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ABSTRACT

With the rise of reasoning language models and test-time scaling methods as
a paradigm for improving model performance, substantial computation is of-
ten required to generate multiple candidate sequences from the same prompt.
This enables exploration of different reasoning paths toward the correct solu-
tion, however, allocates the same compute budget for each prompt. Grounded
on the assumption that different prompts carry different degrees of complexity,
and thus different computation needs, we propose EAGER, a training-free gener-
ation method that leverages model uncertainty through token-wise entropy distri-
bution to reduce redundant computation and concurrently improve overall perfor-
mance. EAGER allows branching to multiple reasoning paths only in the presence
of high-entropy tokens, and then reallocates the saved compute budget to the in-
stances where exploration of alternative paths is most needed. We find that across
multiple open-source models on complex reasoning benchmarks such as AIME
2025, while EAGER generates up to 65% fewer tokens (hence saving the com-
pute), it achieves up to 27% improvement in the Pass@1 compared to the FULL
PARALLEL sampling. Our results show that EAGER consistently maximizes the
efficiency-performance trade-off by enabling dynamic control over computation
expenditure.
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Figure 1: Left: We introduce EAGER, a generation method that dynamically allocates the per-
prompt budget during decoding, branching only when high-entropy peaks are detected. For each
prompt, the total number of allowed sequences is capped at M , and we track the actual budget con-
sumed by our preparatory stage, EAGER-init. The remaining budget is then reused by continuing
the generation only for sequences that did not reach a correct final solution (i.e., with Pass@1 = 0),
in contrast to the fixed-budget allocation of FULL PARALLEL sampling. Right: Both EAGER-init
and EAGER consistently reduce token usage compared to the standard FULL PARALLEL sampling
approach when scaling the M limit ∈ [4, 8, 16, 24, 32]. In addition, EAGER achieves a clear perfor-
mance advantage over all other decoding methods.
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1 INTRODUCTION

Recent advances in large language models (LLMs) have led to substantial improvements in complex
reasoning tasks, particularly with the adoption of chain-of-thought (CoT) prompting (Wei et al.,
2022). Such tasks often admit multiple valid reasoning paths that converge to the same correct
solution (Stanovich & West, 2002). Rather than relying on a single greedy decoding path, the single
generation can be replaced by multiple sampled candidate sequences, thereby producing a diverse
set of reasoning paths and corresponding final answers (Wang et al., 2023). This strategy has been
shown to enhance performance on challenging reasoning problems: by exploring multiple reasoning
paths, the model reduces its reliance on the stochasticity of a single greedy generation and increases
the likelihood of arriving at a correct solution.

Despite its success, CoTs introduce an inherent computational inefficiency: reasoning sequences
tend to be long, and a large portion of the tokens generated are predictable continuations rather than
genuine decision points (Wang et al., 2025). This inefficiency is amplified in approaches that explore
multiple reasoning paths in parallel, where each path independently regenerates identical prefixes
before diverging. For prompts with simple problems, many of these paths converge to the same solu-
tion with little variation, resulting in redundant computation. For more complex prompts, however,
the diversity of reasoning paths becomes crucial, and additional generations may be necessary to
discover a correct solution (Snell et al., 2025; Muennighoff et al., 2025). This observation suggests
that a per-problem decision to let or not let the model explore alternative paths would be desirable.
We argue that such decision can be guided by monitoring model uncertainty during generation to-
wards an adaptive allocation of computating budget. Intuitively, when the model’s predictions are
confident and stable, only a few candidate sequences are needed, while at points of high uncertainty,
where multiple reasoning paths are plausible, additional exploration becomes critical.

To address these issues, we introduce EAGER, an Entropy-Aware Generation method that mon-
itors token-level uncertainty during decoding to guide where new parallel reasoning traces should
start. By branching only at high-entropy tokens, we avoid regenerating identical low-entropy con-
tinuations, substantially reducing computation overhead without sacrificing coverage of diverse rea-
soning traces. Furthermore, reducing the parallel samples for easy prompts, EAGER dynamically
allocates the unused sampling budget towards more challenging ones, maximizing the benefits of
inference-time scaling for difficult prompts. 1

We evaluate EAGER on a diverse set of benchmarks, spanning from complex math problems to
science-related questions and code generation tasks. All the tested LMs, from the smallest 3B to
the biggest 20B parameter model, show a performance boost of up to 27% when using EAGER
compared to our baseline FULL PARALLEL sampling setting.

Our main contributions are as follows:

• We empirically show that token-wise entropy peaks as a form of online (i.e., measured
during generation) uncertainty is a good proxy that shows when more exploration is needed
during the generation, hence reflecting the difficulty of a prompt for the model used.

• We introduce, a novel, training-free decoding method that leverages entropy distribution
during generation to dynamically reduce compute cost while maintaining the benefits of
inference-time scaling. EAGER generates up to 65% fewer tokens and saves up to 80% of
the entire generation budget across all our benchmarks and models.

• To maximize the benefits of inference-time scaling, we show that EAGER enables adaptive
use of the given sampling budget, where it spends more compute on the hard problems.

2 PRELIMINARIES

In the inference-time scaling paradigm, a language model generates multiple parallel sequences so
that it can explore various reasoning paths to find a correct solution (Welleck et al., 2024; Snell
et al., 2025). This is oftentimes facilitated by sampling completions from the model with a relatively
high temperature using methods such as nucleus sampling (Holtzman et al., 2020). We refer to this

1Code and data: released upon acceptance.
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standard approach as the FULL PARALLEL sampling generation procedure. This approach is useful
in various settings, including for the generation of diverse solutions to a problem, or in large-scale
reinforcement learning (RL) pipelines such as in RLVR (DeepSeek-AI, 2025), where among the
diverse set of generated sequences, only the correct ones are selected to update the policy.

Our objective is to optimize this process by exploiting uncertainty during generation, allowing an
efficient allocation of resources (in terms of number of generated sequences) to solve a given prompt.

