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Abstract
We introduce a new tool, Transductive Local
Complexity (TLC), to analyze the generaliza-
tion performance of transductive learning meth-
ods and motivate new transductive learning al-
gorithms. Our work extends the idea of the
popular Local Rademacher Complexity (LRC)
(Bartlett et al., 2005) to the transductive setting
with considerable and novel changes compared
to the analysis of typical LRC methods in the
inductive setting. While LRC has been widely
used as a powerful tool in the analysis of in-
ductive models with sharp generalization bounds
for classification and minimax rates for nonpara-
metric regression, it remains an open problem
whether a localized version of Rademacher com-
plexity based tool can be designed and applied
to transductive learning and gain sharp bound for
transductive learning which is consistent with the
inductive excess risk bound by (LRC) (Bartlett
et al., 2005). We give a confirmative answer to
this open problem by TLC. Similar to the devel-
opment of LRC (Bartlett & Mendelson, 2003),
we build TLC by first establishing a novel and
sharp concentration inequality for supremum of
empirical processes for the gap between test and
training loss in the setting of sampling uniformly
without replacement. Then a peeling strategy and
a new surrogate variance operator are used to de-
rive the following excess risk bound in the trans-
ductive setting, which is consistent with that of
the classical LRC based excess risk bound in the
inductive setting. As an application of TLC, we
use the new TLC tool to analyze the Transduc-
tive Kernel Learning (TKL) model, and derive
sharper excess risk bound than that by the cur-
rent state-of-the-art (Tolstikhin et al., 2014). As
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a result of independent interest, the concentra-
tion inequality for the test-train process is used
to derive a sharp concentration inequality for the
general supremum of empirical process involv-
ing random variables in the setting of sampling
uniformly without replacement, with comparison
to current concentration inequalities.

1. Introduction
We study transductive learning in this paper, where the
learner has access to both labeled training data and un-
labeled test data, and the task is to predict the labels
of the test data. Obtaining a tight generalization bound
for transductive learning is an important problem in sta-
tistical learning theory. Tools for inductive learning,
such as Rademacher complexity and VC dimension, have
been used for transductive learning, including empirical
risk minimization, transductive regression, and transduc-
tive classification (Vapnik, 1982; 1998; Cortes & Mohri,
2006; El-Yaniv & Pechyony, 2009). On the other hand,
it is important to employ localized version of Rademacher
complexity, such as Local Rademacher Complexity (LRC)
(Bartlett et al., 2005), to obtain sharper generation bound
for transductive learning, such as (Tolstikhin et al., 2014).

The classical work (LRC) (Bartlett et al., 2005) presents the
following sharp bound for the excess risk of empirical risk
minimizer f̂ for inductive learning as follows: for every
x > 0, with probability at least 1− exp(−x),

Excess Risk of f̂ ≤ Θ

{
Fixed Point of the Sub-Root (1)

Functions for Certain Empirical Process +
x

N

}
, (2)

where Θ only hides a constant factor, and N is the size of
the training data. Given the fact that LRC is capable of
achieving various minimax rates for M-estimators in tasks
such as nonparametric regression in the inductive regime,
we propose to solve the following interesting and important
question for LRC based transductive learning:
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Can we have a sharp LRC based generalization bound
for the excess risk of transductive learning as that for
the inductive setting?

The most relevant result which addresses the above open
problem, to the best of our knowledge, is presented in (Tol-
stikhin et al., 2014, Corollary 14), where the excess risk
bound is given as the following inequality which happens
with high probability:

Excess Risk of f̂ ≤ Θ

(
n

u
r∗m +

n

m
r∗u +

1

m
+

1

u

)
.

(3)

Here r∗m and r∗u are the fixed points of upper bounds for cer-
tain empirical processes, wherem,u are the size of training
data and test data. It is remarked that the above bound may
diverge due to the undesirable factors of n/m and n/u be-
fore the fixed points. With m or u grows in a much slower
rate than n with n = u+m, n/m · r∗u + n/u · r∗m may not
converge to 0. An example for the standard transductive
kernel learning is given in Section 4. As a result, there is a
remarkable difference between the current state-of-the-art
excess bound (3) in the transductive setting and the excess
risk bound (1) in the inductive setting, and the latter always
converges to 0 under standard learning models. We note
that the excess risk bound in (Tolstikhin et al., 2014, Corol-
lary 13) still diverges when m = o(

√
n) or u = o(

√
n) as

m,u→∞.

Our main result is the following sharp bound for the excess
risk below, such that with the same high probability as the
inductive bound (1),

Excess Risk of f̂ ≤ Θ
(
ru + rm + r∗

+
1

u
+

1

m
+

x

min {u,m}
)
, (17) in Theorem 3.6. (4)

Here rm, ru, r∗ are the fixed points of upper bounds for
certain empirical processes, which all converge to 0 with a
fast rate as the case in the popular inductive learning mod-
els. As a result of the sharp excess risk bound (4), we give
a confirmative answer to the above open problem.

1.1. Summary of Main Results

Our main results are summarized as follows. This sum-
mary also features a high-level description of the ideas we
have developed to obtain the detailed technical results in
Section 3.

First, we present the first sharp bound for the excess risk
of empirical minimizer for transductive learning using lo-
cal complexities based method inspired by LRC (Bartlett
et al., 2005), and such bound (4) is consistent with exist-
ing sharp bound for excess risk bound (1) for inductive

learning. Two novel technical elements are proposed to
establish such sharp bound: (1) Transductive Local Com-
plexity (TLC), which renders particularly sharp bound for
transductive learning using the peeling strategy on the func-
tion class with a new surrogate variance operator; (2) a
novel and sharp concentration inequality for the bound for
the supremum of the empirical loss which is the differ-
ence between the test loss and the training loss, that is,
suph∈H (Uuh − Lmh ), where H is a function class, Uuh ,Lmh
are the test loss and the training loss associated with the
predictor h ∈ H. We refer to such empirical process as the
test-train process in the sequel. It is remarked that the ex-
isting local complexity based transductive learning method
(Tolstikhin et al., 2014) is based on the bound for the supre-
mum of the empirical process which is the difference be-
tween the training or test loss and the population loss, that
is, suph∈H Uuh − Ln(h) or suph∈H Lmh − Ln(h), where
Ln(h) is the average loss of h on the entire data. Our novel
concentration inequality for the test-train process presented
in Theorem 3.1 is derived using new techniques based on
a novel and interesting property of the test-train process
involving random variables in the setting of sampling uni-
formly without replacement and using the exponential ver-
sion of the Efron-Stein inequality ((Boucheron et al., 2003,
Theorem 2)) twice to derive the variance of the test-train
process. As an application of our sharp bound for excess
risk for generic transductive learning, we derive a sharp ex-
cess risk bound for transductive kernel learning by Theo-
rem 4.1 in Section 4, which is sharper than current state-of-
the-art (Tolstikhin et al., 2014).

Second, as a result of independent interest, we derive a
sharp concentration inequality for the general supremum of
empirical process involving random variables (RVs) in the
setting of sampling uniformly without replacement in The-
orem 5.1 in Section 5. Our new concentration inequality is
sharper than the two versions of the concentration inequal-
ity in (Tolstikhin et al., 2014), and this result is based on
our new concentration inequality for the test-train process
introduced above.

It is worthwhile to mention that concentration inequali-
ties about sampling without replacement have been actively
studied in the literature (Bardenet & Maillard, 2015; Tol-
stikhin, 2017), including those on the multislice which are
based on the modified log-Sobolev inequalities (Sambale &
Sinulis, 2022). Compared to (Tolstikhin, 2017), our bound
in Theorem 5.1 in Section 5 is sharper using a similar ar-
gument in Section 5. Furthermore, in contrast with our re-
sults, the supremum of empirical process involving sam-
pling without replacement is not addressed in (Bardenet &
Maillard, 2015).
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1.2. Notations

We use bold letters for matrices and vectors, and regular
lower letter for scalars throughout this paper. The bold
letter with a single superscript indicates the corresponding
column of a matrix, e.g. Ai is the i-th column of matrix
A, and the bold letter with subscripts indicates the corre-
sponding element of a matrix or vector. We put an arrow
on top of a letter with subscript if it denotes a vector, e.g.,
⇀
x i denotes the i-th training feature. We also use Z(i) to
denote the i-th element of a vector Z, and Z(i : j) de-
notes the vector formed by elemenets of Z with indices be-
tween i and j inclusively. Span (()A) is the column space
of matrix A. ∥·∥F and ∥·∥p denote the Frobenius norm
and the vector ℓp-norm or the matrix p-norm. Var [·] de-
notes the variance of a random variable. In is a n × n
identity matrix. 1I{E} is an indicator function which takes
the value of 1 if event E happens, or 0 otherwise. The
complement of a set A is denoted by A, and |A| is the car-
dinality of the set A. tr (·) is the trace of a matrix. We de-
note the unit sphere in d-dimensional Euclidean space by
Sd−1 := {x : x ∈ Rd, ∥x∥2 = 1}. Let L2(X , µ(P )) denote
the space of square-integrable functions on Sd−1 with prob-
ability measure µ(P ), and the inner product ⟨·, ·⟩µ(P ) and
∥·∥2µ(P ) are defined as ⟨f, g⟩L2 :=

∫
Sd−1 f(x)g(x)dµ

(P )(x)

and ∥f∥2L2 :=
∫
Sd−1 f

2(x)dµ(P )(x) < ∞. PA is the or-
thogonal projection onto a linear space A, and A⊥ is the
linear subspace orthogonal to A. ⟨·, ·⟩H and ∥·∥H denote
the inner product and the norm in the Hilbert space H. we
write a = O(b) or a ≲ b if there exists a constant C > 0
such that a ≤ Cb, Õ indicates there are specific require-
ments in the constants of the O notation. a = o(b) and
a = w(b) indicates that lim |a/b| = 0 and lim |a/b| = ∞
respectively. a ≍ b or a = Θ(b) denotes that there ex-
ists constants c1, c2 > 0 such that c1b ≤ a ≤ c2b.

(
m
k

)
for 1 ≤ k ≤ m is the combinatory number of selecting k
different objects from m objects. R+ is the set of all non-
negative real numbers, and N is the set of all the natural
numbers. We use the convention that

∑q
i=p = 0 if p > q

or q = 0. [m : n] denotes all the natural numbers between
m and n inclusively, and we abbreviate [1 : n] as [n].

2. Problem Setup of Transductive Learning

We consider a set Sm+u :=
{
(
⇀
x i, yi)

}m+u

i=1
, where yi is

the label for the point
⇀
x i. Let n = m + u,

{
⇀
x i

}n
i=1
⊆

X ⊆ Rd, {yi}ni=1 ⊆ Y ⊆ R where X ,Y are the input
and output spaces. The learner is provided with the (un-

labeled) full sample Xn :=
{
⇀
x i

}n
i=1

. Under the stan-
dard setting of transductive learning (El-Yaniv & Pechy-
ony, 2009; Tolstikhin et al., 2014), the training features Xm

of size m are sampled uniformly from Xn without replace-

ment, and the remaining features are the test features de-
noted by Xu = Xn \Xm. In the next paragraph we speci-
ficy the sampling process of Xu as a random subset of Xn

of size u sampled uniformly without replacement. Then it
follows by symmetry that Xm are sampled uniformly from
Xn without replacement.

