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ABSTRACT

Large visual language models (LVLMs) have demonstrated impressive perfor-
mance in coarse-grained geo-localization at the country or city level, but they
struggle with fine-grained street-level localization within urban areas. In this
paper, we explore integrating city-wide address localization capabilities into
LVLMs, facilitating flexible address-related question answering using street-view
images. A key challenge is that the street-view visual question-and-answer (VQA)
data provides only microscopic visual cues, leading to subpar performance in fine-
tuned models. To tackle this issue, we incorporate perspective-invariant satel-
lite images as macro cues and propose cross-view alignment tuning including a
satellite-view and street-view image grafting mechanism, along with an automatic
alignment label generation mechanism. This helps build connections between
street-view images through cross-view matching, thus enhancing LVLM’s global
understanding of street distribution. We name our proposed model AddressVLM
consisting of two-stage training protocols: cross-view alignment tuning and ad-
dress localization tuning. Furthermore, we have constructed two street-view VQA
datasets based on image address localization datasets from Pittsburgh and San
Francisco. Qualitative and quantitative evaluations demonstrate that AddressVLM
outperforms counterpart LVLMs by over 9% and 12% in average address local-
ization accuracy on the Pitts-VQA and SF-Base-VQA datasets, respectively.

1 INTRODUCTION

Visual place recognition (VPR) aims to predict the geographic location of a given image, which can
be categorized into two types: image geo-localization (Arandjelovic et al., 2016; Wang et al., 2022;
Ali-Bey et al., 2023) and image address localization (Xu et al., 2024). The emergence of Large
Vision-Language Models (LVLMs), such as GPT-4V (Achiam et al., 2023), Qwen-VL (Bai et al.,
2023), and LLaVA (Liu et al., 2024), have significantly impacted various tasks related to images and
languages. As generative models capable of generating natural language, they demonstrate enhanced
adaptability and flexibility in the image localization task (Yang et al., 2023). This proficiency stems
from the extensive exposure to street-view and landmark images during their training phases.

Recent work, GeoReasoner (Li et al., 2024), integrates a large vision-language model with human
inference knowledge for street view geo-localization with reasoning, presenting significant advan-
tages in coarse-grained localization at the country or city level. However, when it comes to address
localization for specific districts (i.e., Downtown) or streets (:.e., Fifth Avenue) within a city, it may
struggle to predict accurate textual address, since street-view images are more similar and difficult
to distinguish and the street-level address names have not been adequately correlated with the corre-
sponding street-view images. In contrast, the previous work AddressCLIP (Xu et al., 2024) explores
city-wide address localization by contrastive learning between street-view images and textual ad-
dress. Nevertheless, this approach is inherently limited due to its reliance on a discriminative model
that can only make distinctions among a constrained set of candidate addresses. As a result, it lacks
the flexibility to provide versatile address descriptions and answer other related inquiries.

To combine the advantages of previous work, in this study, we explore how to integrate street-level
address localization capabilities into an LVLM. The model is expected to respond flexibly to user
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Figure 1: Comparison of our AddressVLM with AddressCLIP and GeoReasoner. Our approach
focuses on city-wide image address localization and flexible address questions and answers related
to address using large vision-language models.
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inquiries about address localization. We name our model AddressVLM, which is designed to handle
address-related questions and provide answers accurate to the district and street level. Fig. 1 shows
the comparisons of the proposed AddressVLM with AddressCLIP and GeoReasoner. Our method
can answer various types of questions including generation, judgment, and multiple-choice.

To realize the above goal, a reasonable approach involves fine-tuning a well-trained LVLM using
street-view question-and-answer (VQA) data with LoRA adaptation (Hu et al., 2021). However, this
straightforward method of address localization tuning yields suboptimal performance. The primary
reason is that street-view images are sparsely collected in terms of both location and viewpoint,
which inhibits the model’s ability to build a global understanding of street distribution across an
entire city. Such global information is crucial for effective address localization since street-view
images are densely sampled during testing. To supplement the global information in fine-tuning, we
introduce perspective-invariant satellite images to establish connections between sparse street-view
images. Satellite images are globally consistent and exhibit overlap, allowing for a mapping of the
sparse street-view images to a global framework that facilitates inter-image correlations.

Previous research in cross-view geo-localization (Durgam et al., 2024) has shown the viability of
correlating satellite images with street-view images. In light of this, we propose a method named
cross-view alignment tuning, designed to enable LVLMs to align street-view images with street
addresses on satellite images annotated with street name labels. This method integrates a global
understanding of street distributions within urban environments into LVLMs. It consists of two key
components: the satellite-view and street-view image grafting mechanism and the automatic align-
ment label generation mechanism. The former places street-view images in the upper right corner of
their corresponding regional satellite images, serving as the input for cross-view alignment tuning.
The latter employs an off-the-shelf LVLM to explain why the street-view image matches the address
in the satellite images according to the provided address hint, thus automatically generating labels
for the cross-view alignment tuning. By doing this, our full method involves two-stage training
protocols: cross-view alignment tuning and address localization tuning.

