check that
 945 the prompt includes all essential variables, functions, and definitions for high-quality code
 946 generation, providing enough information to clearly explain the problem. The human expert
 947 serves as the benchmark to set a high standard for future code generation. We also verify that
 948 the prompt provides sufficient guidance, including specific coding conventions or required
 949 components.

950 **Specifies the input and output format** Since our test cases require certain input and output formats,
 951 it is important to check such details in the candidate prompt to enable our test cases to
 952 function correctlySahoo et al. (2024); Chen & Moscholios (2024). In other words, without
 953 precise definitions of the input and output specifications, the generated code might not align
 954 with the expected test parameters, resulting in false negative results during evaluation. Error
 955 and exception handling are also considered in this question. For example, we specifically
 956 check whether the prompt accounts for handling cases such as “ValueError”, “TypeError”,
 957 or other domain-specific exceptions that the function might raise. This will ensure that the
 958 code will be correctly evaluated given our extracted test cases.

959 **Covers error handling and boundary conditions** Similar to input and output specification, error
 960 handling and boundary conditions are often part of the required testing parameters By
 961 ensuring that the prompt includes such details, we ensure that the passing rate truly reflects
 962 the performance of the code generation under test.

963 E FINAL DATA FILTERING AND VALIDATION CRITERIA

964 This appendix outlines the criteria used to filter and validate data, ensuring alignment with key DL
 965 tasks, proper use of AI frameworks, and clarity in algorithm implementation.

966 **Serving key DL tasks** The prompt and the associated function should be closely aligned with
 967 significant DL tasks such as image recognition, regression, item recommendation, object
 968 detection, label prediction, and natural language processing tasks. This criterion ensures
 969 that our dataset contains all important and relevant data pointsXie (2024).

970 **Utilization of popular DL frameworks** The code should efficiently use widely recognized AI
 971 frameworks (when appropriate), such as TensorFlow, PyTorch, or Keras. This criterion

972 ensures our dataset represents typical DL code with a heavy emphasis on reusability
 973 et al. (2024).

974 **Algorithms’ relevancy and clarity** The code should implement DL-specific algorithms (e.g., edge
 975 detection algorithms, Principal component analysis, or Stochastic gradient descent). The
 976 code should also be well-documented and easy to understand. Complex algorithms must
 977 strike a balance between technical depth and clarity to ensure usability.
 978

979 F DATA CATEGORIES AND LABELS

980 In this appendix, we provide details of three key sample categorizations: the stage in the ML pipeline,
 981 the ML task type, and the input data type.

983 F.1 STAGE IN THE ML PIPELINE

985 This label indicates the stage that the code is in within the ML pipeline: *Pre/post Processing, Model*
 986 *Construction, Training, Inference, or Evaluation & Metrics*. The annotators determine whether the
 987 function is related to a stage by analyzing the code and comment to find information that is related to
 988 the specific stage. For example, code that specifies a convolutional neural network (CNN) architecture
 989 with layers such as convolutions or pooling would fall under the Model Construction category.

990 **Pre/Post Processing** Code in the pre or post-processing stage often manipulates data (input or
 991 output). For example, pre-processing code cleans or augments input data, whereas post-
 992 processing code augments output data for visualization. Due to the ambiguity at the function
 993 level, we have a combined category for pre and post-processing codeWen et al. (2020).

994 **Model Construction** This stage defines the network architecture and sets up the computational
 995 graph for deep learning models, including defining layers, activation functions, and layer
 996 connections. Examples include defining CNN architectures and forward pass logic. Loss
 997 functions are part of this stage, but optimization steps are in the training phaseHoward et al.
 998 (2019).

999 **Training** The training stage optimizes the model’s parameters using a loss function and optimization
 1000 algorithm. This includes backpropagation and weight updates. Code for gradient descent
 1001 using optimizers like Adam or SGD and looping over epochs and batches falls under this
 1002 stageDiederik (2014).

1003 **Inference** Inference code is used to generate labels based on a trained model. It processes new
 1004 input data and outputs results, such as classifications or detections, without changing model
 1005 parameters. This stage emphasizes speed and efficiency for real-time deploymentKirillov
 1006 et al. (2019).