2.1 UNCERTAINTY IN LLMS’ GENERATIONS

Among the different techniques for uncertainty quantification in LLMs, we focus our attention on
top-K token entropy, as token entropy has been shown to be a powerful uncertainty quantification
measure (Fomicheva et al., 2020). We define top-K token entropy as:

H
(K)
t := −

∑
i∈I(K)

t

p
(K)
t,i log p

(K)
t,i , (1)

where I(K)
t ⊆ {1, . . . , |V |} is the index set of the K tokens with highest pt,i probability with V

denoting the vocabulary of the LM and t ∈ N+ indexes the current generation step. Specifically,
the quantity pt,i represents the probability assigned by the model to token i ∈ V at step t after
the softmax computation. We denote I(K)

t ⊆ {1, . . . , |V |} the index set of the K tokens with the
highest probability pt,i and p

(K)
t,i their re-normalized probabilities, given by:

p
(K)
t,i :=

pt,i∑
j∈I(K)

t
pt,j

, i ∈ I(K)
t , (2)

where
∑

i∈I(K)
t

p
(K)
t,i = 1.

Compared to more precise and computationally intensive uncertainty quantification methods found
in the literature (Vashurin et al., 2025; Kuhn et al., 2023; Duan et al., 2024, e.g.,), top-K token
entropy provides a strong approximation to the entropy of the full-vocabulary, as it computes the
dominant contributions from the most probable tokens with minimal computational overhead 2.

2.2 ENTROPY IN LONG CHAIN-OF-THOUGHT REASONING

For our goal of saving resources in parallel sampling by leveraging model uncertainty, we first need
to determine whether and how token entropy values relate to the model’s final performance. To
this end, we analyze the entropy patterns of the CoT sequences generated by an LLM to solve
challenging problems. We monitor the entropy of each token during generation, and rather than
analyzing the entire entropy sequence, we focus on identifying significant spikes as signals of higher
uncertainty. We hypothesize that this peak-entropy measure can serve as a proxy for the model’s
perceived difficulty of a problem and thus its (in)ability to solve it: high peaks indicate moments
where the model is highly uncertain about the next step in its reasoning chain, low entropy indicates
that the model is more confident about what to generate next.

Given the input prompt x, we sample M independent candidate sequences {t(m)}Mm=1 from the lan-
guage model. During generation, for each token position t in each sequence m, we record the token
entropy H

(K)
t (y(m)), with K = 20. For each sequence, we define the peak entropy value H̄

(m)
peak as

the mean of all entropy values that lie in the pth percentile of the sequence’s entropy distribution:

H̄
(m)
peak (p

th) :=
1

|T peak
m (pth)|

∑
t∈T peak

m (pth)

H
(K)
t (y(m)), (3)

2Full-vocabulary entropy computation can be costly due to large vocabulary sizes, often in the tens of thou-
sands. By restricting calculations to the top-K most probable tokens, the token entropy significantly reduces
computational overhead while maintaining efficiency during generation.
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where
T peak
m (pth) := {t : H(K)

t (y(m)) ≥ pth
(
{H(K)

t′ (y(m))}t′
)
}, (4)

and pth(·) denotes the pth percentile of the entropy sequence.
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Figure 2: For each sequence generated by
Qwen3 4B with FULL PARALLEL sampling
(M = 32), we report its Pass Rate accu-
racy and the average entropy peak (pth =
99.9). The results reveal a negative correla-
tion (r = −0.547) between Pass Rate and the
average entropy peak across sequences. No-
tably, sequences exhibiting higher entropy at
any generation step are less likely to yield a
correct answer.

We run Qwen3 4B3, a strong open-source LLM with
long CoT reasoning capabilities, on five standard
reasoning benchmarks for math, science and code
generation tasks (see Section 4 for the benchmarks’
details), allowing for M = 32 parallel sequences to
be generated.

Figure 2 shows the Pass Rate accuracy, i.e., the pro-
portion of correct answers out of M = 32 gener-
ations, for each prompt and the corresponding aver-
age peak entropy H̄

(m)(pth)
peak . We focus on the top per-

centile, specifically pth = 99.9, to isolate the high-
est entropy peaks. We observe a statistically signif-
icant negative correlation (ρ ≈ −0.55), between the
peak entropy during generation and model Pass Rate
accuracy. This suggests that higher entropy peaks,
indicative of greater uncertainty during generation,
are associated with lower performance. Thus, ad-
ditional path exploration during these phases may
help to improve performance. Conversely, when en-
tropy remains low, the model is more confident on
the generated solutions (hence, the long CoT reason-
ing sequences), suggesting that further exploration
may be less likely to yield significant improvements.
This observation is in line with recent work which
found that high-entropy tokens disproportionately contribute to performance gains during RL train-
ing (Wang et al., 2025).

Given this evidence, we ask: Can token entropy be leveraged to develop a decoding adaptive strategy
that allocates more compute to uncertain regions while limiting effort in more confident segments?

3 ENTROPY-AWARE GENERATION EXPLAINED

We introduce EAGER, a training-free inference-time scaling approach aimed at optimizing parallel
sampling by leveraging token entropy to guide resource allocation. EAGER consists of two stages:
in the first one, EAGER-init dynamically adjusts the generation process to focus on sequences where
the most effort is needed, while pruning unnecessary generations. In the second stage, the saved
computational budget is reallocated to enhance performance on the remaining challenging prompts.

3.1 EAGER-INIT: SAVE COMPUTE VIA TOKEN ENTROPY

EAGER-init represents the first stage of our approach and operates by identifying potentially easy
questions during generation. Instead of sampling constant M generations for every prompt, EA-
GER-init computes token entropy H

(K)
t at each step t, and compares it to a predefined threshold

θ.4 If the observed entropy exceeds this threshold, the current sequence is branched, creating a new
candidate continuation at that position. If the entropy is below the threshold, the generation contin-
ues with the existing sequence. During the branching step, we reuse the token distribution from the
model but adopt a temporally greedy approach; we select the top two most likely tokens to ensure
that the two new sequences always start with different tokens. This process continues until the to-
tal number of active sequences reaches a predefined limit M , at which point no further branching
occurs. A detailed overview of the EAGER-init algorithm is provided in Algorithm 1.

