

# EAGER: ENTROPY-AWARE GENERATION FOR ADAPTIVE INFERENCE-TIME SCALING

000  
001  
002  
003  
004  
005 **Anonymous authors**  
006 Paper under double-blind review  
007  
008  
009  
010

## ABSTRACT

011 With the rise of reasoning language models and test-time scaling methods as  
012 a paradigm for improving model performance, substantial computation is of-  
013 ten required to generate multiple candidate sequences from the same prompt.  
014 This enables exploration of different reasoning paths toward the correct solu-  
015 tion, however, allocates the same compute budget for each prompt. Grounded on  
016 the assumption that different prompts carry different degrees of complexity, and  
017 thus different computation needs, we propose EAGER, a training-free generation  
018 method that leverages model uncertainty through token-wise entropy distribution  
019 to reduce redundant computation and concurrently improve overall performance.  
020 EAGER allows branching to multiple reasoning paths only in the presence of high-  
021 entropy tokens, and then reallocates the saved compute budget to the instances  
022 where exploration of alternative paths is most needed. We find that across multi-  
023 ple open-source models on complex reasoning benchmarks such as AIME 2025,  
024 EAGER can reallocate the budget without accessing target labels, achieving the  
025 best efficiency-performance trade-off in terms of reasoning length and Pass@k.  
026 When target labels are accessible, EAGER generates up to 65% fewer tokens  
027 (hence saving compute) and achieves up to 37% improvement in Pass@k com-  
028 pared to the FULL PARALLEL sampling. Our results show that EAGER consis-  
029 tently maximizes the efficiency-performance trade-off by enabling dynamic con-  
030 trol over computation expenditure.  
031



044 Figure 1: **Left:** We introduce EAGER, a generation method designed for (1) reasoning benchmarks,  
045 where decoding adaptively triggers branching at high-entropy tokens (2). Each prompt is assigned a  
046 maximum budget of  $M$  candidate sequences, and unused budget from sequences that do not saturate  
047 their allocation (3) is carried forward. The remaining budget is then reallocated (4) either to prompts  
048 that hit the  $M$  cap, as in EAGER-adapt, or, when target labels are available, to prompts that have  
049 not yet reached a correct solution (Pass@k = 0), yielding our full EAGER. **Right:** Our approaches  
050 (EAGER -init, -adapt and full EAGER) consistently reduce token usage compared to the standard  
051 FULL PARALLEL sampling approach when scaling the  $M$  limit  $\in [4, 8, 16, 24, 32]$ . In addition,  
052 EAGER always achieves a clear performance advantage over all other decoding methods.  
053

054 

## 1 INTRODUCTION

055  
 056 Recent advances in large language models (LLMs) have led to substantial improvements in complex  
 057 reasoning tasks, particularly with the adoption of chain-of-thought (CoT) prompting (Wei et al.,  
 058 2022). Such tasks often admit multiple valid reasoning paths that converge to the same correct  
 059 solution (Stanovich & West, 2002). Rather than relying on a single greedy decoding path, the single  
 060 generation can be replaced by multiple sampled candidate sequences, thereby producing a diverse  
 061 set of reasoning paths and corresponding final answers (Wang et al., 2023). This strategy has been  
 062 shown to enhance performance on challenging reasoning problems: by exploring multiple reasoning  
 063 paths, the model reduces its reliance on the stochasticity of a single greedy generation and increases  
 064 the likelihood of arriving at a correct solution.

065 Despite its success, CoTs introduce an inherent computational inefficiency: reasoning sequences  
 066 tend to be long, and a large portion of the tokens generated are predictable continuations rather than  
 067 genuine decision points (Wang et al., 2025). This inefficiency is amplified in approaches that explore  
 068 multiple reasoning paths in parallel, where each path independently regenerates identical prefixes  
 069 before diverging. For prompts with simple problems, many of these paths converge to the same solution  
 070 with little variation, resulting in redundant computation. For more complex prompts, however,  
 071 the diversity of reasoning paths becomes crucial, and additional generations may be necessary to  
 072 discover a correct solution (Snell et al., 2025; Muennighoff et al., 2025). This observation suggests  
 073 that a per-problem decision to let or not let the model explore alternative paths would be desirable.  
 074 We argue that such decision can be guided by monitoring model uncertainty during generation to-  
 075 wards an adaptive allocation of computing budget. Intuitively, when the model’s predictions are  
 076 confident and stable, only a few candidate sequences are needed, while at points of high uncertainty,  
 077 where multiple reasoning paths are plausible, additional exploration becomes critical.

078 To address these issues, we introduce **EAGER**, an **Entropy-Aware Generation** method that mon-  
 079 itors token-level uncertainty during decoding to guide where new parallel reasoning traces should  
 080 start. By branching only at high-entropy tokens, we avoid regenerating identical low-entropy con-  
 081 tinuations, substantially reducing computation overhead without sacrificing coverage of diverse rea-  
 082 soning traces. Furthermore, reducing the parallel samples for *easy* prompts, EAGER dynamically  
 083 allocates the unused sampling budget towards more challenging ones, maximizing the benefits of  
 084 inference-time scaling for difficult prompts.<sup>1</sup>

085 We evaluate EAGER on a diverse set of benchmarks, spanning from complex math problems to  
 086 science-related questions and code generation tasks. All the tested LMs, from the smallest 3B to  
 087 the biggest 20B parameter model, show a performance boost of up to 37% when using EAGER  
 088 compared to our baseline FULL PARALLEL sampling setting.

089 Our main contributions are as follows:

- 090 • We empirically show that token-wise entropy peaks as a form of online (i.e., measured  
 091 during generation) uncertainty is a good proxy that shows when more exploration is needed  
 092 during the generation, hence reflecting the difficulty of a prompt for the model used.
- 093 • We introduce, *a novel*, training-free decoding method that leverages entropy distribution  
 094 during generation to dynamically reduce compute cost while maintaining the benefits of  
 095 inference-time scaling. EAGER generates up to 65% fewer tokens and saves up to 80% of  
 096 the entire generation budget across all our benchmarks and models.
- 097 • To maximize the benefits of inference-time scaling, we show that EAGER enables adaptive  
 098 use of the given sampling budget, where it spends more compute on the *hard* problems.  
 099 This yields up to 13% improvements in test-time settings without access to target labels,  
 100 and up to 37% when labels are available, on the AIME 2025 reasoning benchmark.

102 

## 2 PRELIMINARIES

103 In the inference-time scaling paradigm, a language model generates multiple parallel sequences so  
 104 that it can *explore* various reasoning paths to find a correct solution (Welleck et al., 2024; Snell  
 105

106 <sup>1</sup>Code and data: released upon acceptance.

108 et al., 2025). This is oftentimes facilitated by sampling completions from the model with a relatively  
 109 high temperature using methods such as nucleus sampling (Holtzman et al., 2020). We refer to this  
 110 standard approach as the FULL PARALLEL sampling generation procedure. This approach is useful  
 111 in various settings, including for the generation of diverse solutions to a problem, or in large-scale  
 112 reinforcement learning (RL) pipelines such as in RLVR (DeepSeek-AI, 2025), where among the  
 113 diverse set of generated sequences, only the correct ones are selected to update the policy.

114 Our objective is to optimize this process by exploiting uncertainty during generation, allowing an  
 115 efficient allocation of resources (in terms of number of generated sequences) to solve a given prompt.  
 116

## 117 2.1 UNCERTAINTY IN LLMs’ GENERATIONS

119 Among the different techniques for uncertainty quantification in LLMs, we focus our attention on  
 120 top-K token entropy, as token entropy has been shown to be a powerful uncertainty quantification  
 121 measure (Fomicheva et al., 2020). We define top-K token entropy as:

$$123 \quad H_t^{(K)} := - \sum_{i \in \mathcal{I}_t^{(K)}} p_{t,i}^{(K)} \log p_{t,i}^{(K)}, \quad (1)$$

126 where  $\mathcal{I}_t^{(K)} \subseteq \{1, \dots, |V|\}$  is the index set of the  $K$  tokens with highest  $p_{t,i}$  probability with  $V$   
 127 denoting the vocabulary of the LM and  $t \in \mathbb{N}^+$  indexes the current generation step. Specifically,  
 128 the quantity  $p_{t,i}$  represents the probability assigned by the model to token  $i \in V$  at step  $t$  after  
 129 the softmax computation. We denote  $\mathcal{I}_t^{(K)} \subseteq \{1, \dots, |V|\}$  the index set of the  $K$  tokens with the  
 130 highest probability  $p_{t,i}$  and  $p_{t,i}^{(K)}$  their re-normalized probabilities, given by:  
 131

$$133 \quad p_{t,i}^{(K)} := \frac{p_{t,i}}{\sum_{j \in \mathcal{I}_t^{(K)}} p_{t,j}}, \quad i \in \mathcal{I}_t^{(K)}, \quad (2)$$

136 where  $\sum_{i \in \mathcal{I}_t^{(K)}} p_{t,i}^{(K)} = 1$ .  
 137

138 Compared to more precise and computationally intensive uncertainty quantification methods found  
 139 in the literature (Vashurin et al., 2025; Kuhn et al., 2023; Duan et al., 2024, e.g.), top- $K$  token  
 140 entropy provides a strong approximation to the entropy of the full-vocabulary, as it computes the  
 141 dominant contributions from the most probable tokens with minimal computational overhead<sup>2</sup>.  
 142

## 143 2.2 ENTROPY IN LONG CHAIN-OF-THOUGHT REASONING

144 For our goal of saving resources in parallel sampling by leveraging model uncertainty, we first need  
 145 to determine whether and how token entropy values relate to the model’s final performance. To  
 146 this end, we analyze the entropy patterns of the CoT sequences generated by an LLM to solve  
 147 challenging problems. We monitor the entropy of each token during generation, and rather than  
 148 analyzing the entire entropy sequence, we focus on identifying significant spikes as signals of higher  
 149 uncertainty. We hypothesize that this peak-entropy measure can serve as a proxy for the model’s  
 150 perceived difficulty of a problem and thus its (in)ability to solve it: high peaks indicate moments  
 151 where the model is highly uncertain about the next step in its reasoning chain, low entropy indicates  
 152 that the model is more confident about what to generate next.