1007 **Evaluation & Metrics** Code in this stage assesses the performance of a trained model using various
 1008 metrics. It involves running the model on a validation/test dataset and comparing predictions
 1009 to ground truth labels to measure accuracy, precision, recall, F1-score, etc.Wu et al. (2020).

1010 F.2 ML TASK TYPE

1011 This label indicates the ML taskSarker (2021); Vinodkumar et al. (2023); Manakitsa et al. (2024)
 1012 that the code is serving when applicable. The annotators examine the code to determine the type of
 1013 task being solved, such as *Time series Prediction, Recommendation, Image Segmentation, Object*
 1014 *Detection, Regression, Classification, or General*. Specifically, the annotators look for patterns in the
 1015 code corresponding to each task. For instance, code that outputs bounding boxes and class labels for
 1016 objects falls under the Object Detection category. In cases where the code can be used for multiple
 1017 ML tasks (i.e., does not exclusively belong to a specific ML task), we assigned a *General* label.

1018 **Classification** Classification tasks involve assigning input data to categories or classes. For example,
 1019 models using softmax activation in the final layer for outputs like “dog” or “cat” fall under
 1020 this category. Categorical cross-entropy loss is a common indicator.

1022 **Regression** Regression tasks predict continuous values. Code indicating regression tasks often has
 1023 linear activation functions in the final layer.

1024 **Object Detection** Detection tasks identify objects and their locations within images. Code that
 1025 outputs bounding boxes and class labels (e.g., YOLO, Faster R-CNN) and employs anchor
 boxes or non-maximum suppression is indicative of detection tasks.

1026 **Image Segmentation** Segmentation tasks assign labels to each pixel in an image. Code involving
 1027 semantic or instance segmentation (e.g., U-Net, Mask R-CNN) where the output is a mask
 1028 with pixel-level classifications is a common example.

1029 **Time Series Prediction** These tasks forecast future values using historical data. Code involving
 1030 recurrent neural networks (RNNs), LSTM, GRU models, and loss functions like mean
 1031 absolute error (MAE) or MSE is typical.

1032 **Recommendation** Recommendation tasks suggest items or actions based on user data. Code
 1033 implementing collaborative or content-based filtering algorithms, matrix factorization, or
 1034 deep learning-based models for recommendations falls into this category.

1035 **General** Code that is versatile and applicable to multiple ML tasks without being exclusive to a
 1036 specific one is labeled as **General**.

1038 F.3 INPUT DATA TYPE

1039 This label indicates the input data type of the function. We focus on typical ML input data types such
 1040 as *Image*, *Text*, *Structured Array* (i.e., tabular), and *Others*. The annotators analyze the processing
 1041 flow of data to assign accurate labels. For example, techniques like flipping, cropping, or adding
 1042 noise process image input. When the input data does not fit one of the typical types (image, text,
 1043 structured array), we assign the *Others* label.

- 1044 • **Image**—Processing for image data includes steps like resizing, normalization, and data
 1045 augmentation. Code that resizes images (e.g., 224×224 for CNNs), normalizes pixel
 1046 values, or applies augmentations (flipping, cropping, noise addition) typically signals image
 1047 dataKrizhevsky et al. (2012).
- 1048 • **Text**—Text processing involves tokenization, n-gram generation, stemming, lemmatization,
 1049 and embeddings. Code that handles these processes and converts text into vectors (e.g.,
 1050 using TF-IDF, Word2Vec, BERT) indicates text dataLiu & Zhang (2018).
- 1051 • **Structured Array**—Tabular data, where rows represent data points and columns represent
 1052 features, is processed by normalization, one-hot encoding, or handling missing values. Code
 1053 that reads CSVs into DataFrames and applies these techniques indicates structured array
 1054 data, commonly used in regression or classification tasksChen & Guestrin (2016).
- 1055 • **Others**—When input data does not match typical types (image, text, structured array), it is
 1056 labeled as **Others**. This includes input such as model parameters or hyperparameters. For
 1057 example, `def __init__(self, weight, bias=None)` initializing model compo-
 1058 nents without direct input data processing falls under this label.

