
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EAGER: ENTROPY-AWARE GENERATION FOR ADAP-
TIVE INFERENCE-TIME SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

With the rise of reasoning language models and test-time scaling methods as
a paradigm for improving model performance, substantial computation is of-
ten required to generate multiple candidate sequences from the same prompt.
This enables exploration of different reasoning paths toward the correct solu-
tion, however, allocates the same compute budget for each prompt. Grounded
on the assumption that different prompts carry different degrees of complexity,
and thus different computation needs, we propose EAGER, a training-free gener-
ation method that leverages model uncertainty through token-wise entropy distri-
bution to reduce redundant computation and concurrently improve overall perfor-
mance. EAGER allows branching to multiple reasoning paths only in the presence
of high-entropy tokens, and then reallocates the saved compute budget to the in-
stances where exploration of alternative paths is most needed. We find that across
multiple open-source models on complex reasoning benchmarks such as AIME
2025, while EAGER generates up to 65% fewer tokens (hence saving the com-
pute), it achieves up to 27% improvement in the Pass@1 compared to the FULL
PARALLEL sampling. Our results show that EAGER consistently maximizes the
efficiency-performance trade-off by enabling dynamic control over computation
expenditure.

Prompt 2:
On $\triangle
ABC$ points
A, D, E,
and B lie...

Prompt 3:
...

Prompt 1:
Find the
sum of all
integer
bases...Reasoning

Tasks

To solve this probelm I need to subtract the two num...

First, let's declare a new variable that will be used to...

try to solve the main issue by following t...

setup a solution that is simpler to sol...

equation step by st...

Ok the best way to address this problem it to start ...

solution involves careful division of the two...

simplify the given problem is to ch...

by fl�ip ...

easier to solv...

han...

the fi�rst step is to defi�ne the li...

a new eleme...

Sequence
budget

0
1

M = 32

0
1

M = 32

EA
G

er
 -

in
it

EA
G

er

Less token use
Improved
performance

Saved sequences budget

Redistribute
additional
budget

Figure 1: Left: We introduce EAGER, a generation method that dynamically allocates the per-
prompt budget during decoding, branching only when high-entropy peaks are detected. For each
prompt, the total number of allowed sequences is capped at M , and we track the actual budget con-
sumed by our preparatory stage, EAGER-init. The remaining budget is then reused by continuing
the generation only for sequences that did not reach a correct final solution (i.e., with Pass@1 = 0),
in contrast to the fixed-budget allocation of FULL PARALLEL sampling. Right: Both EAGER-init
and EAGER consistently reduce token usage compared to the standard FULL PARALLEL sampling
approach when scaling the M limit ∈ [4, 8, 16, 24, 32]. In addition, EAGER achieves a clear perfor-
mance advantage over all other decoding methods.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Recent advances in large language models (LLMs) have led to substantial improvements in complex
reasoning tasks, particularly with the adoption of chain-of-thought (CoT) prompting (Wei et al.,
2022). Such tasks often admit multiple valid reasoning paths that converge to the same correct
solution (Stanovich & West, 2002). Rather than relying on a single greedy decoding path, the single
generation can be replaced by multiple sampled candidate sequences, thereby producing a diverse
set of reasoning paths and corresponding final answers (Wang et al., 2023). This strategy has been
shown to enhance performance on challenging reasoning problems: by exploring multiple reasoning
paths, the model reduces its reliance on the stochasticity of a single greedy generation and increases
the likelihood of arriving at a correct solution.

Despite its success, CoTs introduce an inherent computational inefficiency: reasoning sequences
tend to be long, and a large portion of the tokens generated are predictable continuations rather than
genuine decision points (Wang et al., 2025). This inefficiency is amplified in approaches that explore
multiple reasoning paths in parallel, where each path independently regenerates identical prefixes
before diverging. For prompts with simple problems, many of these paths converge to the same solu-
tion with little variation, resulting in redundant computation. For more complex prompts, however,
the diversity of reasoning paths becomes crucial, and additional generations may be necessary to
discover a correct solution (Snell et al., 2025; Muennighoff et al., 2025). This observation suggests
that a per-problem decision to let or not let the model explore alternative paths would be desirable.
We argue that such decision can be guided by monitoring model uncertainty during generation to-
wards an adaptive allocation of computating budget. Intuitively, when the model’s predictions are
confident and stable, only a few candidate sequences are needed, while at points of high uncertainty,
where multiple reasoning paths are plausible, additional exploration becomes critical.

To address these issues, we introduce EAGER, an Entropy-Aware Generation method that mon-
itors token-level uncertainty during decoding to guide where new parallel reasoning traces should
start. By branching only at high-entropy tokens, we avoid regenerating identical low-entropy con-
tinuations, substantially reducing computation overhead without sacrificing coverage of diverse rea-
soning traces. Furthermore, reducing the parallel samples for easy prompts, EAGER dynamically
allocates the unused sampling budget towards more challenging ones, maximizing the benefits of
inference-time scaling for difficult prompts. 1

We evaluate EAGER on a diverse set of benchmarks, spanning from complex math problems to
science-related questions and code generation tasks. All the tested LMs, from the smallest 3B to
the biggest 20B parameter model, show a performance boost of up to 27% when using EAGER
compared to our baseline FULL PARALLEL sampling setting.

Our main contributions are as follows:

• We empirically show that token-wise entropy peaks as a form of online (i.e., measured
during generation) uncertainty is a good proxy that shows when more exploration is needed
during the generation, hence reflecting the difficulty of a prompt for the model used.

• We introduce, a novel, training-free decoding method that leverages entropy distribution
during generation to dynamically reduce compute cost while maintaining the benefits of
inference-time scaling. EAGER generates up to 65% fewer tokens and saves up to 80% of
the entire generation budget across all our benchmarks and models.

• To maximize the benefits of inference-time scaling, we show that EAGER enables adaptive
use of the given sampling budget, where it spends more compute on the hard problems.

2 PRELIMINARIES

In the inference-time scaling paradigm, a language model generates multiple parallel sequences so
that it can explore various reasoning paths to find a correct solution (Welleck et al., 2024; Snell
et al., 2025). This is oftentimes facilitated by sampling completions from the model with a relatively
high temperature using methods such as nucleus sampling (Holtzman et al., 2020). We refer to this

1Code and data: released upon acceptance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

standard approach as the FULL PARALLEL sampling generation procedure. This approach is useful
in various settings, including for the generation of diverse solutions to a problem, or in large-scale
reinforcement learning (RL) pipelines such as in RLVR (DeepSeek-AI, 2025), where among the
diverse set of generated sequences, only the correct ones are selected to update the policy.

Our objective is to optimize this process by exploiting uncertainty during generation, allowing an
efficient allocation of resources (in terms of number of generated sequences) to solve a given prompt.