Let d = [d1, . . . , du] ∈ Nu be a random vector, and
{di}ui=1 are u independent random variables such that di
takes values in [i : n] uniformly at random. Algorithm 1,
which is adapted from (El-Yaniv & Pechyony, 2009) and
deferred to the next subsection, specifies how to obtain
Zd = [Zd(1), . . . ,Zd(u)]

⊤ ∈ Nu as the first u ele-
ments of a uniformly distributed permutation of [n], so that
Zd are the indices of u test features sampled uniformly
from Xn without replacement. Let Z be a vector, we use
{Z} denote a set containing all the elements of the vec-
tor Z regardless of the order of these elements in Z. Let
Zd = [n] \ {Zd} be the indices not in {Zd}. It has been
verified in (El-Yaniv & Pechyony, 2009) that the all the u
points in Xu :=

{
⇀
x i

}
i∈Zd

, which are selected by indices

in {Zd}, are selected from Xn uniformly at random among
all subsets of size u, and Xu serves as the test features. As
a result, Xm = Xn \ Xu =

{
⇀
x i

}
i∈Zd

are m training

features sampled uniformly from Xn without replacement.
The training features together with their labels, {yi}i∈Zd

,
are given to the learner as a training set. We denote the la-
beled training set by Sm :=

{(
⇀
x i, yi

)}
i∈Zd

. Xu is also

called the test set. The learner’s goal is to predict the labels
of the test points in Xu based on Sm

⋃
Xu.

This paper studies the sharp generalization bounds of trans-
ductive learning algorithms. We assume that all the points
in the full sample Xn are distinct. Given a prediction func-
tion f defined on X , we define the following loss func-
tions. For simplicity of notations, we let g(i) = g(

⇀
x i, yi)

or g(i) = g(
⇀
x i) for a function g defined on X × Y or

X . we write ℓ ◦ f as ℓf and let ℓf (i) = ℓ(f(
⇀
x i), yi)

be the loss on the i-th data point. Let H be a class of
functions defined on X × Y . For any set A ⊆ [n], we
define L(m)

h (A) := 1/m ·
∑
i∈A

h(i) when |A| = m, and

U (u)
h (A) := 1

u

∑
i∈A

h(i) when |A| = u. The average loss

and average squared loss associated with h are defined

as Ln(h) := 1
n

n∑
i=1

h(i), Tn(h) := 1
n

n∑
i=1

h2(i). When

h = ℓf , L(m)
h (Zd) and U (u)

h (Zd) are the training loss
and the test loss of the prediction function f . We have
Ed

[
U (u)
h (Zd)

]
= Ed

[
L(m)
h (Zd)

]
= Ln(h).
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2.1. Sampling Random Set Uniformly Without
Replacement

The sampling strategy in (El-Yaniv & Pechyony, 2009) is
adopted to sample u points from the full sample Xn uni-
formly at random among all subsets of size u, which is
described in Algorithm 1. Let Zd be the vector returned
by Algorithm 1. Then {Zd} is the set of the indices of the
test features, and Zd is the set of the indices of the training
features.

Algorithm 1 The RANDPERM Algorithm in (El-Yaniv &
Pechyony, 2009), which obtains Zd ∈ Nu as the first u
elements of a uniformly distributed permutation of [n] by
sampling independent random variables d1, . . . , du.

1: Zd ← RANDPERM(u)
2: input: u
3: initialize: I = [n], d,Zd ∈ Nu are initialized as zero

vectors.
4: for i = 1, . . . , u do

Sample di uniformly from [i : n].
d(i) = di, Zd(i) = I(di).
Swap the values of I(i) and I(di).

5: end for
6: return Zd

2.2. Basic Definitions

We hereby define basic notations for Transductive Com-
plexity. Let d′ = [d′1, . . . , d

′
u] be independent copies of d,

and d(i) = [d1, . . . , di−1, d
′
i, di+1, . . . , du]. We define the

supremum of the empirical process of the gap between the
test loss and the training loss as

g(d) := sup
h∈H

(
U (u)
h (Zd)− L(m)

h (Zd)
)
, (5)

where U (u)
h (Zd) = 1

u

∑
i∈{Zd}

h(i) is the test loss,

L(m)
h (Zd) = 1

m

∑
i∈{Zd}

h(i) is the training loss. g(d)

is also referred to as the test-train process. We then de-
fine Rademacher variables and Transductive Complexity
(TC), and then relate TC to the conventional inductive
Rademacher complexity.

Definition 2.1 (Rademacher Variables). Let {σi}ni=1 be n
i.i.d. random variables such that Pr[σi = 1] = Pr[σi =
−1] = 1

2 , and they are defined as the Rademacher vari-
ables.

The Transductive Complexity is defined below.

Definition 2.2 (Transductive Complexity). The four types
of Transductive Complexity (TC) of a function classH are

defined as

R+
u (H) := Ed

[
sup
h∈H

R+
u,dh

]
,R−

u (H) := Ed

[
sup
h∈H

R−
u,dh

]
,

R+
m(H) := Ed

[
sup
h∈H

R+
m,dh

]
,R−

m(H) := Ed

[
sup
h∈H

R−
m,dh

]
,

(6)

where R+
u,dh := 1/u ·

u∑
i=1

h(Zd(i)) − Ln(h), R+
m,dh :=

1/m ·
m∑
i=1

h(Zd(i)) − Ln(h), and R−
u,dh := −R+

u,dh,

R−
m,dh := −R+

m,dh.

We remark that the proposed Transductive Complexity
(TC) is fundamentally different from the transductive ver-
sion of the Rademacher complexity in (El-Yaniv & Pechy-
ony, 2009, Definition 1) in the sense that our TC is defined
on the random training set or test set, while the counterpart
in (El-Yaniv & Pechyony, 2009, Definition 1) operates on
the entire full sample.

Let Y(u) = {Y1, . . . , Yu} with each Yi sampled uniformly
and independently from [n] with replacement for all i ∈
[u]. Similary, Y(m) = {Y1, . . . , Ym} with each Yi sampled
uniformly and independently from [n] with replacement for
all i ∈ [m]. The following theorem relates the TC defined
in Definition 2.2 to the usual inductive Rademacher com-
plexity.

Theorem 2.1. Let σ = {σi}max{u,m}
i=1 be iid Rademacher

variables. Define R
(ind)
σ,Y(u)h := 1

u

u∑
i=1

σih(Yi) and

R
(ind)
σ,Y(m)h := 1

m

m∑
i=1

σih(Yi). Then

max
{
R+
u (H),R−

u (H)
}
≤ 2R(ind)

u (H),
max

{
R+
m(H),R−

m(H)
}
≤ 2R(ind)

m (H), (7)

where R
(ind)
u (H) := EY(u),σ

[
suph∈HR

(ind)
σ,Y(u)h

]
,

R
(ind)
m (H) := EY(m),σ

[
suph∈HR

(ind)
σ,Y(m)h

]
.

Remark 2.2. R
(ind)
u (H) and R

(ind)
m (H) are the

Rademacher complexity in the inductive setting. It is
remarked that (7) indicates that the established sym-
metrization inequality of inductive Rademacher complex-
ity also holds for the transductive complexity defined in
Definition 2.2. For simplicity of notations if no confusion
arises, we also write R

(ind)
u (H) = E

[
suph∈HR

(ind)
σ,Y(u)h

]
and R

(ind)
m (H) = E

[
suph∈HR

(ind)
σ,Y(m)h

]
.

We define the sub-root function below, which will be exten-
sively used for deriving sharp bounds based on transductive
local complexity.
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Definition 2.3 (Sub-root function,(Bartlett et al., 2005,
Definition 3.1)). A function ψ : [0,∞) → [0,∞) is sub-
root if it is nonnegative, nondecreasing and if ψ(r)√

r
is non-

increasing for r > 0.

3. TLC Excess Risk Bound for Generic
Transductive Learning

In this section, we first introduce our new concentration in-
equality for the test-train process as Theorem 3.1 in Sec-
tion 3.1. We then apply Theorem 3.1 to obtain Theo-
rem 3.2, which presents the bound for the test-train process
involving the fixed points of certain sub-root functions as
the upper bounds for the TC of localized function classes.
Based on Theorem 3.2, the generalization bound and ex-
cess risk bound for generic transductive learning are pre-
sented in Theorem 3.5 and Theorem 3.6, respectively.

3.1. Concentration Inequality for the Test-Train
Process

Let H be a class of functions defined on X × Y and
for any h ∈ H, 0 ≤ |h(i)| ≤ H0 for all i ∈ [n]
with a positive number H0. For a technical reason we
let H0 ≥ 2

√
2 throughout this paper, which is achieved

by setting H0 = max
{
2
√
2,maxi∈[n] |h(i)|

}
. Without

special notes the function class H is separable in this pa-
per. Given the function class H, we define the function
class H2 :=

{
h2 | h ∈ H

}
as the “squared version” of H.

We then have the following concentration inequality for the
test-train process g(d). We consider two cases throughout
this paper, that is, m≫ u2 or u≫ m2.

Theorem 3.1 (Concentration Inequality for the Test-Train
Process (5)). Assume that there is a positive number r > 0
such that suph∈H Tn(h

2) ≤ r. Suppose that m ≫ u2 or
u ≫ m2. Then for every x > 0, with probability at least
1− exp(−x)− (min {m,u})2 /max {m,n} over d,

g(d) ≤ Ed [g(d)] + 8

√
5rx

min {u,m}

+ 2
√
2 inf
α>0

(
R+

min{u,m}(H
2)

α
+

2αx

min {u,m}

)
+

8H2
0x

min {u,m}
.

(8)

Here R+
u (·),R+

m(·) are the Transductive Complexity de-
fined in (6), andH2 =

{
h2 | h ∈ H

}
.

Key Innovations in the Proof of of Theorem 3.1. Proof
of Theorem 3.1 is deferred to Section B.2 of the appendix,
and it is based on the a novel combinatorial property of the
test-train process revealed in Lemma B.1 and Lemma B.2.
Such property is used to derive the upper bound for the
variance of g(d), V+(g). Such upper bound also involves
another empirical process for the class H2. The bound for

the empirical process for the H2 is derived with the expo-
nential version of the Efron-Stein inequality ((Boucheron
et al., 2003, Theorem 2)), and we use (Boucheron et al.,
2003, Theorem 2) again along with the bound for V+(·) to
derive the sharp bound for g(d).

3.2. The First Bound by Transductive Local
Complexity

Using Theorem 3.1 and the peeling strategy in the proof of
(Bartlett et al., 2005, Theorem 3.3), we have the following
bound for the test-train process involving the fixed points
of sub-root functions as the upper bounds for the TC of
localized function classes.

Theorem 3.2. Suppose K > 1 is a fixed constant, and
T̃n(h) : H → R+ is a functional such that Tn(h) ≤ T̃n(h)
for all h ∈ H. Let ψu be a sub-root function and let ru be
the fixed point of ψu. Let ψm be another sub-root function
and let rm be the fixed point of ψm. Assume that for all
r ≥ ru,

ψu(r) ≥ max

{
Ed

[
sup

h∈H,T̃n(h)≤r
R+
u,dh

]
,

Ed

[
sup

h∈H,T̃n(h)≤r
R+
u,dh

2

]}
, (9)

and for all r ≥ rm,

ψm(r) ≥ max

{
Ed

[
sup

h∈H,T̃n(h)≤r
R−
m,dh

]
,

Ed

[
sup

h∈H,T̃n(h)≤r
R+
m,dh

2

]}
. (10)

Suppose that m ≫ u2 or u ≫ m2. Then for ev-
ery x > 0, with probability at least 1 − exp(−x) −
(min {m,u})2 /max {m,n} over d, for every h ∈ H,

U (u)
h (Zd) ≤ L(m)

h (Zd) +
T̃n(h)

K
+ c0 (ru + rm)

+
c1x

min {m,u}
, (11)

where c0, c1 are absolute positive constants depending on
K, and c1 also depends on H0.