1059 G LLM BUG TYPES AND DL-SPECIFIC SUBTYPES

1060 In this appendix, we provide details for the common types of errors in LLM-generated code as well
 1061 as our DL-specific subtypes.

1062 **Misinterpretation: Generated code deviates from the prompt intention** The produced solution
 1063 does not fulfill the user’s original requirements or strays from the specified goals. This often
 1064 indicates that the LLM has misunderstood or incompletely parsed the prompt.

1065 **Incorrect DL Library or Framework Usage:** The generated code does not match the re-
 1066 quired library or framework. For example, if the prompt asks for a TensorFlow
 1067 implementation of a CNN, but the LLM generates the model using PyTorch instead, or
 1068 if a user requests a NumPy-based neural network operation but the output code uses
 1069 TensorFlow functions.

1070 **Shape and Dimension Mismatch:** The LLM produces code with incorrect tensor dimen-
 1071 sions that do not follow the prompt specifications. For example, if the prompt requests
 1072 a fully connected layer expecting an input of shape (64, 128), but the generated code
 1073 initializes it with an input shape of (128, 64), leading to a mismatch in matrix opera-
 1074 tions.

1075 **Incorrect DL/ML Functionality:** The generated code does not implement the correct
 1076 functionality as described in the prompt. For instance, if the prompt asks for a binary
 1077 classification model using a sigmoid activation function, but the output code instead
 1078 applies a softmax activation function intended for multi-class classification, altering
 1079 the intended behavior.

1080 **Syntax Error: Missing parenthesis, semicolon, or other syntax issues** Straightforward syntactic
 1081 mistakes such as unclosed quotes, unmatched braces, or misplaced punctuation prevent the
 1082 code from compiling or running properly.

1083 **Silly Mistake: Redundant conditions, unnecessary casting** Simple but avoidable errors, such as
 1084 repeating the same condition twice or performing extra type conversions with no purpose.
 1085 While these do not always break the code, they reduce readability and hint at confusion in
 1086 the model’s reasoning.

1087 **Prompt-biased Code: Code overly relies on examples from the prompt** The LLM anchors too
 1088 strongly to the examples provided in the prompt, resulting in a solution that works only for
 1089 the specific inputs shown rather than generalizing the logic for broader applicability.

1090 **Missing Corner Cases: Edge cases not handled** The generated solution neglects special scenarios
 1091 such as empty inputs, boundary values, or invalid parameters, leading to unreliable behavior
 1092 outside of typical inputs.

1093 **Tensor Type and Value Edge Cases:** These bugs occur when operations fail due to unexpected tensor types or values. For example, using a tensor with `float32` data type in a function that expects integers or encountering issues when dividing by zero in a tensor.

1094 **Shape and Dimension Edge Cases:** Bugs of this type happen when operations fail because of unexpected edge-case shapes. For example, trying to perform a convolution on a tensor with a batch size of 0 or a single dimension, such as $(1, 28, 28)$, when a shape like $(32, 28, 28)$ is expected.

1095 **Wrong Input Type: Incorrect input type in function calls** The code passes incompatible data
 1096 types to functions or methods (e.g., providing a string instead of a list), which causes
 1097 runtime failures or nonsensical outputs.

1098 **Tensor Shape Mismatch:** The generated code provides tensors with incorrect shapes
 1099 to functions, leading to shape-related errors. For example, passing a 3D tensor
 1100 of shape $(batch, height, width)$ to a function that expects a 4D tensor of shape
 1101 $(batch, channels, height, width)$, causing a runtime error in deep learning frameworks like PyTorch or TensorFlow.

1102 **Incorrect ML/DL Function Library Arguments:** These occur when invalid arguments
 1103 are passed to functions. For instance, using `stride=-1` in a convolution function,
 1104 which is not logically or mathematically valid.

1105 **Type Mismatch Problem:** The generated code uses tensors with incompatible data types
 1106 in operations. For example, passing a tensor with data type `float32` to a function
 1107 that expects `int64`, or attempting to index a tensor with a floating-point value instead
 1108 of an integer, leading to type-related execution failures.