3https://huggingface.co/Qwen/Qwen3-4B
4We empirically find the best threshold for a model. See Section 4.1 for a detailed analysis of the threshold.

4
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This process yields a generation tree where the root is the initial sequence, and each branching node
corresponds to a high-entropy token (Figure 1); the generation stops when the total number of nodes
is equal to M . For implementation efficiency, we restrict the branching procedure to long CoT
sequences only, and entropy monitoring is halted if no branching has occurred within the previous
1000 tokens from the last branch.

Algorithm 1: EAGER-init sequence generation
Input: Prompt x, entropy threshold θ > 0, max active sequences M , temperature τ , top-K for

entropy K, maximum steps T
Output: Completed set of sequences Y

Notation: H(K)
t is the top-K token entropy at step t under distribution p(· | x, y).

Initialize active set A ← {y(1)} ; // initial continuation from prompt x
Initialize completed set Y ← ∅ ;
for t← 1 to T do

if A = ∅ then
break

foreach sequence y ∈ A do
Compute next-token distribution p(· | x, y) with temperature τ ;
Compute entropy H

(K)
t from top-K probabilities ;

if H(K)
t ≥ θ and |A| < M then
a1 ← argmaxa p(a | x, y) ; // most likely token
a2 ← second-most-likely token under p ;
Update y ← y ◦ a1 ; // greedy continuation
Create branch y′ ← y ◦ a2, add y′ to A ;

else
Sample a ∼ p(· | x, y) and update y ← y ◦ a ;

if y ends with EOS or length limit then
Move y from A to Y ;

return Y ;

Reducing test-time compute through EAGER-init. EAGER-init, saves computational budget
through two mechanisms. The first arises directly from the branching logic: if a branch occurs at
token position t, all preceding tokens (0, . . . , t − 1) are reused across branches rather than being
regenerated independently. The second, and more substantial source of savings occurs when the
generation process does not saturate the maximum number of sequences M set per prompt. For
easy queries, the model’s default sampling converges to identical or near-identical completions, so
that EAGER-init may terminate with only a single sequence, saving M−1 full generations compared
to a fixed-budget baseline which would let the model generate M sequences for any given prompt.
This surplus capacity can then be reallocated where it is most needed.

3.2 EAGER: DYNAMICALLY ALLOCATE THE SAVED COMPUTE

The next challenge is to devise the best strategy to reallocate the compute which has been saved.
For this, we consider challenging prompts, defining a prompt as challenging if it fails to achieve
Pass@1 accuracy under EAGER-init (i.e., no generated sequence matches the correct answer). For
each such prompt, we allocate an additional budget b, computed as:

b = min(Mtheoretical −Mactual, 2M) (5)

where Mtheoretical = M ×|D| is the maximum possible number of sequences that could be generated
for the dataset D, and Mactual =

∑|D|
i=1 # Seqi is the total number of sequences actually produced

under entropy-aware generation.

5
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Algorithm 2: Full EAGER algorithm
Input: Dataset D = {(xi, zi)}Ni=1, initial generations {Yi}Ni=1 (from EAGER-init), max

sequences per prompt M , entropy threshold θ
Output: Augmented generations {Y ′

i}Ni=1

Compute Mtheoretical ←M · |D| ;
Compute Mactual ←

∑N
i=1 |Yi| ;

Set remaining budget b←Mtheoretical −Mactual ;
Identify challenging prompts I = {i | Pass@1(Yi, zi) = 0} ;

if b = 0 or I = ∅ then
return {Yi}

Assign additional budget b = min(b, 2M) uniformly across all i ∈ I ;
foreach i ∈ I do

if |Yi| < M then
// underutilizing prompt
Set θ′ ← 0.8 · θ ;
Generate up to M + b sequences for xi using Algorithm 1 with θ′ ;

else
// prompt already saturated at M
Set θ′ ← θ ;
Generate up to M + b sequences for xi using Algorithm 1 with θ′ ;

Append new sequences to Yi ;
return {Y ′

i}Ni=1 ;

The term Mtheoretical−Mactual represents the surplus budget created by early stopping in easy prompts.
We cap b at 2M to avoid pathological cases where extremely large surpluses would lead to dispro-
portionately high generation budgets for single prompts.5 The reallocation policy is uniform across
all failing Pass@1 prompts, but the generation strategy adapts based on the prompt’s prior behavior.

For underutilizing prompts (< M sequences with EAGER-init), we reduce the entropy threshold θ
by 20%, enabling earlier and more frequent branching. For saturating prompts (< M sequences
with EAGER-init): continue generation until the new per-prompt limit M + b is reached, expanding
exploration depth where additional sequences may yield correct solutions.

By systematically redirecting unused capacity from easy prompts to hard ones, this strategy in-
creases coverage without exceeding the original theoretical budget Mtheoretical. An overview of this
approach is reported in Algorithm 2. Importantly, savings from branch-based token reuse persist
even when b > 0, and all additional sequences continue to adopt the same framework described in
Algorithm 1, ensuring that the total token count remains lower than in an equivalent fixed-budget
FULL PARALLEL sampling baseline.

3.3 EAGER IN THE WILD: BUDGET REALLOCATION IN THE ABSENCE OF TARGET LABELS

The dynamic budget allocation based on challenging prompts (Sec 3.2) relies on having access to
target answers, therefore setting a performance upperbound through optimal reallocation. To test
EAGER, when there is no verifier in the test time, we simulate having no access to the answers
to what extent EAGER can improve on the reported performance. We run these experiments on a
subset of the math benchmarks, using Qwen3 4B and Deepseek 8B. Specifically, we start from a
low threshold (θ = 2.0) and use the saved budget only on saturating prompts, namely those prompts
that were prevented from further branching due to the pre-set M maximum number of sequences
allowed. The rationale behind this choice is that if M acts as a branching limit, then not all promising
generation paths may have been sufficiently explored.