153 Given the input prompt  $x$ , we sample  $M$  independent candidate sequences  $\{t^{(m)}\}_{m=1}^M$  from the lan-  
 154 guage model. During generation, for each token position  $t$  in each sequence  $m$ , we record the token  
 155 entropy  $H_t^{(K)}(y^{(m)})$ , with  $K = 20$ . For each sequence, we define the peak entropy value  $\bar{H}_{\text{peak}}^{(m)}$  as  
 156 the mean of all entropy values that lie in the  $p^{\text{th}}$  percentile of the sequence’s entropy distribution:  
 157

$$158 \quad \bar{H}_{\text{peak}}^{(m)}(p^{\text{th}}) := \frac{1}{|\mathcal{T}_m^{\text{peak}}(p^{\text{th}})|} \sum_{t \in \mathcal{T}_m^{\text{peak}}(p^{\text{th}})} H_t^{(K)}(y^{(m)}), \quad (3)$$

161 <sup>2</sup>Full-vocabulary entropy computation can be costly due to large vocabulary sizes, often in the tens of thou-

162 where

163

$$\mathcal{T}_m^{\text{peak}}(p^{\text{th}}) := \{t : H_t^{(K)}(y^{(m)}) \geq p^{\text{th}}(\{H_{t'}^{(K)}(y^{(m)})\}_{t'})\}, \quad (4)$$

164

165 and  $p^{\text{th}}(\cdot)$  denotes the  $p^{\text{th}}$  percentile of the entropy sequence.

166

167 We run Qwen3 4B<sup>3</sup>, a strong open-source LLM with  
 168 long CoT reasoning capabilities, on five standard  
 169 reasoning benchmarks for math, science and code  
 170 generation tasks (see Section 4 for the benchmarks’  
 171 details), allowing for  $M = 32$  parallel sequences to  
 172 be generated.

173 Figure 2 shows the Pass Rate accuracy, i.e., the proportion of correct answers out of  $M = 32$  generations,  
 174 for each prompt and the corresponding average  
 175 peak entropy  $\bar{H}_{\text{peak}}^{(m)}(p^{\text{th}})$ . We focus on the top percentile,  
 176 specifically  $p^{\text{th}} = 99.9$ , to isolate the highest entropy peaks.  
 177 We observe a statistically significant negative correlation ( $\rho \approx -0.55$ ), between the  
 178 peak entropy during generation and model Pass Rate  
 179 accuracy. This suggests that higher entropy peaks,  
 180 indicative of greater uncertainty during generation,  
 181 are associated with lower performance. Thus, ad-  
 182 ditional path exploration during these phases may  
 183 help to improve performance. Conversely, when en-  
 184 tropy remains low, the model is more confident on  
 185 the generated solutions (hence, the long CoT reason-  
 186 ing sequences), suggesting that further exploration  
 187 may be less likely to yield significant improvements.  
 188 This observation is in line with recent work which  
 189 found that high-entropy tokens disproportionately contribute to performance gains during RL train-  
 190 ing (Wang et al., 2025).

191

192 Given this evidence, we ask: *Can token entropy be leveraged to develop a decoding adaptive strategy  
 193 that allocates more compute to uncertain regions while limiting effort in more confident segments?*

194

### 195 3 ENTROPY-AWARE GENERATION EXPLAINED

196 We introduce **EAGER**, a training-free inference-time scaling approach aimed at optimizing parallel  
 197 sampling by leveraging token entropy to guide resource allocation. **EAGER** consists of two stages:  
 198 in the first one, **EAGER-init** dynamically adjusts the generation process to focus on sequences where  
 199 the most effort is needed, while pruning unnecessary generations. In the second stage, the saved  
 200 computational budget is reallocated to enhance performance on the remaining challenging prompts.

201

#### 202 3.1 EAGER-INIT: SAVE COMPUTE VIA TOKEN ENTROPY

203 **EAGER-init** represents the first stage of our approach and operates by identifying potentially *easy*  
 204 questions during generation. Instead of sampling constant  $M$  generations for every prompt, **EAG-  
 205 ER-init** computes token entropy  $H_t^{(K)}$  at each step  $t$ , and compares it to a predefined threshold  
 206  $\theta$ .<sup>4</sup> If the observed entropy exceeds this threshold, the current sequence is *branched*, creating a new  
 207 candidate continuation at that position. If the entropy is below the threshold, the generation con-  
 208 tinues with the existing sequence. During the branching step, we reuse the token distribution from  
 209 the model but adopt a temporally greedy approach; we select the top two most likely tokens to ensure

210 sands. By restricting calculations to the top- $K$  most probable tokens, the token entropy significantly reduces  
 211 computational overhead while maintaining efficiency during generation.

<sup>3</sup><https://huggingface.co/Qwen/Qwen3-4B>

<sup>4</sup>We empirically find the best threshold for a model. See Section 4.1 for a detailed analysis of the threshold.



Figure 2: For each sequence generated by Qwen3 4B with FULL PARALLEL sampling ( $M = 32$ ), we report its Pass Rate accuracy and the average entropy peak ( $p^{\text{th}} = 99.9$ ). The results reveal a negative correlation ( $r = -0.547$ ) between Pass Rate and the average entropy peak across sequences. Notably, sequences exhibiting higher entropy at any generation step are less likely to yield a correct answer.

216 that the two new sequences always start with different tokens. This process continues until the total  
 217 number of active sequences reaches a predefined limit  $M$ , at which point no further branching  
 218 occurs. A detailed overview of the EAGER-init algorithm is provided in Algorithm 1.

219 This process yields a generation tree where the root is the initial sequence, and each branching node  
 220 corresponds to a high-entropy token (Figure 1); the generation stops when the total number of nodes  
 221 is equal to  $M$ . For implementation efficiency, we restrict the branching procedure to long CoT  
 222 sequences only, and entropy monitoring is halted if no branching has occurred within the previous  
 223 1000 tokens from the last branch.

---

**Algorithm 1:** EAGER-init sequence generation
 

---

227 **Input:** Prompt  $x$ , entropy threshold  $\theta > 0$ , max active sequences  $M$ , temperature  $\tau$ , top- $K$  for  
 228 entropy  $K$ , maximum steps  $T$   
 229 **Output:** Completed set of sequences  $\mathcal{Y}$   
 230  
 231 **Notation:**  $H_t^{(K)}$  is the top- $K$  token entropy at step  $t$  under distribution  $p(\cdot | x, y)$ .  
 232 Initialize active set  $\mathcal{A} \leftarrow \{y^{(1)}\}$  ; // initial continuation from prompt  $x$   
 233 Initialize completed set  $\mathcal{Y} \leftarrow \emptyset$  ;  
 234 **for**  $t \leftarrow 1$  **to**  $T$  **do**  
 235   **if**  $\mathcal{A} = \emptyset$  **then**  
 236     | **break**  
 237   **foreach** sequence  $y \in \mathcal{A}$  **do**  
 238     | Compute next-token distribution  $p(\cdot | x, y)$  with temperature  $\tau$  ;  
 239     | Compute entropy  $H_t^{(K)}$  from top- $K$  probabilities ;  
 240     | **if**  $H_t^{(K)} \geq \theta$  **and**  $|\mathcal{A}| < M$  **then**  
 241       |  $a_1 \leftarrow \arg \max_a p(a | x, y)$  ; // most likely token  
 242       |  $a_2 \leftarrow$  second-most-likely token under  $p$  ;  
 243       | Update  $y \leftarrow y \circ a_1$  ; // greedy continuation  
 244       | Create branch  $y' \leftarrow y \circ a_2$ , add  $y'$  to  $\mathcal{A}$  ;  
 245     | **else**  
 246       | Sample  $a \sim p(\cdot | x, y)$  and update  $y \leftarrow y \circ a$  ;  
 247       | **if**  $y$  ends with EOS or length limit **then**  
 248         | Move  $y$  from  $\mathcal{A}$  to  $\mathcal{Y}$  ;  
 249  
 250 **return**  $\mathcal{Y}$  ;  
 251  
 252  
 253  
 254  
 255  
 256  
 257  
 258

---

259 **Reducing test-time compute through EAGER-init.** EAGER-init, saves computational budget  
 260 through two mechanisms. The first arises directly from the branching logic: if a branch occurs at  
 261 token position  $t$ , all preceding tokens  $(0, \dots, t-1)$  are reused across branches rather than being  
 262 regenerated independently. The second, and more substantial source of savings occurs when the  
 263 generation process does not saturate the maximum number of sequences  $M$  set per prompt. For  
 264 easy queries, the model’s default sampling converges to identical or near-identical completions, so  
 265 that EAGER-init may terminate with only a single sequence, saving  $M-1$  full generations compared  
 266 to a fixed-budget baseline which would let the model generate  $M$  sequences for any given prompt.  
 267 This surplus capacity can then be reallocated where it is most needed.

268 3.2 EAGER: DYNAMICALLY ALLOCATE THE SAVED COMPUTE

269 The key challenge is to devise *the best strategy to reallocate the compute which has been saved*. We  
 270 start by defining an additional budget  $b$ , computed as:

$$271 \quad b = \min(M_{\text{theoretical}} - M_{\text{actual}}, 2M) \quad (5)$$

272 where  $M_{\text{theoretical}} = M \times |\mathcal{D}|$  is the maximum possible number of sequences that could be generated  
 273 for the dataset  $\mathcal{D}$ , and  $M_{\text{actual}} = \sum_{i=1}^{|\mathcal{D}|} \# \text{Seq}_i$  is the total number of sequences actually produced  
 274 under entropy-aware generation.