Remark 3.3. T̃n(·) is termed a surrogate variance opera-
tor, and it is an upper bound for the usual variance operator
T (·). ψu(r) is the sub-root upper bound for the TC for a
localized function class,

{
h ∈ H : T̃n(h) ≤ r

}
, where ev-

ery function h has its functional value T̃n(h) bounded by
r. In this sense, ψu(r) is the upper bound for the TC of a
localized function class, so we attribute the results of The-
orem 3.2 to Transductive Local Complexity (TLC). The
same comments also apply to ψm(r).
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3.3. Sharp Excess Risk Bounds using Transductive
Local Complexity (TLC) for Generic Transductive
Learning

We apply Theorem 3.2 to the transductive learning task
introduced in Section 2, and derive sharp bound for the
excess risk. Suppose we have a function class F which
contains all the prediction functions. We assume 0 ≤
ℓf (i) ≤ L0 for all f ∈ F and all i ∈ [n] through-
out this paper, and L0 ≥ 2

√
2. Given d, we define

f̂d,u := argminf∈F U
(u)
ℓf

(Zd) as the oracle predictor

with minimum loss on the test set Xu, and f̂d,m :=

argminf∈F L
(m)
ℓf

(Zd) as empirical minimizer, that is, the
predictor with minimum loss on the training data Xm. The
excess risk of fd,m is defined by

E(f̂d,m) := U (u)
ℓ
f̂d,m

(Zd)− U (u)
ℓ
f̂d,u

(Zd). (12)

Furthermore, we define the function class ∆F :=
{h : h = ℓf1 − ℓf2 , f1, f2 ∈ F}. For h = ℓf1 − ℓf2 ∈ ∆F ,
we define in (13) a novel surrogate variance operator as a
functional T̃n(h) : ∆F → R+ such that Tn(h) ≤ T̃n(h).
As a result, we can apply Theorem 3.2 to the functional
class ∆F and obtain the following theorem, which states
the upper bound for the test-train process with prediction
functions as the difference of loss functions with two pre-
dictors from F . The following assumption, which is the
standard assumption adopted by existing local complexity
based methods for both inductive and transductive learn-
ing (Bartlett et al., 2005; Tolstikhin et al., 2014) for perfor-
mance guarantee of transductive learning with loss func-
tions ℓ(·, ·), is introduced below.

Assumption 1 (Main Assumption). (1) There is a func-
tion f∗n ∈ F such that ℓf∗

n
= inff∈F Ln(ℓf ).

(2) There is a constant B such that for any h ∈ ∆∗
F ,

Tn(h) ≤ BLn(h), where ∆∗
F :=

{
ℓf − ℓf∗

n
: f ∈ F

}
.

Remark 3.4. Assumption 1 is not restrictive, it is the stan-
dard assumption also used in (Tolstikhin et al., 2014). In
addition, Assumption 1(2) holds if the loss function ℓ(·, ·)
is Lipschitz continuous in its first argument and a uniform
convexity condition on ℓ, for example, ℓ(y′, y) = (y′−y)2.

Applying Theorem 3.2 to the function class ∆F , we obtain
the following theorem.

Theorem 3.5. Suppose that Assumption 1 holds, andK >
1 is a fixed constant. For h = ℓf1−ℓf2 ∈ ∆F with f1, f2 ∈
F , let

T̃n(h) :=

inf
f1,f2∈F : ℓf1−ℓf2=h

2BLn(ℓf1 − ℓf∗
n
) + 2BLn(ℓf2 − ℓf∗

n
).

(13)

Let ψu be a sub-root function and ru is the fixed point of
ψu. Let ψm be another sub-root function and rm is the
fixed point of ψm. Assume that for all r ≥ ru,

ψu(r) ≥ max

{
Ed

[
sup

h : h∈∆F ,T̃n(h)≤r
R+
u,dh

]
,

Ed

[
sup

h : h∈∆F ,T̃n(h)≤r
R+
u,dh

2

]}
, (14)

and for all r ≥ rm,

ψm(r) ≥ max

{
Ed

[
sup

h : h∈∆F ,T̃n(h)≤r
R−
m,dh

]
,

Ed

[
sup

h : h∈∆F ,T̃n(h)≤r
R+
m,dh

2

]}
. (15)

Suppose that m ≫ u2 or u ≫ m2. Then for ev-
ery x > 0, with probability at least 1 − exp(−x) −
(min {m,u})2 /max {m,n} over d, for every h ∈ ∆F ,

U (u)
h (Zd) ≤ L(m)

h (Zd) +
2B

K
Ln(ℓf1 − ℓf∗

n
)

+
2B

K
Ln(ℓf2 − ℓf∗

n
) + c0 (ru + rm) +

c1x

min {m,u}
,

(16)

where c0, c1 are absolute positive constants depending on
K, and c1 also depends on L0.

Combining Theorem 3.5 and Theorem B.11 in the ap-
pendix, we have the following excess risk bound for the
empirical minimizer f̂d,m.

Theorem 3.6. Suppose that Assumption 1 holds and m≫
u2 or u ≫ m2, K > 1 is a fixed constant. Then for
every x > 0, with probability at least 1 − 3 exp(−x) −
3 (min {m,u})2 /max {m,n} over d, the excess risk
E(f̂d,m) satisfies

E(f̂d,m) ≤ c0 (ru + rm) +
4Bc2r

∗

K
+

c3x

min {m,u}
,

(17)

where r∗ is specified by Theorem B.11, c3 = c1+4Bc2/K
is a positive constant, c0, c1, c2 are the positive constants in
Theorem 3.5 and Theorem B.11 in the appendix.

Proof. (17) follows by plugging the upper bounds (76) for
Ln(ℓf̂d,u

− ℓf∗
n
) and Ln(ℓf̂d,m

− ℓf∗
n
) in Theorem B.11 to

(16) in Theorem 3.5.

We remark that (17) is consistent with the sharp bound for
excess risk for inductive learning (1), and there are only

6
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constant factors on the fixed points ru and rm. In con-
trast, the existing local complexity based excess risk bound
(3) for transductive learning involves undesirable factors
n/u and n/m, which can make the bound (3) diverge un-
der standard learning models, such as the Transductive Ker-
nel Learning (TKL). In the next section, we apply the TLC
based sharp excess risk bound (17) to TKL.

4. TLC Excess Risk Bound for Transductive
Kernel Learning

We apply the results in Section 3.3 to obtain the sharper risk
bound for transductive kernel learning in Theorem 4.1 than
that in the current state-of-the-art (Tolstikhin et al., 2014).

Background in RKHS and Kernel Learning. Let HK
be the Reproducing Kernel Hilbert Space (RKHS) as-
sociated with K, where K : X × X → R is a pos-
itive definite kernel defined on the compact set X ×
X , and we assume X is compact in this section. Let

HXn
:=

{
n∑
i=1

K(·,⇀x i)αi
∣∣∣∣ {αi}ni=1 ⊆ R

}
be the usual

RKHS spanned by
{
K(·,⇀x i)

}n
i=1

on the full sample

Xn =
{
⇀
x i

}n
i=1

. Let the gram matrix of K over the full

sample be K ∈ Rn×n,Kij = K(
⇀
x i,

⇀
xj) for i, j ∈ [n],

and Kn := 1
nK. Let λ̂1 ≥ λ̂2 . . . ≥ λ̂n > 0 be the eigen-

values of Kn, and maxx∈X K(x,x) = τ20 < ∞. We then
have λ̂1 ≤ tr (Kn) ≤ τ20 . For a positive number µ, de-
fine HK(µ) := {f ∈ HK | ∥f∥H ≤ µ}, we consider the
function classHXn

(µ) := HXn
(µ)
⋂
HXn

for TKL.

Results. The following assumption is standard when an-
alyzing the LRC based excess risk bounds, which is also
adopted in (Bartlett et al., 2005; Tolstikhin et al., 2014).

Assumption 2. (1) The loss function ℓ(·, ·) is
L-Lipschitz in its first argument, that is,
|ℓ(f(x), y) − ℓ(f(x′), y)| ≤ L |f(x)− f(x′)|
for all f ∈ F .

(2) There is a constant B′ such that for any f ∈ F ,
Tn (f − f∗n) ≤ B′Ln

(
ℓf − ℓf∗

n

)
.

It can be verified that Assumption 2 implies Assumption 1
(2), so that the former is stronger than the latter. We now let
the empirical minimizer f̂d,m and the oracle predictor f̂d,u
be defined using the function class F = HXn

(µ). The fol-
lowing theorem states the sharp bound for the excess risk
E(f̂d,m) for TKL based on Assumption 1 (1) and Assump-
tion 2.
Theorem 4.1. Suppose that Assumption 1 (1) and As-
sumption 2 hold. SupposeK is a positive definite kernel on
X ×X . Suppose that for all f ∈ HXn

(µ), 0 ≤ ℓf (i) ≤ L0

for all i ∈ [n], and L0 ≥ 2
√
2. Suppose that m ≫ u2 or

u ≫ m2. Then for every x > 0, with probability at least
1−3 exp(−x)−3 (min {m,u})2 /max {m,n} over d, we
have the excess risk bound

E(f̂d,m) ≤ c5

(
min

0≤Q≤n
r(u,m,Q) +

x

min {m,u}

)
, (18)

where

r(u,m,Q) := Q

(
1

u
+

1

m

)

+


√√√√√ n∑

q=Q+1

λ̂q

u
+

√√√√√ n∑
q=Q+1

λ̂q

m

 ,

c5 is an absolute positive constant depending on B′, L0, L.

Comparison with current state-of-the-art. We now com-
pare our excess risk bound (18) for TKL to the following
excess risk bound obtained by the current state-of-the-art
method for TKL (Tolstikhin et al., 2014), which is also
based on local complexity method for transductive learn-
ing. (Tolstikhin et al., 2014) shows that with high probabil-
ity,

E(f̂d,m) ≤ Θ

(
n

u
r∗m +

n

m
r∗u +

1

m
+

1

u

)
,

r∗s ≤ Θ

 min
0≤Q≤s

Qs +

√√√√√ n∑
q=Q+1

λ̂q

s


 , s = u or m.

(19)

It is emphasized that both our excess risk bound (18) and
(19) in (Tolstikhin et al., 2014) are derived under the same
assumptions, Assumption 1 (1) and Assumption 2, and
our result requires the additional assumption that u ≫
m2 or m ≫ u2. It can be observed that our bound
(18) is free of the undesirable factors of n/u and n/m
in (19). Moreover, it is well-known by standard results
on the population and empirical Rademacher complexities
(Bartlett et al., 2005; Mendelson, 2002) that when the full-
sample Xn are sampled uniformly from the unit sphere
with X = Sd−1 and the kernel K is a dot-product ker-

nel, then min0≤Q≤n

Q
n +

√
n∑

q=Q+1

λ̂q

n

 ≍ n−2α/(2α+1)

with α > 1/2. In this well studied case, the RHS of (19)
diverges with u = o

(
n1/(2α+1)

)
or m = o

(
n1/(2α+1)

)
,

when u,m → ∞. On the other hand, our excess risk
bound (18) always converges to 0 as u,m → ∞ because
r(u, n,Q) ≤ Θ(1/

√
u+ 1/

√
m).
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5. Concentration Inequality for Supremum of
Empirical Process Involving RVs Sampled
Uniformly Without Replacement

Suppose that H is a function class bounded by H0 ≥ 2
√
2

such that Ln(h) = 0 for all h ∈ H. Let gu(d) :=

suph∈H U
(u)
h (Zd). The following theorem gives a sharp

bound for such general empirical process gu(d). Such re-
sult follows from the concentration inequality for the test-
train process in Theorem 3.1.

Theorem 5.1. Suppose suph∈H Tn(h) ≤ r, and let H2 ={
h2 : h ∈ H

}
. Suppose that m ≫ u2 or u ≫ m2. Then

for every x > 0, with probability at least 1 − exp(−x) −
(min {m,u})2 /max {m,n} over d,

gu(d)− Ed [gu(d)] ≲
m

n

(√
rx

min {u,m}

+ inf
α>0

(R+
min{u,m}(H

2)

α
+

αx

min {u,m}

)
+

x

min {u,m}

)
.