5Especially in larger datasets, budget savings for easy prompts were large enough to allocate hundreds, if not
thousand, of additional sequences to single failing prompts; this cap prevents excessive unbalanced allocation.
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Model Sampling AIME 2025 GPQA-Diamond HumanEval Plus
p@1 c@k PR p@1 c@k PR p@1 c@k PR

SmolLM 3B
FULL PARALLEL 0.53 0.00 0.06 0.49 0.00 0.03 0.00 0.00 0.00
EAGER-INIT 0.53 0.07 0.11 0.59 0.10 0.15 0.68 0.46 0.44
EAGER 0.73 0.33 0.31 0.85 0.12 0.18 0.75 0.56 0.52

Qwen3 4B
FULL PARALLEL 0.80 0.70 0.62 0.75 0.51 0.43 0.91 0.82 0.78
EAGER-INIT 0.77 0.70 0.61 0.75 0.51 0.43 0.86 0.86 0.86
EAGER 0.83 0.73 0.69 0.81 0.59 0.54 0.94 0.87 0.86

DeepSeek 8B
FULL PARALLEL 0.80 0.67 0.65 0.82 0.15 0.18 0.95 0.90 0.86
EAGER-INIT 0.70 0.63 0.64 0.83 0.25 0.24 0.96 0.85 0.77
EAGER 0.77 0.67 0.67 0.96 0.25 0.25 0.97 0.90 0.89

GPT-Oss 20B
FULL PARALLEL 0.90 0.83 0.67 0.96 0.68 0.65 0.95 0.83 0.79
EAGER-INIT 0.93 0.80 0.66 0.97 0.71 0.66 0.97 0.88 0.85
EAGER 0.97 0.80 0.68 0.99 0.72 0.66 0.97 0.89 0.85

Table 1: Comparison of FULL PARALLEL, EAGER-INIT and EAGER in AIME-2025, GPQA-
Diamond and HumanEval Plus. We report pass@1, cons@k and Pass Rate where k is number
of samples generated (while always 32 for the baseline, differs per prompt for EAGER-init and EA-
GER). EAGER consistently achieves the best results and EAGER-init performs very competitive
with FULL PARALLEL sampling while saving significant amount of compute as shown in Figure 3.

4 EXPERIMENTAL SETTING AND RESULTS

Models. We evaluate multiple reasoning models from different model families and sizes to test
EAGER in comparison to the FULL PARALLEL sampling baseline: SmolLM-3B (HuggingFaceTB,
2025), Qwen3-4B (Team, 2025), DeepSeek-R1-0528-Qwen3-8B (DeepSeek-AI, 2025) and GPT-oss
20B (OpenAI, 2025). Additional generation parameters and EAGER hyper-parameters are available
in Appendix C.

Benchmarks. We evaluate our approach saved resources (compute metrics) for generation and
performance on a set of diverse reasoning benchmarks on various tasks: AIME 2024 and 2025, and
the 2025 Harvard MIT Math Tournament (Balunović et al., 2025) for math, GPQA-Diamond (Rein
et al., 2023) for scientific domains, and HumanEval Plus (Liu et al., 2023; 2024) for code generation.

Compute metrics. We evaluate efficiency improvements using two complementary metrics: The
first is the average sequence Count (#Seq). FULL PARALLEL sampling uses a fixed budget of
M sequences, in contrast, EAGER uses a dynamic #Seq that depends on the branching behavior.
The second metric is the average token Count (#Token) generated. While #Seq provides a gen-
eral measure of computational efficiency, #Tokens is a more precise indicator since, branching at
step t, reuses previously generated tokens (0, . . . , t − 1) as prefix across new branches rather than
regenerating them, that can lead to substantial savings even when #Seq is comparable.

Performance metrics. We evaluate performance using three complementary metrics. Pass@1
shows whether the model produces at least one correct final solution, Cons@k aggregates responses
through majority voting across k generations. Lastly, Pass Rate measures the proportion of correct
answers over all generated outputs. We report the average metric across each entire benchmark.

4.1 RESULTS

EAGER-init and EAGER yield significant savings in computation. Figure 3 (top row) illus-
trates the efficiency advantages of EAGER-init and EAGER across all benchmarks and model scales.
Starting with EAGER-init, the total number of generated tokens is typically less than half of that re-
quired by FULL PARALLEL sampling. Building on this, EAGER leverages a small fraction of the
saved budget to further improve accuracy, while still generating substantially fewer sequences than
FULL PARALLEL sampling. On the performance side, EAGER consistently achieves higher Pass
Rate accuracy than FULL PARALLEL sampling, indicating superior performance per unit of com-
putation. It is worth noting that the performance of SmolLM 3B is 0.0 across all metrics in the
parallel-sampling setting. This is caused by the generation of sequences in which the same tokens
are repeatedly produced (e.g., “The answer is: The answer is: The ...”). This effect, along with the
effect of temperature is discussed in Appendix B.
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Figure 3: Compute and performance trade-offs of EAGER-init and EAGER. Across all benchmarks
and model size, the efficiency of EAGER-init and EAGER consistently outperforms FULL PARAL-
LEL sampling, requiring only half as many tokens in most cases (top). In addition, they achieve
higher pass rate accuracy (bottom). For issues specific to the smallest 3B model, see Appendix B.

0 0.8M
3B

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
1

0 0.5M
4B

0 0.6M
8B

0 0.3M
20B

AIME 2025

# Tokens

0 0.8M
3B

0.2

0.4

0.6

0.8

1.0

0 0.3M
4B

0 0.3M
8B

0 0.1M
20B

GPQA Diamond

# Tokens

0 0.8M
3B

0.6

0.7

0.8

0.9

1.0

0 0.1M
4B

0 0.1M
8B

0 0.0M
20B

HumanEval Plus

# Tokens

Figure 4: Performance comparison with scaling the total allowed sequences for generating (M ∈
{1, 4, 8, 16, 24, 32}). As M increases (line’s markers), EAGER consistently improves Pass@1 (y-
axis) while reducing the number of tokens needed to find the correct solution (x-axis), further shift-
ing the Pareto frontier of the performance–efficiency trade-off.

