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ABSTRACT

The discovery of conservation principles is crucial for understanding the funda-
mental behavior of both classical and quantum physical systems across numerous
domains. This paper introduces an innovative method that merges representation
learning and topological analysis to explore the topology of conservation law
spaces. Notably, the robustness of our approach to noise makes it suitable for
complex experimental setups and its aptitude extends to the analysis of quantum
systems, as successfully demonstrated in our paper. We exemplify our method’s
potential to unearth previously unknown conservation principles and endorse in-
terdisciplinary research through a variety of physical simulations. In conclusion,
this work emphasizes the significance of data-driven techniques in deepening our
comprehension of the essential principles governing classical and quantum physical
systems.

1 INTRODUCTION

Conservation laws and principles lie at the core of our understanding of the physical world, providing
insight into the fundamental rules governing the behavior of complex systems. The discovery
and application of these principles span various disciplines, such as physics, engineering, biology,
and computer science. In recent years, data-driven techniques have emerged as powerful tools for
uncovering previously unknown principles and fostering innovative interdisciplinary research.

We present a novel method that tackles the challenge of revealing hidden conservation laws through the
synergistic combination of representation learning and topological analysis. Our approach transcends
traditional limitations by the robustness to the noise in the measurements, which is important on itself,
but also it opens the possibility to work with the quantum systems.

In this paper, we elaborate on the details of our technique, outlining its advantages over existing
methods, and demonstrating its potential for uncovering conservation laws in a wide range of
settings. By applying our approach to various physical simulations, we showcase its efficacy, broad
applicability, and opportunities in interdisciplinary research.

This work aims to further affirm the importance and capability of data-driven research within the
landscape of conservation law discovery, contributing to the broader body of knowledge in the field,
and advancing our understanding of the intricate systems that define our world.

The paper is organized as follows. In the section 2 Related work, we review previous approaches to
the discovery of conservation laws, setting the stage for our novel method. The section 3 Method
description details our data-driven algorithm, which combines representation learning and topological
analysis. We report the results of applying our approach to physical simulations in the section 4
Experiments and analyze the implications, limitations, and future research in the section 5 Discussion.
Finally, the section 6 Conclusion highlights critical insights and emphasizes the potential of our
data-driven technique in advancing our understanding of conservation laws in various disciplines.

2 RELATED WORK

Several existing approaches employ data-driven methods for discovering conservation laws of dynam-
ical systems (Liu et al., 2022; Kasim & Lim, 2022; Lejarza & Baldea, 2022; Kaiser et al., 2018; Lu
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et al., 2022; Ha & Jeong, 2021; Liu et al., 2023; Iten et al., 2020; Cranmer et al., 2020; Wetzel et al.,
2020; Muller, 2022; Mototake, 2021; Liu & Tegmark, 2021; Arora et al., 2023). Specifically, a wide
variety of machine learning techniques has been applied in these papers, with examples including the
use of conventional neural networks in works such as Liu et al. (2022); Mototake (2021); Ha & Jeong
(2021), the utilization of Graph Neural Networks (GNNs) as demonstrated in Cranmer et al. (2020),
and the application of Siamese networks in Wetzel et al. (2020), to name but a few.

Some of these methods focus on finding analytical formulas for conserved quantities, which is
referred to as symbolic regression in the scientific literature. Discovered symbolic formulas can
subsequently enhance the robustness of integration (Channell & Scovel, 1990). It’s worth noting that
not all approaches consider the physical properties of the data; for instance, in the work of Lample &
Charton (2019), the authors do not take into account the data’s physical characteristics. In contrast,
others, such as Udrescu & Tegmark (2020), introduce symbolic regression techniques tailored to
the specific physical domain they are dealing with. These researchers present algorithms designed
to uncover symbolic formulas for conserved quantities or dynamic behaviors within the physical
context.