2.1 UNCERTAINTY IN LLMS’ GENERATIONS

Among the different techniques for uncertainty quantification in LLMs, we focus our attention on
top-K token entropy, as token entropy has been shown to be a powerful uncertainty quantification
measure (Fomicheva et al., 2020). We define top-K token entropy as:

H
(K)
t := −

∑
i∈I(K)

t

p
(K)
t,i log p

(K)
t,i , (1)

where I(K)
t ⊆ {1, . . . , |V |} is the index set of the K tokens with highest pt,i probability with V

denoting the vocabulary of the LM and t ∈ N+ indexes the current generation step. Specifically,
the quantity pt,i represents the probability assigned by the model to token i ∈ V at step t after
the softmax computation. We denote I(K)

t ⊆ {1, . . . , |V |} the index set of the K tokens with the
highest probability pt,i and p

(K)
t,i their re-normalized probabilities, given by:

p
(K)
t,i :=

pt,i∑
j∈I(K)

t
pt,j

, i ∈ I(K)
t , (2)

where
∑

i∈I(K)
t

p
(K)
t,i = 1.

Compared to more precise and computationally intensive uncertainty quantification methods found
in the literature (Vashurin et al., 2025; Kuhn et al., 2023; Duan et al., 2024, e.g.,), top-K token
entropy provides a strong approximation to the entropy of the full-vocabulary, as it computes the
dominant contributions from the most probable tokens with minimal computational overhead 2.

2.2 ENTROPY IN LONG CHAIN-OF-THOUGHT REASONING

For our goal of saving resources in parallel sampling by leveraging model uncertainty, we first need
to determine whether and how token entropy values relate to the model’s final performance. To
this end, we analyze the entropy patterns of the CoT sequences generated by an LLM to solve
challenging problems. We monitor the entropy of each token during generation, and rather than
analyzing the entire entropy sequence, we focus on identifying significant spikes as signals of higher
uncertainty. We hypothesize that this peak-entropy measure can serve as a proxy for the model’s
perceived difficulty of a problem and thus its (in)ability to solve it: high peaks indicate moments
where the model is highly uncertain about the next step in its reasoning chain, low entropy indicates
that the model is more confident about what to generate next.

Given the input prompt x, we sample M independent candidate sequences {t(m)}Mm=1 from the lan-
guage model. During generation, for each token position t in each sequence m, we record the token
entropy H

(K)
t (y(m)), with K = 20. For each sequence, we define the peak entropy value H̄

(m)
peak as

the mean of all entropy values that lie in the pth percentile of the sequence’s entropy distribution:

H̄
(m)
peak (p

th) :=
1

|T peak
m (pth)|

∑
t∈T peak

m (pth)

H
(K)
t (y(m)), (3)

2Full-vocabulary entropy computation can be costly due to large vocabulary sizes, often in the tens of thou-
sands. By restricting calculations to the top-K most probable tokens, the token entropy significantly reduces
computational overhead while maintaining efficiency during generation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where
T peak
m (pth) := {t : H(K)

t (y(m)) ≥ pth
(
{H(K)

t′ (y(m))}t′
)
}, (4)

and pth(·) denotes the pth percentile of the entropy sequence.

2.0 2.2 2.4 2.6
Token Entropy Peaks average

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Pass Rate VS Token Entropy Peaks average
 S. corr: -0.547, p-value: 2.6e-34

Math
Science
Code Gen

Figure 2: For each sequence generated by
Qwen3 4B with FULL PARALLEL sampling
(M = 32), we report its Pass Rate accu-
racy and the average entropy peak (pth =
99.9). The results reveal a negative correla-
tion (r = −0.547) between Pass Rate and the
average entropy peak across sequences. No-
tably, sequences exhibiting higher entropy at
any generation step are less likely to yield a
correct answer.

We run Qwen3 4B3, a strong open-source LLM with
long CoT reasoning capabilities, on five standard
reasoning benchmarks for math, science and code
generation tasks (see Section 4 for the benchmarks’
details), allowing for M = 32 parallel sequences to
be generated.

Figure 2 shows the Pass Rate accuracy, i.e., the pro-
portion of correct answers out of M = 32 gener-
ations, for each prompt and the corresponding aver-
age peak entropy H̄

(m)(pth)
peak . We focus on the top per-

centile, specifically pth = 99.9, to isolate the high-
est entropy peaks. We observe a statistically signif-
icant negative correlation (ρ ≈ −0.55), between the
peak entropy during generation and model Pass Rate
accuracy. This suggests that higher entropy peaks,
indicative of greater uncertainty during generation,
are associated with lower performance. Thus, ad-
ditional path exploration during these phases may
help to improve performance. Conversely, when en-
tropy remains low, the model is more confident on
the generated solutions (hence, the long CoT reason-
ing sequences), suggesting that further exploration
may be less likely to yield significant improvements.
This observation is in line with recent work which
found that high-entropy tokens disproportionately contribute to performance gains during RL train-
ing (Wang et al., 2025).

Given this evidence, we ask: Can token entropy be leveraged to develop a decoding adaptive strategy
that allocates more compute to uncertain regions while limiting effort in more confident segments?

3 ENTROPY-AWARE GENERATION EXPLAINED

We introduce EAGER, a training-free inference-time scaling approach aimed at optimizing parallel
sampling by leveraging token entropy to guide resource allocation. EAGER consists of two stages:
in the first one, EAGER-init dynamically adjusts the generation process to focus on sequences where
the most effort is needed, while pruning unnecessary generations. In the second stage, the saved
computational budget is reallocated to enhance performance on the remaining challenging prompts.

3.1 EAGER-INIT: SAVE COMPUTE VIA TOKEN ENTROPY

EAGER-init represents the first stage of our approach and operates by identifying potentially easy
questions during generation. Instead of sampling constant M generations for every prompt, EA-
GER-init computes token entropy H

(K)
t at each step t, and compares it to a predefined threshold

θ.4 If the observed entropy exceeds this threshold, the current sequence is branched, creating a new
candidate continuation at that position. If the entropy is below the threshold, the generation contin-
ues with the existing sequence. During the branching step, we reuse the token distribution from the
model but adopt a temporally greedy approach; we select the top two most likely tokens to ensure
that the two new sequences always start with different tokens. This process continues until the to-
tal number of active sequences reaches a predefined limit M , at which point no further branching
occurs. A detailed overview of the EAGER-init algorithm is provided in Algorithm 1.

3https://huggingface.co/Qwen/Qwen3-4B
4We empirically find the best threshold for a model. See Section 4.1 for a detailed analysis of the threshold.

4

https://huggingface.co/Qwen/Qwen3-4B

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This process yields a generation tree where the root is the initial sequence, and each branching node
corresponds to a high-entropy token (Figure 1); the generation stops when the total number of nodes
is equal to M . For implementation efficiency, we restrict the branching procedure to long CoT
sequences only, and entropy monitoring is halted if no branching has occurred within the previous
1000 tokens from the last branch.

