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ABSTRACT

We propose its a novel framework Graph-Energy Reinforcement Learning (GERL),
in which the goal is in the case of mining API usage patterns with robust out of
distribution (OOD) detection capabilities. Growing complexity of API ecosystems
demands adaptive methods to differentiate between in-distribution and anomalous
patterns, however, often existing approaches rely on static thresholds or do not
have structural awareness. GERL addresses this by integrating energy based
OOD scoring with graph diffusion in a reinforcement learning (RL) framework,
which makes it possible to dynamically design rewards which guides exploration
in graph-structured API Spaces. The core innovation lies the in Graph-Energy
Reward Function which combines; node level energy scores calculated using a
Graph Neural Network with multi-hop topological dependencies as represented
by diffusion. This joint formulation gives freedom for RL agent to change the
exploitative of known patterns and discovering of novel ones, while the policy
network, built on Transformer-XL, processes variable length API sequences with
structural context. In addition, using a graph-based Markov Decision Processes
creates realistic scenarios of API use, transitions modeled by a Graph Variational
Auto Encoder for Predicting Likely Subgraph Evolutions. Experiments show
that in compared with conventional methods, GERL is more both pattern mining
accuracy as well as OOD detection robustness, particularly when making recursive
or many-hop applications of the API

1 INTRODUCTION

The extremely fast development of software ecosystems, coupled with the fact that complex use
patterns in APIs with substantial difficulties for automatic mining and analysis. Traditional ways
to mine API pattern often have trouble with generalization, specifically with things they don’t see
or out-of-distribution (OOD) case usage situations. While graph-based representations have proven
to be promising in order to capture a structured relationships between API calls (Nguyen et al.|
2009), existing methods typically treat pattern finding and novelty detection separately tasks, with a
limitation in their adaptability in real-world situations in which APIs evolve dynamically.

Recent developments in graph neural networks - (GNNs) (Corso et al., [2024) and energy-based
models (Wu et al.,|2023) offer new opportunities to address these challenges. GNN’s are good at
modeling inter-node dependencies when it comes to API Call graphs, where energy-based frameworks
yield a principled way to quantify the probability of observed patterns, However, combining these
using reinforcement learning (RL) techniques for adaptive API mining remains underexplored. Prior
work in graph-based RL (Mendonca et al.,|2019) has primarily focused on navigation or optimization
tasks as opposed to pattern discovery with OOD-awareness.

The main challenge is coming up with an RL framework able to at the same time learn how to mine
the frequent API usage patterns while identifying novel configurations. Most available techniques
either rely on predefined thresholds of novelty detection (Munshi et al.,[2022)) or treat the mining
process as a static graph analysis problem (Halal| 2024). Neither approach is an adequate solves
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the temporal/structural complexities involved in the usage of an API graphs, patterns can include
recursive calls, conditional branches, or multiple-hop dependencies.

We propose a novel integration of energy based OOD detection, with graph diffusing approaches
in an RL setting. Our method computes energy scores for API usage graphs through a GNN-based
model, in which the lower scores have a high probability to be an OOD pattern. Graph diffusion
spreads the structural information to the graph, enhancing ability of the model to be able to tell
between in-distribution and OOD patterns through finding hidden structures in relations (?). The RL
agent utilizes these energy scores implemented as dynamic reward to drive its exploration policy:
it gives priority to both low-energy (potentially novel) as well as high-energy established) patterns,
developing a balanced approach in patterns discovery.

Three main contributions are made in this work: (1) Energy-Guided Reward Design: We formulate
a graph-energy reward function that combines local node level energy scores with global topological
features by diffusion which allows the RL agent to adaptively change its exploration approach
according to pattern novelty (2) Structural-Temporal Policy Learning: A Transformer-XL based
policy network processes variable length API sequences while maintaining awareness graph structure
through attention diffused node embeddings. (3) Graph-Based Environment Modeling: The
framework incorporates Package, e.g. (communication). Hardware: Equip, such as software,
machine, books, dictionaries, etc. Hypoventilation (under-breathing). a graph variational autoencoder
for generating realistic API usage scenarios, based on Markov Decision Process (MDP) transitions,
preserving the probabilistic nature of the sequences of API calls;

2 RELATED WORK

The intersection between graph-based learning, reinforcement learning and API pattern mining has
attracted increased interest of late years. Existing approaches can be divided into three possible
research directions: graph-based API mining, Energy-based OOD detection, and reinforcement
learning for graph structured tasks.