Some of the mentioned works exhibit limitations when it comes to the systems they can handle. For
instance, certain approaches, such as Liu & Tegmark (2021), exclusively focus on the manifold asso-
ciated with a single trajectory. Consequently, these methods are ill-suited for systems characterized
by a high number of dimensions, typically around 100. In contrast, approaches like those introduced
by Ha & Jeong (2021) only have the capacity to learn a solitary conserved quantity, which can pose
challenges when dealing with systems featuring numerous conserved quantities.

Moreover, some approaches, such as in Arora et al. (2023), are confined to Hamiltonian systems
and cannot accommodate more intricate experiments. Conversely, techniques like those described in
Cranmer et al. (2020) are tailored specifically for particular types of systems, such as particle systems.
Additionally, in most of the literature, there is a notable absence of consideration for quantum systems,
a critical omission given their significance in modern physics.

Finally, the issue of interpretability is a concern for some approaches. For example, Liu & Tegmark
(2021) cannot offer meaningful insights for identifying conservation laws beyond estimating the
number of them. In contrast, Lu et al. (2022) propose a method capable of uncovering high-
dimensional phase spaces and providing correlated quantities for conserved variables.

Our proposed method aims to address these concerns and mitigate the mentioned limitations.

3 METHOD DESCRIPTION

3.1 PHYSICAL SYSTEM’S DYNAMICS AND CONSERVED QUANTITIES

The subject of our algorithm is dynamical systems. The states of the system are the points in
a d−dimensional phase space M. For each dynamical system, there is a set (maybe empty) of
conserved quantities H0(x), . . . ,Hn−1(x), which are constant functions along each trajectory. Given
a single trajectory, all conserved quantities restrict it to the isosurface Mh ⊆ M, where h is a
n-dimensional vector representing the values of conserved quantities along the trajectory. The set C
formed by the isosurfaces Mh is called shape space (Lu et al., 2022). It is a n-dimensional manifold
since it is parameterized by the n-dimensional vector h. We will learn the number of conserved
quantities in the system by learning the manifold C.

Since our algorithm only has the data from sampled trajectories and does not have any information
about the conserved quantities, the manifold C will be learned from the prospective of Mh, repre-
sented by the trajectories. To fully discover C, we should sample the trajectories appropriately, that is,
all conserved quantities should variate equally in this set of trajectories; otherwise, the algorithm will
not discriminate some directions of the shape space.

Moreover, each trajectory itself should fully represent the respective Mh, i.e. the following should
hold:
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a) Different trajectories with the same conserved quantities h should converge to the unique
for the isosurface Mh physical measure µh:

µh = lim
T→+∞

1

T

T∫
0

δx(t)dt (1)

which means the system should be ergodic (Medio & Lines, 2001).
b) Trajectories should be sampled during a sufficiently large time, such that the trajectory

approximates µh well enough (the limit converges).

3.2 SHAPE SPACE STRUCTURE ENCODING

To give the Riemannian metric structure to the manifold C we consider Wasserstein distances
(Panaretos & Zemel, 2019) between the distributions µh corresponding to all Mh:

Wβ(µh1 , µh2) =

(
inf
π

∫
||x1 − x2||βdπ(x1, x2)

)1/β

(2)

where π can be any valid transport map between µh1 and µh2 . Here, β is a hyperparameter of the
algorithm, which we set to be equal to 2 for all our experiments.

We know the distributions µh from the trajectories. Therefore, we should adjust the formula for the
Wasserstein distance for the discrete distributions ({x11, . . . , x1m1

} and {x21, . . . x2m2
}) represent-

ing two trajectories x1 and x2 sampled at m1 and m2 points correspondingly:

Wβ ({x11, . . . , x1m1
}, {x21, . . . x2m2

}) =

min
T

∑
i,j

Tij ||x1i − x2j ||β
1/β

(3)

where Tij meets the following constrains:

Tij ≥ 0 ∀i, j (4)∑
i

Tij = 1,
∑
j

Tij = 1 ∀i, j (5)

Wasserstein distance should be computed for the dimensionless data. There are infinitely many ways
to normalize the trajectories to be dimensionless, resulting in different Wasserstein distances. For our
algorithm, such normalization has been chosen that for any i, the mean of i-th coordinate over all
trajectories is 0, and the maximal absolute value of i-th coordinate over all trajectories is 1.