EAGER always achieves better performances than FULL PARALLEL sampling. As shown in
Figure 3, EAGER consistently outperforms FULL PARALLEL sampling in terms of Pass Rate. Ta-
ble 1 shows a more comprehensive overview using Pass@1, Cons@k, and Pass Rate. While Pass@1
is highest under EAGER, Pass Rate is consistently equal or better even for EAGER-init compared to
FULL PARALLEL sampling. This suggests that EAGER-init effectively prunes unproductive gener-
ations (higher Pass Rate) at the cost of reduced exploration (lower Pass@1). In general, Pass@1 is
particularly useful in scenarios where obtaining at least one correct answer is critical, for example,
when the user prioritizes correctness and exploration over efficiency as per in Reinforcement Learn-
ing applications. In contrast, Pass Rate and Cons@k capture a different dimension of quality: (i)
higher values indicate that EAGER focuses computation more effectively on promising generations,
and (ii) given the extreme efficiency gains of EAGER-init compared to FULL PARALLEL sampling,
the trade-off is often strongly favorable.

EAGER scales effectively under budget constrains. We evaluate the effect of scaling the max-
imum number of allowed generations, M , on overall performance. As shown in Figure 4, increas-
ing M improves the probability of obtaining at least one correct solution (Pass@1). This trend
is expected, as a larger generation budget naturally enables more extensive exploration. Notably,
EAGER-init – and even more so EAGER – achieve superior Pass@1 under the same constraints,
often with significantly fewer tokens. In other words, EAGER not only benefits from larger M but
also allocates its computational budget more efficiently, resulting in a consistent shift of the Pareto
frontier, where higher accuracy is achieved at lower token cost.

Saturation is a good proxy for budget reallocation. In absence of the target label to guide budget
reallocation to prompts which fail to achieve Pass@1, we use saturation (prompts for which EA-
GER-init reached the maximum number of sequences M and were therefore prevented from further
branching, see Section 3.3) as proxy. Table 2 reports promising results on two mathematical bench-
marks and two models. Overall, compared to the best-performing EAGER configuration, redirecting
the additional budget to saturating sequences achieves the second-best performance in most cases.
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Data Qwen3 4B DeepSeek 8B
FP EAGER-init + budget EAGER FP EAGER-init + budget EAGER

AIME 2025 ↑ p@1 0.80 0.77 0.80 0.83 0.80 0.73 0.77 0.80
↓ # T 17 8 12 12 22 8 13 12

HMMT 2025 ↑ p@1 0.50 0.43 0.47 0.53 0.57 0.43 0.50 0.57
↓ # T 18 7 15 14 24 8 15 15

Table 2: Reallocation of the additional budget (+ budget) only on Saturating prompts (i.e., prompts
that reach M = 32 generated sequences). All experiments use a threshold of 2.0, which we found to
provide a good balance between number of tokens (# T × 1e5) used and performance (p@1) across
models and benchmarks. Bold are best results, underline second best.

Threshold guides the trade-off between performance and compute. Efficiency metrics (# To-
kens, # Seq) are directly shaped by the choice of entropy threshold θ. In our experiments, we
explore values in the interval [1.8, 2.7], which captures the majority of observed entropy peaks (see
Section 2.2). Across different model families and sizes, we find consistent efficiency improvements
relative to the FULL PARALLEL sampling baseline throughout this range. The optimal setting of
θ remains task- and model-dependent. Under EAGER-init, lower thresholds encourage more fre-
quent branching, which increases both the number of generated sequences (#Seq) and total tokens
(#Token). Higher thresholds, in contrast, restrict branching, yielding fewer continuations and lower
computational cost. The balance between these regimes varies across architectures, scales, and
datasets. Full results are available in Appendix A.

5 RELATED WORKS

Since the recent introduction of test-time scaling (Snell et al., 2025; Welleck et al., 2024), multiple
approaches have been proposed to improve its efficiency and performance. Wu et al. (2025) propose
REBASE (REward BAlanced SEarch) a branching method that expands reasoning trajectories that
are evaluated as being of high quality by a reward model. While powerful, REBASE is significantly
more computationally expensive compared to directly computing token entropy at test-time. Deep-
Conf (Deep Think with Confidence, Fu et al., 2025) is a method that also leverages local confidence
measures to increase performance and efficiency during generation. DeepConf uses this confidence
measure to truncate sequences where it is lower than a pre-defined threshold (determined during a
warm-up stage). This is in contrast to our proposed approach where the certainty measure drives
branching, instead of truncation. Kang et al. (2025) introduce self-certainty, a sequence-level mea-
sure closely related to cross-entropy. The authors demonstrate that self-certainty discriminates well
between correct and incorrect answers and is robust to reasoning length. The authors additionally
illustrate that self-certainty driven answer selection (through a voting mechanism) leads to improve-
ments in reasoning benchmarks. While the the current work is closely related to the work by Kang
et al., we demonstrate that token-level certainty (in contrast to sequence-level) can function as a
useful tool to modulate performance and efficiency in reasoning LLMs.

6 CONCLUSION AND FUTURE DIRECTIONS

By leveraging token-level entropy, EAGER-init proves to be a highly performant training-free gen-
eration method with significantly higher efficiency compared to FULL PARALLEL sampling. In
applications such as RLVR, where the correct answer is known, EAGER surpasses the Pass@1 per-
formance by up to 27% compared to full parallel sampling while using up to 65% fewer tokens.
When there is no verifier in the test time, EAGER still achieves performance on par with the FULL
PARALLEL sampling while generating up to 40% fewer tokens. We further demonstrate that the
approaches are domain (math, science and coding) and temperature (see Appenidx B) agnostic.

While our current work uses token-level entropy to create branching reasoning streams, future
research could explore other methods for quantifying uncertainty. For example, using Kullback-
Leibler (KL) Divergence to measure token uncertainty is a promising direction, inspired by the
work of Kang et al. (2025). At the same time, a key consideration is that the uncertainty quantifi-
cation method must be lightweight, as a computationally expensive approach would undermine the
goal of improving generation efficiency.
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A COMPLETE RESULTS

Table A presents a complete overview of the results of our experiments.