Algorithm 1: EAGER-init sequence generation
Input: Prompt x, entropy threshold θ > 0, max active sequences M , temperature τ , top-K for

entropy K, maximum steps T
Output: Completed set of sequences Y

Notation: H(K)
t is the top-K token entropy at step t under distribution p(· | x, y).

Initialize active set A ← {y(1)} ; // initial continuation from prompt x
Initialize completed set Y ← ∅ ;
for t← 1 to T do

if A = ∅ then
break

foreach sequence y ∈ A do
Compute next-token distribution p(· | x, y) with temperature τ ;
Compute entropy H

(K)
t from top-K probabilities ;

if H(K)
t ≥ θ and |A| < M then
a1 ← argmaxa p(a | x, y) ; // most likely token
a2 ← second-most-likely token under p ;
Update y ← y ◦ a1 ; // greedy continuation
Create branch y′ ← y ◦ a2, add y′ to A ;

else
Sample a ∼ p(· | x, y) and update y ← y ◦ a ;

if y ends with EOS or length limit then
Move y from A to Y ;

return Y ;

Reducing test-time compute through EAGER-init. EAGER-init, saves computational budget
through two mechanisms. The first arises directly from the branching logic: if a branch occurs at
token position t, all preceding tokens (0, . . . , t − 1) are reused across branches rather than being
regenerated independently. The second, and more substantial source of savings occurs when the
generation process does not saturate the maximum number of sequences M set per prompt. For
easy queries, the model’s default sampling converges to identical or near-identical completions, so
that EAGER-init may terminate with only a single sequence, saving M−1 full generations compared
to a fixed-budget baseline which would let the model generate M sequences for any given prompt.
This surplus capacity can then be reallocated where it is most needed.

3.2 EAGER: DYNAMICALLY ALLOCATE THE SAVED COMPUTE

The next challenge is to devise the best strategy to reallocate the compute which has been saved.
For this, we consider challenging prompts, defining a prompt as challenging if it fails to achieve
Pass@1 accuracy under EAGER-init (i.e., no generated sequence matches the correct answer). For
each such prompt, we allocate an additional budget b, computed as:

b = min(Mtheoretical −Mactual, 2M) (5)

where Mtheoretical = M ×|D| is the maximum possible number of sequences that could be generated
for the dataset D, and Mactual =

∑|D|
i=1 # Seqi is the total number of sequences actually produced

under entropy-aware generation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2: Full EAGER algorithm
Input: Dataset D = {(xi, zi)}Ni=1, initial generations {Yi}Ni=1 (from EAGER-init), max

sequences per prompt M , entropy threshold θ
Output: Augmented generations {Y ′

i}Ni=1

Compute Mtheoretical ←M · |D| ;
Compute Mactual ←

∑N
i=1 |Yi| ;

Set remaining budget b←Mtheoretical −Mactual ;
Identify challenging prompts I = {i | Pass@1(Yi, zi) = 0} ;

if b = 0 or I = ∅ then
return {Yi}

Assign additional budget b = min(b, 2M) uniformly across all i ∈ I ;
foreach i ∈ I do

if |Yi| < M then
// underutilizing prompt
Set θ′ ← 0.8 · θ ;
Generate up to M + b sequences for xi using Algorithm 1 with θ′ ;

else
// prompt already saturated at M
Set θ′ ← θ ;
Generate up to M + b sequences for xi using Algorithm 1 with θ′ ;

Append new sequences to Yi ;
return {Y ′

i}Ni=1 ;

The term Mtheoretical−Mactual represents the surplus budget created by early stopping in easy prompts.
We cap b at 2M to avoid pathological cases where extremely large surpluses would lead to dispro-
portionately high generation budgets for single prompts.5 The reallocation policy is uniform across
all failing Pass@1 prompts, but the generation strategy adapts based on the prompt’s prior behavior.

For underutilizing prompts (< M sequences with EAGER-init), we reduce the entropy threshold θ
by 20%, enabling earlier and more frequent branching. For saturating prompts (< M sequences
with EAGER-init): continue generation until the new per-prompt limit M + b is reached, expanding
exploration depth where additional sequences may yield correct solutions.

By systematically redirecting unused capacity from easy prompts to hard ones, this strategy in-
creases coverage without exceeding the original theoretical budget Mtheoretical. An overview of this
approach is reported in Algorithm 2. Importantly, savings from branch-based token reuse persist
even when b > 0, and all additional sequences continue to adopt the same framework described in
Algorithm 1, ensuring that the total token count remains lower than in an equivalent fixed-budget
FULL PARALLEL sampling baseline.

3.3 EAGER IN THE WILD: BUDGET REALLOCATION IN THE ABSENCE OF TARGET LABELS

The dynamic budget allocation based on challenging prompts (Sec 3.2) relies on having access to
target answers, therefore setting a performance upperbound through optimal reallocation. To test
EAGER, when there is no verifier in the test time, we simulate having no access to the answers
to what extent EAGER can improve on the reported performance. We run these experiments on a
subset of the math benchmarks, using Qwen3 4B and Deepseek 8B. Specifically, we start from a
low threshold (θ = 2.0) and use the saved budget only on saturating prompts, namely those prompts
that were prevented from further branching due to the pre-set M maximum number of sequences
allowed. The rationale behind this choice is that if M acts as a branching limit, then not all promising
generation paths may have been sufficiently explored.

5Especially in larger datasets, budget savings for easy prompts were large enough to allocate hundreds, if not
thousand, of additional sequences to single failing prompts; this cap prevents excessive unbalanced allocation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Sampling AIME 2025 GPQA-Diamond HumanEval Plus
p@1 c@k PR p@1 c@k PR p@1 c@k PR

SmolLM 3B
FULL PARALLEL 0.53 0.00 0.06 0.49 0.00 0.03 0.00 0.00 0.00
EAGER-INIT 0.53 0.07 0.11 0.59 0.10 0.15 0.68 0.46 0.44
EAGER 0.73 0.33 0.31 0.85 0.12 0.18 0.75 0.56 0.52

Qwen3 4B
FULL PARALLEL 0.80 0.70 0.62 0.75 0.51 0.43 0.91 0.82 0.78
EAGER-INIT 0.77 0.70 0.61 0.75 0.51 0.43 0.86 0.86 0.86
EAGER 0.83 0.73 0.69 0.81 0.59 0.54 0.94 0.87 0.86

DeepSeek 8B
FULL PARALLEL 0.80 0.67 0.65 0.82 0.15 0.18 0.95 0.90 0.86
EAGER-INIT 0.70 0.63 0.64 0.83 0.25 0.24 0.96 0.85 0.77
EAGER 0.77 0.67 0.67 0.96 0.25 0.25 0.97 0.90 0.89

GPT-Oss 20B
FULL PARALLEL 0.90 0.83 0.67 0.96 0.68 0.65 0.95 0.83 0.79
EAGER-INIT 0.93 0.80 0.66 0.97 0.71 0.66 0.97 0.88 0.85
EAGER 0.97 0.80 0.68 0.99 0.72 0.66 0.97 0.89 0.85

Table 1: Comparison of FULL PARALLEL, EAGER-INIT and EAGER in AIME-2025, GPQA-
Diamond and HumanEval Plus. We report pass@1, cons@k and Pass Rate where k is number
of samples generated (while always 32 for the baseline, differs per prompt for EAGER-init and EA-
GER). EAGER consistently achieves the best results and EAGER-init performs very competitive
with FULL PARALLEL sampling while saving significant amount of compute as shown in Figure 3.