(20)

Proof. (20) follows immediately by (67) in Lemma B.10
and noting that Ln(h) = 0.

We hereby compare the existing concentration inequalities
for supremum of empirical process in (Tolstikhin et al.,
2014). There are two versions of such inequalities in (Tol-
stikhin et al., 2014, Theroem 1), which are presented as
follows. For the first version, with probability at least
1− exp(−t),

gu(d)− Ed [gu(d)] ≤ 2

√
2nrt

u2
. (21)

For the second version in (Tolstikhin et al., 2014, Theroem
2), with probability at least 1− exp(−t),

gu(d)− EY(u)

[
ḡu(Y

(u))
]

≤

√
2(r + 2EY(u)

[
ḡu(Y(u))

]
)t

u
+
t

3
, (22)

where ḡ(Y(u)) := suph∈H
1
u ·

u∑
i=1

h(Yi) is the supremum

of empirical process with iid random variables
{
bY (u)

}
.

Because we always expect the deviation between gu(d)
and its expectation, the gap between EY(u)

[
ḡu(Y

(u))
]

and
Ed [gu(d)] is offered by (Tolstikhin et al., 2014, Theroem
3) as follows:

0 ≤ EY(u)

[
ḡu(Y

(u))
]
− Ed [gu(d)] ≤

2m2

n
.

It follows from (22) and the above inequality that for the
second version,

gu(d)− Ed [gu(d)]

≤ 2

√
2(r + 2EY(u)

[
ḡu(Y(u))

]
)t

u
+
t

3
+

2m2

n
. (23)

As a result, the RHS of (21) diverges when u = o(
√
n),

and the RHS of (23) diverges when m = w(
√
n) as

u,m → ∞. In contrast, the RHS of our bound (20) con-
verges to 0 under many standard learning models by not-
ing that (1) R+

min{u,m}(H
2) can be bounded by the induc-

tive Rademacher complexity of H2, R(ind)
min{u,m}(H

2), us-
ing Theorem 2.1; (2) the inductive Rademacher complexity
R

(ind)
min{u,m}(H

2) usually converges to 0 at a fast rate, such

as O(
√

1/min {u,m}), for many standard learning mod-
els (Bartlett & Mendelson, 2003), when combined with
the contraction property of the inductive Rademacher com-
plexity (e.g., Theorem A.5).

6. Conclusion
We present Transductive Local Complexity (TLC) to derive
sharp excess risk for transductive learning. TLC is based
on our new concentration inequality for the supremum of
empirical processes for the gap between the test and the
training loss in the setting of sampling uniformly without
replacement. Using a peeling strategy and a new surrogate
variance operator, sharper excess risk bound, compared to
the current state-of-the-art, for generic transductive learn-
ing with bounded loss function is derived. As an result of
independent interest, a sharp concentration inequality for
the general supremum of empirical process involving ran-
dom variables in the setting of sampling uniformly without
replacement is derived using the concentration inequality
for the test-train process, with comparison to the current
concentration inequalities.
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We present the basic mathematical results required in our proofs in Section A, then present proofs of our results in this
paper in Section B.

A. Mathematical Tools
We introduce the basic concentration inequality which we used to develop the main results of this paper. Let
X1, X2, . . . , Xn are independent random variables taking values in a measurable space X , and let Xn

1 denote the vec-
tor of these n random variables. Let f : Xn → R be some measurable function. We are concerned with concentration of
the random variable Z = f(X1, X2, . . . , Xn). Let X ′

1, X
′
2, . . . , X

′
n denote independent copies of X1, X2, . . . , Xn, and

we write

Z(i) = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn).

Theorem A.1. ((Boucheron et al., 2003, Theorem 2), the exponential version of the Efron-Stein inequality) For all θ > 0
and λ ∈ (0, 1/θ),

logE [exp (λ (Z − E [Z]))] ≤ λθ

1− λθ
logE

[
exp

(
λV+
θ

)]
. (24)

Theorem A.2. ((Boucheron et al., 2003, Theorem 5,Theorem 6)) Assume that there exist constants a ≥ 0 and b > 0 such
that

V+(Z) := E

[
n∑
i=1

(
Z − Z(i)

)2
1I{Z>Z(i)} | X

n
1

]
≤ aZ + b.

Then for any λ ∈ (0, 1/a),

logE [exp (λ(Z − E [Z]))] ≤ λ2

1− aλ
(aE [Z] + b) , (25)

and for all t > 0,

Pr [Z > E [Z] + t] ≤ exp

(
−t2

4aE [Z] + 4b+ 2at

)
. (26)

Moreover, if

V−(Z) := E

[
n∑
i=1

(
Z − Z(i)

)2
1I{Z<Z(i)} | X

n
1

]
≤ v(Z)

holds for a nondecreasing function v. Then, for all t > 0,

Pr [Z < E [Z]− t] ≤ exp

(
−t2

4E [v(Z)]

)
. (27)

Remark A.3. While a > 0 in the original Theorem 5 of (Boucheron et al., 2003), one can use the same proof of this
theorem to show that (26) holds for a = 0 with b > 0. V+(Z) defined in this theorem is the “upper variance” of the random
variable as a function of independent random variables X1, X2, . . . , Xn. In particular, V+(Z) measures the variance of Z
when Xi is changed to another sample X ′

i for all i ∈ [n].

Proposition A.4. (Logarithmic Sobolev inequality in (Boucheron et al., 2003, Proposition 10)), which is a variant proposed
by (Massart, 2000)) For all λ ∈ R,

λE [Z exp(λZ)]− E [exp(λZ)] logE [Z exp(λZ)]

≤
n∑
i=1

E
[
exp(λZ)ψ

(
−λ(Z − Z(i))

)
1I{Z>Z(i)}

]
, (28)

where ψ(x) := x(ex − 1).

10
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Theorem A.5 (Contraction Property of Inductive Rademacher Complexity (Ledoux & Talagrand, 1991)). Suppose g is a
Lipschitz continuous with |g(x)− g(y)| ≤ L |x− y|. Then

R(ind)
u (g ◦ H) ≤ LR(ind)

u (H), R(ind)
m (g ◦ H) ≤ LR(ind)

m (H).

Theorem A.6 ((Hoeffding, 1963, Theorem 4), (Gross & Nesme, 2010, Section D)). Let {Xi}ni=1 and {Yi}ni=1 be sampled
from a population {ci}Ni=1 ⊆ X ⊆ Rd without replacement and with replacement respectively. Suppose f is continuous
and convex on X , then

E

[
f

(
n∑
i=1

Xi

)]
≤ E

[
f

(
n∑
i=1

Yi

)]
. (29)

B. Proofs
B.1. Proof of Theorem 2.1

Proof of Theorem 2.1. We prove the first bound in (7). We let Y(u) = {Y1, . . . , Yu} be u independent random variables
with each Yi for i ∈ [u] sampled uniformly from [n] with replacement. Let Y(u)′ = [Y ′

1 , . . . , Y
′
u] be independent copies

of Y(u), and σ = {σi}max{u,m}
i=1 be iid Rademacher variables. Let H0 =

{
h
(0)
j

}
j≥1

be a countable dense subset of H

such that H0 = H. We define ci =
[
h
(0)
j (i)− Ln(h)

]
j∈[M ]

∈ RM for i ∈ [n], and let {Qi}i∈[u] and {Q′
i}i∈[u] be

sampled from {ci}i∈[n] without replacement and with replacement respectively. Then it follows from Theorem A.6 that

E
[
f

(
u∑
i=1

Qi

)]
≤ E

[
f

(
u∑
i=1

Q′
i

)]
, which means that

Ed

[
max
j∈[M ]

(
U (u)

h
(0)
j

(Zd)− Ln(h(0)j )

)]
≤ EY(u)

[
max
j∈[M ]

(
1

u

u∑
i=1

h
(0)
j (Yi)− Ln(h(0)j )

)]
,

with f(x) = maxj∈[M ] xj being a convex function for x ∈ RM , due to the fact that {Zd} is a random set of size u sampled

uniformly from [n] without replacement. We note that both sequences
{
maxj∈[M ]

(
U (u)

h
(0)
j

(Zd) − Ln(h(0)j )
)}

M≥1

and{
maxj∈[M ]

(
1
u

u∑
i=1

h
(0)
j (Yi)−Ln(h(0)j )

)}
M≥1

are nondecreasing in terms of M . Letting M →∞, it then follows from

Levi’s monotone convergence theorem and the fact that the first element of both sequences are integrable that

Ed

[
sup
h∈H0

(
U (u)
h (Zd)− Ln(h)

)]
≤ EY(u)

[
sup
h∈H0

(
1

u

u∑
i=1

h(Yi)− Ln(h)

)]
.

BecauseH0 is dense inH, we have

Ed

[
sup
h∈H

(
U (u)
h (Zd)− Ln(h)

)]
≤ EY(u)

[
sup
h∈H

(
1

u

u∑
i=1

h(Yi)− Ln(h)

)]
. (30)

As a result, we have

R+
u (H) = Ed

[
sup
h∈H

(
U (u)
h (Zd)− Ln(h)

)]
1⃝
≤ EY(u)

[
sup
h∈H

(
1

u

u∑
i=1

h(Yi)− Ln(h)

)]
2⃝
= EY(u)

[
sup
h∈H

(
1

u

u∑
i=1

h(Yi)− EY(u)′

[
1

u

u∑
i=1

h(Y ′
i )

])]

11



A New Concentration Inequality for Sampling Without Replacement and Its Application for Transductive Learning

3⃝
≤ EY(u),Y(u)′

[
1

u
sup
h∈H

(
u∑
i=1

h(Yi)−
u∑
i=1

h(Y ′
i )

)]
4⃝
= EY(u),Y(u)′,σ

[
1

u
sup
h∈H

(
u∑
i=1

σi (h(Yi)− h(Y ′
i ))

)]

≤ EY(u),σ

[
1

u
sup
h∈H

u∑
i=1

σih(Yi)

]
+ EY(u)′,σ

[
1

u
sup
h∈H

u∑
i=1

σih(Y
′
i )

]
= 2R(ind)

u (H). (31)

Here 1⃝ follows from (30). 2⃝ is due to EY(u)′

[
1/u ·

u∑
i=1

h(Y ′
i )

]
= Ln(h). 3⃝ is due to the Jensen’s inequality, and 4⃝ is

due to the definition of the Rademacher variables. All the other bounds for R−
u (H), R+

m(H), and R−
m(H) in (7) can be

proved in a similar manner.

B.2. Concentration Inequality for Test-Train Process: Proof of Theorem 3.1

LetH be the function class defined in Section 3 of the main paper. For all h ∈ H, we define

E(h,d,d(i)) := U (u)
h (Zd)− L(m)

h (Zd)− U (u)
h (Zd(i)) + L(m)

h (Zd(i))

as the change of the test-train loss if d is changed to d(i). Then we have the following lemma showing the values of
E(h,d,d(i)) under four specific cases. This lemma is based on the fact that there can be at most only one pair of different
elements in {Zd} and {Zd(i)}.
Lemma B.1. For any h ∈ H, there are four cases for the value of E(h,d,d(i)) for i ∈ [u].

Case 1: E(h,d,d(i)) =
(
1
u + 1

m

)
(h(Zd(i))− h(Zd(i)(q(i)))),

if di ̸= d′i, q(i) ≤ u, p(i) > u,

Case 2: E(h,d,d(i)) =
(
1
u + 1

m

)
(h(Zd(p(i)))− h(Zd(i)(i))),

if di ̸= d′i, p(i) ≤ u, q(i) > u,

Case 3: E(h,d,d(i)) =
(
1
u + 1

m

)
(h(Zd(i))− h(Zd(i)(i))),

if di ̸= d′i, p(i) > u, q(i) > u,

Case 4: E(h,d,d(i)) = 0,

if di = d′i or p(i), q(i) ≤ u.