θ
SmolLM3-3B Qwen3-4B Deepseek 8B GPT-oss 20B

↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S ↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S ↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S ↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S

AIME 2024 (math)
— 0.60 0.03 0.09 27 32.0 0.90 0.80 0.74 14 32.0 0.93 0.80 0.73 20 32.0 0.93 0.80 0.71 8 32.0

2.0 0.53 0.03 0.10 18 28.8 0.80 0.73 0.70 6 15.3 0.90 0.87 0.85 7 15.8 0.93 0.77 0.70 4 30.7
2.2 0.53 0.10 0.15 18 28.4 0.70 0.67 0.68 1 1.7 0.80 0.80 0.79 2 4.5 0.90 0.80 0.70 4 29.7
2.3 0.52 0.10 0.18 17 26.8 0.67 0.67 0.65 0.3 1.0 0.77 0.77 0.76 0.4 1.3 0.90 0.80 0.68 4 30.2
2.4 0.67 0.20 0.25 14 22.7 0.77 0.77 0.77 1 1.0 0.70 0.70 0.70 0.3 1.0 0.93 0.83 0.75 4 27.6
2.5 0.57 0.50 0.40 5 16.5 0.73 0.73 0.73 0.2 1.0 0.73 0.73 0.73 0.3 1.0 0.90 0.83 0.69 4 28.0

2.0 0.73 0.10 0.13 19 32.0 0.90 0.80 0.74 9 23.4 0.93 0.87 0.85 9 20.0 0.93 0.77 0.70 5 32.0
2.2 0.73 0.10 0.16 19 32 0.87 0.77 0.76 5 11.3 0.90 0.80 0.80 5 12.0 0.93 0.83 0.71 5 32.2
2.3 0.83 0.17 0.18 19 33.0 0.90 0.80 0.75 5 12.4 0.87 0.83 0.81 5 10.1 0.93 0.80 0.68 5 32.1
2.4 0.77 0.20 0.28 19 32.8 0.83 0.80 0.79 5 10.5 0.90 0.80 0.78 6 13.0 0.97 0.83 0.75 5 32.0
2.5 0.67 0.50 0.42 14 31.3 0.87 0.83 0.81 5 10.7 0.90 0.77 0.77 7 14.0 1.00 0.87 0.71 5 32.0

AIME 2025 (math)
— 0.53 0.00 0.06 28 32.0 0.80 0.70 0.62 17 32.0 0.80 0.67 0.65 22 32.0 0.90 0.83 0.67 10 32.0

1.8 - - - - - 0.77 0.70 0.60 0.90 24.5 - - - - - - - - - -
2.0 0.53 0.00 0.05 19 28.8 0.77 0.70 0.61 8 18.4 0.73 0.60 0.59 8 17.4 0.90 0.83 0.66 5 31.1
2.2 0.43 0.00 0.07 19 29.9 0.67 0.63 0.64 1 3.1 0.70 0.63 0.64 2 4.9 0.93 0.80 0.67 5 30
2.3 0.37 0.10 0.14 17 27.8 0.60 0.60 0.60 0.3 1.1 0.70 0.67 0.66 1 2.2 0.93 0.73 0.64 5 31.4
2.4 0.53 0.07 0.11 17 27.6 0.70 0.70 0.70 0.3 1.1 0.63 0.60 0.61 0.5 1.2 0.93 0.80 0.66 5 29.8
2.5 0.43 0.23 0.26 10 17.5 0.60 0.60 0.60 0.3 1.0 0.63 0.60 0.61 0.4 1.2 0.90 0.83 0.69 5 26.1

2.0 - - - - - - - - - - - - - - - - - - - -

1.8 - - - - - 0.80 0.70 0.63 13 32.8 - - - - - - - - - -
2.0 0.63 0.00 0.06 20 32.0 0.83 0.73 0.63 12 30.0 0.80 0.63 0.63 12 28.0 0.90 0.83 0.66 5 32.0
2.2 0.57 0.00 0.08 20 32.0 0.80 0.70 0.70 6 14.7 0.80 0.63 0.68 7 16.1 0.97 0.80 0.68 5 32.9
2.3 0.57 0.10 0.15 19 32.1 0.80 0.77 0.71 8 17.5 0.80 0.73 0.71 6 13.1 0.93 0.73 0.64 5 32.2
2.4 0.67 0.07 0.13 19 32.2 0.80 0.73 0.71 5 10.7 0.80 0.70 0.68 7 15.3 0.93 0.80 0.66 6 33.0
2.5 0.73 0.33 0.31 15 33.6 0.83 0.73 0.69 7 15.0 0.80 0.70 0.68 6 14.0 0.93 0.83 0.69 7 32.0

HMMT (math)
— 0.23 0.00 0.03 28 32.0 0.50 0.37 0.34 18 32.0 0.57 0.43 0.37 24 32.0 0.63 0.53 0.38 13 32.0

1.8 0.23 0.03 0.06 20 31.7 0.43 0.37 0.33 10 22.7 - - - - - - - - - -
2.0 0.33 0.03 0.07 20 30.8 0.43 0.37 0.35 7 15.5 0.43 0.37 0.33 8 18.1 0.70 0.43 0.37 6 31.9
2.2 0.23 0.00 0.06 18 28.5 0.37 0.37 0.36 1 3.3 0.40 0.37 0.38 3 6.2 0.67 0.43 0.36 6 32.0
2.3 0.27 0.10 0.12 17 27.5 0.40 0.40 0.40 1 2.3 0.40 0.40 0.35 2 4.7 0.63 0.47 0.40 6 30.9
2.4 0.27 0.17 0.18 14 23.8 0.33 0.33 0.33 0.4 1.1 0.37 0.37 0.35 1 1.5 0.63 0.43 0.38 6 30.8
2.5 0.23 0.17 0.17 10 17.4 0.43 0.43 0.43 0.3 1.0 0.37 0.37 0.37 0.4 1.1 0.67 0.53 0.40 6 30.5