4 EXPERIMENTAL SETTING AND RESULTS

Models. We evaluate multiple reasoning models from different model families and sizes to test
EAGER in comparison to the FULL PARALLEL sampling baseline: SmolLM-3B (HuggingFaceTB,
2025), Qwen3-4B (Team, 2025), DeepSeek-R1-0528-Qwen3-8B (DeepSeek-AI, 2025) and GPT-oss
20B (OpenAI, 2025). Additional generation parameters and EAGER hyper-parameters are available
in Appendix C.

Benchmarks. We evaluate our approach saved resources (compute metrics) for generation and
performance on a set of diverse reasoning benchmarks on various tasks: AIME 2024 and 2025, and
the 2025 Harvard MIT Math Tournament (Balunović et al., 2025) for math, GPQA-Diamond (Rein
et al., 2023) for scientific domains, and HumanEval Plus (Liu et al., 2023; 2024) for code generation.

Compute metrics. We evaluate efficiency improvements using two complementary metrics: The
first is the average sequence Count (#Seq). FULL PARALLEL sampling uses a fixed budget of
M sequences, in contrast, EAGER uses a dynamic #Seq that depends on the branching behavior.
The second metric is the average token Count (#Token) generated. While #Seq provides a gen-
eral measure of computational efficiency, #Tokens is a more precise indicator since, branching at
step t, reuses previously generated tokens (0, . . . , t − 1) as prefix across new branches rather than
regenerating them, that can lead to substantial savings even when #Seq is comparable.

Performance metrics. We evaluate performance using three complementary metrics. Pass@1
shows whether the model produces at least one correct final solution, Cons@k aggregates responses
through majority voting across k generations. Lastly, Pass Rate measures the proportion of correct
answers over all generated outputs. We report the average metric across each entire benchmark.

4.1 RESULTS

EAGER-init and EAGER yield significant savings in computation. Figure 3 (top row) illus-
trates the efficiency advantages of EAGER-init and EAGER across all benchmarks and model scales.
Starting with EAGER-init, the total number of generated tokens is typically less than half of that re-
quired by FULL PARALLEL sampling. Building on this, EAGER leverages a small fraction of the
saved budget to further improve accuracy, while still generating substantially fewer sequences than
FULL PARALLEL sampling. On the performance side, EAGER consistently achieves higher Pass
Rate accuracy than FULL PARALLEL sampling, indicating superior performance per unit of com-
putation. It is worth noting that the performance of SmolLM 3B is 0.0 across all metrics in the
parallel-sampling setting. This is caused by the generation of sequences in which the same tokens
are repeatedly produced (e.g., “The answer is: The answer is: The ...”). This effect, along with the
effect of temperature is discussed in Appendix B.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0M
0.1M

0.5M

1.0M

To
ke

ns

82
%

47
%

60
%

64
%

64
%

54
%

51
%

42
%

AIME 2024

36
%

45
%

54
%

60
%

90
%

71
%

52
%

44
%

AIME 2025

62
%

43
%

98
%

46
%

98
%

53
%

49
%

46
%

HMMT 2025
Default EAGER-init EAGER

38
%

36
%

28
%

47
% 45
%

32
%

44
%

39
%

GPQA Diamond

79
%

79
%

98
%

56
%

16
%

68
%

37
%

-1
%

HumanEval Plus

3B 4B 8B 20B
0.00

0.25

0.50

0.75

1.00

Pa
ss

 R
at

e

+365%

+2%
+15%

3B 4B 8B 20B

+454%

+9% +3% +1%

3B 4B 8B 20B

+576%

+28% +6% +3%

3B 4B 8B 20B

+417%

+26%

+37%

+1%

3B 4B 8B 20B

+11% +4% +7%

Figure 3: Compute and performance trade-offs of EAGER-init and EAGER. Across all benchmarks
and model size, the efficiency of EAGER-init and EAGER consistently outperforms FULL PARAL-
LEL sampling, requiring only half as many tokens in most cases (top). In addition, they achieve
higher pass rate accuracy (bottom). For issues specific to the smallest 3B model, see Appendix B.

0 0.8M
3B

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
1

0 0.5M
4B

0 0.6M
8B

0 0.3M
20B

AIME 2025

Tokens

0 0.8M
3B

0.2

0.4

0.6

0.8

1.0

0 0.3M
4B

0 0.3M
8B

0 0.1M
20B

GPQA Diamond

Tokens

0 0.8M
3B

0.6

0.7

0.8

0.9

1.0

0 0.1M
4B

0 0.1M
8B

0 0.0M
20B

HumanEval Plus

Tokens

Figure 4: Performance comparison with scaling the total allowed sequences for generating (M ∈
{1, 4, 8, 16, 24, 32}). As M increases (line’s markers), EAGER consistently improves Pass@1 (y-
axis) while reducing the number of tokens needed to find the correct solution (x-axis), further shift-
ing the Pareto frontier of the performance–efficiency trade-off.

EAGER always achieves better performances than FULL PARALLEL sampling. As shown in
Figure 3, EAGER consistently outperforms FULL PARALLEL sampling in terms of Pass Rate. Ta-
ble 1 shows a more comprehensive overview using Pass@1, Cons@k, and Pass Rate. While Pass@1
is highest under EAGER, Pass Rate is consistently equal or better even for EAGER-init compared to
FULL PARALLEL sampling. This suggests that EAGER-init effectively prunes unproductive gener-
ations (higher Pass Rate) at the cost of reduced exploration (lower Pass@1). In general, Pass@1 is
particularly useful in scenarios where obtaining at least one correct answer is critical, for example,
when the user prioritizes correctness and exploration over efficiency as per in Reinforcement Learn-
ing applications. In contrast, Pass Rate and Cons@k capture a different dimension of quality: (i)
higher values indicate that EAGER focuses computation more effectively on promising generations,
and (ii) given the extreme efficiency gains of EAGER-init compared to FULL PARALLEL sampling,
the trade-off is often strongly favorable.

EAGER scales effectively under budget constrains. We evaluate the effect of scaling the max-
imum number of allowed generations, M , on overall performance. As shown in Figure 4, increas-
ing M improves the probability of obtaining at least one correct solution (Pass@1). This trend
is expected, as a larger generation budget naturally enables more extensive exploration. Notably,
EAGER-init – and even more so EAGER – achieve superior Pass@1 under the same constraints,
often with significantly fewer tokens. In other words, EAGER not only benefits from larger M but
also allocates its computational budget more efficiently, resulting in a consistent shift of the Pareto
frontier, where higher accuracy is achieved at lower token cost.