Here

q(i) := min {i′ ∈ [i+ 1, u] : Zd(i)(i′) = i} , (32)
p(i) := min {i′ ∈ [i+ 1, u] : Zd(i

′) = i} . (33)

In (32) and (33), we use the convention that the min over an empty set returns +∞.

Proof. It can be checked by running Algorithm 1 that Zd and Zd(i) can differ at most by one element. As a reminder, we
let {Z} denote a set containing all the elements of a vector Z regardless of the orders of these elements in Z.

By the definition in (32) and (33), when p(i) ≤ u, then Zd(i)(p(i)) = Zd(i). When q(i) ≤ u, then Zd(q(i)) = Zd(i)(i).
To see this, when p(i) ≤ u, the element Zd(i) would be picked up at a location i′ = p(i) ∈ (i, u] in Zd(i) . That is,
Zd(i)(p(i)) = Zd(i). When q(i) ≤ u, the element Zd(i)(i) would be picked up at a location i′ = q(i) ∈ (i, u] in Zd. That
is, Zd(q(i)) = Zd(i)(i).

12



A New Concentration Inequality for Sampling Without Replacement and Its Application for Transductive Learning

As a result, when d′i = di, or p(i), q(i) ≤ u, then {Zd} = {Zd(i)}, and E(g,d,d(i)) = 0, which proves Case 4.
Otherwise, when d′i ̸= di and only one element of {p(i), q(i)} is not ∞, then the conditions of Case 2 or Case 1 hold.
When the conditions of Case 2 hold, the pair of different elements in {Zd} and {Zd(i)} is {h(Zd(p(i))), h(Zd(i)(i))}.
When the conditions of Case 1 hold, the pair of different elements in {Zd} and {Zd(i)} is {h(Zd(i)), h(Zd(i)(q(i)))}. It
follows that both Case 2 and Case 1 hold.

If d′i ̸= di and both p(i) and q(i) are∞, then the only element of {Zd} not in {Zd(i)} is Zd(i), and the only element of
{Zd(i)} not in {Zd} is Zd(i)(i), so that Case 3 holds.

The proof of Theorem 3.1 needs sampling m elements from the full sample Xn uniformly without replacement as the

training features. To this end, let d̃ =
[
d̃1, . . . , d̃m

]
∈ Nm be a random vector, and

{
d̃i

}m
i=1

are m independent random

variables such that d̃i takes values in [i : n] uniformly at random. If we invoke function RANDPERM in Algorithm 1 with
input changed from u to m, then Zd̃ = RANDPERM(m) are the first m elements of a uniformly distributed permutation
of [n]. We use Zd̃ = [n] \

{
Zd̃

}
to denote the indices not in

{
Zd̃

}
. Similar to {Zd} introduced in Section 2,

{
Zd̃

}
is a

random set of size m sampled uniformly from [n] without replacement. Let d̃′ = [d̃′1, . . . , d̃
′
m] be independent copies of

d̃, and d̃(i) = [d̃1, . . . , d̃i−1, d̃
′
i, d̃i+1, . . . , d̃m].

For all h ∈ H, we define

Ẽ(h, d̃, d̃(i)) := L(m)
h (Zd̃)− U

(u)
h (Zd̃)− L

(m)
h (Zd̃(i)) + U (u)

h (Zd̃(i)). (34)

Similar to the four cases in Lemma B.1, it follows by repeating the argument in the proof of Lemma B.1 that we have the
following four cases for Ẽ as stated in the following lemma.

Lemma B.2. For any h ∈ H, there are four cases for the value of Ẽ(h,d,d(i)) for i ∈ [m].

Case 1: Ẽ(h, d̃, d̃(i)) =
(
1
u + 1

m

) (
h(Zd̃(i))− h(Zd̃(i)(q̃(i)))

)
,

if d̃i ̸= d̃′i, q̃(i) ≤ m, p̃(i) > m,

Case 2: Ẽ(h, d̃, d̃(i)) =
(
1
u + 1

m

) (
h(Zd̃(p̃(i)))− h(Zd̃(i)(i))

)
,

if d̃i ̸= d̃′i, p̃(i) ≤ m, q̃(i) > m,

Case 3: Ẽ(h, d̃, d̃(i)) =
(
1
u + 1

m

) (
h(Zd̃(i))− h(Zd̃(i)(i))

)
,

if d̃i ̸= d̃′i, p̃(i) > m, q̃(i) > m,

Case 4: Ẽ(h, d̃, d̃(i)) = 0,

if d̃i = d̃′i or p̃(i), q̃(i) ≤ m,

where

q̃(i) := min
{
i′ ∈ [i+ 1,m] : Zd̃(i)(i

′) = i
}
, (35)

p̃(i) := min
{
i′ ∈ [i+ 1,m] : Zd̃(i

′) = i
}
, (36)

and similar to (32)-(33) in Lemma B.1, we use the convention that the min over an empty set returns +∞.

We need the following lemmas, Lemma B.3-Lemma B.6, before the proof of Theorem B.7 and Theorem B.8.

Let Ω be an event with probability Pr [Ω] ≤ u2/m when m ≫ u2. We define a surrogate process t̄u(d,H′) for a class of
functionsH′ with ranges in [0, H ′] (H ′ > 0) as

t̄u(d,H′) :=

{
tu(d,H′) d /∈ Ω,

− suph∈H′ Ln(h) d ∈ Ω.
(37)

13
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Let Ω̃ be an event with probability Pr
[
Ω̃
]
≤ m2/u when u ≫ m2. We also define a surrogate process t̄m(d̃,H′) for a

class of functionsH′ with ranges in [0, H ′] (H ′ > 0) as

t̄m(d̃,H′) :=

{
tm(d̃,H′) d̃ /∈ Ω̃,

− suph∈H′ Ln(h) d̃ ∈ Ω̃.
(38)

A set {j1, . . . , jQ} ⊆ [N ], where j1 < j2 < . . . < jQ, is defined to be a chain in [N ] associated with v if jk = v(jk−1)
holds for all k ∈ [2 : Q] when Q ≥ 2. It is remarked that the event Ω is the event that there exists a chain {j1, . . . , jQ′}
in [u] associated with d with Q′ ≥ 2. Similarly, the event Ω̃ is the event that there exists a chain {j1, . . . , jQ′} in [m]

associated with d̃ with Q′ ≥ 2.

Lemma B.3. For any h ∈ H, let Ah,2 =
{
i ∈ [u] : E(h,d,d(i)) satisfies Case 2 in Lemma B.1

}
and Ãh,2 ={

i ∈ [m] : Ẽ(h, d̃, d̃(i)) satisfies Case 2 in Lemma B.2
}

. Then we have

∑
i∈Ah,2

(h(Zd(p(i))))
2 ≤

n∑
i=1

(h(Zd(i)))
2
, if d /∈ Ω. (39)

∑
i∈Ãh,2

(
h(Zd̃(p̃(i)))

)2 ≤ n∑
i=1

(
h(Zd̃(i))

)2
, if d̃ /∈ Ω̃. (40)

Proof. This lemma follows from (Yang, 2025, Lemma B.6, Lemma B.11).

Lemma B.4. For a function classH′, we define

tu(d,H′) := sup
h∈H′

(
U (u)
h (Zd)− Ln(h)

)
, (41)

tm(d̃,H′) := sup
h∈H′

(
L(m)
h (Zd̃)− Ln(h)

)
. (42)

Then

Ed [tu(d,H′)] = R+
u (H′), Ed̃

[
tm(d̃,H′)

]
= R+

m(H′). (43)

Moreover, for g(d) defined in (5), we have

Ed [g(d)] ≤ R+
u (H) +R−

m(H). (44)

Proof. Ed [tu(d)] = R+
u (H′) follows from the definition of Transductive Complexity in (6). We have

Ed̃

[
tm(d̃,H′)

]
= Ed̃

[
sup
h∈H′

(
L(m)
h (Zd̃)− Ln(h)

)]
= Ed

[
sup
h∈H′

(
L(m)
h (Zd)− Ln(h)

)]
= R+

m(H′).

where the second last equality is due to the fact that
{
Zd̃

}
and

{
Zd

}
have the same distribution, that is, they are sets of

size m sampled uniformly from [n] without replacement. This proves (43).

We now prove (44). We first have

Ed [g(d)] = Ed

[
sup
h∈H

(
U (u)
h (Zd)− L(m)

h (Zd)
)]

= Ed

[
sup
h∈H

(
U (u)
h (Zd)− Ln(h) + Ln(h)− L(m)

h (Zd)
)]

14
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1⃝
≤ Ed

[
sup
h∈H

(
U (u)
h (Zd)− Ln(h)

)]
︸ ︷︷ ︸

R+
u (H)

+Ed

[
sup
h∈H

(
Ln(h)− L(m)

h (Zd)
)]

︸ ︷︷ ︸
R−

m(H)

= R+
u (H) +R−

m(H)

Here 1⃝ follows from the sub-additivity of supremum.

Lemma B.5 ((Yang, 2025, Lemma B.8, Lemma B.13) with Q = 2). Let H′ be a class of functions with ranges in [0, H ′],
and tu, t̄u are defined in (41) and (37). Suppose suph∈H′ Ln(h) ≤ r for r > 0. Then

logEd [exp (λ (t̄u(d,H′)− Ed [t̄u(d,H′)]))] ≤ 2H ′λ2 (Ed [tu(d,H′)] + r)

u− 2H ′λ
(45)

holds for all λ ∈ (0, u/(2H ′)), where the surrogate process t̄u is defined in (37). Similarly,

logEd̃

[
exp

(
λ
(
t̄m(d̃,H′)− Ed̃

[
t̄m(d̃,H′)

]))]
≤

2H ′λ2
(
Ed̃

[
tm(d̃,H′)

]
+ r
)

m− 2H ′λ
(46)

holds for all λ ∈ (0,m/(2H ′)), where the surrogate process t̄m is defined in (38)

Lemma B.6 (Special case of (Yang, 2025, Lemma B.7, Lemma B.12) with Q = 2). For any h ∈ H, let

Ah,1 = {i ∈ [u] : Case 1 defined in Lemma B.1 is satisfied} ,
Ãh,1 = {i ∈ [m] : Case 1 defined in Lemma B.2 is satisfied} .

Then with probability at least 1− Pr [Ω], for all h ∈ H, we have

E

[
u∑
i=1

(h(Zd(i)(i)))
2

∣∣∣∣∣d
]
≤ nu

m
Tn(h),E

 ∑
i∈Ah,1

(h(Zd(i)(q(i))))
2

∣∣∣∣∣∣d
 ≤ 2nu

m
Tn(h), (47)

E

[
m∑
i=1

(
h(Zd̃(i)(i))

)2 ∣∣∣∣∣ d̃
]
≤ nm

u
Tn(h),E

 ∑
i∈Ãh,1

(
h(Zd̃(i)(q(i)))

)2 ∣∣∣∣∣∣ d̃
 ≤ 2nm

u
Tn(h). (48)

B.2.1. PROOF OF THEOREM B.7

The following theorem states the concentration inequality for the supremum of the test-train process g(d) when m≫ u2.

Theorem B.7. Suppose suph∈H Tn(h
2) ≤ r. Ifm≫ u2, then for all x > 0, with probability at least 1−exp(−x)−Pr [Ω]

over d,

g(d) ≤ Ed [g(d)] + 8

√
5rx

u
+ 2
√
2 inf
α>0

(
R+
u (H2)

α
+

2αx

u

)
+

8H2
0x

u
. (49)

Proof. This theorem follows from the proof of (Yang, 2025, Theorem 5.1) with the special case that Q = 2.