270

271

272

**Algorithm 2:** Full EAGER algorithm

273

**Input:** Dataset  $\mathcal{D} = \{(x_i, z_i)\}_{i=1}^N$ , initial generations  $\{\mathcal{Y}_i\}_{i=1}^N$  (from EAGER-init), max sequences per prompt  $M$ , entropy threshold  $\theta$ 

274

**Output:** Augmented generations  $\{\mathcal{Y}'_i\}_{i=1}^N$ 

275

Compute  $M_{\text{theoretical}} \leftarrow M \cdot |\mathcal{D}|$ ;

276

Compute  $M_{\text{actual}} \leftarrow \sum_{i=1}^N |\mathcal{Y}_i|$ ;

277

Set remaining budget  $b \leftarrow M_{\text{theoretical}} - M_{\text{actual}}$ ;

278

Identify challenging prompts  $\mathcal{I} = \{i \mid \text{Pass@k}(\mathcal{Y}_i, z_i) = 0\}$ ;

279

**if**  $b = 0$  or  $\mathcal{I} = \emptyset$  **then**

280

| **return**  $\{\mathcal{Y}_i\}$ 

281

Assign additional budget  $b = \min(b, 2M)$  uniformly across all  $i \in \mathcal{I}$ ;

282

**foreach**  $i \in \mathcal{I}$  **do**

283

| **if**  $|\mathcal{Y}_i| < M$  **then**

284

| | // underutilizing prompt

285

| | Set  $\theta' \leftarrow 0.8 \cdot \theta$ ;

286

| | Generate up to  $M + b$  sequences for  $x_i$  using Algorithm 1 with  $\theta'$ ;

287

| **else**

288

| | // prompt already saturated at  $M$ 

289

| | Set  $\theta' \leftarrow \theta$ ;

290

| | Generate up to  $M + b$  sequences for  $x_i$  using Algorithm 1 with  $\theta'$ ;

291

| Append new sequences to  $\mathcal{Y}_i$ ;

292

**return**  $\{\mathcal{Y}'_i\}_{i=1}^N$ ;

293

The term  $M_{\text{theoretical}} - M_{\text{actual}}$  represents the surplus budget created by early stopping in *easy* prompts. We cap  $b$  at  $2M$  to avoid pathological cases where extremely large surpluses would lead to disproportionately high generation budgets for single prompts.<sup>5</sup>

We consider two scenarios: (i) a test-time setting where target labels are unavailable and reallocation must rely solely on model signals, and (ii) a setting where target labels are accessible, as in reinforcement learning pipelines where only correct generations are used for policy updates.

300

**Budget reallocation without target labels.** In the absence of target labels, we identify *saturating prompts*, those that hit the maximum branching cap  $M$ , as candidates for additional budget. The rationale is that when  $M$  serves as a hard limit, promising reasoning paths may remain unexplored. To mitigate this, we start from a low branching threshold ( $\theta = 2.0$ , see Section 4.1) and reallocate saved budget exclusively to these prompts. We denote this strategy as EAGER-adapt.

306

**Fine-grained budget reallocation with target labels.** When target labels are available, we instead focus on *challenging prompts*, defined as those that fail to achieve Pass@k accuracy under EAGER-init (i.e., none of the generated sequences match the correct answer).

For *underutilizing prompts* (fewer than  $M$  sequences under EAGER-init), we lower the entropy threshold  $\theta$  by 20%, encouraging earlier and more frequent branching. For *saturating prompts* (exactly  $M$  sequences under EAGER-init), we extend generation up to a new per-prompt limit  $M + b$ , thereby deepening exploration where additional sequences may yield correct solutions.

Reallocation in this setting is uniform across all failing prompts, while the generation strategy adapts based on each prompt’s prior behavior. By redirecting unused capacity from easier prompts to harder ones, this approach increases coverage without exceeding the global budget  $M_{\text{theoretical}}$  (see Algorithm 2). Importantly, savings from branch-based token reuse persist even when  $b > 0$ , and all additional sequences remain governed by Algorithm 1, ensuring that total token usage stays below an equivalent fixed-budget FULL PARALLEL sampling baseline.

320

321

322

<sup>5</sup>Especially in larger datasets, budget savings for easy prompts were large enough to allocate hundreds, if not thousand, of additional sequences to single failing prompts; this cap prevents excessive unbalanced allocation.

| 324 | 325 | Model       | Sampling      | AIME 2025   |             |             | GPQA-Diamond |             |             | HumanEval Plus |             |             |
|-----|-----|-------------|---------------|-------------|-------------|-------------|--------------|-------------|-------------|----------------|-------------|-------------|
|     |     |             |               | p@k         | c@k         | PR          | p@k          | c@k         | PR          | p@k            | c@k         | PR          |
| 326 | 327 | SmollM 3B   | FULL PARALLEL | 0.53        | 0.00        | 0.06        | 0.49         | 0.00        | 0.03        | 0.00           | 0.00        | 0.00        |
|     |     |             | EAGER-INIT    | 0.53        | 0.07        | 0.11        | 0.59         | 0.10        | 0.15        | 0.68           | 0.46        | 0.44        |
|     |     |             | EAGER         | <b>0.73</b> | <b>0.33</b> | <b>0.31</b> | <b>0.85</b>  | <b>0.12</b> | <b>0.18</b> | <b>0.75</b>    | <b>0.56</b> | <b>0.52</b> |
| 328 | 329 | Qwen3 4B    | FULL PARALLEL | 0.80        | 0.70        | 0.62        | 0.75         | 0.51        | 0.43        | 0.91           | 0.82        | 0.78        |
|     |     |             | EAGER-INIT    | 0.77        | 0.70        | 0.61        | 0.79         | 0.51        | 0.43        | 0.86           | 0.86        | <b>0.86</b> |
|     |     |             | EAGER         | <b>0.83</b> | <b>0.73</b> | <b>0.69</b> | <b>0.81</b>  | <b>0.59</b> | <b>0.54</b> | <b>0.94</b>    | <b>0.87</b> | <b>0.86</b> |
| 331 | 332 | DeepSeek 8B | FULL PARALLEL | <b>0.80</b> | <b>0.67</b> | 0.65        | 0.95         | 0.15        | 0.18        | 0.95           | <b>0.90</b> | 0.86        |
|     |     |             | EAGER-INIT    | 0.70        | 0.63        | 0.64        | 0.93         | <b>0.25</b> | 0.24        | 0.96           | 0.85        | 0.77        |
|     |     |             | EAGER         | 0.77        | <b>0.67</b> | <b>0.67</b> | <b>0.96</b>  | <b>0.25</b> | <b>0.25</b> | <b>0.97</b>    | <b>0.90</b> | <b>0.89</b> |
| 333 | 334 | GPT-Oss 20B | FULL PARALLEL | 0.90        | <b>0.83</b> | 0.67        | 0.96         | 0.68        | 0.65        | 0.95           | 0.83        | 0.79        |
|     |     |             | EAGER-INIT    | 0.93        | 0.80        | 0.66        | 0.97         | 0.71        | <b>0.66</b> | 0.97           | 0.88        | <b>0.85</b> |
|     |     |             | EAGER         | <b>0.97</b> | 0.80        | <b>0.68</b> | <b>0.99</b>  | <b>0.72</b> | <b>0.66</b> | <b>0.97</b>    | <b>0.89</b> | <b>0.85</b> |

Table 1: Comparison of FULL PARALLEL, EAGER-INIT and EAGER in AIME-2025, GPQA-Diamond and HumanEval Plus. We report pass@k, cons@k and Pass Rate where k is number of samples generated (while always 32 for the baseline, differs per prompt for EAGER-init and EAGER). EAGER consistently achieves the best results and EAGER-init performs very competitive with FULL PARALLEL sampling while saving significant amount of compute as shown in Figure 3.

## 4 EXPERIMENTAL SETTING AND RESULTS

**Models.** We evaluate multiple reasoning models from different model families and sizes to test EAGER in comparison to the FULL PARALLEL sampling baseline: SmoILM-3B (HuggingFaceTB, 2025), Qwen3-4B (Team, 2025), DeepSeek-R1-0528-Qwen3-8B (DeepSeek-AI, 2025) and GPT-oss 20B (OpenAI, 2025). Additional generation parameters and EAGER hyper-parameters are available in Appendix D.

**Benchmarks.** We evaluate our approach saved resources (compute metrics) for generation and performance on a set of diverse reasoning benchmarks on various tasks: AIME 2024 and 2025, and the 2025 Harvard MIT Math Tournament (Balunović et al., 2025) for math, GPQA-Diamond (Rein et al., 2023) for scientific domains, and HumanEval Plus (Liu et al., 2023; 2024) for code generation.

**Compute metrics.** We evaluate efficiency improvements using two complementary metrics: The first is the average **sequence Count** (#Seq). FULL PARALLEL sampling uses a fixed budget of  $M$  sequences, in contrast, EAGER uses a dynamic #Seq that depends on the branching behavior. The second metric is the average **token Count** (#Token) generated. While #Seq provides a general measure of computational efficiency, #Tokens is a more precise indicator since, branching at step  $t$ , reuses previously generated tokens  $(0, \dots, t-1)$  as prefix across new branches rather than regenerating them, that can lead to substantial savings even when #Seq is comparable.

**Performance metrics.** We evaluate performance using three complementary metrics. **Pass@k** shows whether the model produces at least one correct final solution, **Cons@k** aggregates responses through majority voting across  $k$  generations. Lastly, **Pass Rate** measures the proportion of correct answers over all generated outputs. We report the average metric across each entire benchmark.

### 4.1 RESULTS

**EAGER-init and EAGER yield significant savings in computation.** Figure 3 (top row) illustrates the efficiency advantages of EAGER-init and EAGER across all benchmarks and model scales. Starting with EAGER-init, the total number of generated tokens is typically less than half of that required by FULL PARALLEL sampling. Building on this, EAGER (and EAGER-adapt) leverages a small fraction of the saved budget to further improve accuracy, while still generating substantially fewer sequences than FULL PARALLEL sampling. On the performance side, EAGER consistently achieves higher Pass Rate accuracy than FULL PARALLEL sampling, indicating superior performance per unit of computation. It is worth noting that the performance of SmoILM 3B is 0.0 across all metrics in the parallel-sampling setting. This is caused by the generation of sequences in which the same tokens are repeatedly produced (e.g., “The answer is: The answer is: The ...”). This effect, along with the effect of temperature is discussed in Appendix C.