1109 **Hallucinated Object: Nonexistent or undefined objects used** The LLM invents objects, classes, or
 1110 modules that do not exist or have not been imported or defined. These errors result in
 1111 runtime failures or developer confusion.

1112 **Missing or Undefined DL Modules:** This happens when a model, layer, or module that
 1113 hasn’t been properly defined or initialized is used. For example, attempting to forward-
 1114 pass input through a neural network layer that hasn’t been added to the model.

1115 **Incorrect Usage of DL Modules:** The generated code references deep learning modules,
 1116 functions, or classes that do not exist or belong to the wrong framework. For example,
 1117 calling `torch.nn.Dense()` instead of `torch.nn.Linear()`, or attempting to use
 1118 `tensorflow.layers.Conv2D` instead of `tf.keras.layers.Conv2D`.
 1119 These hallucinated module names cause import errors or incorrect function calls.

1120 **Wrong Attribute: Incorrect/nonexistent attributes for objects or modules** The LLM references
 1121 valid objects but assigns them invalid or incorrect attributes. These subtle errors often
 1122 result from misunderstandings of library APIs or typos in the generated code.

1123 **Wrong DL Module Import:** Bugs of this nature arise when modules are imported incorrectly. For example, importing `jax` functions when the rest of the code is written in PyTorch, leading to incompatibilities during execution.

1134 **Incorrect API Usage:** These bugs occur when a library API function is called incorrectly.
1135 For example, using the `train()` method instead of `fit()` for a Keras model or
1136 passing parameters in the wrong order to an optimizer.

1137 **Non-Prompted Consideration: *Non-requested features added*** The LLM includes functionality
1138 unrelated to the requirements, often due to extraneous training data or contextual noise. This
1139 bloats the code and complicates its scope.
1140

Operation/Calculation Error: Errors in arithmetic or logical operations The LLM makes errors in mathematical calculations or logical expressions, such as confusing addition with subtraction or mixing up operator precedence. These subtle mistakes produce incorrect results.

Data Type Casting Issues: These bugs occur when tensors or variables are cast into incompatible data types. For instance, casting a `float32` tensor into `int32` without considering the loss of precision, which may disrupt training.

Shape and Dimension Error in Operations: The generated code performs mathematical operations on tensors with incompatible shapes or dimensions, leading to incorrect computations or runtime failures. For example, attempting to add two tensors of shapes $(32, 64)$ and $(64, 32)$ without proper broadcasting, or performing a matrix multiplication between tensors with mismatched inner dimensions, such as $(4, 3) \times (5, 4)$, causing a shape misalignment error.

Incorrect Algebraic Calculation: These bugs refer to mathematical errors in computations. For instance, incorrectly normalizing data by dividing by the mean instead of the standard deviation, leading to improper scaling of input features.

1155 **Performance Issue:** This category includes inefficiencies in the generated code that impact runtime
1156 or resource usage. Examples include unnecessary nested loops, unoptimized algorithms, or
1157 excessive use of memory. While the code may produce correct results, its suboptimal imple-
1158 mentation can make it impractical for large datasets or real-time applications. Performance
1159 issues often arise because the LLM generates a brute-force solution without understanding
1160 optimization principles.

1161 **DL Performance Issues:** These bugs refer to inefficiencies in implementation that degrade
1162 model performance. For instance, not using GPU acceleration for operations or im-
1163 proper batching strategies leads to high memory consumption and slow training.

Prompt Missing Information: *Incomplete or unclear prompts* The bug arises due to insufficient detail or ambiguity in the input prompt, leading the LLM to make assumptions or guess certain details when generating the code. For example, if the prompt does not specify edge case handling or input constraints, the model may overlook these aspects entirely. This highlights the importance of crafting precise and comprehensive prompts when using LLMs for code generation.

1170
1171 **Not Defining the Correct DL Library in the Prompt:** This occurs when the prompt or
1172 instructions fail to specify the appropriate library or framework. For example, a user
1173 asks a language model to generate PyTorch code but does not explicitly state this,
leading to TensorFlow code generation instead.