2.1 GRAPH-BASED API PATTERN MINING

API pattern mining initially focused on static analysis of code by dictionaries and electronic cor-
pora(repositories to draw the frequent usage patterns) (Nguyen et al.,|2009). These methods were
representations of API calls as nodes in a graph that have edges that indicate temporal or dependency
relationships. While effective in identifying the common patterns, they had limited mechanisms to
cope with evolving cases of API usages

2.2 ENERGY-BASED OOD DETECTION IN GRAPHS

Energy-based models have come to serve as a powerful framework for OOD detection in different
domains. The application to graph structured data elicited unique problems by an inter-dependent
nature of nodes (Wu et al.,|2023)). These methods make energy scores that reflect the probability of
graph instance to be in the training distribution.

2.3 REINFORCEMENT LEARNING FOR GRAPH-STRUCTURED TASKS

Reinforcement learning has been used in a variety of problems involving graphs, from network
optimization (Lu et al. |2025) to automated API sequencing (Mandal et al., |2024). The latter
demonstrated that RL could successfully play on API dependency graphs to generate valid call
sequences. However, these methods normally used pure reward functions based on task completion,
which was considering the novelty or the distributional properties of discovered patterns.

3  BACKGROUND AND PRELIMINARIES

In order to provide the theoretical background for our proposed framework, we introduce important
concepts in graph representation learning and energy-based models. These components are the
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building blocks for our Graph-Energy Reinforcement Learning method of API pattern mining with
OOD detection.

3.1 GRAPH NEURAL NETWORKS FOR API REPRESENTATION

Graph neural networks have been a standard tool for modeling In Soft software engineering tasks
relational data (Nguyen et al.l 2009). Given an API call graph G = (V, E)) where nodes v € V
represent API calls and edges e € E capture their temporal or logical dependencies, a GNN computes
the node embeddings using message passing:

h = o (W(l) - AGGREGATE ({hgj*” Tu€ N(u)})) 1)

where h,(f) denotes the embedding of node v at layer [, V' (v) represents its neighbors, and AGGRE-
GATE is a permutation-invariant function (Corso et al.,|2024). For API graphs, this both the syntactic
structure of call sequences and semantic relationships between different API.

3.2 ENERGY-BASED MODELS FOR OOD DETECTION

Energy-based models give a methodology for estimating the probability density of input data, without
explicit normalization (Wu et al., 2023). Given an input z, energy function E(x; 6) maps it to a scalar
value, with lower energies of corresponding to higher likelihoods. For graph structured data, we can
Let’s define the energy of the API usage pattern as:

E(G) = —logp(G) +C 2

where C' is a constant. Recent work has indicated that energy scores learned from GNNss in order to
be able to distinguish patterns in the same distribution from OOD samples (Wu et al., [2023)).

3.3 GRAPH DIFFUSION PROCESSES

Graph diffusion is an extension of local message passing, which transmits information across multiple
hops in the graph (Gasteiger et al.,|2019). The diffusion process can be incorporated into the form:

HY =(1—a)-HY 4+ o- AH®Y 3)

where H® represents node embeddings at diffusion step ¢, A is the normalized adjacency matrix,
and « controls the retaining original information. This mechanism enables the model to capture
long-range dependencies in API call graphs which is crucial for identifying complex patterns of use,

3.4 REINFORCEMENT LEARNING IN GRAPH SPACES

Reinforcement learning to work with graph-structured tasks requires special consideration of the state
and action spaces (Lu et al.| 2025). In our context, here is the state s; is the string representation of
the current API subgraph being explored while actions are corresponding to adding the new API calls
or terminating the sequence. The reward function have to account for both the validity and novelty of
discovered patterns motivate our energy-guided design.

4 ENERGY-GUIDED GRAPH DIFFUSION FOR OOD-AWARE API PATTERN
MINING

The proposed framework combines energy-based OOD detection, and graph diffusion techniques
in a reinforcement learning paradigm to deal with the issues of API pattern mining. The system is
operated using five interconnected components through which adaptive exploration is made possible,
of API usage graphs while retaining the awareness of the distributional boundaries.