Saturation is a good proxy for budget reallocation. In absence of the target label to guide budget
reallocation to prompts which fail to achieve Pass@1, we use saturation (prompts for which EA-
GER-init reached the maximum number of sequences M and were therefore prevented from further
branching, see Section 3.3) as proxy. Table 2 reports promising results on two mathematical bench-
marks and two models. Overall, compared to the best-performing EAGER configuration, redirecting
the additional budget to saturating sequences achieves the second-best performance in most cases.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Data Qwen3 4B DeepSeek 8B
FP EAGER-init + budget EAGER FP EAGER-init + budget EAGER

AIME 2025 ↑ p@1 0.80 0.77 0.80 0.83 0.80 0.73 0.77 0.80
↓ # T 17 8 12 12 22 8 13 12

HMMT 2025 ↑ p@1 0.50 0.43 0.47 0.53 0.57 0.43 0.50 0.57
↓ # T 18 7 15 14 24 8 15 15

Table 2: Reallocation of the additional budget (+ budget) only on Saturating prompts (i.e., prompts
that reach M = 32 generated sequences). All experiments use a threshold of 2.0, which we found to
provide a good balance between number of tokens (# T × 1e5) used and performance (p@1) across
models and benchmarks. Bold are best results, underline second best.

Threshold guides the trade-off between performance and compute. Efficiency metrics (# To-
kens, # Seq) are directly shaped by the choice of entropy threshold θ. In our experiments, we
explore values in the interval [1.8, 2.7], which captures the majority of observed entropy peaks (see
Section 2.2). Across different model families and sizes, we find consistent efficiency improvements
relative to the FULL PARALLEL sampling baseline throughout this range. The optimal setting of
θ remains task- and model-dependent. Under EAGER-init, lower thresholds encourage more fre-
quent branching, which increases both the number of generated sequences (#Seq) and total tokens
(#Token). Higher thresholds, in contrast, restrict branching, yielding fewer continuations and lower
computational cost. The balance between these regimes varies across architectures, scales, and
datasets. Full results are available in Appendix A.

5 RELATED WORKS

Since the recent introduction of test-time scaling (Snell et al., 2025; Welleck et al., 2024), multiple
approaches have been proposed to improve its efficiency and performance. Wu et al. (2025) propose
REBASE (REward BAlanced SEarch) a branching method that expands reasoning trajectories that
are evaluated as being of high quality by a reward model. While powerful, REBASE is significantly
more computationally expensive compared to directly computing token entropy at test-time. Deep-
Conf (Deep Think with Confidence, Fu et al., 2025) is a method that also leverages local confidence
measures to increase performance and efficiency during generation. DeepConf uses this confidence
measure to truncate sequences where it is lower than a pre-defined threshold (determined during a
warm-up stage). This is in contrast to our proposed approach where the certainty measure drives
branching, instead of truncation. Kang et al. (2025) introduce self-certainty, a sequence-level mea-
sure closely related to cross-entropy. The authors demonstrate that self-certainty discriminates well
between correct and incorrect answers and is robust to reasoning length. The authors additionally
illustrate that self-certainty driven answer selection (through a voting mechanism) leads to improve-
ments in reasoning benchmarks. While the the current work is closely related to the work by Kang
et al., we demonstrate that token-level certainty (in contrast to sequence-level) can function as a
useful tool to modulate performance and efficiency in reasoning LLMs.

6 CONCLUSION AND FUTURE DIRECTIONS

By leveraging token-level entropy, EAGER-init proves to be a highly performant training-free gen-
eration method with significantly higher efficiency compared to FULL PARALLEL sampling. In
applications such as RLVR, where the correct answer is known, EAGER surpasses the Pass@1 per-
formance by up to 27% compared to full parallel sampling while using up to 65% fewer tokens.
When there is no verifier in the test time, EAGER still achieves performance on par with the FULL
PARALLEL sampling while generating up to 40% fewer tokens. We further demonstrate that the
approaches are domain (math, science and coding) and temperature (see Appenidx B) agnostic.

While our current work uses token-level entropy to create branching reasoning streams, future
research could explore other methods for quantifying uncertainty. For example, using Kullback-
Leibler (KL) Divergence to measure token uncertainty is a promising direction, inspired by the
work of Kang et al. (2025). At the same time, a key consideration is that the uncertainty quantifi-
cation method must be lightweight, as a computationally expensive approach would undermine the
goal of improving generation efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Math-
arena: Evaluating llms on uncontaminated math competitions, February 2025. URL https:
//matharena.ai/.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Jinhao Duan, Hao Cheng, Shiqi Wang, Alex Zavalny, Chenan Wang, Renjing Xu, Bhavya Kailkhura,
and Kaidi Xu. Shifting attention to relevance: Towards the predictive uncertainty quantifica-
tion of free-form large language models. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 5050–5063, Bangkok, Thailand, August 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.276. URL https:
//aclanthology.org/2024.acl-long.276/.

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Francisco Guzmán, Mark Fishel,
Nikolaos Aletras, Vishrav Chaudhary, and Lucia Specia. Unsupervised Quality Estimation for
Neural Machine Translation. Transactions of the Association for Computational Linguistics, 8:
539–555, September 2020. ISSN 2307-387X. doi: 10.1162/tacl a 00330.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence, 2025.
URL https://arxiv.org/abs/2508.15260.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=rygGQyrFvH.

HuggingFaceTB. Smollm3: smol, multilingual, long-context reasoner, 2025. URL https://
huggingface.co/blog/smollm3.

Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language
models via self-certainty, 2025. URL https://arxiv.org/abs/2502.18581.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances
for uncertainty estimation in natural language generation. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
VD-AYtP0dve.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1qvx610Cu7.

Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, and Lingming Zhang. Evalu-
ating language models for efficient code generation. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?id=IBCBMeAhmC.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

OpenAI. Introducing gpt-oss, 2025. URL https://openai.com/index/
introducing-gpt-oss/.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth In-
ternational Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net, 2025. URL https://openreview.net/forum?id=4FWAwZtd2n.