Incorrect or Undefined Variable/Method References : Variables or methods that are not defined or incorrectly referenced The LLM generates code that includes references to variables or methods that do not exist or are improperly used, leading to runtime errors such as NameError or AttributeError.

Constant Value Error: *Incorrect constant value assignment* The LLM assigns incorrect or mis-calculated constant values, such as setting a time-out period to 10ms instead of 1000ms, leading to unexpected behavior.

1181
1182 **Incorrect Tensor Constant Value:** This type of bug arises when tensors are initialized
1183 with incorrect values, leading to flawed model behavior. For example, initializing
1184 weights or biases with all zeros instead of random values causes issues in training
1185 dynamics.

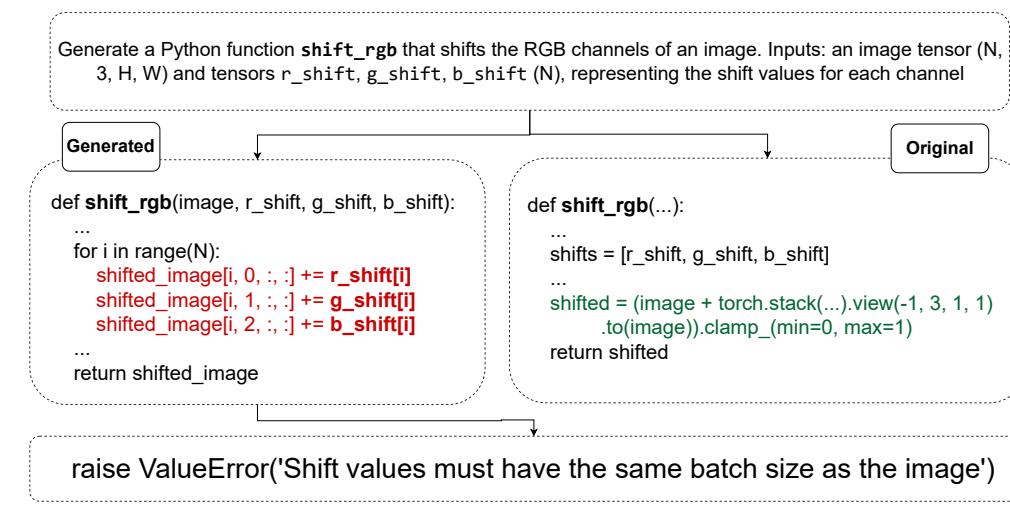
1188 H DISTRIBUTION OF FAILURES IN GENERATED DL CODE

1190 Table 6 presents the distribution of bugs in LLM-generated DL code. The most prevalent issue
 1191 is **deviation from the prompt**, accounting for the largest portion of errors. Unlike general LLM-
 1192 generated code, DL code is more prone to **arithmetic and logical errors**, reflecting the complexity of
 1193 numerical computations. Additionally, **incorrect input types in function calls** represent a significant
 1194 share of the identified bugs, highlighting a common source of failures in generated DL code.

1195
 1196 Table 6: Distribution of bugs in LLM generated code for deep learning
 1197