B.2.2. PROOF OF THEOREM B.8

The following theorem, Theorem B.8, states the concentration inequality for the supremum of the test-Train process g(d)
when u ≥ m. Many technical details in the proof of Theorem B.7 are reused in the proof of Theorem B.8. The major
difference is that we consider a different supremum of empirical process, suph∈H

(
U (u)
h (Zd̃)− L

(m)
h (Zd̃)

)
, instead of

g(d) as in the proof of Theorem B.7, to handle the case that u ≥ m.
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Theorem B.8. Suppose suph∈H Tn(h) ≤ r. If u≫ m2, then for all x > 0, with probability at least 1−exp(−x)−Pr
[
Ω̃
]

over d,

g(d) ≤ E [g(d)] + 8

√
5rx

m
+ 2
√
2 inf
α>0

(
R+
m(H2)

α
+

2αx

m

)
+

8H2
0x

m
. (50)

Proof. This theorem follows from the proof of (Yang, 2025, Theorem 5.2) with the special case that Q = 2.

Proof of Theorem 3.1 . (8) follows by combining the upper bound (49) in Theorem B.7 for the case that m ≫ u2, and
the upper bound (50) for the case that u≫ m2 in Theorem B.8.

B.3. Proof of Theorem 3.2

Below are the definitions and lemmas useful for the proof of Theorem 3.2.

For r > 0, define the function class

H(r) =

{
r

w(h)
h : h ∈ H

}
, (51)

where w(h) := min
{
rλk : k ≥ 0, rλk ≥ T̃n(h)

}
with λ > 1.

Define

U+
r := sup

s∈H(r)

(
U (u)
s (Zd)− L(m)

s (Zd)
)
. (52)

Lemma B.9. Fix λ > 1, K > 1, and r > 0. If U+
r ≤ r

λK , then

U (u)
h (Zd) ≤ L(m)

h (Zd) +
r

λK
+
T̃n(h)

K
, ∀h ∈ H. (53)

Proof. If T̃n(h) ≤ r, then w(h) = r and s = r
w(h)h = h. Therefore, U+

r ≤ r
λ ⇒ U

(u)
s (Zd)− L(m)

s (Zd) ≤ r
λK and (53)

holds since T̃n(h) ≥ 0 for all h ∈ H.

If T̃n(h) > r, then w(h) = rλk with T̃n(h) ∈ (rλk−1, rλk]. Again, it follows from U+
r ≤ r

λ that

U (u)
s (Zd)− L(m)

s (Zd) ≤
r

λ
, s =

h

λk
,

and we have

U (u)
h (Zd)− L(m)

h (Zd) ≤
rλk−1

K
≤ T̃n(h)

K
,

and (53) still holds.

Proof of Theorem 3.2. Let r be chosen such that r ≥ max {ru, rm}. Let s = r
w(h)h ∈ H

(r), then we have Tn(s) ≤ r.

To see this, if T̃n(h) ≤ r, then w(h) = r and s = h, so Tn(s) ≤ T̃n(h) ≤ r. Otherwise, if T̃n(h) > r, then s = h
λk where

k is such that T̃n(h) ∈ (rλk−1, rλk]. It follows that Tn(s) =
Tn(h)
λ2k ≤ T̃n(h)

λ2k ≤ rλk

λ2k ≤ r. It follows that Tn(s) ≤ r for all
s ∈ H(r).

We first consider the case that m ≥ u. It follows from (44) in Lemma B.4 that Ed [U+
r ] ≤ R+

u (H(r)) + R−
m(H(r)).

Applying (8) in Theorem 3.1 with α = 1 to the function classH(r), then for all x > 0, with probability at least 1− e−x,

U+
r ≤ R+

u (H(r)) + Θ(R+
u (H

(r)
1 )) +R−

m(H(r)) + Θ
(x
u

)
+Θ

(√
rx

u

)
, (54)

16



A New Concentration Inequality for Sampling Without Replacement and Its Application for Transductive Learning

whereH(r)
1 =

{
h2 : h ∈ H(r)

}
.

Define the function class H(x, y) :=
{
h ∈ H : x ≤ T̃n(h) ≤ y

}
. Let T be the smallest integer such that rλT+1 ≥ T0 :=

suph∈H Tn(h). If T0 =∞, then set T =∞. We have

R+
u (H(r)) ≤ E

[
sup

h∈H(0,r)

R+
u,dh

]
+ E

[
sup

h∈H(r,T0)

r

w(h)
R+
u,dh

]

≤ E

[
sup

h∈H(0,r)

R+
u,dh

]
+

T∑
t=0

E

[
sup

h∈H(rλt,rλt+1)

r

w(h)
R+
u,dh

]
1⃝
≤ ψu(r) +

T∑
t=0

λ−tψu(rλ
t+1)

2⃝
≤ ψu(r)

(
1 + λ1/2

T∑
t=0

λ−t/2

)
. (55)

Here 1⃝ is due to w(h) ≥ rλt and E
[
suph : T̃n(h)≤rλt+1 R

+
u,dh

]
≤ ψu(rλ

t+1). 2⃝ is due to the fact that the sub-root

function ψ satisfies ψu(αr) ≤
√
αψu(r) for α > 1.

Setting λ = 4 on the RHS of (55), we have

R+
u (H(r)) ≤ 5ψu(r) ≤ 5

√
rru. (56)

The last inequality follows from ψu(r) ≤
√

r
ru
ψ(ru) =

√
rru because r ≥ ru.

Following a similar argument,

R+
u (H

(r)
1 ) ≤ E

[
sup

h∈H(0,r)

R+
u,dh

2

]
+

T∑
t=0

E

[
sup

h∈H(rλt,rλt+1)

r2

w(h)2
R+
u,dh

2

]
3⃝
≤ ψu(r) +

T∑
t=0

λ−2tψu(rλ
t+1)

4⃝
≤ ψu(r)

(
1 + λ1/2

T∑
t=0

λ−3t/2

)
. (57)

Here 1⃝ is due to w(h) ≥ rλt and E
[
suph : T̃n(h)≤rλt+1 R

+
u,dh

2
]
≤ ψu(rλ

t+1). 2⃝ is due to the fact that the sub-root

function ψ satisfies ψu(αr) ≤
√
αψu(r) for α > 1.

Again, setting λ = 4 on the RHS of (57), we have

R+
u (H

(r)
1 ) ≤ 23

7
ψu(r) ≤

23

7

√
rru. (58)

Similar to the argument for R+
u (H(r)), since r ≥ rm, we have

R−
m(H(r)) ≤ 5

√
rrm (59)

It follows from (54), (56), (58), and (59) that

U+
r ≤ Θ(

√
rru) + Θ(

√
rrm) + Θ

(x
u

)
+Θ

(√
rx

u

)
:= P (r). (60)
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Let r0 be the largest solution to P (r) = r
λK for the fixed K > 1. We have

r0 ≤ r1 := λ

(
λK2

(
Θ(
√
ru) + Θ(

√
rm) + Θ

(√
x

u

))2

+
Θ(Kx)

u

)
. (61)

Then r1 ≥ max {ru, rm}. Setting r = r1 in (60), we have

U+
r1 ≤

r1
λK

= λK

(
Θ(
√
ru) + Θ(

√
rm) + Θ

(√
x

u

))2

+Θ
(x
u

)
.

It follows from Lemma B.9 that

U (u)
h (Zd) ≤ L(m)

h (Zd) +
r1
λK

+
T̃n(h)

K

= L(m)
h (Zd) +

T̃n(h)

K
+ λK

(
Θ(
√
ru) + Θ(

√
rm) + Θ

(√
x

u

))2

+Θ
(x
u

)
≤ L(m)

h (Zd) +
T̃n(h)

K
+ c0 (ru + rm) +

c1x

u
, ∀h ∈ H. (62)

Regarding the other case that u ≥ m, we repeat the argument above and obtain the same upper bound as (62) with m and
u swapped:

U (u)
h (Zd) ≤ L(m)

h (Zd) +
T̃n(h)

K
+ c0 (ru + rm) +

c1x

m
, ∀h ∈ H. (63)

(11) the follows from (62) and (63).

B.4. Sharp TLC Excess Risk Bound for Generic Transductive Learning

Proof of Theorem 3.5. We first check that Tn(h) ≤ T̃n(h). For any h ∈ H, by the definition of T̃n(h) in (13), for every
ε > 0, there exist f1, f2 ∈ F such that h = ℓf1 − ℓf2 , and 2BLn(ℓf1 − ℓf∗

n
) + 2BLn(ℓf2 − ℓf∗

n
) < T̃n(h) + ε. Therefore,

Tn(h) = Ln
(
(ℓf1 − ℓf2)2

)
≤ 2Tn

(
ℓf1 − ℓf∗

n

)
+ 2Tn

(
ℓf2 − ℓf∗

n

)
≤ 2BLn(ℓf1 − ℓf∗

n
) + 2BLn(ℓf2 − ℓf∗

n
) < T̃n(h) + ε,

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality is due to Assumption 1(2).
It follows that Tn(h) ≤ T̃n(h).

As a result, we can apply Theorem 3.2 with T̃n(·) defined in this theorem. Then (16) follows from Theorem 3.2.

Lemma B.10. Suppose Assumption 1 holds and m≫ u2 or u≫ m2. Define

g+u (d) := sup
h∈H

(
U (u)
h (Zd)− Ln(h)

)
, (64)

gm(d̃) := sup
h∈H

(
Ln(h)− L(m)

h (Zd̃)
)
, (65)

g−u (d) := sup
h∈H

(
Ln(h)− U (u)

h (Zd)
)
. (66)

Suppose suph∈H Tn(h) ≤ r. Then for every x > 0, with probability at least 1− exp(−x)− (min {m,u})2 /max {m,n}
over d,

g+u (d)− Ed

[
g+u (d)

]
≲
m

n

(√
rx

min {u,m}
+ inf
α>0

(
R+

min{u,m}(H
2)

α
+

αx

min {u,m}

)
+

x

min {u,m}

)
, (67)
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where [·]+ := max {·, 0}. Similarly, with probability at least 1− exp(−x) over d̃,

Furtheremore, letH = ∆∗
F , ψu,m be a sub-root function and r∗ is the fixed point of ψu,m. Assume that for all r ≥ r∗,

ψu,m(r) ≥ max

{
E

[
sup

h : h∈∆∗
F ,BLn(h)≤r

R−
u,dh

]
,E

[
sup

h : h∈∆∗
F ,BLn(h)≤r

R−
m,dh

]
,

E

[
sup

h : h∈∆∗
F ,BLn(h)≤r

R+
min{u,m},dh

2

]}
, (68)

Then for any fixed constant K > 1, there exists an absolute positive constant ĉ2 depending on K,L0 such that for every
x > 0, with probability at least 1− exp(−x)− (min {m,u})2 /max {m,n} over d̃,

gm(d̃) ≤ BLn(h)
K

+ ĉ2

(
r∗ +

x

min {u,m}

)
. (69)

Similarly, with probability at least 1− exp(−x)− (min {m,u})2 /max {m,n} over d,

g−u (d) ≤
BLn(h)
K

+ ĉ2

(
r∗ +

x

min {u,m}

)
. (70)

Proof. We have g+u (d) =
m
n g(d), therefore,

g+u (d)− Ed

[
g+u (d)

]
=
m

n
(g(d)− Ed [g(d)]) ,

where g is defined in (5). Then (67) follows from (8) in Theorem 3.1.