Figure 3: Compute and performance trade-offs of EAGER-init and EAGER. Across all benchmarks and model size, the efficiency of EAGER-init and EAGER consistently outperforms FULL PARALLEL sampling, requiring only half as many tokens in most cases (top). In addition, they achieve higher pass rate accuracy (bottom). For issues specific to the smallest 3B model, see Appendix C.

| Data      | SmolLM 3B      |             |                   | Qwen3 4B                  |                           |                   | DeepSeek 8B       |                          |                          | GPT-Oss 20B       |                   |                         |                          |                   |                         |                         |                         |
|-----------|----------------|-------------|-------------------|---------------------------|---------------------------|-------------------|-------------------|--------------------------|--------------------------|-------------------|-------------------|-------------------------|--------------------------|-------------------|-------------------------|-------------------------|-------------------------|
|           | FP             |             |                   | FP                        |                           |                   | FP                |                          |                          | FP                |                   |                         |                          |                   |                         |                         |                         |
|           | init           | adapt       | full              | init                      | adapt                     | full              | init              | adapt                    | full                     | init              | adapt             | full                    |                          |                   |                         |                         |                         |
| AIME 2024 | ↑ p@k<br>↓ # T | 0.60<br>27  | 0.53<br><b>18</b> | <u>0.63</u><br><u>19</u>  | <b>0.83</b><br><u>19</u>  | <b>0.90</b><br>14 | 0.80<br>6         | 0.85<br><u>6</u>         | <b>0.90</b><br><u>6</u>  | <b>0.93</b><br>20 | 0.90<br>7         | <b>0.93</b><br><u>9</u> | 0.93<br>8                | 0.93<br><b>4</b>  | 0.95<br><u>5</u>        | <b>1.00</b><br><u>5</u> |                         |
| AIME 2025 | ↑ p@k<br>↓ # T | 0.53<br>28  | 0.53<br><u>19</u> | <u>0.60</u><br><u>15</u>  | <b>0.73</b><br><u>15</u>  | <u>0.80</u><br>17 | 0.77<br><b>8</b>  | <u>0.80</u><br><u>12</u> | <b>0.83</b><br><u>12</u> | <b>0.80</b><br>22 | 0.73<br>8         | 0.77<br>13              | <b>0.80</b><br><u>12</u> | 0.90<br>10        | 0.90<br><b>5</b>        | 0.95<br><u>5</u>        | <b>0.97</b><br><u>5</u> |
| HMMT 2025 | ↑ p@k<br>↓ # T | 0.23<br>28  | <u>0.33</u><br>20 | <u>0.33</u><br><u>15</u>  | <b>0.40</b><br><u>15</u>  | <u>0.50</u><br>18 | 0.43<br>7         | 0.47<br>15               | <b>0.53</b><br><u>14</u> | <b>0.57</b><br>24 | 0.43<br>8         | 0.50<br>15              | <b>0.57</b><br><u>15</u> | <b>0.63</b><br>13 | <b>0.70</b><br><u>6</u> | <b>0.70</b><br><u>6</u> |                         |
| GPQA-Dia. | ↑ p@k<br>↓ # T | 0.49<br>185 | 0.68<br>137       | <u>0.76</u><br><u>133</u> | <b>0.85</b><br><u>119</u> | 0.75<br>65        | 0.79<br><b>46</b> | <u>0.81</u><br><u>52</u> | <b>0.85</b><br>59        | 0.95<br>68        | 0.93<br><u>37</u> | 0.93<br><u>42</u>       | <b>0.96</b><br>43        | 0.96<br>24        | 0.93<br><b>13</b>       | 0.97<br><u>14</u>       | <b>0.99</b><br>15       |
| HE-Plus   | ↑ p@k<br>↓ # T | 0.00<br>161 | 0.04<br><u>94</u> | <u>0.68</u><br><u>94</u>  | <b>0.75</b><br><u>20</u>  | 0.91<br>27        | 0.86<br><b>10</b> | <u>0.92</u><br><u>12</u> | <b>0.94</b><br><u>12</u> | 0.95<br>25        | 0.96<br>21        | 0.96<br>13              | <b>0.98</b><br>13        | 0.95<br>5         | 0.96<br>4               | 0.97<br><u>5</u>        | <b>0.97</b><br><u>5</u> |

Table 2: Reallocation of the additional budget (EAGER-adapt) only on Saturating prompts (i.e., prompts that reach  $M = 32$  generated sequences). All experiments use a threshold of 2.0, which we found to provide a good balance between number of tokens ( $\# T \times 10^5$ ) used and performance (p@k) across models and benchmarks. **Bold** are best results, underline second best.

**Saturation is a good proxy for budget reallocation.** In the absence of target labels, EAGER-adapt reallocates additional budget to saturating prompts as a proxy for identifying challenging cases. Table 2 reports results across all benchmarks and models<sup>6</sup>. On average, this strategy not only achieves substantial token savings during generation, but also improves exploration, yielding higher Pass@k compared to the FULL PARALLEL sampling baseline. In other words, EAGER-adapt saves a large fraction of compute while at the same time uncovering more successful reasoning paths.

For comparison, Table 2 also reports the full EAGER approach. While it benefits from the unfair advantage of access to target labels, redirecting budget to saturating sequences still achieves the second-best performance in most settings.

**EAGER always achieves better performances than FULL PARALLEL sampling.** As shown in Figure 3, EAGER consistently outperforms FULL PARALLEL sampling in terms of Pass Rate. Table 1 shows a more comprehensive overview using Pass@k, Cons@k, and Pass Rate. While Pass@k is highest under EAGER, Pass Rate is consistently equal or better even for EAGER-init compared to FULL PARALLEL sampling. This suggests that EAGER-init effectively prunes unproductive generations (higher Pass Rate) at the cost of reduced exploration (lower Pass@k). In general, Pass@k is

<sup>6</sup>The EAGER-init results in Table 2 differ from those reported elsewhere because we fix the threshold to  $\theta = 2.0$  for the EAGER-adapt experiments. In this context, EAGER-init is treated as the first step of the overall process. In other sections, EAGER-init is evaluated as an independent decoding strategy with its optimal threshold selected for both efficiency and performance (see Section 4.1 for details and Appendix D for threshold selection transparency).



Figure 4: Performance comparison with scaling the total allowed sequences for generating ( $M \in \{1, 4, 8, 16, 24, 32\}$ ). As  $M$  increases (line’s markers), EAGER consistently improves Pass@k (y-axis) while reducing the number of tokens needed to find the correct solution (x-axis), further shifting the Pareto frontier of the performance–efficiency trade-off.

particularly useful in scenarios where obtaining at least one correct answer is critical, for example, when the user prioritizes correctness and exploration over efficiency as per in Reinforcement Learning applications. In contrast, Pass Rate and Cons@k capture a different dimension of quality: (i) higher values indicate that EAGER focuses computation more effectively on promising generations, and (ii) given the extreme efficiency gains of EAGER-init compared to FULL PARALLEL sampling, the trade-off is often strongly favorable.

**EAGER scales effectively under budget constraints.** We evaluate the effect of scaling the maximum number of allowed generations,  $M$ , on overall performance. As shown in Figure 4, increasing  $M$  improves the probability of obtaining at least one correct solution (Pass@k). This trend is expected, as a larger generation budget naturally enables more extensive exploration. Notably, EAGER-init – and even more so EAGER – achieve superior Pass@k under the same constraints, often with significantly fewer tokens. In other words, EAGER not only benefits from larger  $M$  but also allocates its computational budget more efficiently, resulting in a consistent shift of the Pareto frontier, where higher accuracy is achieved at lower token cost.

**Threshold guides the trade-off between performance and compute.** Efficiency metrics (# Tokens, # Seq) are directly shaped by the choice of entropy threshold  $\theta$ . In our experiments, we explore values in the interval  $[1.8, 2.7]$ , which captures the majority of observed entropy peaks (see Section 2.2). Across different model families and sizes, we find consistent efficiency improvements relative to the FULL PARALLEL sampling baseline throughout this range. The optimal setting of  $\theta$  remains task- and model-dependent. Under EAGER-init, lower thresholds encourage more frequent branching, which increases both the number of generated sequences (#Seq) and total tokens (#Token). Higher thresholds, in contrast, restrict branching, yielding fewer continuations and lower computational cost. The balance between these regimes varies across architectures, scales, and datasets. Full results are available in Appendix A.

## 5 RELATED WORKS

Since the recent introduction of test-time scaling (Snell et al., 2025; Welleck et al., 2024), multiple approaches have been proposed to improve its efficiency and performance. Wu et al. (2025) propose REBASE (REward BAnced Search) a branching method that expands reasoning trajectories that are evaluated as being of high quality by a reward model. While powerful, REBASE is significantly more computationally expensive compared to directly computing token entropy at test-time. DeepConf (Deep Think with Confidence, Fu et al., 2025) is a method that also leverages local confidence measures to increase performance and efficiency during generation. DeepConf uses this confidence measure to truncate sequences where it is lower than a pre-defined threshold (determined during a warm-up stage). The combination of this warm-up stage and the truncation of non-promising sequences results in a theoretical token usage that is greater than in our proposed approach, where the certainty measure drives branching instead of truncation.