1198 Category	1199 DL Related Categories	1200 # of Occurrences
1199 Misinterpretation: Generated code deviates from prompt intention	1200 Incorrect DL library or framework Usage	1200 10
	Shape and dimension mismatch	45
	Incorrect DL/ML Functionality	13
	Not DL-related	52
1201 Syntax Error: Missing parenthesis, semicolon, or other syntax issues		0
1202 Silly Mistake: Redundant conditions, unnecessary casting	Not DL-related	8 8
1203 Prompt biased Code: Code overly relies on examples from the prompt	Not DL-related	4 4
1204 Missing Corner Case: Edge cases not handled	Tensor Type and Value Edge Cases	8
	Shape and Dimension Edge Cases	15 33
	Not DL-related	10
1205	Tensor shape mismatch	3
1206 Wrong input type: Incorrect input type in function calls	Incorrect ML/DL function library arguments	16 64
	Type mismatch problem	23
	Not DL-related	22
1208 Hallucinated Objects: Nonexistent or undefined objects used	Missing or Undefined DL Modules	9
1209	Incorrect Usage of DL Modules	12 32
	Not DL-related	11
1210 Wrong Attribute: Incorrect/nonexistent attributes for objects or modules	Wrong DL Module import	8
1211	Incorrect API Usage	17 46
	Not DL-related	21
1212 Non-Prompted Consideration: Non-requested features added	Not DL-related	12 12
1213 Operation/Calculation Error: Errors in arithmetic or logical operations	Data Type Casting Issues	5
1214	Shape and Dimension Errors in Operations	28 72
	Incorrect Algebraic Calculations	18
	Not DL-related	21
1215 Performance Issue: Poor Performance	DL performance issue	2
1216	Not DL-related	1 3
1217 Prompt missing information: Incomplete or unclear prompts	Not defining correct dl library	4
	Not DL-related	6 10
1218 Incorrect or undefined variable/method references:		
1219	Variables or methods that are not defined or incorrectly referenced	Not DL-related 11 11
1220 Constant Value Error: Incorrect constant value assignment	Incorrect Tensor Constant Value	6 6

1222 H.1 SOME EXAMPLES OF INCORRECT LLM-GENERATED DL CODE:



1240 Figure 11: Mismatching data shapes: shifting variables need to be broadcasted to the image shape
 1241

1242
 1243 **Example 1:** Figure 11 highlights an instance of dimensional mismatches in LLM-generated DL
 1244 code. In this case, GPT-4o incorrectly assumes that each shift value can be applied directly to all
 1245 pixels in the image channel, causing a shape mismatch.

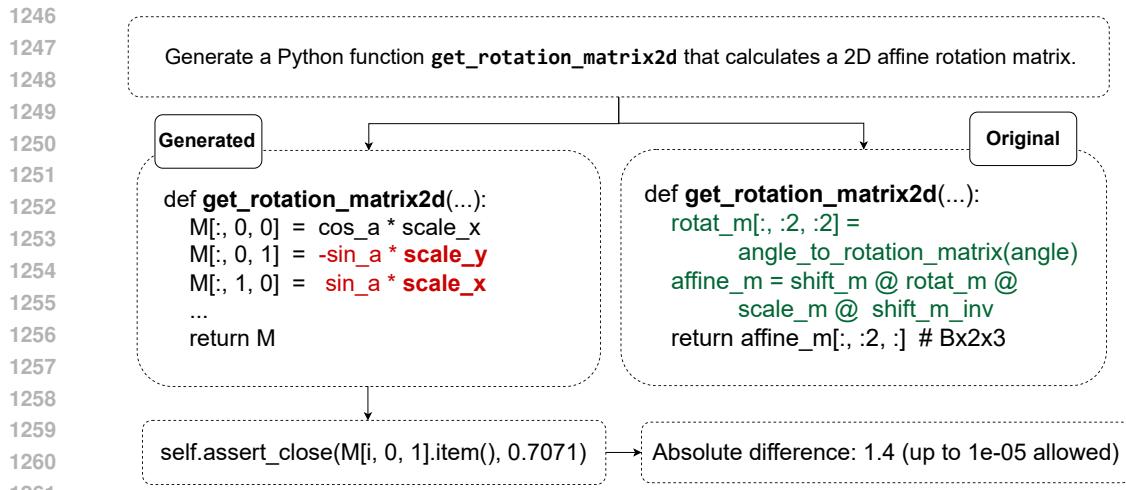


Figure 12: Incorrect processing of parameters: The axes scales need to be applied to both sin and cos

Example 2: An example of such logic-related bugs is shown in Figure 12, demonstrating how LLMs replicate logical reasoning errors that occur in human-written code. Here, GPT-4o applies `scale_x` only to the cosine, whereas the scaling factors `scale_x` and `scale_y` should be applied uniformly to both the sine and cosine components of the rotation matrix. This results in improper scaling along the axes and triggers a test failure.