2.0 - - - - - - - - - - - - - - - - - - - -

1.8 0.27 0.03 0.06 20 32.0 0.47 0.37 0.33 15 32.9 - - - - - - - - - -
2.0 0.40 0.03 0.09 20 32.0 0.53 0.37 0.36 14 32.0 0.57 0.40 0.35 15 32.1 0.70 0.43 0.37 6 32.0
2.2 0.33 0.00 0.06 19 32.0 0.53 0.37 0.37 11 24.5 0.57 0.43 0.43 13 27.5 n/a n/a n/a n/a n/a
2.3 0.33 0.10 0.13 19 32.0 0.57 0.40 0.41 10 22.6 0.53 0.43 0.38 11 24.0 0.67 0.47 0.40 7 32.0
2.4 0.40 0.17 0.19 17 32.2 0.50 0.40 0.37 11 25.2 0.57 0.43 0.39 11 24.0 0.63 0.43 0.38 7 32.0
2.5 0.40 0.17 0.19 15 32.7 0.60 0.43 0.44 10 21.9 0.50 0.37 0.39 11 23.5 0.67 0.53 0.40 7 32.0

GPQA-Diamond (science)
— 0.49 0.00 0.03 185 32.0 0.75 0.51 0.43 65 32.0 0.95 0.15 0.18 68 32.0 0.96 0.68 0.65 24 32.0

1.8 - - - - - 0.78 0.48 0.42 48 28.2 - - - - - - - - - -
2.0 0.68 0.04 0.09 137 30.8 0.75 0.51 0.43 46 26.8 0.93 0.25 0.24 37 28.5 0.93 0.72 0.66 13 29.7
2.2 0.62 0.07 0.11 130 30.0 0.71 0.47 0.43 38 22.1 0.91 0.18 0.22 33 25.0 0.97 0.71 0.66 14 27.6
2.3 0.61 0.02 0.07 133 30.7 0.64 0.49 0.43 23 14.7 0.81 0.21 0.18 23 17.4 0.95 0.66 0.65 14 30.9
2.4 0.61 0.06 0.10 126 29.8 0.56 0.45 0.44 12 7.4 - - - - - 0.94 0.70 0.66 14 25.8
2.5 0.59 0.10 0.15 113 27.6 0.49 0.46 0.45 3 2.5 0.66 0.20 0.21 4 3.1 0.95 0.68 0.65 13 24.0

1.8 - - - - - 0.83 0.49 0.43 57 32.2 - - - - - - - - - -
2.0 0.79 0.04 0.09 137 32.0 0.81 0.51 0.43 59 32.4 0.96 0.25 0.26 43 32.5 0.99 0.72 0.66 15 32.3
2.2 0.81 0.07 0.12 132 32.0 0.81 0.50 0.45 55 32.4 0.97 0.18 0.25 43 33.8 0.98 0.71 0.66 15 29.9
2.3 0.75 0.03 0.09 135 32.0 0.81 0.53 0.47 44 27.3 0.97 0.25 0.25 46 35.4 0.97 0.66 0.65 14 30.9
2.4 0.79 0.08 0.12 128 32.0 0.81 0.51 0.50 37 22.4 - - - - - 0.99 0.70 0.66 15 29.9
2.5 0.85 0.12 0.18 119 32.1 0.81 0.59 0.54 34 19.9 0.94 0.26 0.33 45 35.6 0.98 0.68 0.66 14 27.3

HumanEval Plus (code)
— 0.00 0.00 0.00 161 32.0 0.91 0.82 0.78 27 32.0 0.95 0.90 0.86 25 32.0 0.95 0.83 0.79 5 32.0

1.8 - - - - - 0.87 0.76 0.76 16 9.9 0.95 0.82 0.79 18 25.0 - - - - -
2.0 0.04 0.01 0.01 94 30.7 0.86 0.79 0.80 10 6.20 0.96 0.85 0.77 21 23.0 0.96 0.88 0.83 4 24.7
2.2 0.04 0.01 0.01 65 26.3 0.86 0.86 0.86 1 1.1 0.94 0.86 0.83 13 14.0 0.97 0.88 0.82 3 23.3
2.3 0.68 0.46 0.44 33 17.3 0.84 0.82 0.82 0.5 1.1 0.87 0.82 0.80 6 7.4 0.93 0.81 0.74 3 22.8
2.4 0.52 0.37 0.38 13 9.0 0.81 0.81 0.81 0.5 1.1 0.92 0.88 0.88 3 3.5 0.97 0.88 0.85 3 20.3
2.5 0.52 0.48 0.47 3 2.6 0.82 0.82 0.82 0.4 1.0 0.88 0.87 0.86 1 1.5 0.95 0.86 0.82 3 18.6

1.8 - - - - - - - - - - - - - - - - - - - -
2.0 - - - - - 0.94 0.79 0.82 17 11.2 0.97 0.77 0.74 22 24.7 0.97 0.89 0.84 5 29.3
2.2 - - - - - 0.92 0.86 0.87 9 5.7 0.96 0.87 0.83 15 15.9 0.97 0.88 0.82 5 29.0
2.3 - - - - - 0.92 0.87 0.86 11 9.9 0.98 0.88 0.86 13 16.9 0.97 0.90 0.84 5 28.8
2.4 0.75 0.52 0.56 20 19.3 0.94 0.87 0.86 12 10.9 0.97 0.90 0.89 8 8.5 0.97 0.89 0.85 5 26.4
2.5 - - - - - 0.93 0.86 0.86 12 11.8 0.96 0.91 0.90 8 9.3 0.97 0.88 0.83 5 27.2

Table 3: All models, benchmarks and entropy-thresholds θ configurations. Higher is better for
Pass@1 (p@1), Cons@k (c@32) and Pass Rate (PR); lower is better for # Token. # Token are
in 1e5 unit. Results for FULL PARALLEL sampling generations, EAGER-init generations, and full
EAGER. Bold is best overall, underline is best within each category always including the FULL
PARALLEL sampling one.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B EFFECT OF TEMPERATURE

The temperature hyperparameter, τ , plays a critical role during autoregressive decoding by scal-
ing the logits used by the sampling method (decoding becomes more greedy as τ → 0). In this
section, we conduct a short exploration on the effect of temperature on EAGER. This is espe-
cially important in the current context, where a higher diversity among the generated sequences
can intuitively have an effect on the performance metrics. For this exploration, we focus on two
LLMs, SmolLM 3B & DeepSeek 8B, two temperature settings, τ ∈ {0.6, 0.9} and AIME 2025 as
the evaluation dataset. Furthermore, we conduct the analysis for varying entropy threshold levels
θ ∈ {2.0, 2.2, 2.3, 2.4, 2.4, 2.5}.
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Effect of Temperature and EAGER on Model Performance (AIME 2025)
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Figure 5: Pass@1 and Cons@max at low (τ = 0.6) and high(τ = 0.6) temperature settings. Hori-
zontal lines show the performance for the default sampling method, while the bars show EAGER’s
performance for varying entropy threshold levels θ.