3.3 METRIC SPACE APPROXIMATION AND PROJECTION (MSAP)

To determine the dimensionality of the shape space C we look for a Riemannian manifold C′

isometric to the shape space C while restricting the dimensionality of C′. The resulting C′ will
be the approximation and projection of the shape space into the Rd. To do that, we
first fix a number l, numbers d1, . . . , dl, d, activation functions g1, . . . , gl. Then we try to find the
appropriate C′ in the set

Sk = {f (k)θ (X) with metric Dp | ∀X — submanifold of Rk, ∀θ ∈ Rm(k), ∀p > 1}

where f (k)θ is a fully connected neural network with the input dimensionality k, l intermediate
layers with d1, . . . , dl neurons and activations g1, . . . , gl, and the output dimensionality d; Dp —
Minkowsky metric; m(k) is the number of parameters of the f (k). This way we force Sk to contain
only manifolds with dimensionality ≤ k.

If the neural network f (k)θ is large enough, then the dimensionality of C will equate to the
smallest k that allows us to identify a suitable C′. In numerous instances, the topology of C′ may play
a pivotal role in the desired dimensionality. For instance, a circular topology may reside within a
2-dimensional manifold, yet its representation can be effectively condensed to a 1D variable.
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Aiding the MSAP in finding an optimal approximation for C with non-trivial topology can be
achieved by seeking approximations across varied Sk. For instance, considering X ⊂ S1 ⊂ R2

compels the MSAP to pinpoint a periodic 1-dimensional manifold. This consideration becomes
particularly salient when the shape space exhibits non-trivial topological properties, a phenomenon
we elucidate using Turing oscillating patterns as an illustrative example.
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Figure 1: We present in this figure the general idea behind the Metric Space Approximation and
Projection. The pairwise Wasserstein distance matrix W is given and has to be approximated. {xj}
and θ are the trainable parameters. To train them we construct the pairwise Minkowsky distance
matrix M for f (k)θ (xj) and optimize L(θ, {xj},W ) = Stress(M,W ).

Note, that ∀k, ∀X — submanifold of Rk, ∀θ ∈ Rm(k) one could consider X ′ =

{(x1, . . . , xi, 0)|x ∈ X} ⊂ Rk+1, θ′ — weights for f (k+1)
θ , equal to the weights θ in the re-

spective coordinates. Then f (k)θ (X) = f
(k+1)
θ′ (X ′). Therefore, ∀k : Sk ⊆ Sk+1. The sequence of

families f (k)θ could be chosen from a more general set than the fully connected neural networks. The
important conditions are:

• f (k)θ should be continuous, otherwise the resulting set could be a manifold with a dimen-
sionality higher than k.

• ∀k : Sk ⊆ Sk. The role of this condition is shown in the next paragraph.

However, for simplicity, we will stick with the neural networks described above.

To find the appropriate C′ for the given k, we minimize the Stress:

{xi}, θ, p = argmin
x1,...,xN∈Rk,

θ∈Rm(k),p>1

Stress(M,W ) =

∑
i,j

(Mij −Wij)
2∑

i,j

M2
ij

where W – Wasserstein distance matrix, M – Minkowsky distance matrix for the target space:
Mij = Dp

(
f
(k)
θ (xi), f

(k)
θ (xj)

)
.

In the ideal case Li > 0 for i < n and Li = 0 for i ≥ n. In reality that is improbable, and Li > 0 ∀i.
Nevertheless, for i ≥ n Li will be small. Moreover, since we are trying to approximate the
Riemannian manifold C with the dimensionality n, the best approximation also has the dimensionality
n, and therefore for i > n Li ≥ Lj . On the other hand, for i < j Li ≥ Lj because S̃i ⊆ S̃j . Also,
we suppose that for i < j ≤ n Li > Lj . Therefore, after optimization, we should get the following:
L1 > L2 > · · · > Ln = Ln+1 = . . . .