We introduce two city-wide street-view VQA datasets named Pitts-VQA and SF-Base-VQA, built
upon the Pitts-IAL (Torii et al., 2013; Xu et al., 2024) and SF-Base-IAL (Berton et al., 2022; Xu
et al., 2024) datasets, respectively. On Pitts-VQA, AddressVLM demonstrates an improvement
of 9% compared to the baseline without cross-view alignment tuning. On SF-Base-VQA, Ad-
dressVLM achieves an improvement of 12% over the baseline. Moreover, in comparison to the
state-of-the-art (SOTA) approach for image address localization using LVLMs, GeoReasoner (Li
et al., 2024), our method exhibits improvements of 11% and 14% on the Pitts-VQA and SF-Base-
VQA datasets, respectively. The proposed method exhibits excellent city-wide address localization
capability compared to general LVLMs. We further provide qualitative results to thoroughly vali-
date the effectiveness of the proposed cross-view alignment tuning strategy. Additional quantitative
experiments show that our method can be extended to address localization in multiple cities.
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Overall, the main contributions of our work are summarized as follows:

* We explore integrating city-wide address localization capabilities into LVLMs to enable
flexible address question and answer based on street-view images.

* We introduce cross-view alignment tuning that integrates the global understanding of urban
street distribution into LVLMSs, which includes the satellite-view and street-view image
grafting mechanism and the automatic alignment label generation mechanism.

* We propose AddressVLM, an LVLM that achieves consistent improvements over the base-
line without cross-view alignment tuning on street-view VQA datasets and performs supe-
rior to the SOTA method GeoReasoner and general LVLMs.

2 RELATED WORK

Visual Place Recognition. Visual place recognition aims to predict the geographic location of a
given image with broad applications in practical scenarios (Zhang et al., 2021). Most researchers
have focused on predicting the latitude and longitude coordinates for input images, known as im-
age geo-localization, which is primarily categorized into retrieval-based methods (Hausler et al.,
2021; Wang et al., 2022; Ali-Bey et al., 2023; Keetha et al., 2023) and classification-based meth-
ods (Seo et al., 2018; Pramanick et al., 2022; Clark et al., 2023; Trivigno et al., 2023). Retrieval-
based methods involve matching the given image with a database of images tagged with GPS co-
ordinates and retrieving the geographical coordinates of the most similar images as the prediction
result. Classification-based methods, on the other hand, subdivide the Earth’s surface or cities into
thousands of geographical cells and predict the geographical unit to which an image belongs. Recent
trends have involved leveraging the general text knowledge embedded in visual-language models for
geo-localization, including CLIP-based (Radford et al., 2021) discriminative models such as Street-
CLIP (Haas et al., 2023) with region descriptions and GeoCLIP Cepeda et al. (2023) with GPS
information injection, as well as LVLM-based generative models like GeoReasoner (Li et al., 2024)
with human reasoning knowledge. However, these models typically focus only on coarse-grained
localization at the country or city level. Recent efforts represented by AddressCLIP (Xu et al.,
2024) focus on fine-grained street-level localization within a city, yet this discriminative model is
constrained to make distinctions within a limited set of candidate addresses and cannot provide flex-
ible address descriptions or question-and-answer as generative models can. In this study, we explore
integrating fine-grained city-wide address localization capability into LVLMs.

Large Vision Language Models. LVLM has been a new rising research hotspot, which uses pow-
erful Large Language Models (LLMs) (Touvron et al., 2023; Jiang et al., 2023; Yang et al., 2024;
Abdin et al., 2024) as a brain to perform vision-language tasks. These general-purpose LVLMs ex-
hibit remarkable effectiveness in visual question-answering tasks (Achiam et al., 2023; Bai et al.,
2023; Liu et al., 2024; Team et al., 2023), suggesting a potential path to artificial general intelli-
gence. For VPR, LVLMs can identify the location of input images based on landmarks, Optical
Character Recognition (OCR) information, or other notable visual cues, often achieving precision at
the level of country or even city (Yang et al., 2023). However, the optimal utilization of LVLMs for
fine-grained street-level localization remains a challenging issue. This study leverages the capabili-
ties of LVLMs to tackle image address localization in street views. We overcome these challenges
through cross-view alignment tuning by introducing satellite images from a macro perspective, thus
contributing to a more effective application of LVLMs in this domain.

Cross-view Geo-localization. The objective of cross-view geo-localization is similar to VPR, ex-
cept that its database consists of aerial images instead of ground street views, and the queries might
be panorama images. The key challenge is to match features between aerial and ground images in
the feature space (Durgam et al., 2024). A classic approach to tackle this issue is the implementation
of Siamese networks for alignment, as suggested by Vigor (Zhu et al., 2021). To address temporal
changes in ground images, the authors in (Ghanem et al., 2023) focus on the temporally invariant
parts of images. Additionally, some work (Wang et al., 2021; Mi et al., 2024) propose part-based
image representation learning to address the orientation and local detail matching issues. Overall,
these studies demonstrate the potential for correlating aerial images with street-view images. In-
spired by the spirit of cross-view matching, we apply this task to the domain of LVLMs and adapt it
to introduce the method of cross-view alignment tuning.
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3 METHOD