10

https://matharena.ai/
https://matharena.ai/
https://arxiv.org/abs/2501.12948
https://aclanthology.org/2024.acl-long.276/
https://aclanthology.org/2024.acl-long.276/
https://arxiv.org/abs/2508.15260
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://huggingface.co/blog/smollm3
https://huggingface.co/blog/smollm3
https://arxiv.org/abs/2502.18581
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=IBCBMeAhmC
https://arxiv.org/abs/2501.19393
https://openai.com/index/introducing-gpt-oss/
https://openai.com/index/introducing-gpt-oss/
https://arxiv.org/abs/2311.12022
https://openreview.net/forum?id=4FWAwZtd2n

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Keith E. Stanovich and Richard F. West. Individual Differences in Reasoning: Implications for the
Rationality Debate?, pp. 421–440. Cambridge University Press, 2002.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Roman Vashurin, Maiya Goloburda, Albina Ilina, Aleksandr Rubashevskii, Preslav Nakov, Artem
Shelmanov, and Maxim Panov. Uncertainty Quantification for LLMs through Minimum Bayes
Risk: Bridging Confidence and Consistency. arXiv e-prints, art. arXiv:2502.04964, February
2025. doi: 10.48550/arXiv.2502.04964.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning, 2025. URL https://arxiv.org/abs/
2506.01939.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms
for large language models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.
URL https://openreview.net/forum?id=eskQMcIbMS. Survey Certification.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for LLM problem-solving. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net, 2025. URL https://openreview.net/forum?id=VNckp7JEHn.

11

https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2506.01939
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/forum?id=VNckp7JEHn

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A COMPLETE RESULTS

Table A presents a complete overview of the results of our experiments.

θ
SmolLM3-3B Qwen3-4B Deepseek 8B GPT-oss 20B

↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S ↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S ↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S ↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S

AIME 2024 (math)
— 0.60 0.03 0.09 27 32.0 0.90 0.80 0.74 14 32.0 0.93 0.80 0.73 20 32.0 0.93 0.80 0.71 8 32.0

2.0 0.53 0.03 0.10 18 28.8 0.80 0.73 0.70 6 15.3 0.90 0.87 0.85 7 15.8 0.93 0.77 0.70 4 30.7
2.2 0.53 0.10 0.15 18 28.4 0.70 0.67 0.68 1 1.7 0.80 0.80 0.79 2 4.5 0.90 0.80 0.70 4 29.7
2.3 0.52 0.10 0.18 17 26.8 0.67 0.67 0.65 0.3 1.0 0.77 0.77 0.76 0.4 1.3 0.90 0.80 0.68 4 30.2
2.4 0.67 0.20 0.25 14 22.7 0.77 0.77 0.77 1 1.0 0.70 0.70 0.70 0.3 1.0 0.93 0.83 0.75 4 27.6
2.5 0.57 0.50 0.40 5 16.5 0.73 0.73 0.73 0.2 1.0 0.73 0.73 0.73 0.3 1.0 0.90 0.83 0.69 4 28.0

2.0 0.73 0.10 0.13 19 32.0 0.90 0.80 0.74 9 23.4 0.93 0.87 0.85 9 20.0 0.93 0.77 0.70 5 32.0
2.2 0.73 0.10 0.16 19 32 0.87 0.77 0.76 5 11.3 0.90 0.80 0.80 5 12.0 0.93 0.83 0.71 5 32.2
2.3 0.83 0.17 0.18 19 33.0 0.90 0.80 0.75 5 12.4 0.87 0.83 0.81 5 10.1 0.93 0.80 0.68 5 32.1
2.4 0.77 0.20 0.28 19 32.8 0.83 0.80 0.79 5 10.5 0.90 0.80 0.78 6 13.0 0.97 0.83 0.75 5 32.0
2.5 0.67 0.50 0.42 14 31.3 0.87 0.83 0.81 5 10.7 0.90 0.77 0.77 7 14.0 1.00 0.87 0.71 5 32.0

AIME 2025 (math)
— 0.53 0.00 0.06 28 32.0 0.80 0.70 0.62 17 32.0 0.80 0.67 0.65 22 32.0 0.90 0.83 0.67 10 32.0

1.8 - - - - - 0.77 0.70 0.60 0.90 24.5 - - - - - - - - - -
2.0 0.53 0.00 0.05 19 28.8 0.77 0.70 0.61 8 18.4 0.73 0.60 0.59 8 17.4 0.90 0.83 0.66 5 31.1
2.2 0.43 0.00 0.07 19 29.9 0.67 0.63 0.64 1 3.1 0.70 0.63 0.64 2 4.9 0.93 0.80 0.67 5 30
2.3 0.37 0.10 0.14 17 27.8 0.60 0.60 0.60 0.3 1.1 0.70 0.67 0.66 1 2.2 0.93 0.73 0.64 5 31.4
2.4 0.53 0.07 0.11 17 27.6 0.70 0.70 0.70 0.3 1.1 0.63 0.60 0.61 0.5 1.2 0.93 0.80 0.66 5 29.8
2.5 0.43 0.23 0.26 10 17.5 0.60 0.60 0.60 0.3 1.0 0.63 0.60 0.61 0.4 1.2 0.90 0.83 0.69 5 26.1

2.0 -

1.8 - - - - - 0.80 0.70 0.63 13 32.8 - - - - - - - - - -
2.0 0.63 0.00 0.06 20 32.0 0.83 0.73 0.63 12 30.0 0.80 0.63 0.63 12 28.0 0.90 0.83 0.66 5 32.0
2.2 0.57 0.00 0.08 20 32.0 0.80 0.70 0.70 6 14.7 0.80 0.63 0.68 7 16.1 0.97 0.80 0.68 5 32.9
2.3 0.57 0.10 0.15 19 32.1 0.80 0.77 0.71 8 17.5 0.80 0.73 0.71 6 13.1 0.93 0.73 0.64 5 32.2
2.4 0.67 0.07 0.13 19 32.2 0.80 0.73 0.71 5 10.7 0.80 0.70 0.68 7 15.3 0.93 0.80 0.66 6 33.0
2.5 0.73 0.33 0.31 15 33.6 0.83 0.73 0.69 7 15.0 0.80 0.70 0.68 6 14.0 0.93 0.83 0.69 7 32.0

HMMT (math)
— 0.23 0.00 0.03 28 32.0 0.50 0.37 0.34 18 32.0 0.57 0.43 0.37 24 32.0 0.63 0.53 0.38 13 32.0

1.8 0.23 0.03 0.06 20 31.7 0.43 0.37 0.33 10 22.7 - - - - - - - - - -
2.0 0.33 0.03 0.07 20 30.8 0.43 0.37 0.35 7 15.5 0.43 0.37 0.33 8 18.1 0.70 0.43 0.37 6 31.9
2.2 0.23 0.00 0.06 18 28.5 0.37 0.37 0.36 1 3.3 0.40 0.37 0.38 3 6.2 0.67 0.43 0.36 6 32.0
2.3 0.27 0.10 0.12 17 27.5 0.40 0.40 0.40 1 2.3 0.40 0.40 0.35 2 4.7 0.63 0.47 0.40 6 30.9
2.4 0.27 0.17 0.18 14 23.8 0.33 0.33 0.33 0.4 1.1 0.37 0.37 0.35 1 1.5 0.63 0.43 0.38 6 30.8
2.5 0.23 0.17 0.17 10 17.4 0.43 0.43 0.43 0.3 1.0 0.37 0.37 0.37 0.4 1.1 0.67 0.53 0.40 6 30.5