From the standpoint of the unknown n, we got an algorithm to find n: get the sequence L1, . . . , Lk,
find the point where it stops decreasing, and the corresponding index will be equal to n. Indeed, k
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should be greater than n, but for example, k equal to the number of coordinates in the phase space
will be enough.

To reduce the probability of the error, we train each model several times with different initializations
and choose the best loss.

3.4 MSAP PIPELINE

Combining all parts together, we get the pipeline of the MSAP:

1. The MSAP has several hyperparameters. The most important are the parameters controlling
the structure of the neural network: number of layers, number of neurons for each layer,
activation functions, target dimensionality.

2. The input data consists of N trajectories with various initial conditions.

3. First step is to normalize the data and compute the pairwise Wasserstein distances between
the trajectories.

4. Get the sequence L1, . . . , Lk by optimizing the corresponding neural networks and the
initial xi.

5. Determine the number of conservation laws by finding the point where the sequence {Li}
stops decreasing.

6. As a result of the MSAP we get the determined number of conserved quantities, as well as
the points {xi} approximating the shape space.

4 EXPERIMENTS

We set up several numerical experiments with dynamical systems with known conserved quantities
and tested the proposed method on them. The considered dynamical systems are harmonic oscillator,
coupled oscillator, quantum harmonic oscillator and oscillating Turing patterns. We conducted
experiments both with noiseless and noisy datasets. In all experiments, dataset consisted of N = 200
trajectories. We took the data for the oscillating Turing patterns from Lu et al. (2022). In other
experiments we sampled the data theoretically. You can find the further sampling details in the
supplementary materials.

4.1 COUPLED OSCILLATOR
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Figure 2: The results of the algorithm applied to the coupled oscillator. (a), (b): A few trajectories of
the collected data. (c): Validation learning curves for all k and all random initializations. (d), (e):
Graphs showing how the 2d latent coordinates represent the data.
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The coupled oscillator consists of 2 massive blocks connected to each other and to the walls by springs
(as in the 2a). The coordinates in the coupled oscillator’s phase space are the blocks’ positions (x1, x2)
and their momentums (p1, p2). Therefore, the phase space of the coupled oscillator is 4-dimensional.
The equations of motion of the coupled oscillator are

dx1
dt

= p1,
dx2
dt

= p2,
dp1
dt

= −2x1 + x2,
dp2
dt

= −2x2 + x1 (6)

The coupled oscillator has two conserved quantities, which are energies of two independent modes of
oscillating:

E1 =
(x1 + x2)

2

4
+

(p1 + p2)
2

4
, E2 =

3 (x1 − x2)
2

4
+

(p1 − p2)
2

4
(7)

The figure 2 demonstrates the collected data for the coupled oscillator as well as the results of our
algorithm. The validation loss during the training is shown on the graph 2c. We see that the models
with i = 1 got much worse loss than all other models, which all got the loss approximately 0.04.
That means that the resulting losses stop decreasing at the i = 2, so that is the final prediction of our
algorithm about the number of the conserved quantities in the system, which is the correct prediction.
The graphs on the figures 2d, 2e show how the trained latent representation X ∈ R2 represents the
trajectories.

4.2 HARMONIC OSCILLATOR WITH NOISE
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Figure 3: The results of the algorithm applied to the harmonic oscillator. (a): A few trajectories
of the collected data. (b): Validation loss curves for all k and all random initializations. (c) Graph
showing how the 1d latent coordinates represent the data. (d) Graph showing how the 2d latent
coordinates represent the data.