It can be verified that

gm(d̃)
dist
=

u

n
sup
h∈H

(
U (u)
h (Zd)− L(m)

h (Zd)
)
=
u

n
g(d),

where the first equality is due to the fact that {Zd} and
{
Zd̃

}
are both sets of size u sampled uniformly from [n] without

replacement. Here dist
= indicates the random variables on both sides follow the same distribution. As a result, Ed̃

[
gm(d̃)

]
=

u/n · Ed [g(d)] and

gm(d̃)− Ed̃

[
gm(d̃)

]
dist
=

u

n
(g(d)− Ed [g(d)]) ,

and it follows from (8) in Theorem 3.1 that

gm(d̃)− Ed̃

[
gm(d̃)

]
≲
√

rx

min {u,m}
+ inf
α>0


[
R+

min{u,m}(H
2)
]
+

α
+

αx

min {u,m}

+
x

min {u,m}
. (71)

We further have

g−u (d) =
m

n
sup
h∈H

(
L(m)
h (Zd)− U (u)

h (Zd)
)
. (72)

Taking
{
⇀
x i

}
i∈Zd

as the training features and
{
⇀
x i

}
i∈Zd

as the test set, then we can repeat the proofs of Theorem B.7 and

Theorem B.8, and obtain the following concentration inequality. For every x > 0, with probability at least 1 − exp(−x)
over d,

L(m)
h (Zd)− U (u)

h (Zd)− Ed

[
L(m)
h (Zd)− U (u)

h (Zd)
]
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≲
√

rx

min {u,m}
+ inf
α>0

(
R+

min{u,m}(H
2)

α
+

αx

min {u,m}

)
+

x

min {u,m}
. (73)

It follows from (72) and (73) that

g−u (d)− Ed

[
g−u (d)

]
≲
√

rx

min {u,m}
+ inf
α>0


[
R+

min{u,m}(H
2)
]
+

α
+

αx

min {u,m}

+
x

min {u,m}
. (74)

Furthermore, we have Ed̃

[
gm(d̃)

]
= R−

m(H) and Ed [g−u (d)] = R−
u (H).

For any h ∈ H = ∆∗
F such that h = ℓf − ℓf∗

n
with f ∈ F , we set T̃n(h) = BLn(h). It follows from Assumption 1(2) that

Tn(h) ≤ T̃n(h) for all h ∈ ∆∗
F .

We note that suph : h∈∆∗
F ,BLn(h)≤r R

+
min{u,m},dh

2 ≥ 0, suph : h∈∆∗
F ,BLn(h)≤r R

−
u,dh ≥ 0 and

suph : h∈∆∗
F ,BLn(h)≤r R

−
m,dh ≥ holds because 0 ∈ ∆∗

F . With ψu.m given in this theorem, by repeating the proof
of Theorem 3.2 to (71) and (74), we have

gm(d̃) ≤ BLn(h)
K

+ ĉ2

(
r∗ +

x

min {u,m}

)
,

g−u (d) ≤
BLn(h)
K

+ ĉ2

(
r∗ +

x

min {u,m}

)
,

where K > 1 is a fixed constant, and ĉ2 is a positive constant depending on K and L0.

Theorem B.11. Suppose that Assumption 1 holds and m≫ u2 or u≫ m2. Let ψu,m be a sub-root function and r∗ is the
fixed point of ψu,m. Assume that for all r ≥ r∗,

ψu,m(r) ≥ max

{
E

[
sup

h : h∈∆∗
F ,BLn(h)≤r

R−
u,dh

]
,E

[
sup

h : h∈∆∗
F ,BLn(h)≤r

R−
m,dh

]
,

E

[
sup

h : h∈∆∗
F ,BLn(h)≤r

R+
min{u,m},dh

2

]}
, (75)

Then for every x > 0, with probability at least 1− 2 exp(−x)− 2 (min {m,u})2 /max {m,n},

Ln(ℓf̂d,u
− ℓf∗

n
) ≤ c2

(
r∗ +

x

u

)
, Ln(ℓf̂d,m

− ℓf∗
n
) ≤ c2

(
r∗ +

x

m

)
, (76)

where c2 is an absolute positive constant which depends on B and L0.

Proof. LetH = ∆∗
F . It follows from (70) in Lemma B.10 that with high probability, for all h ∈ H,

Ln(h)− U (u)
h (Zd) ≤

BLn(h)
K

+ ĉ2

(
r∗ +

x

min {u,m}

)
holds for a fixed constant K > 1, and ĉ2 depends on K and L0. We set h = f̂d,u − ℓf∗

n
in the above inequality, and note

that U (u)
h (Zd) = U (u)

f̂d,u
(Zd)− U (u)

f∗
n
(Zd) ≤ 0 due to the optimality of f̂d,u. Let K > B, then the first upper bound in (76)

is proved by the above inequality with constant c2 = ĉ2/ (1−B/K).

Moreover, it follows from (69) in Lemma B.10 that with high probability, for all h ∈ H,

Ln(h)− L(m)
h (Zd) ≤

BLn(h)
K

+ ĉ2

(
r∗ +

x

min {u,m}

)
,
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since
{
Zd̃

}
and

{
Zd

}
follow the same distribution and they are all random sets of size m sampled uniformly from [n]

without replacement. We set h = f̂d,m−ℓf∗
n

in the above inequality, and note that L(m)
h (Zd) = L(m)

f̂d,m
(Zd)−L(m)

f∗
n
(Zd) ≤

0 due to the optimality of f̂d,m. Let K > B, then the second upper bound in (76) is proved by the above inequality with
the same constant c2 = ĉ2/ (1−B/K).

B.5. TLC Excess Risk Bound for Transductive Kernel Learning

Before presenting the proof of Theorem 4.1, we introduce the definition about convex and symmetric sets below, as well
as Lemma B.12 which lay the foundation of the proof of Theorem 4.1.
Definition B.1 (Convex and Symmetric Set). A set X is convex if αX+(1−α)X ⊆ X for all α ∈ [0, 1]. X is symmetric
if −X ⊆ X .
Lemma B.12. Let F = HXn(µ). For every r > 0,

EY(u),σ

[
sup

f∈F : Tn(f)≤r
R

(ind)
σ,Y(u)f

]
≤ φ̃u(r), (77)

where

φ̃u(r) := min
Q : 0≤Q≤n


√
rQ

u
+ µ

√√√√√ n∑
q=Q+1

λ̂q

u

 . (78)

Similarly, for every r > 0,

EY(m),σ

[
sup

f∈F : Tn(f)≤r
R

(ind)
σ,Y(m)f

]
≤ φ̃m(r), (79)

where

φ̃m(r) := min
Q : 0≤Q≤n


√
rQ

m
+ µ

√√√√√ n∑
q=Q+1

λ̂q

m

 . (80)

Proof. We have

R
(ind)
σ,Y(u)f =

1

u

u∑
i=1

σif(
⇀
xYi

) =

〈
f,

1

u

u∑
i=1

σiK(·,⇀xYi
)

〉
HK

. (81)

Because
{
Φ(k)

}
k≥1

is an orthonormal basis of HK , for any 0 ≤ Q ≤ n, we further express the first term on the RHS of
(81) as 〈

f,
1

u

u∑
i=1

σiK(·,⇀xYi
)

〉
HK

=

〈
Q∑
q=1

√
λ̂q ⟨f,Φq⟩HK

Φq, v
(Q)(Y(u),σ)

〉
HK

+
〈
f̄ , v̄(Q)(Y(u),σ)

〉
HK

, (82)

where

f̄ = f −
Q∑
q=1

⟨f,Φq⟩HK
Φq,
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v(Q)(Y(u),σ) :=
1

u

Q∑
q=1

1√
λ̂q

〈
u∑
i=1

σiK(·,⇀xYi
),Φq

〉
HK

Φq,

v̄(Q)(Y(u),σ) :=
1

u

n∑
q=Q+1

〈
u∑
i=1

σiK(·,⇀xYi
),Φq

〉
HK

Φq.

Define the operator T̂n : HK → HK by T̂nf = 1/n ·
∑n
i=1K(·,⇀x i)f(

⇀
x i) for any f ∈ HK . It can be verified that Φq is

the eigenfunction of T̂n with the corresponding eigenvalue λ̂q for q ∈ [n]. We have〈
T̂nf, f

〉
HK

=

〈
1

n

n∑
i=1

K(·,⇀x i)f(
⇀
x i), f

〉
HK

= Tn(f).

As a result,∥∥∥∥∥
Q∑
q=1

√
λ̂q ⟨f,Φq⟩Φq

∥∥∥∥∥
2

HK

=

Q∑
q=1

λ̂q ⟨f,Φq⟩2HK
≤

n∑
q=1

λ̂q ⟨f,Φq⟩2HK
= ⟨Tnf, f⟩HK

= Tn(f) ≤ r, (83)

which holds for all f such that Tn(f) ≤ r.

Combining (81)-(83), we have

EY(u),σ

[
sup

f∈F : Tn(f)≤r
R

(ind)
σ,Y(u)f

]
1⃝
≤ sup

f∈F : Tn(f)≤r

∥∥∥∥∥
Q∑
q=1

√
λ̂q ⟨f,Φq⟩HK

Φq

∥∥∥∥∥
HK

· EY(u),σ

[∥∥∥v(Q)(Y(u),σ)
∥∥∥
HK

]

+
∥∥f̄∥∥HK

· EY(u),σ

[∥∥∥v̄(Q)(Y(u),σ)
∥∥∥
HK

]
≤
√
rEY(u),σ

[∥∥∥v(Q)(Y(u),σ)
∥∥∥
HK

]
+ µEY(u),σ

[∥∥∥v̄(Q)(Y(u),σ)
∥∥∥
HK

]
. (84)

where 1⃝ is due to the Cauchy-Schwarz inequality.

We have

1

u
EY(u),σ

〈 u∑
i=1

σiK(·,⇀xYi
),Φq

〉2

HK

 1⃝
=

1

u
EY(u)

[
u∑
i=1

〈
K(·,⇀xYi

),Φq

〉2
HK

]

=
1

u
EY(u)

[
u∑
i=1

Φq(
⇀
xYi

)2

]

=
1

n

n∑
i=1

Φ2
q(
⇀
x i)

=
〈
T̂nΦq,Φq

〉
= λ̂q. (85)

Here 1⃝ is due to the fact that E [σi] = 0 for all i ∈ [n]. It follows from (85) that

EY(u),σ

[∥∥∥v(Q)(Y(u),σ)
∥∥∥
HK

]
=

1√
u
EY(u),σ


√√√√ 1

u

Q∑
q=1

1

λ̂q

〈
u∑
i=1

σiK(·,⇀xYi),Φq

〉2

HK


1⃝
≤ 1√

u

√√√√√ 1

u
EY(u),σ

 Q∑
q=1

1

λ̂q

〈
u∑
i=1

σiK(·,⇀xYi),Φq

〉2

HK


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2⃝
=

√
Q

u
, (86)

where 1⃝ is due to the Jensen’s inequality, 2⃝ is due to the fact that E [σi] = 0 for all i ∈ [n]. Similarly, we have

EY(u),σ

[∥∥∥v̄(Q)(Y(u),σ)
∥∥∥
HK

]
=

1√
u
EY(u),σ


√√√√ 1

u

n∑
q=Q+1

〈
u∑
i=1

σiK(·,⇀xYi
),Φq

〉2

HK


≤ 1√

u

√√√√√ 1

u
EY(u),σ

 n∑
q=Q+1

〈
u∑
i=1

σiK(·,⇀xYi
),Φq

〉2

HK



=

√√√√√ n∑
q=Q+1

λ̂q

u
. (87)

It follows from (84), (86), and (87) that

Ed,σ

[
sup

f∈F : Tn(f)≤r

〈
f,

1

u

u∑
i=1

σiK(·,⇀xYi
)

〉]
≤ min
Q : 0≤Q≤n


√
rQ

u
+ µ

√√√√√ n∑
q=Q+1

λ̂q

u

 , (88)

which completes the proof of (77). (79) can be proved by a similar argument.