2.0 -

1.8 0.27 0.03 0.06 20 32.0 0.47 0.37 0.33 15 32.9 - - - - - - - - - -
2.0 0.40 0.03 0.09 20 32.0 0.53 0.37 0.36 14 32.0 0.57 0.40 0.35 15 32.1 0.70 0.43 0.37 6 32.0
2.2 0.33 0.00 0.06 19 32.0 0.53 0.37 0.37 11 24.5 0.57 0.43 0.43 13 27.5 n/a n/a n/a n/a n/a
2.3 0.33 0.10 0.13 19 32.0 0.57 0.40 0.41 10 22.6 0.53 0.43 0.38 11 24.0 0.67 0.47 0.40 7 32.0
2.4 0.40 0.17 0.19 17 32.2 0.50 0.40 0.37 11 25.2 0.57 0.43 0.39 11 24.0 0.63 0.43 0.38 7 32.0
2.5 0.40 0.17 0.19 15 32.7 0.60 0.43 0.44 10 21.9 0.50 0.37 0.39 11 23.5 0.67 0.53 0.40 7 32.0

GPQA-Diamond (science)
— 0.49 0.00 0.03 185 32.0 0.75 0.51 0.43 65 32.0 0.95 0.15 0.18 68 32.0 0.96 0.68 0.65 24 32.0

1.8 - - - - - 0.78 0.48 0.42 48 28.2 - - - - - - - - - -
2.0 0.68 0.04 0.09 137 30.8 0.75 0.51 0.43 46 26.8 0.93 0.25 0.24 37 28.5 0.93 0.72 0.66 13 29.7
2.2 0.62 0.07 0.11 130 30.0 0.71 0.47 0.43 38 22.1 0.91 0.18 0.22 33 25.0 0.97 0.71 0.66 14 27.6
2.3 0.61 0.02 0.07 133 30.7 0.64 0.49 0.43 23 14.7 0.81 0.21 0.18 23 17.4 0.95 0.66 0.65 14 30.9
2.4 0.61 0.06 0.10 126 29.8 0.56 0.45 0.44 12 7.4 - - - - - 0.94 0.70 0.66 14 25.8
2.5 0.59 0.10 0.15 113 27.6 0.49 0.46 0.45 3 2.5 0.66 0.20 0.21 4 3.1 0.95 0.68 0.65 13 24.0

1.8 - - - - - 0.83 0.49 0.43 57 32.2 - - - - - - - - - -
2.0 0.79 0.04 0.09 137 32.0 0.81 0.51 0.43 59 32.4 0.96 0.25 0.26 43 32.5 0.99 0.72 0.66 15 32.3
2.2 0.81 0.07 0.12 132 32.0 0.81 0.50 0.45 55 32.4 0.97 0.18 0.25 43 33.8 0.98 0.71 0.66 15 29.9
2.3 0.75 0.03 0.09 135 32.0 0.81 0.53 0.47 44 27.3 0.97 0.25 0.25 46 35.4 0.97 0.66 0.65 14 30.9
2.4 0.79 0.08 0.12 128 32.0 0.81 0.51 0.50 37 22.4 - - - - - 0.99 0.70 0.66 15 29.9
2.5 0.85 0.12 0.18 119 32.1 0.81 0.59 0.54 34 19.9 0.94 0.26 0.33 45 35.6 0.98 0.68 0.66 14 27.3

HumanEval Plus (code)
— 0.00 0.00 0.00 161 32.0 0.91 0.82 0.78 27 32.0 0.95 0.90 0.86 25 32.0 0.95 0.83 0.79 5 32.0

1.8 - - - - - 0.87 0.76 0.76 16 9.9 0.95 0.82 0.79 18 25.0 - - - - -
2.0 0.04 0.01 0.01 94 30.7 0.86 0.79 0.80 10 6.20 0.96 0.85 0.77 21 23.0 0.96 0.88 0.83 4 24.7
2.2 0.04 0.01 0.01 65 26.3 0.86 0.86 0.86 1 1.1 0.94 0.86 0.83 13 14.0 0.97 0.88 0.82 3 23.3
2.3 0.68 0.46 0.44 33 17.3 0.84 0.82 0.82 0.5 1.1 0.87 0.82 0.80 6 7.4 0.93 0.81 0.74 3 22.8
2.4 0.52 0.37 0.38 13 9.0 0.81 0.81 0.81 0.5 1.1 0.92 0.88 0.88 3 3.5 0.97 0.88 0.85 3 20.3
2.5 0.52 0.48 0.47 3 2.6 0.82 0.82 0.82 0.4 1.0 0.88 0.87 0.86 1 1.5 0.95 0.86 0.82 3 18.6

1.8 -
2.0 - - - - - 0.94 0.79 0.82 17 11.2 0.97 0.77 0.74 22 24.7 0.97 0.89 0.84 5 29.3
2.2 - - - - - 0.92 0.86 0.87 9 5.7 0.96 0.87 0.83 15 15.9 0.97 0.88 0.82 5 29.0
2.3 - - - - - 0.92 0.87 0.86 11 9.9 0.98 0.88 0.86 13 16.9 0.97 0.90 0.84 5 28.8
2.4 0.75 0.52 0.56 20 19.3 0.94 0.87 0.86 12 10.9 0.97 0.90 0.89 8 8.5 0.97 0.89 0.85 5 26.4
2.5 - - - - - 0.93 0.86 0.86 12 11.8 0.96 0.91 0.90 8 9.3 0.97 0.88 0.83 5 27.2

Table 3: All models, benchmarks and entropy-thresholds θ configurations. Higher is better for
Pass@1 (p@1), Cons@k (c@32) and Pass Rate (PR); lower is better for # Token. # Token are
in 1e5 unit. Results for FULL PARALLEL sampling generations, EAGER-init generations, and full
EAGER. Bold is best overall, underline is best within each category always including the FULL
PARALLEL sampling one.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B EFFECT OF TEMPERATURE

The temperature hyperparameter, τ , plays a critical role during autoregressive decoding by scal-
ing the logits used by the sampling method (decoding becomes more greedy as τ → 0). In this
section, we conduct a short exploration on the effect of temperature on EAGER. This is espe-
cially important in the current context, where a higher diversity among the generated sequences
can intuitively have an effect on the performance metrics. For this exploration, we focus on two
LLMs, SmolLM 3B & DeepSeek 8B, two temperature settings, τ ∈ {0.6, 0.9} and AIME 2025 as
the evaluation dataset. Furthermore, we conduct the analysis for varying entropy threshold levels
θ ∈ {2.0, 2.2, 2.3, 2.4, 2.4, 2.5}.