In Appendix B, we provide a detailed empirical comparison between our approach, DeepConf, and the ESC method (Li et al., 2024). ESC adopts a token-saving strategy based on generating in small

486 sequential windows and halting early when all trajectories converge to the same final answer, thereby  
 487 reducing unnecessary continuation.  
 488

489 We note additional works on uncertainty estimation such as Kang et al. (2025) which introduces *self-*  
 490 *certainty*, a sequence-level measure closely related to cross-entropy. The authors demonstrate that  
 491 self-certainty discriminates well between correct and incorrect answers and is robust to reasoning  
 492 length. The authors additionally illustrate that self-certainty driven answer selection (through a  
 493 voting mechanism) leads to improvements in reasoning benchmarks. While the the current work is  
 494 closely related to the work by Kang et al., we demonstrate that token-level certainty (in contrast to  
 495 sequence-level) can function as a useful tool to modulate performance and efficiency in reasoning  
 496 LLMs.  
 497

## 498 6 CONCLUSION AND FUTURE DIRECTIONS

500 By leveraging token-level entropy, EAGER-init proves to be a highly performant training-free gen-  
 501 eration method with significantly higher efficiency compared to FULL PARALLEL sampling. In  
 502 applications such as RLVR, where the correct answer is known, EAGER surpasses the Pass@k per-  
 503 formance by up to 37% compared to FULL PARALLEL sampling while using up to 65% fewer tokens.  
 504 Even without a verifier at test time, EAGER-adapt improves exploration, surpassing FULL PAR-  
 505 ALLEL sampling performance while generating up to 40% fewer tokens. In both cases, the methods  
 506 demonstrate the ability to *save large amounts of compute and simultaneously enhance exploration*.  
 507 Finally, we show that the approaches are domain (math, science and coding) and temperature (see  
 508 Appendix C) agnostic.

509 While our current work uses token-level entropy to create branching reasoning streams, future  
 510 research could explore other methods for quantifying uncertainty. For example, using Kullback-  
 511 Leibler (KL) Divergence to measure token uncertainty is a promising direction, inspired by the  
 512 work of Kang et al. (2025). At the same time, a key consideration is that the uncertainty quantifi-  
 513 cation method must be lightweight, as a computationally expensive approach would undermine the  
 514 goal of improving generation efficiency.

## 515 REFERENCES

516 Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Math-  
 517 arena: Evaluating llms on uncontaminated math competitions, February 2025. URL <https://matharena.ai/>.  
 518

519 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,  
 520 2025. URL <https://arxiv.org/abs/2501.12948>.  
 521

522 Jinhao Duan, Hao Cheng, Shiqi Wang, Alex Zavalny, Chenan Wang, Renjing Xu, Bhavya Kailkhura,  
 523 and Kaidi Xu. Shifting attention to relevance: Towards the predictive uncertainty quantifica-  
 524 tion of free-form large language models. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-  
 525 mar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-  
 526 guistics (Volume 1: Long Papers)*, pp. 5050–5063, Bangkok, Thailand, August 2024. Asso-  
 527 ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.276. URL <https://aclanthology.org/2024.acl-long.276/>.  
 528

529 Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Francisco Guzmán, Mark Fishel,  
 530 Nikolaos Aletras, Vishrav Chaudhary, and Lucia Specia. Unsupervised Quality Estimation for  
 531 Neural Machine Translation. *Transactions of the Association for Computational Linguistics*, 8:  
 532 539–555, September 2020. ISSN 2307-387X. doi: 10.1162/tacl\_a\_00330.  
 533

534 Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence, 2025.  
 535 URL <https://arxiv.org/abs/2508.15260>.  
 536

537 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text  
 538 degeneration. In *8th International Conference on Learning Representations, ICLR 2020, Addis  
 539 Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020. URL <https://openreview.net/forum?id=rygGQyrFvH>.

540 HuggingFaceTB. Smollm3: smol, multilingual, long-context reasoner, 2025. URL <https://huggingface.co/blog/smollm3>.  
 541  
 542

543 Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language  
 544 models via self-certainty, 2025. URL <https://arxiv.org/abs/2502.18581>.  
 545

546 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances  
 547 for uncertainty estimation in natural language generation. In *The Eleventh International Confer-  
 548 ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=VD-AYtP0dve>.  
 549

550 Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan, Xinglin Wang, Bin Sun, Heda Wang, and  
 551 Kan Li. Escape sky-high cost: Early-stopping self-consistency for multi-step reasoning. In  
 552 *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Aus-  
 553 tria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=ndR8Ytrzh>.  
 554

555 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by  
 556 chatGPT really correct? rigorous evaluation of large language models for code generation. In  
 557 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=1qvx610Cu7>.  
 558

559 Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, and Lingming Zhang. Evalu-  
 560 ating language models for efficient code generation. In *First Conference on Language Modeling*,  
 561 2024. URL <https://openreview.net/forum?id=IBCBMeAhmC>.  
 562

563 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke  
 564 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time  
 565 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.  
 566

567 OpenAI. Introducing gpt-oss, 2025. URL <https://openai.com/index/introducing-gpt-oss/>.  
 568

569 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien  
 570 Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a  
 571 benchmark, 2023. URL <https://arxiv.org/abs/2311.12022>.  
 572

573 Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute  
 574 optimally can be more effective than scaling parameters for reasoning. In *The Thirteenth In-  
 575 ternational Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*.  
 576 OpenReview.net, 2025. URL <https://openreview.net/forum?id=4FWAwZtd2n>.  
 577

578 Keith E. Stanovich and Richard F. West. *Individual Differences in Reasoning: Implications for the  
 579 Rationality Debate?*, pp. 421–440. Cambridge University Press, 2002.  
 580

581 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.  
 582

583 Roman Vashurin, Maiya Goloburda, Albina Ilina, Aleksandr Rubashevskii, Preslav Nakov, Artem  
 584 Shelmanov, and Maxim Panov. Uncertainty Quantification for LLMs through Minimum Bayes  
 585 Risk: Bridging Confidence and Consistency. *arXiv e-prints*, art. arXiv:2502.04964, February  
 586 2025. doi: 10.48550/arXiv.2502.04964.  
 587

588 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,  
 589 Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen  
 590 Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive  
 591 effective reinforcement learning for llm reasoning, 2025. URL <https://arxiv.org/abs/2506.01939>.  
 592

593 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha  
 594 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language  
 595 models. In *The Eleventh International Conference on Learning Representations, ICLR 2023,  
 596 Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=1PL1NIMMrw>.  
 597

594 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V  
595 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.  
596 In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in  
597 Neural Information Processing Systems*, volume 35, pp. 24824–24837. Curran Associates, Inc.,  
598 2022. URL [https://proceedings.neurips.cc/paper\\_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf).

600 Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,  
601 Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms  
602 for large language models. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.  
603 URL <https://openreview.net/forum?id=eskQMcIbMS>. Survey Certification.

604 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:  
605 An empirical analysis of compute-optimal inference for LLM problem-solving. In *The Thirteenth  
606 International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*.  
607 OpenReview.net, 2025. URL <https://openreview.net/forum?id=VNckp7JEHn>.

609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647

648  
649

## A COMPLETE RESULTS

650  
651

Table 3 presents a complete overview of the results of our experiments.