As shown in Figure 5, SmolLM 3B generally performs best at the high temperature setting while
the opposite is true for DeepSeek 8B. Importantly, at both temperature levels, EAGER is competi-
tive with the corresponding default baselines, often surpassing them. A direct comparison between
the low and high temperature setting including all metrics for default, EAGER and EAGER-init
generations is presented in Table 4.

θ
SmolLM3-3B Deepseek 8B

Low Temperature (τ = 0.6) High Temperature (τ = 0.9) Low Temperature (τ = 0.6) High Temperature (τ = 0.9)
↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S ↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S ↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S ↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S

- 0.53 0.00 0.06 28 32.0 0.63 0.37 0.25 44 32.0 0.80 0.67 0.65 22.0 32.0 0.70 0.60 0.57 7.8 32.0

2.0 0.53 0.00 0.05 19 28.8 0.67 0.30 0.25 26 31.0 0.73 0.60 0.59 8.0 17.4 0.77 0.63 0.58 3.2 22.7
2.2 0.43 0.00 0.07 19 29.9 0.53 0.37 0.25 27 30.9 0.70 0.63 0.64 2.0 4.9 0.70 0.60 0.58 1.9 11.3
2.3 0.37 0.10 0.14 17 27.8 0.57 0.33 0.26 26 29.9 0.70 0.67 0.66 1.0 2.2 0.57 0.53 0.53 0.7 4.4
2.4 0.53 0.07 0.11 17 27.6 0.60 0.40 0.32 22 25.8 0.63 0.60 0.61 0.5 1.2 0.57 0.53 0.53 0.7 4.0
2.5 0.43 0.23 0.26 10 17.5 0.50 0.37 0.26 21 24.7 0.63 0.60 0.61 0.4 1.2 0.63 0.60 0.61 0.3 2.0

2.0 0.63 0.00 0.06 20 32.0 0.67 0.30 0.25 27 32.0 0.80 0.63 0.63 12.0 28.0 0.77 0.63 0.58 4.4 30.2
2.2 0.57 0.00 0.08 20 32.0 0.53 0.33 0.25 28 32.0 0.80 0.63 0.68 7.0 16.1 0.77 0.63 0.62 3.5 21.0
2.3 0.57 0.10 0.15 19 32.1 0.70 0.33 0.27 28 32.1 0.80 0.73 0.71 6.0 13.1 0.73 0.63 0.63 3.2 21.1
2.4 0.67 0.07 0.13 19 32.2 0.70 0.40 0.33 29 32.0 0.80 0.70 0.68 7.0 15.3 0.73 0.60 0.59 3.1 18.9
2.5 0.73 0.33 0.31 15 33.6 0.63 0.37 0.29 29 32.4 0.80 0.70 0.68 6.0 14.0 0.77 0.67 0.66 2.4 14.9

Table 4: AIME 2025 results for default, EAGER-init, and EAGER generations for low and high
temperature τ and varying entropy threshold θ. Best results per temperature and threshold setting
are marked in boldface.

Notably, the performance of SmolLM 3B is particularly higher in the high temperature setting when
measured by the Cons@max rate. We find that this is a result of the reduction of generations in which
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the same tokens are repeatedly produced (e.g., “The answer is: The answer is: The ...”). Specifically,
in the high temperature setting, this phenomenon occurs, on average, 59.1% less compared to the low
temperature setting. This behaviour was only observed with SmolLM 3B, suggesting it results from
the smaller model size. An exception arises with the HumanEval Plus benchmark, where SmolLM
3B failed to solve any tasks, resulting in all metrics being zero under the FULL PARALLEL sampling
setting. In contrast, EAGER-init and EAGER appeared to partially mitigate this issue.

Lastly, we also find that the temperature has an effect on the number of tokens generated which, by
extension, impact performance. For example, when EAGER is used at the high temperature setting,
Deepseek 8B generates, on average, less than half the number of tokens compared to the low tem-
perature setting. In contrast, SmolLM3-3B generates more tokens at the high-temperature setting.
In both cases, and in line with the test-time scaling paradigm, we find that higher performance is
achieved in whichever temperature setting more tokens are generated.

C GENERATION PARAMS

All models are used with their longest thinking configuration to get their best performances. Further-
more we limit their context window to 32k tokens. All sequences are generated with a temperature of
τ = 0.60 and a top-p of 95%. The effect of temperature is discussed in Appendix B. Table 5 reports
the thresholds used for each benchmark and model. Following the discussion in Section 4.1, we
select thresholds independently based on their intended use. The EAGER-init sampling method is
designed to save budget without significantly compromising performance (lower threshold), whereas
EAGER aims to preserve as much performance as possible for later reuse, higher threshold are pre-
ferred in such scenario.

SmoLM 3B Qwen3 4B DeepSeek 8B GPT-oss 20B

EAGER-init EAGER EAGER-init EAGER EAGER-init EAGER EAGER-init EAGER
AIME 2024 2.5 2.5 2.0 2.3 2.0 2.0 2.4 2.5
AIME 2025 2.4 2.5 2.0 2.5 2.2 2.5 2.4 2.5
HMMT 2025 2.5 2.5 2.5 2.5 2.4 2.5 2.5 2.5
GPQA-Diamond 2.5 2.5 2.0 2.5 2.0 2.3 2.2 2.0
HumanEval Plus 2.3 - 2.2 2.4 2.0 2.4 2.4 2.4

Table 5: Best thresholds for every benchmark and model.
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