4.1 GRAPH-ENERGY REWARD FUNCTION FOR GUIDING RL AGENT

The reward function is the crucial element linking energy-based OOD detection and computer learning
2. For a given API subgraph G at timestep ¢, we calculate its energy score E(G;) by a GNN-based
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Figure 1: Graph-Energy Reward Function in GRL Framework

energy model. The reward r; incorporates both the absolute value of energy and its relationship to
adaptive threshold 74:

e =1" SlgH(E(Gt) — Tt) . ‘E(Gt)‘,\/ (4)
where 7) controls the reward scale and  adjusts the sensitiveness to energy deviations. The sign term
produces a unique reward regimes for in-distribution (ID) and out of distribution (OOD) patterns,
In highly anomalous or highly, the power term is used to amplify the signal. typical patterns. This
formulation differs from conventional place sparse rewards the in GRL by providing continuous,
structure-aware feedback to the agent.

4.2 GRAPH DIFFUSION-AUGMENTED ENERGY MODEL

The energy model uses the graph diffusion to strengthen its ability to detect patterns that are struc-
turally anomalous. In order to inverse these embeddings, we know initial node embeddings H (*)
from a GNN encoder, we apply K -step diffusion with learnable coefficients:

K
Hgn =Y ax A*H (5)
k=0

where A is the normalized adjacency matrix with self-loops and o, are trainable attention weights.
The diffused embeddings get multi-hop manedependencies between API calls, which is especially
useful for the detection of anomalous recursive patterns or irregular call chains. This final energy
score is a combination of node-level and graph-level information:

E(G) = |—é| S 6(hST) + (READOUT(Hyr)) ©)
veEV

where ¢ and v are MLP networks processing node and graph embeddings respectively, and READ-
OUT is a permutation-invariant aggregation function.

4.3 TRANSFORMER-XL POLICY WITH ENERGY-AWARE ATTENTION

The policy network processes the evolving API subgraph by using a Transformer-XL architecture
with the addition of energy signals. At for each step, the network calculates attention scores between
the current nodes v; and candidate nodes for next v,.:

T
Attention (v, ve) = Woho) (Wihy.) + AE({vt, vc}) @)

Vd
where {v;,v.} denotes the subgraph formed by adding v, to the current pattern, and \ balances
structural and energy considerations. This energy aware attention mechanism enables the policy to
make explicit considerations of the OOD implications of every possible API call, addition, preventing
the agent from getting trapped in locally optimal but globally anomalous patterns.

4.4 GRAPHVAE-BASED ENVIRONMENT SIMULATOR

To enable training and evaluation we implement a graph variational autoencoder (GraphVAE) model-
ing the transition dynamics between API subgraphs. The decoder creates reasonable submaragations
next states given the current subgraph G; and action a;:

p(Gt+1|Gt7at): H MLP([Zv;(lt]) (®)

vEViq1

4
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where z, are latent variables that are samples of the encoder’s posterior distribution. This approach
differs from rule based simulators by learning the statistical properties of actual API’s usage patterns,
and including their tendency to establish some recursive or branching structures. The simulator is able
to create in-distribution trajectories for both for policy improvement and controlled OOD scenarios
for robustness testing.

4.5 ADAPTIVE THRESHOLDING MECHANISM

The energy threshold 7, dynamically adjusts to maintain appropriate exploration exploitation balance
as the agent meets new patterns. We use exponential moving average update rule with momentum [:

Ty = Bri—1 + (1 — B)Eq~n[E(G)] 9)

where B is a replay buffer storing recent subgraphs. This adaptive mechanism ’that automatically
adjusts oneself to distribution shifts in the’ API use patterns, in contrast to static thresholds needing
manual tuning for various fields of application. The threshold update occurs asynchronously with the
updates of policies, to make learning dynamics stable and while remaining responsive to variations of
emerging patterns.

5 EXPERIMENTAL EVALUATION

To verify the effectiveness of our proposed Graph-Energy Reinforcement Learning (GERL) frame-
work, we also conduct comprehensive experiments answering three important research questions: (1)
What is the relationship between GERL and conventional API patterns mining methods in terms of
mining accuracy ? (2) How strong is GERL’s OOD detection ability as compared to threshold-based
approaches? (3) How do the individual elements of GERL contribute to its overall performance?

5.1 EXPERIMENTAL SETUP
Datasets: We evaluate GERL on three API usage datasets spanning different domains:

* JDK-Core: 12,453 Java standard library usage graphs from open-source projects (Sawant &
Bacchellil [2015)

* TensorFlow-API: 8,917 Python scripts using TensorFlow 2.x APIs (Baker et al., 2022)

* REST-Graph: 6,292 HTTP request sequences from microservice applications (Alarcon
et al.,[2015)

Each dataset is split into training (70%), validation (15%), and test (15%) sets, with the test set
containing both in-distribution (ID) and out-of-distribution (OOD) patterns. OOD samples are
artificially produced by substitutions of API calls, perturbations of the structures while preserving
concurrently syntactic validity.