652

| $\theta$               | SmolLM3-3B  |             |             |             |             |             | Qwen3-4B    |             |            |             |             |             | Deepseek 8B |            |             |             |             |             | GPT-oss 20B |             |   |   |   |  |
|------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|---|---|---|--|
|                        | ↑ p@1       | ↑ c@32      | ↑ PR        | ↓ # T       | ↓ # S       | ↑ p@1       | ↑ c@32      | ↑ PR        | ↓ # T      | ↓ # S       | ↑ p@1       | ↑ c@32      | ↑ PR        | ↓ # T      | ↓ # S       | ↑ p@1       | ↑ c@32      | ↑ PR        | ↓ # T       | ↓ # S       |   |   |   |  |
| AIME 2024 (math)       |             |             |             |             |             |             |             |             |            |             |             |             |             |            |             |             |             |             |             |             |   |   |   |  |
| —                      | 0.60        | 0.03        | 0.09        | 27          | 32.0        | <b>0.90</b> | <b>0.80</b> | 0.74        | 14         | 32.0        | <b>0.93</b> | 0.80        | 0.73        | 20         | 32.0        | 0.93        | 0.80        | 0.71        | 8           | 32.0        |   |   |   |  |
| 2.0                    | 0.53        | 0.03        | 0.10        | 18          | 28.8        | <b>0.80</b> | 0.73        | 0.70        | 6          | 15.3        | <b>0.90</b> | <b>0.87</b> | <b>0.85</b> | 7          | 15.8        | <b>0.93</b> | 0.77        | 0.70        | <b>4</b>    | 30.7        |   |   |   |  |
| 2.2                    | 0.53        | 0.10        | 0.15        | 18          | 28.4        | 0.70        | 0.67        | 0.68        | 1          | 1.7         | 0.80        | 0.80        | 0.79        | 2          | 4.5         | 0.90        | 0.80        | 0.70        | <b>4</b>    | 29.7        |   |   |   |  |
| 2.3                    | 0.52        | 0.10        | 0.18        | 17          | 26.8        | 0.67        | 0.67        | 0.65        | 0.3        | <b>1.0</b>  | 0.77        | 0.77        | 0.76        | 0.4        | 1.3         | 0.90        | 0.80        | 0.68        | <b>4</b>    | 30.2        |   |   |   |  |
| 2.4                    | 0.67        | 0.20        | 0.25        | 14          | 22.7        | 0.77        | <b>0.77</b> | 0.77        | 1          | <b>1.0</b>  | 0.70        | 0.70        | 0.70        | <b>0.3</b> | <b>1.0</b>  | <b>0.93</b> | <b>0.83</b> | <b>0.75</b> | <b>4</b>    | 27.6        |   |   |   |  |
| 2.5                    | 0.57        | <b>0.50</b> | <b>0.40</b> | <b>5</b>    | <b>16.5</b> | 0.73        | 0.73        | <b>0.2</b>  | <b>1.0</b> | 0.73        | 0.73        | <b>0.3</b>  | <b>1.0</b>  | 0.90       | <b>0.83</b> | 0.69        | <b>4</b>    | <b>28.0</b> |             |             |   |   |   |  |
| 2.0                    | 0.73        | 0.10        | 0.13        | 19          | 32.0        | <b>0.90</b> | <b>0.80</b> | 0.74        | 9          | 23.4        | <b>0.93</b> | <b>0.87</b> | <b>0.85</b> | 9          | 20.0        | 0.93        | 0.77        | 0.70        | 5           | 32.0        |   |   |   |  |
| 2.2                    | 0.73        | 0.10        | 0.16        | 19          | 32          | 0.87        | 0.77        | 0.76        | 5          | 11.3        | 0.90        | 0.80        | 0.80        | 5          | 12.0        | 0.93        | 0.83        | 0.71        | 5           | 32.2        |   |   |   |  |
| 2.3                    | <b>0.83</b> | 0.17        | 0.18        | 19          | 33.0        | <b>0.90</b> | <b>0.80</b> | 0.75        | 5          | 12.4        | 0.87        | 0.83        | 0.81        | 5          | 10.1        | 0.93        | 0.80        | 0.68        | 5           | 32.1        |   |   |   |  |
| 2.4                    | 0.77        | 0.20        | 0.28        | 19          | 32.8        | 0.83        | <b>0.80</b> | 0.79        | 5          | <b>10.5</b> | 0.90        | 0.80        | 0.78        | 6          | 13.0        | 0.97        | 0.83        | <b>0.75</b> | 5           | 32.0        |   |   |   |  |
| 2.5                    | 0.67        | <b>0.50</b> | <b>0.42</b> | 14          | <b>31.3</b> | 0.87        | 0.83        | <b>0.81</b> | 5          | 10.7        | 0.90        | 0.77        | 0.77        | 7          | 14.0        | <b>1.00</b> | <b>0.87</b> | 0.71        | 5           | 32.0        |   |   |   |  |
| —                      | 0.53        | 0.00        | 0.06        | 28          | 32.0        | 0.80        | 0.70        | 0.62        | 17         | 32.0        | <b>0.80</b> | 0.67        | 0.65        | 22         | 32.0        | 0.90        | <b>0.83</b> | 0.67        | 10          | 32.0        |   |   |   |  |
| 1.8                    | —           | —           | —           | —           | —           | 0.77        | 0.70        | 0.60        | 0.90       | 24.5        | —           | —           | —           | —          | —           | —           | —           | —           | —           | —           | — | — | — |  |
| 2.0                    | 0.53        | 0.00        | 0.05        | 19          | 28.8        | 0.77        | 0.70        | 0.61        | 8          | 18.4        | 0.73        | 0.60        | 0.59        | 8          | 17.4        | 0.90        | <b>0.83</b> | 0.66        | 5           | 31.1        |   |   |   |  |
| 2.2                    | 0.43        | 0.00        | 0.07        | 19          | 29.9        | 0.67        | 0.63        | <b>0.64</b> | 1          | 3.1         | 0.70        | 0.63        | 0.64        | 2          | 4.9         | 0.93        | 0.80        | 0.67        | 5           | 30          |   |   |   |  |
| 2.3                    | 0.37        | 0.10        | 0.14        | 17          | 27.8        | 0.60        | 0.60        | <b>0.60</b> | <b>0.3</b> | 1.1         | 0.70        | <b>0.67</b> | <b>0.66</b> | 1          | 2.2         | 0.93        | 0.73        | 0.64        | 5           | 31.4        |   |   |   |  |
| 2.4                    | 0.53        | 0.07        | 0.11        | 17          | 27.6        | 0.70        | 0.70        | 0.70        | <b>0.3</b> | 1.1         | 0.63        | 0.60        | 0.61        | 0.5        | <b>1.2</b>  | 0.93        | 0.80        | 0.66        | 5           | 29.8        |   |   |   |  |
| 2.5                    | 0.43        | <b>0.23</b> | 0.26        | <b>10</b>   | <b>17.5</b> | 0.60        | 0.60        | <b>0.3</b>  | <b>1.0</b> | 0.63        | 0.60        | 0.61        | <b>0.4</b>  | <b>1.2</b> | 0.90        | <b>0.83</b> | <b>0.69</b> | 5           | 26.1        |             |   |   |   |  |
| 2.0                    | —           | —           | —           | —           | —           | —           | —           | —           | —          | —           | —           | —           | —           | —          | —           | —           | —           | —           | —           | —           | — | — | — |  |
| 2.0                    | 0.63        | 0.00        | 0.06        | 20          | <b>32.0</b> | 0.83        | 0.73        | 0.63        | 12         | 30.0        | <b>0.80</b> | 0.63        | 0.63        | 12         | 28.0        | 0.90        | <b>0.83</b> | 0.66        | 5           | 32.0        |   |   |   |  |
| 2.2                    | 0.57        | 0.00        | 0.08        | 20          | <b>32.0</b> | 0.80        | 0.70        | 0.70        | 6          | 14.7        | <b>0.80</b> | 0.63        | 0.68        | 7          | 16.1        | <b>0.97</b> | 0.80        | 0.68        | 5           | 32.9        |   |   |   |  |
| 2.3                    | 0.57        | 0.10        | 0.15        | 19          | 32.1        | 0.80        | <b>0.77</b> | 0.71        | 8          | 17.5        | <b>0.80</b> | 0.73        | <b>0.71</b> | 6          | <b>13.1</b> | 0.93        | 0.73        | 0.64        | 5           | 32.2        |   |   |   |  |
| 2.4                    | 0.67        | 0.07        | 0.13        | 19          | 32.2        | 0.80        | 0.73        | 0.71        | 5          | <b>10.7</b> | <b>0.80</b> | <b>0.70</b> | 0.68        | 7          | 15.3        | 0.93        | 0.80        | 0.66        | 6           | 33.0        |   |   |   |  |
| 2.5                    | <b>0.73</b> | <b>0.33</b> | <b>0.31</b> | 15          | 33.6        | <b>0.83</b> | 0.73        | <b>0.69</b> | 7          | 15.0        | <b>0.80</b> | <b>0.70</b> | 0.68        | 6          | 14.0        | 0.93        | <b>0.83</b> | <b>0.69</b> | 7           | 32.0        |   |   |   |  |
| HMMT (math)            |             |             |             |             |             |             |             |             |            |             |             |             |             |            |             |             |             |             |             |             |   |   |   |  |
| —                      | 0.23        | 0.00        | 0.03        | 28          | 32.0        | 0.50        | 0.37        | 0.34        | 18         | 32.0        | <b>0.57</b> | <b>0.43</b> | 0.37        | 24         | 32.0        | 0.63        | 0.53        | 0.38        | 13          | 32.0        |   |   |   |  |
| 1.8                    | 0.23        | 0.03        | 0.06        | 20          | 31.7        | <b>0.43</b> | 0.37        | 0.33        | 10         | 22.7        | —           | —           | —           | 8          | 18.1        | <b>0.70</b> | 0.43        | 0.37        | <b>6</b>    | 31.9        |   |   |   |  |
| 2.0                    | 0.33        | 0.03        | 0.07        | 20          | 30.8        | 0.43        | 0.37        | 0.35        | 7          | 15.5        | <b>0.43</b> | 0.37        | 0.33        | 8          | 18.1        | <b>0.70</b> | 0.43        | 0.37        | <b>6</b>    | 31.9        |   |   |   |  |
| 2.2                    | 0.23        | 0.00        | 0.06        | 18          | 28.5        | 0.37        | 0.37        | 0.36        | 1          | 3.3         | 0.40        | 0.37        | 0.38        | 3          | 6.2         | 0.67        | 0.43        | 0.36        | <b>6</b>    | 32.0        |   |   |   |  |
| 2.3                    | 0.27        | 0.10        | 0.12        | 17          | 27.5        | 0.40        | 0.40        | 0.40        | 1          | 2.3         | 0.40        | 0.40        | 0.35        | 2          | 4.7         | 0.63        | 0.47        | <b>0.40</b> | <b>6</b>    | 30.9        |   |   |   |  |
| 2.4                    | 0.27        | <b>0.17</b> | <b>0.18</b> | 14          | 23.8        | 0.33        | 0.33        | 0.33        | 0.4        | 1.1         | 0.37        | 0.37        | 0.35        | 1          | 1.5         | 0.63        | 0.43        | 0.38        | <b>6</b>    | 30.8        |   |   |   |  |
| 2.5                    | 0.23        | <b>0.17</b> | 0.17        | <b>10</b>   | <b>17.4</b> | 0.43        | <b>0.43</b> | 0.43        | 10         | 32.7        | 0.37        | 0.37        | 0.37        | <b>0.4</b> | <b>1.1</b>  | 0.67        | <b>0.53</b> | <b>0.40</b> | <b>6</b>    | <b>30.5</b> |   |   |   |  |
| 2.0                    | —           | —           | —           | —           | —           | —           | —           | —           | —          | —           | —           | —           | —           | —          | —           | —           | —           | —           | —           | —           | — | — | — |  |
| 1.8                    | 0.27        | 0.03        | 0.06        | 20          | <b>32.0</b> | 0.47        | 0.37        | 0.33        | 15         | 32.9        | —           | —           | —           | 11         | 24.5        | <b>0.57</b> | 0.43        | 0.37        | <b>6</b>    | 32.0        |   |   |   |  |
| 2.0                    | <b>0.40</b> | 0.03        | 0.09        | 20          | <b>32.0</b> | 0.53        | 0.37        | 0.36        | 14         | 32.0        | <b>0.57</b> | <b>0.43</b> | <b>0.43</b> | 13         | 27.5        | n/a         | n/a         | n/a         | 7           | 32.0        |   |   |   |  |
| 2.2                    | 0.33        | 0.00        | 0.06        | 19          | <b>32.0</b> | 0.53        | 0.37        | 0.37        | 11         | 24.5        | <b>0.57</b> | <b>0.43</b> | <b>0.43</b> | 13         | 24.0        | 0.67        | 0.47        | <b>0.40</b> | 7           | 32.0        |   |   |   |  |
| 2.3                    | 0.33        | 0.10        | 0.13        | 19          | 32.0        | 0.57        | 0.40        | 0.41        | 10         | 22.6        | 0.53        | <b>0.43</b> | 0.38        | 11         | 24.0        | 0.67        | 0.47        | <b>0.40</b> | 7           | 32.0        |   |   |   |  |
| 2.4                    | <b>0.40</b> | <b>0.17</b> | <b>0.18</b> | 17          | 32.2        | 0.50        | 0.40        | 0.37        | 11         | 25.2        | <b>0.57</b> | <b>0.43</b> | 0.39        | 11         | 24.0        | 0.63        | 0.43        | 0.38        | <b>6</b>    | 30.8        |   |   |   |  |
| 2.5                    | <b>0.40</b> | <b>0.17</b> | <b>0.19</b> | 15          | 32.7        | <b>0.60</b> | <b>0.43</b> | <b>0.44</b> | 10         | 21.9        | 0.50        | 0.37        | 0.39        | 11         | <b>23.5</b> | 0.67        | <b>0.53</b> | <b>0.40</b> | 7           | <b>32.0</b> |   |   |   |  |
| GPQA-Diamond (science) |             |             |             |             |             |             |             |             |            |             |             |             |             |            |             |             |             |             |             |             |   |   |   |  |
| —                      | 0.49        | 0.00        | 0.03        | 185         | 32.0        | 0.75        | 0.51        | 0.43        | 65         | 32.0        | 0.95        | 0.15        | 0.18        | 68         | 32.0        | 0.96        | 0.68        | 0.65        | 24          | 32.0        |   |   |   |  |
| 2.0                    | <b>0.68</b> | 0.04        | 0.09        | 137         | 30.8        | <b>0.79</b> | <b>0.51</b> | 0.43        | 46         | 26.8        | <b>0.93</b> | <b>0.25</b> | <b>0.24</b> | 37         | 28.5        | 0.93        | <b>0.72</b> | <b>0.66</b> | <b>13</b>   | 29.7        |   |   |   |  |
| 2.2                    | 0.62        | 0.07        | 0.11        | 130         | 30.0        | 0.71        | 0.47        | 0.43        | 38         | 22.1        | 0.91        | 0.18        | 0.22        | 33         | 25.0        | 0.97        | 0.71        | <b>0.66</b> | 14          | 27.6        |   |   |   |  |
| 2.3                    | 0.61        | 0.02        | 0.07        | 133         | 30.7        | 0.64        | 0.49        | 0.43        | 23         | 14.7        | 0.81        | 0.21        | 0.18        | 23         | 17.4        | 0.95        | 0.66        | 0.65        | 14          | 30.9        |   |   |   |  |
| 2.4                    | 0.61        | 0.06        | 0.10        | 126         | 29.8        | 0.56        | 0.45        | 0.44        | 12         | 7.4         | —           | —           | —           | 11         | 24.0        | 0.94        | 0.70        | <b>0.66</b> | 14          | 25.8        |   |   |   |  |
| 2.5                    | 0.59        | <b>0.10</b> | <b>0.11</b> | <b>27.6</b> | 0.49        | 0.46        | <b>0.45</b> | <b>3</b>    | 6.6        | 0.20        | 0.21        | <b>4</b>    | <b>3.1</b>  | 0.95       | 0.68        | 0.65        | <b>13</b>   | <b>24.0</b> |             |             |   |   |   |  |
| 2.0                    | 0.79        | 0.04        | 0.09        | 137         | <b>32.0</b> | <b>0.85</b> | 0.51        | 0.43        | 59         | 32.4        | 0.96        | 0.25        | 0.26        | 43         | 32.5        | <b>0.99</b> | <b>0.72</b> | <b>0.66</b> | 15          | 32.3        |   |   |   |  |
| 2.2                    | 0.81        | 0.07        | 0.12        | 132         | <b>32.0</b> | 0.81        | 0.50        | 0.45        | 55         | 32.4        | <b>0.97</b> | 0.18        | 0.25        | 43         | 33.8        | 0.98        | 0.71        | <b>0.66</b> | 15          | 29.9        |   |   |   |  |
| 2.3                    | 0.75        | 0.03        | 0.09        | 135         | <b>32.0</b> | 0.81        | 0.53        | 0.47        | 44         | 27.3        | <b>0.97</b> | 0.25        | 0.25        | 46         | 35.4        | 0.97        |             |             |             |             |   |   |   |  |