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
1

0.63
0.57 0.57 0.57

0.73
0.67

0.53

0.70 0.70
0.63

SmolLM3-3B

0.80 0.80 0.80 0.80 0.800.77 0.77
0.73 0.73

0.77

Deepseek 8B

2 2.2 2.3 2.4 2.5
EAGER (varying)

0.0

0.2

0.4

0.6

0.8

1.0

Co
ns

@
m

ax

0.10 0.07

0.330.30 0.33 0.33
0.40 0.37

2 2.2 2.3 2.4 2.5
EAGER (varying)

0.63 0.63

0.73 0.70 0.70
0.63 0.63 0.63 0.60

0.67

Effect of Temperature and EAGER on Model Performance (AIME 2025)

EAGER (=0.6) EAGER (=0.9) Default (=0.6) Default (=0.9)

Figure 5: Pass@1 and Cons@max at low (τ = 0.6) and high(τ = 0.6) temperature settings. Hori-
zontal lines show the performance for the default sampling method, while the bars show EAGER’s
performance for varying entropy threshold levels θ.

As shown in Figure 5, SmolLM 3B generally performs best at the high temperature setting while
the opposite is true for DeepSeek 8B. Importantly, at both temperature levels, EAGER is competi-
tive with the corresponding default baselines, often surpassing them. A direct comparison between
the low and high temperature setting including all metrics for default, EAGER and EAGER-init
generations is presented in Table 4.

θ
SmolLM3-3B Deepseek 8B

Low Temperature (τ = 0.6) High Temperature (τ = 0.9) Low Temperature (τ = 0.6) High Temperature (τ = 0.9)
↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S ↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S ↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S ↑ p@1 ↑ c@32 ↑ PR ↓ # T ↓ # S

- 0.53 0.00 0.06 28 32.0 0.63 0.37 0.25 44 32.0 0.80 0.67 0.65 22.0 32.0 0.70 0.60 0.57 7.8 32.0

2.0 0.53 0.00 0.05 19 28.8 0.67 0.30 0.25 26 31.0 0.73 0.60 0.59 8.0 17.4 0.77 0.63 0.58 3.2 22.7
2.2 0.43 0.00 0.07 19 29.9 0.53 0.37 0.25 27 30.9 0.70 0.63 0.64 2.0 4.9 0.70 0.60 0.58 1.9 11.3
2.3 0.37 0.10 0.14 17 27.8 0.57 0.33 0.26 26 29.9 0.70 0.67 0.66 1.0 2.2 0.57 0.53 0.53 0.7 4.4
2.4 0.53 0.07 0.11 17 27.6 0.60 0.40 0.32 22 25.8 0.63 0.60 0.61 0.5 1.2 0.57 0.53 0.53 0.7 4.0
2.5 0.43 0.23 0.26 10 17.5 0.50 0.37 0.26 21 24.7 0.63 0.60 0.61 0.4 1.2 0.63 0.60 0.61 0.3 2.0

2.0 0.63 0.00 0.06 20 32.0 0.67 0.30 0.25 27 32.0 0.80 0.63 0.63 12.0 28.0 0.77 0.63 0.58 4.4 30.2
2.2 0.57 0.00 0.08 20 32.0 0.53 0.33 0.25 28 32.0 0.80 0.63 0.68 7.0 16.1 0.77 0.63 0.62 3.5 21.0
2.3 0.57 0.10 0.15 19 32.1 0.70 0.33 0.27 28 32.1 0.80 0.73 0.71 6.0 13.1 0.73 0.63 0.63 3.2 21.1
2.4 0.67 0.07 0.13 19 32.2 0.70 0.40 0.33 29 32.0 0.80 0.70 0.68 7.0 15.3 0.73 0.60 0.59 3.1 18.9
2.5 0.73 0.33 0.31 15 33.6 0.63 0.37 0.29 29 32.4 0.80 0.70 0.68 6.0 14.0 0.77 0.67 0.66 2.4 14.9

Table 4: AIME 2025 results for default, EAGER-init, and EAGER generations for low and high
temperature τ and varying entropy threshold θ. Best results per temperature and threshold setting
are marked in boldface.

Notably, the performance of SmolLM 3B is particularly higher in the high temperature setting when
measured by the Cons@max rate. We find that this is a result of the reduction of generations in which

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the same tokens are repeatedly produced (e.g., “The answer is: The answer is: The ...”). Specifically,
in the high temperature setting, this phenomenon occurs, on average, 59.1% less compared to the low
temperature setting. This behaviour was only observed with SmolLM 3B, suggesting it results from
the smaller model size. An exception arises with the HumanEval Plus benchmark, where SmolLM
3B failed to solve any tasks, resulting in all metrics being zero under the FULL PARALLEL sampling
setting. In contrast, EAGER-init and EAGER appeared to partially mitigate this issue.

Lastly, we also find that the temperature has an effect on the number of tokens generated which, by
extension, impact performance. For example, when EAGER is used at the high temperature setting,
Deepseek 8B generates, on average, less than half the number of tokens compared to the low tem-
perature setting. In contrast, SmolLM3-3B generates more tokens at the high-temperature setting.
In both cases, and in line with the test-time scaling paradigm, we find that higher performance is
achieved in whichever temperature setting more tokens are generated.

C GENERATION PARAMS

All models are used with their longest thinking configuration to get their best performances. Further-
more we limit their context window to 32k tokens. All sequences are generated with a temperature of
τ = 0.60 and a top-p of 95%. The effect of temperature is discussed in Appendix B. Table 5 reports
the thresholds used for each benchmark and model. Following the discussion in Section 4.1, we
select thresholds independently based on their intended use. The EAGER-init sampling method is
designed to save budget without significantly compromising performance (lower threshold), whereas
EAGER aims to preserve as much performance as possible for later reuse, higher threshold are pre-
ferred in such scenario.

SmoLM 3B Qwen3 4B DeepSeek 8B GPT-oss 20B

EAGER-init EAGER EAGER-init EAGER EAGER-init EAGER EAGER-init EAGER
AIME 2024 2.5 2.5 2.0 2.3 2.0 2.0 2.4 2.5
AIME 2025 2.4 2.5 2.0 2.5 2.2 2.5 2.4 2.5
HMMT 2025 2.5 2.5 2.5 2.5 2.4 2.5 2.5 2.5
GPQA-Diamond 2.5 2.5 2.0 2.5 2.0 2.3 2.2 2.0
HumanEval Plus 2.3 - 2.2 2.4 2.0 2.4 2.4 2.4

Table 5: Best thresholds for every benchmark and model.

14

	Introduction
	Preliminaries
	Uncertainty in LLMs' Generations
	Entropy in Long Chain-of-Thought Reasoning

	Entropy-Aware GEneRation Explained
	EAGer-init: Save Compute via Token Entropy
	EAGer: Dynamically Allocate the Saved Compute
	EAGer in the Wild: Budget reallocation in the absence of target labels

	Experimental Setting and Results
	Results

	Related works
	Conclusion and Future Directions
	Complete results
	Effect of Temperature
	Generation params