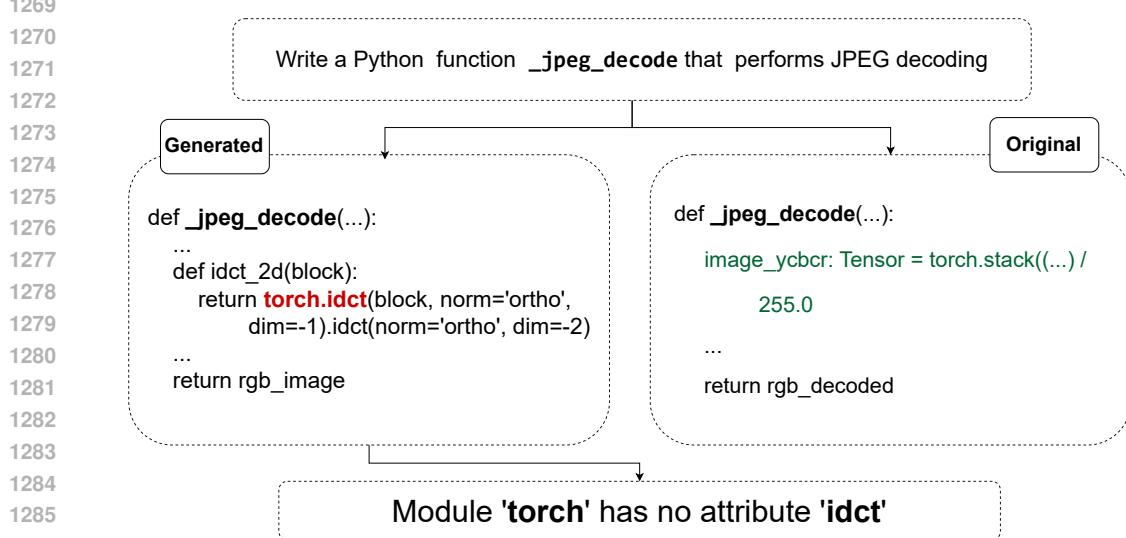


Figure 13: Wrong usage of a third-party library.

Example 3: Figure 13 provides an example of API misuse in LLM-generated code where GPT-4o attempts to call `torch.idct`, which is not implemented in PyTorch. One possible fix is to provide more context concerning third-party libraries. For example, one could hint to LLMs to use `scipy` instead, resulting in `scipy.fftpack.idct(x.numpy(), norm=norm)` instead.

I MORE RESULTS

This appendix provides a more extensive quantitative analysis of model performance on DL-Bench, expanding on the summary presented in the main text. In particular, we report complete pass@k

1296
1297
1298 Table 7: Pass@k (%) on DL-Bench at temperature = 0.3.
1299
1300
1301
1302
1303
1304
1305

Model	Pass@1	Pass@3	Pass@5
O3-mini	36.7	38.1	40.2
DeepSeek V3	31.7	34.6	36.7
GPT-4o	30.5	33.9	37.9
Claude 3.5 Sonnet	30.3	32.5	35.6
LLaMA 3.1 70B	27.8	29.4	33.9
Mistral 8×22B	26.4	27.3	31.4
Qwen Coder 2.5	24.1	26.1	29.0

1306
1307 Table 8: Variance across five runs on DL-Bench (temperature = 0). Lower variance indicates more
1308 stable performance.

Run / Stat	O3-Mini	DeepSeek V3	GPT-4o	Claude 3.5 Sonnet	LLaMA 3.1 70B	Mistral 8×22B	Qwen Coder 2.5
Run 1	36.9	31.4	31.2	30.3	27.5	26.1	23.4
Run 2	35.6	30.6	29.4	29.8	27.1	23.9	21.7
Run 3	34.6	28.5	28.3	29.9	25.8	24.0	22.7
Run 4	34.6	32.1	30.8	31.2	28.3	22.5	23.8
Run 5	33.7	30.2	31.6	31.4	25.2	23.1	22.5
AVG	35.1	30.5	30.2	30.5	26.7	23.9	22.8
VAR	1.49	1.86	1.89	0.55	1.60	1.86	0.67
STD	1.22	1.36	1.37	0.74	1.26	1.36	0.82

1317
1318 statistics and examine how allowing multiple generation attempts influences the success rate of each
1319 evaluated LLM.