## 702 B RELATED APPROACHES

704 We include results for the AIME 2025 benchmark comparing several approaches: ESC Li et al.  
 705 (2024), a sampling method designed to reduce token usage relative to FULL PARALLEL sampling;  
 706 and DeepConf, the concurrent work of Fu et al. (2025), which estimates the model’s confidence in  
 707 its generated sequence and terminating generation when that confidence falls below a threshold. We  
 708 report these results in Table 4.

709 We also include an additional metric, wall-clock time, to highlight the practical impact of these ap-  
 710 proaches. This metric serves only as a broad overall comparison within the context of these experi-  
 711 ments, as wall-clock time is highly sensitive to system configuration and environmental conditions  
 712 and is not fully isolated from external factors.

| 714 Model       | AIME 2025 metric  | Baseline      |  | Related Works |             | Our        |             |       |
|-----------------|-------------------|---------------|--|---------------|-------------|------------|-------------|-------|
|                 |                   | FULL PARALLEL |  | ESC           | DeepConf    | EAGER-INIT | EAGER-adapt | EAGER |
| 716 SmoILM 3B   | ↑ Pass@k          | 0.53          |  | 0.53          | <b>0.63</b> | 0.53       | <b>0.63</b> | 0.73  |
|                 | ↑ Pass Rate       | 0.06          |  | 0.05          | 0.26        | 0.26       | <b>0.28</b> | 0.31  |
|                 | ↓ # Tokens (1e5)  | 28            |  | 28            | 22          | 19         | <b>15</b>   | 15    |
|                 | ↓ Wall-clock time | ~11h          |  | ~60h          | ~8h         | ~4.5h      | ~6h         | ~8h   |
| 719 Qwen3 4B    | ↑ Pass@k          | <b>0.80</b>   |  | <b>0.80</b>   | <b>0.80</b> | 0.77       | 0.80        | 0.83  |
|                 | ↑ Pass Rate       | 0.62          |  | 0.63          | <b>0.68</b> | 0.60       | <b>0.68</b> | 0.69  |
|                 | ↓ # Tokens (1e5)  | 17            |  | 11            | 15          | <b>8</b>   | 12          | 12    |
|                 | ↓ Wall-clock time | ~12h          |  | ~25h          | ~10h        | ~5h        | ~8h         | ~9h   |
| 722 DeepSeek 8B | ↑ Pass@k          | <b>0.80</b>   |  | <b>0.80</b>   | <b>0.80</b> | 0.73       | 0.77        | 0.80  |
|                 | ↑ Pass Rate       | 0.65          |  | 0.66          | <b>0.70</b> | 0.59       | 0.68        | 0.71  |
|                 | ↓ # Tokens (1e5)  | 22            |  | 13            | 19          | <b>8</b>   | 13          | 12    |
|                 | ↓ Wall-clock time | ~27h          |  | ~40h          | ~24h        | ~10h       | ~15h        | ~16h  |
| 725 GPT-Oss 20B | ↑ Pass@k          | 0.90          |  | 0.90          | 0.93        | 0.90       | <b>0.95</b> | 0.97  |
|                 | ↑ Pass Rate       | 0.67          |  | <b>0.69</b>   | 0.68        | 0.66       | 0.68        | 0.68  |
|                 | ↓ # Tokens (1e5)  | 10            |  | 7             | 7           | 5          | <b>5</b>    | 5     |
|                 | ↓ Wall-clock time | ~29h          |  | ~30h          | ~20h        | ~13.5h     | ~13.5h      | ~17h  |

727 Table 4: Results on the AIME 2025 benchmark comparing the baseline, related approaches (ESC  
 728 and DeepConf), and our proposed variants. We report Pass@k, Pass Rate, number of generated  
 729 tokens, and wall-clock time. **Bold** values indicate the best performance among all fair-comparison  
 730 methods, excluding full EAGER, which has access to ground-truth labels at test time.

732 Implementation-wise, we adopt ESC using the original authors’ default parameters. We set the  
 733 number of windows per generation to 8 and the maximum budget to  $M = 32$ . For DeepConf, we  
 734 use its online variant, which provides the best performance and is the closest to the intended use  
 735 cases of both their and our proposed sampling approaches. The online variant includes a per-prompt  
 736 warm-up stage, which we count toward the reported Pass Rate and the total number of generated  
 737 tokens. We also set its maximum budget to  $M = 32$ , matching our setup and the other baselines.

738 Table 4 clearly shows that our strongest method (full EAGER) outperforms every baseline and re-  
 739 lated approach. However, we exclude full EAGER from direct comparison and instead highlight the  
 740 best results among all other methods in **bold**. This exclusion is necessary because full EAGER has an  
 741 inherent and unfair advantage having access to target labels. Under fair comparison, EAGER-adapt  
 742 emerges as the strongest overall approach, striking a near-optimal balance between performance  
 743 (Pass@k and Pass Rate) and efficiency (number of tokens generated, # T) across all models.

744 We also note that ESC exhibits significantly higher wall-clock times compared not only to both  
 745 our approach and DeepConf but also FULL PARALLEL sampling. This is a direct consequence of  
 746 its design: ESC relies on small sequential windows and repeatedly evaluates intermediate results  
 747 to decide whether to continue to the next window, up to the full budget  $M$ . While this approach  
 748 does reduce token usage relative to FULL PARALLEL sampling, it severely restricts parallelization,  
 749 resulting in considerably slower overall execution.