Baselines: We compare GERL against four categories of baseline methods:

1. Graph Mining: gSpan (Yan & Hanl 2002) and GraMi (Elseidy et al., 2015) as traditional
graph pattern mining approaches

2. GNN-based: GraphSAGE (Hamilton et al.,2017) and GAT (Velickovi¢ et al.,[2017) with
post-hoc OOD detection

3. RL-based: DeepWalk-RL (Perozzi et al., [2014) and GComb (Manchanda et al., [2019)
adapted for API mining

4. OOD Detection: Mahalanobis (Lee et al., 2018) and Energy-GNN (Wu et al., 2023) as
standalone detectors

Metrics: For pattern mining, we use Precision @k, Recall@k, and F1 @k (k=10,20,50). For OOD
detection, we report AUROC, FPR@95TPR, and detection accuracy. All metrics are averaged over 5
runs with different random seeds.

Implementation Details:
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Table 1: Pattern mining performance (F1@20) across datasets

Method JDK-Core TensorFlow REST-Graph
gSpan 0.62 0.58 0.51
GraMi 0.65 0.61 0.54
GraphSAGE 0.71 0.67 0.59
GAT 0.73 0.69 0.62
DeepWalk-RL 0.68 0.64 0.57
GComb 0.72 0.66 0.60
GERL (ours) 0.79 0.75 0.68

Table 2: OOD detection performance (AUROC)

Method JDK-Core TensorFlow REST-Graph
Mahalanobis 0.82 0.79 0.74
Energy-GNN 0.85 0.83 0.78
GERL (ours) 0.91 0.89 0.85

GNN encoder: 3-layer GraphSAGE with mean aggregation (hidden dim=256)
* Diffusion steps: K=3 with learned attention weights

* Transformer-XL policy: 4 layers, 8 attention heads (hidden dim=512)

* Energy model: 2-layer MLP with ReLU activation

* Training: Adam optimizer (Ir=3e-4), batch size=32, y=0.5 in Equation 4
Threshold adaptation: 5=0.9 in Equation 9

5.2 COMPARATIVE RESULTS

Table [T] presents the pattern mining performance across all methods. GERL achieves superior results
on all data sets especially strong gains on the REST-Graph dataset with complex microservice call
patterns. The integration of energy advice and graph diffusion is available GERL to find more varied
yet correct usages of API compared to methods which separate mining and novelty detection:

For OOD detection, Figure[2)illustrates the relationship between energy scores and detection accuracy
with different methods. GERL maintains a strong monotonic relationship and thus demonstrating
its ability to reliably discriminate ID and OOD pattern using the energy-diffusion mechanism. The
area under the curve (AUROC) values in Table 2] confirm GERL’s advantage, especially in detecting
structurally anomalous patterns which differ from training data on their topological properties rather
than just node labels.

5.3 ABLATION STUDY

We analyze the contribution of each GERL component by systematically removing them:

The results show that all components have positive contributions, with graph diffusion and energy-
based rewards being specifically vital to formance” analysis of performance” the solutionNordeline
definition: precisely mines and offers OOD detection services.maintaining both mining accuracy
and OOD detection performance. The adaptive threshold mechanism has more influence on OOD
detection than pattern mining, which is rather expected for a role in novelty-sensitive exploration.

5.4 EXPLORATION DYNAMICS ANALYSIS

Figure [3] shows how the RL agent’s exploration behavior evolves over training episodes. The
percentage of OOD patterns explored first increases when the agent learns that the reward potential is
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Figure 2: Energy score versus OOD detection accuracy across different API usage patterns

Table 3: Ablation study on JDK-Core dataset (F1 @20 / AUROC)

Variant F1@20 AUROC
Full GERL 0.79 0.91
w/o diffusion 0.74 0.86
w/o energy reward 0.71 0.82
w/o adaptive threshold  0.76 0.88
w/o GraphVAE sim 0.77 0.89

in novel patterns, then stabilize as the policy learns to balance exploitation and exploration. This is
in contrast to conventional RL approaches which either over-exploit (get stuck in local optima) or
over-explore (wast (steps to irrelevant patterns).