The harmonic oscillator is a simple example of a dynamical system. The harmonic oscillator’s phase
space consists of two coordinates: coordinate x and momentum p. The equations of motion are

dx

dt
= p

dp

dt
= −x (8)

The harmonic oscillator has one conserved quantity, which is the energy:

E =
x2

2
+
p2

2
(9)
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The figure 3 demonstrates the collected data for the harmonic oscillator as well as the results of our
algorithm. The validation loss during the training is shown on the graph 3b. We see that all models
got the loss approximately 0.007− 0.008. That means that the resulting losses stop decreasing at the
k = 1, so that is the final prediction of our algorithm about the number of the conserved quantities
in the system, which is the correct prediction. The graph on the figure 3c shows how the trained
latent representation {xi} ∈ R1 represents the trajectories. Moreover, the figure 3 demonstrates that
while training the 2-dimensional representation of the data, model chooses to create a 1-dimensional
representation embedded in the 2-dimensional space. This graph shows what happens in dimensions
i > n.

4.3 QUANTUM HARMONIC OSCILLATOR
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Figure 4: The results of the algorithm applied to the coupled oscillator. (a): A few trajectories of the
collected data. (b): Validation learning curves for all k and all random initializations.

To test our approach on a more complicated system, we tested it on the quantum harmonic oscillator.
That is a quantum system described by the hamiltonian:

Ĥ =
p̂2

2
+
x̂2

2
(10)

The wavefunction ψ(x, t) evolves according to the Schrodinger equation:

i
∂ψ

∂t
= Ĥψ (11)

The total energy ⟨Ĥ⟩ of the quantum harmonic oscillator is its only conserved quantity.

The figure 4 demonstrates the collected data for the quantum harmonic oscillator as well as the results
of our algorithm. The validation loss during the training is shown on the graph 4b. We see that for
each i best models got the loss approximately 0.04 − 0.05. That means that the resulting losses
stop decreasing at the i = 1, so that is the final prediction of our algorithm about the number of the
conserved quantities in the system, which is the correct prediction. This example with the quantum
harmonic oscillator emphasises the ability of our algorithm to work with the quantum systems, which
other algorithms discovering of the number of conserved quantities in the system did not achieve.
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Figure 5: Results of the experiment with oscillating Turing patterns. (a), (b) Collected data. (c)
Validation learning curves for all k and all random initializations. (d) Learned periodic embedding.
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4.4 OSCILLATING TURING PATTERNS

We consider oscillating Turing patterns as an example of the system with large phase space (dim
∼ 100). In particular, the Barrio–Varea–Aragón–Maini (BVAM) model is chosen (Barrio, 1999;
Aragón et al., 2012):

∂u

∂t
= 0.08

∂2u

∂x2
+ u− v + 1.5uv − uv2 (12)

∂v

∂t
=
∂2v

∂x2
− 3

4
v + 3u− 1.5uv + uv2 (13)

Aragón et al. (2012) showed that these equations result in oscillating chaotic patterns. There is only
one conserved quantity in this system, which is the spatial phase η of the patterns that correspond
to the position of the pattern in the space. The critical thing about η is its periodic topology. To
numerically express the phase space, we discretized it on a mesh of size 50, which resulted in the
100-dimensional phase space.

To help our algorithm learn 1-dimensional periodic representation better, we created additional models
for k = 1 case. To enforce the model to study the periodic embedding, we put the trainable points
{xi} on the circle in 2d: x1, . . . , xN ∈ S1 ⊂ R2, therefore training the periodic 1-dimensional
manifolds. Note that this step could be added in the pipeline as well as the similar checks in other
dimensions (e.g., for S2).

The figure 5 demonstrates the collected data for the oscillating Turing Patterns as well as the results
of our algorithm. The validation loss during the training is shown on the graph 5c. We see that the
periodic 1-dimensional model learned approximately as good as the models for larger k. That means
that the resulting losses stop decreasing at the k = 1, so that is the final prediction of our algorithm
about the number of the conserved quantities in the system, which is the correct prediction. This
example demonstrates that our algorithm can deal with the large phase spaces and also topologically
non-trivial shape spaces. Moreover, the figure 5d shows the periodic 1-dimensional representation of
the shape space.