750 More broadly, our *branch-and-reuse* strategy provides consistent advantages for several reasons:  
 751 (i) it reuses previously generated tokens, (ii) avoids producing multiple sequences when the model  
 752 is already *confident*, (iii) requires no warm-up stage (unlike DeepConf-online) and (iv) KV-cache  
 753 reloading has negligible overhead at the scale of our long generations, as evidenced by the wall-  
 754 clock results. Empirically, we achieve comparable or superior performance across similar settings.  
 755 We also observe that for easier prompts (where Pass Rate  $\approx 1$ , i.e., all generated answers are iden-  
 756 tical and correct), our method saves substantial tokens by generating only one or two branches. In

756 contrast, DeepConf – relying solely on confidence estimates – often judges the model confident  
 757 enough to generate all 32 sequences, leading to fully redundant token generation.  
 758

### 759 C EFFECT OF TEMPERATURE 760

761 The temperature hyperparameter,  $\tau$ , plays a critical role during autoregressive decoding by scaling  
 762 the logits used by the sampling method (decoding becomes more greedy as  $\tau \rightarrow 0$ ). In this  
 763 section, we conduct a short exploration on the effect of temperature on EAGER. This is espe-  
 764 cially important in the current context, where a higher diversity among the generated sequences  
 765 can intuitively have an effect on the performance metrics. For this exploration, we focus on two  
 766 LLMs, SmoLM 3B & DeepSeek 8B, two temperature settings,  $\tau \in \{0.6, 0.9\}$  and AIME 2025 as  
 767 the evaluation dataset. Furthermore, we conduct the analysis for varying entropy threshold levels  
 768  $\theta \in \{2.0, 2.2, 2.3, 2.4, 2.4, 2.5\}$ .  
 769



790 Figure 5: Pass@k and Cons@k at low ( $\tau = 0.6$ ) and high ( $\tau = 0.9$ ) temperature settings. Horizontal  
 791 lines show the performance for the default sampling method, while the bars show EAGER’s per-  
 792 formance for varying entropy threshold levels  $\theta$ .  
 793

794 As shown in Figure 5, SmoLM 3B generally performs best at the high temperature setting while  
 795 the opposite is true for DeepSeek 8B. Importantly, at both temperature levels, EAGER is competi-  
 796 tive with the corresponding default baselines, often surpassing them. A direct comparison between  
 797 the low and high temperature setting including all metrics for default, EAGER and EAGER-init  
 798 generations is presented in Table 5.

799 Notably, the performance of SmoLM 3B is particularly higher in the high temperature setting when  
 800 measured by the Cons@max rate. We find that this is a result of the reduction of generations in which  
 801 the same tokens are repeatedly produced (e.g., “The answer is: The answer is: The ...”). Specifically,  
 802 in the high temperature setting, this phenomenon occurs, on average, 59.1% less compared to the low  
 803 temperature setting. This behaviour was only observed with SmoLM 3B, suggesting it results from  
 804 the smaller model size. An exception arises with the HumanEval Plus benchmark, where SmoLM  
 805 3B failed to solve any tasks, resulting in all metrics being zero under the FULL PARALLEL sampling  
 806 setting. In contrast, EAGER-init and EAGER appeared to partially mitigate this issue.

807 Lastly, we also find that the temperature has an effect on the number of tokens generated which, by  
 808 extension, impact performance. For example, when EAGER is used at the high temperature setting,  
 809 Deepseek 8B generates, on average, less than half the number of tokens compared to the low tem-  
 810 perature setting. In contrast, SmoLM3-3B generates more tokens at the high-temperature setting.

| $\theta$ | SmoLM3-3B                        |                 |               |                  |                                   |                 |               |                  | Deepseek 8B                      |                 |               |                  |                                   |                 |               |                  |                  |      |
|----------|----------------------------------|-----------------|---------------|------------------|-----------------------------------|-----------------|---------------|------------------|----------------------------------|-----------------|---------------|------------------|-----------------------------------|-----------------|---------------|------------------|------------------|------|
|          | Low Temperature ( $\tau = 0.6$ ) |                 |               |                  | High Temperature ( $\tau = 0.9$ ) |                 |               |                  | Low Temperature ( $\tau = 0.6$ ) |                 |               |                  | High Temperature ( $\tau = 0.9$ ) |                 |               |                  |                  |      |
|          | $\uparrow$ p@1                   | $\uparrow$ c@32 | $\uparrow$ PR | $\downarrow$ # T | $\uparrow$ p@1                    | $\uparrow$ c@32 | $\uparrow$ PR | $\downarrow$ # S | $\uparrow$ p@1                   | $\uparrow$ c@32 | $\uparrow$ PR | $\downarrow$ # T | $\uparrow$ p@1                    | $\uparrow$ c@32 | $\uparrow$ PR | $\downarrow$ # T | $\downarrow$ # S |      |
| -        | 0.53                             | 0.00            | 0.06          | <b>28</b>        | 32.0                              | <b>0.63</b>     | <b>0.37</b>   | <b>0.25</b>      | 44                               | 32.0            | <b>0.80</b>   | <b>0.67</b>      | <b>0.65</b>                       | 22.0            | 32.0          | 0.70             | 0.60             | 0.57 |
| 2.0      | 0.53                             | 0.00            | 0.05          | <b>19</b>        | <b>28.8</b>                       | <b>0.67</b>     | <b>0.30</b>   | <b>0.25</b>      | 26                               | 31.0            | 0.73          | 0.60             | <b>0.59</b>                       | 8.0             | <b>17.4</b>   | <b>0.77</b>      | <b>0.63</b>      | 0.58 |
| 2.2      | 0.43                             | 0.00            | 0.07          | <b>19</b>        | <b>29.9</b>                       | <b>0.53</b>     | <b>0.37</b>   | <b>0.25</b>      | 27                               | 30.9            | 0.70          | <b>0.63</b>      | <b>0.64</b>                       | 2.0             | <b>4.9</b>    | 0.70             | 0.60             | 0.58 |
| 2.3      | 0.37                             | 0.10            | 0.14          | 17               | <b>27.8</b>                       | <b>0.57</b>     | <b>0.33</b>   | <b>0.26</b>      | 26                               | 29.9            | <b>0.70</b>   | <b>0.67</b>      | <b>0.66</b>                       | 1.0             | 2.2           | 0.57             | 0.53             | 0.53 |
| 2.4      | 0.53                             | 0.07            | 0.11          | 17               | 27.6                              | <b>0.60</b>     | <b>0.40</b>   | <b>0.32</b>      | 22                               | <b>25.8</b>     | <b>0.63</b>   | <b>0.60</b>      | <b>0.61</b>                       | <b>0.5</b>      | 1.2           | 0.57             | 0.53             | 0.53 |
| 2.5      | 0.43                             | 0.23            | 0.26          | <b>10</b>        | <b>17.5</b>                       | <b>0.50</b>     | <b>0.37</b>   | 0.26             | 21                               | 24.7            | 0.63          | 0.60             | 0.61                              | 0.4             | 1.2           | 0.63             | 0.60             | 0.61 |
| 2.0      | 0.63                             | 0.00            | 0.06          | <b>20</b>        | 32.0                              | <b>0.67</b>     | <b>0.30</b>   | <b>0.25</b>      | 27                               | 32.0            | <b>0.80</b>   | 0.63             | <b>0.63</b>                       | 12.0            | <b>28.0</b>   | 0.77             | 0.63             | 0.58 |
| 2.2      | <b>0.57</b>                      | 0.00            | 0.08          | <b>20</b>        | 32.0                              | 0.53            | <b>0.33</b>   | <b>0.25</b>      | 28                               | 32.0            | <b>0.80</b>   | 0.63             | <b>0.68</b>                       | 7.0             | <b>16.1</b>   | 0.77             | 0.63             | 0.62 |
| 2.3      | 0.57                             | 0.10            | 0.15          | 19               | 32.1                              | <b>0.70</b>     | <b>0.33</b>   | <b>0.27</b>      | 28                               | 32.1            | <b>0.80</b>   | <b>0.73</b>      | <b>0.71</b>                       | 6.0             | <b>13.1</b>   | 0.73             | 0.63             | 0.63 |
| 2.4      | 0.67                             | 0.07            | 0.13          | <b>19</b>        | 32.2                              | <b>0.70</b>     | <b>0.40</b>   | <b>0.33</b>      | 29                               | <b>32.0</b>     | <b>0.80</b>   | <b>0.70</b>      | <b>0.68</b>                       | 7.0             | <b>15.3</b>   | 0.73             | 0.60             | 0.59 |
| 2.5      | <b>0.73</b>                      | 0.33            | <b>0.31</b>   | <b>15</b>        | 33.6                              | 0.63            | <b>0.37</b>   | 0.29             | 29                               | 32.4            | <b>0.80</b>   | <b>0.70</b>      | <b>0.68</b>                       | 6.0             | <b>14.0</b>   | 0.77             | 0.67             | 0.66 |

Table 5: AIME 2025 results for default, EAGER-init, and EAGER generations for low and high temperature  $\tau$  and varying entropy threshold  $\theta$ . Best results per temperature and threshold setting are marked in **boldface**.

In both cases, and in line with the test-time scaling paradigm, we find that higher performance is achieved in whichever temperature setting more tokens are generated.

## D GENERATION PARAMS

All models are used with their longest thinking configuration to get their best performances. Furthermore we limit their context window to 32k tokens. All sequences are generated with a temperature of  $\tau = 0.60$  and a top-p of 95%. The effect of temperature is discussed in Appendix C. Table 6 reports the thresholds used for each benchmark and model. Following the discussion in Section 4.1, we select thresholds independently based on their intended use. The EAGER-init sampling method is designed to save budget without significantly compromising performance (lower threshold), whereas EAGER aims to preserve as much performance as possible for later reuse, higher threshold are preferred in such scenario.

|                | SmoLM 3B   |       | Qwen3 4B   |       | DeepSeek 8B |       | GPT-oss 20B |       |
|----------------|------------|-------|------------|-------|-------------|-------|-------------|-------|
|                | EAGER-init | EAGER | EAGER-init | EAGER | EAGER-init  | EAGER | EAGER-init  | EAGER |
| AIME 2024      | 2.5        | 2.5   | 2.0        | 2.3   | 2.0         | 2.0   | 2.4         | 2.5   |
| AIME 2025      | 2.4        | 2.5   | 2.0        | 2.5   | 2.2         | 2.5   | 2.4         | 2.5   |
| HMMT 2025      | 2.5        | 2.5   | 2.5        | 2.5   | 2.4         | 2.5   | 2.5         | 2.5   |
| GPQA-Diamond   | 2.5        | 2.5   | 2.0        | 2.5   | 2.0         | 2.3   | 2.2         | 2.0   |
| HumanEval Plus | 2.3        | -     | 2.2        | 2.4   | 2.0         | 2.4   | 2.4         | 2.4   |

Table 6: Best thresholds for every benchmark and model.