The energy-guided reward design is especially effective in complex API environments like producive
Ainda a traditional method, REST, expenditure GFP with the dependencies in the long-range between
microservice calls. GERL’s diffusion mechanism helps to be aware of valid but uncommon call
chains that static pattern miner would reject or threshold-based detectors.

6 DISCUSSION AND FUTURE WORK

6.1 LIMITATIONS OF THE GRAPH-ENERGY RL SYSTEM

While the proposed framework has shown good performance across b) multiple datasets, several
limitations make further discussion. The current implementation by static API signatures when doing
pattern mining, whereas real world APIs tend to have different versions which change parameter
structures or return type This version sensitivity could lead to inaccurate outputs of OOD detections
in cases of valid patterns from newer API versions. In addition, the energy model’s dependence on
graph structure makes it more ineffective in detecting semantic anomalies—cases in which the call
sequence appears in structure normal but violates logical constraints (e.g. initializing resources after
their use). The computation overhead of the diffusion process also increases with graph diameter,
that may affect the scalability to extremely large API ecosystems consisting of deep call hierarchies.
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Figure 3: Proportion of ID versus OOD patterns explored during training episodes

6.2 POTENTIAL APPLICATION SCENARIOS

The principles underlying GERL extend organically to a number of related domains that call for
combo pattern discovery and anomaly detection. In cyber security, the framework would be able
to adapt to identify new patterns of attacks inc system call graphs during normal behavior model
learning (Tandon & Chan[2003). For analysis of biological sequences the energy diffusion mechanism
might point to rare but functionally significant protein interaction patterns (Li et al., [2022). The
retailing sectors could use the same sorts of techniques to find out emerging transaction graphs while
flagging, customer behavior pattern fraudulent activities (Chen et al.,[2019). Each application would
need to have domain specific adaptations- for example, adding temporal weights for edges to fraud
detection OR biochemical constraints for protein interactions—but the fundamental RL architecture
and energy-guided exploration strategy remain generally applicable.

6.3 ETHICAL CONSIDERATIONS

Using automated detection of API patterns with OOD raises a number of Resurgent debates and
ethical issues: ‘ethical questions that the research community need to address. The system’s ability
to discern new patterns of use of an API that might accidentally reveal proprietary business logic
or security flaws if applied without proper authorization (Gold & Krinke, [2022)). False positives in
OOD detection may falsely detect legitimate innovations by developers as anomalies, which would
possibly discourage creative use of API.

7 CONCLUSION

The Graph-Energy Reinforcement Learning framework is a significant advancement in API pattern
mining by unifying structural This is especially helpful in machine learning contexts as it enables
exploration of unknown model regions by focusing on unusually low-cost energy-based OOD
detection. By incorporating graph diffusion into the design process of the reward function, GERL
captures multi-hop dependencies traditional pattern mining. approaches usually miss, with the energy
guided exploration strategy supports systematic discovery of both common and novel API usage
patterns. The experimental results show consistent improvements consolidate existing methods on
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a number of metrics, especially where it comes to having complicated call chains and recursive
dependencies;

Ability of framework to dynamically change its exploration strategy based on pattern novelty over-
comes a critical limitation of static threshold-based approaches which do not often adjust to evolving
API ecosystems. The ability of the Transformer-XL policy architecture to process f-variable-length
sequence with structure further increases the usefulness of the system practiced use cases as the API
in real life patterns would rarely follow fixed-length templates. The graph variational autoencoder
environment simulator: provides a realistic ground for training that strikes a balance between pattern
validity and controlled exposure to OOD and scenarios.

gap theory From the theoretical point of view, the marriage of energy-based models with graph
diffusion provides a principled way of quantifying pattern likelihood in high dimensional graphs
spaces. The adaptive thresholding mechanism fills the gap between the density estimation and
reinforcement learning and creating a feedback loop where the agent exploration directly informs its
concepts about the boundaries in the area of distribution. This is in contrast to conventional two-stage
approaches that first mine patterns then try to categorize them as normal or anomalous patterns.

The limitations of the framework suggest fruitful directions for future research, in particular API
version evolve and semantic constraints. Extending the energy model to cover temporal dynamics
could be further used to enhance the time-sensitive anomaly detection, while hybrid architectures,
combining structural semantic analysis might address the detection of logically inconsistent situations;
The computational difficulties of large-scale diffusion could possibly to be mitigated by hierarchical
or sampling-based approximations with no sacrifice in the detection accuracy

8 THE USE oF LLM

We use LLM polish writing based on our original paper.
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