1320 I.1 PASS@3 AND PASS@5 PERFORMANCE ON DL-BENCH

1322 Table 7 presents the exact **pass@3** and **pass@5** scores of the seven representative LLMs when
1323 decoding with temperature 0.3. These results reveal the extent to which each model benefits from
1324 additional generation attempts. O3-Mini achieves the highest success rates with **38.1% pass@3**
1325 and **40.2% pass@5**, gaining about two percentage points when moving from three to five attempts.
1326 DeepSeek-V3 follows closely at **34.6%** and **36.7%**, while GPT-4o records **33.9%** and **37.9%**,
1327 representing the largest improvement (approximately four percentage points) among all models.
1328 Claude 3.5 Sonnet reaches **32.5%** and **35.6%**, and LLaMA 3.1 70B attains **29.4%** and **33.9%**.
1329 Among the smaller open-weight baselines, Mistral 8×22B achieves **27.3%** and **31.4%**, while Qwen
1330 Coder 2.5 delivers the lowest performance with **26.1%** and **29.0%**. Across all models, the absolute
1331 improvements from pass@3 to pass@5 remain relatively limited—generally within 2–4 percentage
1332 points—indicating that even with multiple generation attempts, current state-of-the-art LLMs continue
1333 to face considerable difficulty in producing fully correct ML/DL-specific code on DL-Bench. This
1334 further highlights the benchmark’s effectiveness in exposing the limitations of modern code generation
1335 systems beyond what existing datasets such as DS-1000 can capture.

1336 I.2 VARIANCE OF DIFFERENT RUNS

1337 Table 8 reports the exact pass@1 scores for each of the five independent runs together with the
1338 computed mean (AVG), variance (VAR), and standard deviation (STD). O3-Mini consistently achieves
1339 the highest average pass@1 score (**35.1%**) with a variance of **1.49** and standard deviation of **1.22**.
1340 DeepSeek V3 and GPT-4o show slightly higher variability (variance **1.86** and **1.89**, respectively) but
1341 still maintain mean scores around **30%**. Claude 3.5 Sonnet is the most stable, with a variance of
1342 only **0.55** (standard deviation **0.74**) around its **30.5%** mean. LLaMA 3.1 70B exhibits a variance of
1343 **1.60**, Mistral 8×22B also **1.86**, and Qwen Coder 2.5 remains relatively steady with a variance of **0.67**.
1344 These results show that even the lowest-performing models provide reproducible outcomes across
1345 repeated evaluations, reinforcing the robustness of the comparative analysis in the main text.

1346 I.3 RESULTS BASED ON TIMELINE

1347 Table 2 shows the exact pass@1 scores on DL-Bench when tasks are filtered by their publication
1348 date relative to the October 2023 cutoff. These results reveal how each model’s accuracy shifts as
1349 only the most recent tasks are considered. O3-Mini achieves the highest overall score at 35.1%,
but its accuracy drops to 32.8% after January 2024, declines further to 29.6% after May 2024, and

1350 then rises slightly to 30.5% after September 2024. DeepSeek V3 decreases from 30.5% overall to
1351 27.5% after September 2024, while GPT-4o falls from 30.2% to 25.7% in the same period. Claude
1352 3.5 Sonnet shows a more moderate decline from 30.5% to 27.6%. Among the open-weight models,
1353 LLaMA 3.1 70B drops from 26.7% to 25.0%, and Mistral 8 \times 22B goes from 23.9% to 23.1%. Qwen
1354 Coder 2.5 remains comparatively low but stable, varying only between 22.8% and 24.2%. Overall,
1355 the consistent downward trend across most models highlights how the live version of DL-Bench
1356 continually surfaces fresh, previously unseen challenges that cannot be solved simply by exploiting
1357 prior training data, underscoring the benchmark’s value for continual evaluation of LLMs on emerging
1358 ML/DL code-generation tasks.

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403