The following corollary will also be necessary for the proof of Theorem 4.1. We can have ψu, ψm in Theorem 3.5 as the
upper bounds for inductive Rademacher complexities using Theorem 2.1, leading to this corollary.
Corollary B.13. Under the same conditions of Theorem 3.5, for every x > 0, with probability at least 1 − exp(−x) −
(min {m,u})2 /max {m,n}, (16) still holds if for all r ≥ ru,

ψu(r) ≥ 2max

{
E

[
sup

h : h∈∆F ,T̃n(h)≤r
R

(ind)
σ,Y(u)h

]
,E

[
sup

h : h∈∆F ,T̃n(h)≤r
R

(ind)
σ,Y(u)h

2

]}
, (89)

and for all r ≥ rm,

ψm(r) ≥ 2max

{
E

[
sup

h : h∈∆F ,T̃n(h)≤r
R

(ind)
σ,Y(m)h

]
,E

[
sup

h : h∈∆F ,T̃n(h)≤r
R

(ind)
σ,Y(m)h

2

]}
. (90)

Here ru, rm are the fixed points of ψu and ψm respectively.

Instead of proving Theorem 4.1, we will prove the more detailed version of Theorem 4.1 as shown in the following theorem.

Theorem B.14. Suppose that Assumption 1 (1) and Assumption 2 hold. SupposeK is a positive definite kernel on X ×X .
Suppose that for all f ∈ HXn(µ), 0 ≤ ℓf (i) ≤ L0 for all i ∈ [n], and L0 ≥ 2

√
2. Suppose that m ≫ u2 or u ≫ m2.

Then for every x > 0, with probability at least 1− exp(−x)− (min {m,u})2 /max {m,n} over d,

U (u)
h (Zd) ≤ L(m)

h (Zd) +
2L2B′

K

(
Ln(ℓf1 − ℓf∗

n
) + Ln(ℓf2 − ℓf∗

n
)
)

+ c3 min
0≤Q≤n

r(u,m,Q) +
c1x

min {m,u}
,∀h ∈ ∆HXn (µ), (91)

where c3 is an absolute positive number depending on c0, B′, L0, L, and

r(u,m,Q) := Q

(
1

u
+

1

m

)
+


√√√√√ n∑

q=Q+1

λ̂q

u
+

√√√√√ n∑
q=Q+1

λ̂q

m

 .
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In particular, with probability at least 1 − 3 exp(−x) − 3 (min {m,u})2 /max {m,n} over d, with h = f̂d,m − f̂d,u in
(91), we have the excess risk bound

E(f̂d,m) ≤ c5
(

min
0≤Q≤n

r(u,m,Q) +
x

min {m,u}

)
, (92)

where c5 is an absolute positive constant depending on B′, L0, L.

Proof of Theorem B.14. It follows from Assumption 2 that for all h ∈ ∆∗
F , Tn(h) ≤ B′L2Ln(h). To see this, let

h = ℓf1 − ℓf∗
n

with f1, f2 ∈ F . Then Tn(h) = Tn(ℓf1 − ℓf∗
n
) ≤ L2Tn(f1 − f∗n) ≤ B′L2Ln(ℓf1 − ℓf∗

n
) = B′L2Ln(h).

This inequality indicates that Assumption 1 (2) holds with B = B′L2. As a result, Assumption 1 holds.

We now apply Theorem 3.5 and Corollary B.13 with the function class F = HXn
(µ) and T̃n(·) defined in (13) with

B = B′L2. Let h = ℓf1 − ℓf2 ∈ ∆F with f1, f2 ∈ F , and T̃n(h) ≤ r. By the definition of T̃n, there exist f1, f2 ∈ F such
that h = ℓf1 − ℓf2 and 2BLn(ℓf1 − ℓf∗

n
) + 2BLn(ℓf2 − ℓf∗

n
) ≤ r′ for arbitrary r′ > r. For simplicity of notations we set

r′ = 1.1r. Let σ = {σi}max{u,m}
i=1 be iid Rademacher variables. For r > 0 we have

2Ed

[
sup

h : h∈∆F ,T̃n(h)≤r
R

(ind)
σ,Y(u)h

]
1⃝
≤ 2EY(u),σ

[
sup

f1,f2∈F : 2BLn(ℓf1−ℓf∗
n
)+2BLn(ℓf2−ℓf∗

n
)≤r′

R
(ind)
σ,Y(u)(ℓf1 − ℓf2)

]

≤ 2EY(u),σ

[
sup

f1∈F : Ln(ℓf1−ℓf∗
n
)≤1.1r/2B

R
(ind)
σ,Y(u)

(
ℓf1 − ℓf∗

n

)]

+ 2EY(u),σ

[
sup

f2∈F : Ln(ℓf2−ℓf∗
n
)≤1.1r/2B

R
(ind)
σ,Y(u)

(
ℓf2 − ℓf∗

n

)]
2⃝
≤ 4LEY(u),σ

[
sup

f∈F : Tn(f−f∗
n)≤rB1/2B

R
(ind)
σ,Y(u) (f − f∗n)

]
3⃝
≤ 8LEY(u),σ

[
sup

f∈F : Tn(f)≤rB1/8B

R
(ind)
σ,Y(u)f

]
4⃝
≤ 8Lφ̃u

(
rB1

8B

)
. (93)

Here 1⃝ is due to the definition of T̃n. 2⃝ is due to the contraction property in Theorem A.5 and the fact that the loss
function ℓ(·, ·) is L-Lipschitz continuous, and B1 is a positive constant such that B1 = 1.1B′. 3⃝ follows by noting that
(f − f∗n)/2 ∈ F because F is symmetric and convex. φ̃u in 4⃝ is defined in (78) in Lemma B.12.

It follows from (93) that

2EY(u),σ

[
sup

h : h∈∆F ,T̃n(h)≤r
R

(ind)
σ,Y(u)h

]
≤ 8Lφ̃u

(
rB1

8B

)
.

By a similar argument and noting that (ℓf1 − ℓf2)
2 ≤ 2

(
(ℓf1 − ℓf∗

n
)2 + (ℓf2 − ℓf∗

n
)2
)
, we have

2EY(u),σ

[
sup

h : h∈∆F ,T̃n(h)≤r
R

(ind)
σ,Y(u)h

2

]

≤ 8EY(u),σ

[
sup

f∈F : Tn(f−f∗)≤rB1/2B

R
(ind)
σ,Y(u)

(
ℓf1 − ℓf∗

n

)2]
1⃝
≤ 16L0EY(u),σ

[
sup

f∈F : Tn(f−f∗)≤rB1/2B

R
(ind)
σ,Y(u)

(
ℓf1 − ℓf∗

n

)]
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≤ 32L0Lφ̃u

(
rB1

8B

)
, (94)

where 1⃝ is due to the contraction property in Theorem A.5 and 0 ≤ ℓf (i) ≤ L0 for all f ∈ F and i ∈ [n]. Define
φu(r) := max

{
8Lφ̃u

(
rB1

8B

)
, 32L0Lφ̃u

(
rB1

8B

)}
= L′φ̃u

(
rB1

8B

)
with L′ := max {8L, 32L0L}. It can be verified that φu

is a sub-root function by checking the definition of the sub-root function.

Similarly, we have

2EY(m),σ

[
sup

h : h∈∆F ,T̃n(h)≤r
R

(ind)
σ,Y(m)h

]
≤ 8Lφ̃m

(
rB1

8B

)
,

2EY(m),σ

[
sup

h : h∈∆F ,T̃n(h)≤r
R

(ind)
σ,Y(m)h

2

]
≤ 32L0Lφ̃m

(
rB1

8B

)
,

and φm(r) := max
{
8Lφ̃m

(
rB1

8B

)
, 32L0Lφ̃m

(
rB1

8B

)}
= L′φ̃m

(
rB1

8B

)
is also a sub-root function. Let ru, rm be the fixed

point of φu and φm respectively. We define φ(r) := φu(r) + φm(r), then φ is also a sub-root function. Let r be the fixed
point of φ. Since both φu and φm are nondecreasing functions, we have

r = φ(r) = φu(r) + φm(r) ≥ φu(ru) + φm(rm) = ru + rm.

It then follows from the above inequality and Corollary B.13 that, for all h ∈ ∆F we have

U (u)
h (Zd) ≤ L(m)

h (Zd) +
2B

K

(
Ln(ℓf1 − ℓf∗

n
) + Ln(ℓf2 − ℓf∗

n
)
)
+ c0r +

c1x

min {m,u}
. (95)

Let 0 ≤ r′ ≤ r . Then it follows from (Bartlett et al., 2005, Lemma 3.2) that 0 ≤ r′ ≤ φ(r′). Therefore, by the definition
of φ̃u in (78) and φ̃m in (80), for every 0 ≤ Q ≤ n we have

r′

L′ ≤
√
r′B1Q

8Bu
+

√
r′B1Q

8Bm
+ µ

√√√√√ n∑
q=Q+1

λ̂q

u
+ µ

√√√√√ n∑
q=Q+1

λ̂q

m
.

Solving the above quadratic inequality for r′, we have

r′ ≤ ĉ3Q
(
1

u
+

1

m

)
+ ĉ3


√√√√√ n∑

q=Q+1

λ̂q

u
+

√√√√√ n∑
q=Q+1

λ̂q

m

 = ĉ3r(u,m,Q), (96)

where ĉ3 is a positive constants depending on B′, L0, L. (96) holds for every 0 ≤ Q ≤ n, so it follows from (95) and (96)
that

U (u)
h (Zd) ≤ L(m)

h (Zd) +
2B

K

(
Ln(ℓf1 − ℓf∗

n
) + Ln(ℓf2 − ℓf∗

n
)
)

+ c0ĉ3 min
0≤Q≤n

Q
(
1

u
+

1

m

)
+


√√√√√ n∑

q=Q+1

λ̂q

u
+

√√√√√ n∑
q=Q+1

λ̂q

m


+

c1x

min {m,u}
, (97)

which proves (91) with c3 = c0ĉ3.

When h = ℓf̂d,m
− ℓf̂d,u

, then we can set f1 = f̂d,m and f2 = f̂d,u in (97).
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We now derive the upper bounds for Ln(ℓf̂d,u
− ℓf∗

n
) and Ln(ℓf̂d,m

− ℓf∗
n
) using Theorem B.11. Applying Theorem 2.1,

we need to find the sub-root function ψu,m such that

ψu,m(r) ≥ 2max

{
E

[
sup

h : h∈∆∗
F ,BLn(h)≤r

R
(ind)
σ,Y(u)h

]
,E

[
sup

h : h∈∆∗
F ,BLn(h)≤r

R
(ind)
σ,Y(m)h

]
,

E

[
sup

h : h∈∆∗
F ,BLn(h)≤r

R
(ind)
σ,Y(min{u,m})h

2

]}
,

By repeating the argument in (93) and (94), we have

ψu,m(r) = Θ

 min
0≤Q≤n


√
rQ

u
+

√
rQ

m
+ µ

√√√√√ n∑
q=Q+1

λ̂q

u
+ µ

√√√√√ n∑
q=Q+1

λ̂q

m


 .

Let r∗ be the fixed point of ψu,m. Any r′ ≤ r∗ satisfies r′ ≤ Θ(min0≤Q≤n r(u,m,Q)). As a result, it follows from (76)
in Theorem B.11 that, with probability at least 1− 2 exp(−x)− 2 (min {m,u})2 /max {m,n},

Ln(ℓf̂d,u
− ℓf∗

n
) ≤ c2

(
Θ

(
min

0≤Q≤n
r(u,m,Q)

)
+
x

u

)
,Ln(ℓf̂d,m

− ℓf∗
n
) ≤ c2

(
Θ

(
min

0≤Q≤n
r(u,m,Q)

)
+
x

m

)
.

(98)

We note that L(m)
ℓ
f̂d,m

−ℓ
f̂d,u

(Zd) ≤ 0 due to the optimality of f̂d,m. Applying the upper bound in (98) to (97) proves (92).
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