5 DISCUSSION

5.1 COMPARISON

On the simple example of the coupled oscillator, our approach showed the ability to discover the
underlying principles as good as the previous methods, e.g. Iten et al. (2020). However, we achieved
the new, previously unmet results for the more complicated systems. More specifically, in the
experiment with the oscillating Turing patterns, we showed the ability of our algorithm to uncover
topologically non-trivial shape space, while the method proposed by Lu et al. (2022) was only able
to represent the same shape space in the higher dimension. Furthermore, our algorithm was able to
discover the number of conserved quantities in a quantum system, which has not been done by the
previous algorithms.

5.2 LIMITATIONS

Our approach has a few limitations. One comes from assumptions about the dynamical system and
the data collected from it. As mentioned above (see 3.1), the trajectories of the dynamical system
should be ergodic. And even though most of the simple physical systems are ergodic, non-ergodic
systems exist, which are interesting for discovering but not available for discovery with our approach.
Another aspect of data collection is that all conserved quantities should vary. Moreover, variations of
different quantities should have approximately the same magnitude. Otherwise, the algorithm will
treat the directions with significantly lower variance than those in other directions as noise. In such
cases, the algorithm will not detect directions with a small variance, resulting in an underestimated
number of conservation laws.

Moreover, systems without conservation laws (for example, pendulum with friction) also cannot be
found by our algorithm since the minimal possible prediction about the number of conservation laws
for our algorithm is one.
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In addition, trajectories should be sampled long enough to represent the respective isosurface well.
We need a clearer understanding of determining whether the time in which we sampled the trajectories
was enough. However, formulas for the convergence rate of the Wasserstein metric, described by
Fournier & Guillin (2014), can help to find the right time to measure or sample the trajectories.

5.3 POSSIBLE APPLICATIONS

The proposed method, combining representation learning and topological analysis, has the potential
for broad applicability across various domains. Its ability to uncover underlying conservation
principles makes it a valuable tool for numerous fields. In robotics and advanced physical system
simulation, researchers can utilize the method to optimize energy efficiency, control, and motion
planning and improve the accuracy and efficiency of simulations across various physical contexts.
Furthermore, this method’s applicability extends to control systems, astrophysics, biology, material
science, and environmental science. Researchers from these disciplines can leverage this method to
understand better the governing principles of the systems they are investigating and drive innovations.
Ultimately, this data-driven approach can advance our comprehension of the fundamental tenets of
physical systems and beyond.

Notably, the suggested method is computationally inexpensive. Our experiments primarily utilized
a single GPU for training. Each of the 1,000 individual MSAP models we prepared for various
systems/embeddings took about 10 minutes to train on a single GPU. Including preliminary or failed
experiments not reported in the paper, the estimated total computation time was approximately 3000
minutes (50 hours). The developed method’s efficiency reduced costs and increased accessibility for
researchers implementing similar techniques.

6 CONCLUSION

This work introduces an innovative data-driven Metric Space Approximation and Projection approach
for discovering unknown conservation laws and principles in complex physical systems. By com-
bining representation learning techniques with topological analysis, our method is able to robustly
extract the topology of conservation law spaces, even in the presence of noise.

We have demonstrated the efficacy and versatility of this approach through experiments on various
classical and quantum systems. The results showcase the ability of our technique to correctly
determine the number of conserved quantities in systems like coupled oscillator and quantum
harmonic oscillator. Notably, our method was able to handle experimental noise and uncover the
underlying number of conservation laws.

Furthermore, the proposed approach is computationally efficient and does not rely on extensive
hyperparameter tuning or expert knowledge. This makes it widely accessible for researchers across
disciplines looking to gain insights into the fundamental governing principles of complex systems
they are investigating.

Overall, this work emphasizes the potential of data-driven techniques to advance our understanding
of conservation laws in classical and quantum systems. The robustness to noise makes our method
particularly well-suited for experimental setups. We believe this approach can drive innovations
and interdisciplinary collaborations by helping researchers elucidate the core principles that dictate
system behavior across numerous domains. Further refinements of the technique could enhance its
applicability to even more intricate systems.
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