3.1 PROBLEM STATEMENT

The Image Address Localization problem with Visual Question Answering is formalized as follows:
given a training dataset Dyqin = { (I, {, A{) M.,j € [1...N;], where I, represents images and
( f , A{ ) denotes multi-turn questions and answers, our objective is to train a large vision-language
model Hy to predict answers based on the query images and address-related questions. During the
training phase, for each image I;, we organize the multi-turn conversation data as a sequence, by

treating all answers as the model’s response, and the instruction S? at the ¢—th turn as:

7
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We perform address localization tuning of the LLM on the prediction tokens, using its original auto-
regressive training objective. Specifically, for a sequence of length IV, we compute the probability
of the target answers A; by:

N
PAil L, Si) = [ po(z;11i. S<j Acy), )

Jj=1

where 0 is the trainable model parameters, S.; and A.; are the instruction and answer tokens in
all turns before the current prediction token x;, respectively. In the testing phase, given a query
image I, and a set of relevant dialogue questions Q*, the model aims to output the corresponding

answers A? for each question. The final output consists of natural language responses that provide
relevant information regarding the image address, effectively enabling the model to handle the visual
question-answering task in the context of address localization.

3.2 CROSS-VIEW ALIGNMENT TUNING

Street-view images, serving as sparse micro-level visual cues, make it challenging to provide the
model with a global macro perspective, which is crucial for effective address localization since
street-view images are densely sampled during testing. In contrast, satellite images can be regarded
as supplementary macro information, which are perspective-invariant and globally stable to establish
connections between sparse street-view images. Inspired by previous works of cross-view match-
ing (Durgam et al., 2024; Hao et al., 2024), we propose cross-view alignment tuning to align the
street-view images with the corresponding street address on satellite images. This helps LVLMs
first to achieve a global understanding of the spatial distribution of urban streets and then to build a
fine-grained understanding of image-address matching.

Satellite-view and Street-view Image Grafting. To align satellite-view and street-view images,
two intuitive approaches can be considered: i) directly concatenating the two images into a single
input, and ii) treating the two images as separate inputs. In both approaches, the equal contribution
of the two images can dilute the effectiveness of satellite images. Furthermore, modern training
techniques for LVLMs usually resize images to a uniform size, which can lead to substantial dis-
tortion when directly stitching the two images together. While some studies have investigated input
structures that accommodate dual images (Wu et al., 2024), the second approach diverges from the
mainstream LVLM architectures (Achiam et al., 2023; Bai et al., 2023; Liu et al., 2024).

To address the aforementioned issues, we propose a satellite-view and street-view image grafting
mechanism, where street-view images are scaled down and grafted onto satellite images like CutMix
data augmentation (Yun et al., 2019). Let I, and I, denote the satellite image and street-view
image, respectively. The grafting goal is to generate a new image I, by combining the two view
images. The grafting operation can be expressed as:

Is:MGIba+(1_M)®Ist; 3

where M denotes a binary mask indicating where to drop out and fill in from two view images, 1 is
a binary mask filled with ones, and ® is element-wise multiplication. According to cartographic and
visualization conventions, we position the street-view image in the upper right corner of the satellite
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(a) Satellite and Street-view Image Grafting (b) Automatic Alignment Label Generation

Figure 2: Schematic diagram of satellite and street-view image grafting (a), as well as an example
of the alignment prompt and generated label for automatic alignment label generation (b). The red
and yellow boxes in (a) are only for highlighting and are not marked in the fine-tuning data.
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Figure 3: Qualitative comparisons of the street localization probability distribution before and after
cross-view alignment tuning. The predicted streets are clustered and distributed close to the true
location after cross-view alignment tuning. The source map can be found here.

image, ensuring a longer side overlap ratio 6 € [0,0.5], as shown in Fig. 2. It is worth noting that
the text name of each street is marked on the satellite image, which facilitates the alignment of
street-view images and street addresses. This mechanism allows a single image to be used as input,
where the satellite image serves as the primary focus and the street-view image acts as a supporting
element. This setup creates a framework for understanding the relationship between the two images.
We analyze the effects of different grafting parameters by ablation experiments in Sec. 4.3.

Automatic Alignment Label Generation.

To enable LVLMs to establish a global understanding of urban street layouts using maps, we design
a cross-view alignment tuning task. This task allows the model to locate the address of a street-
view image by visually matching it with satellite images, where the corresponding textual street
name is marked. Meanwhile, we require the model to give the reason for the address prediction.
During performing the cross-view alignment tuning task, the model can perceive surrounding street
information since LVLMs have a certain OCR capability.

The goal of alignment tuning relies on training the model with appropriate textual labels. An intu-
itive way is to construct textual labels based on artificial rules and template languages, but this way
cannot achieve flexible and diverse language descriptions. To this end, we propose an automatic
alignment label generation mechanism. In this mechanism, reference answers based on rules are
given in advance, and the reasons are predicted by a well-trained LVLM as textual labels according
to reference answers. Here, we provide a text hint in the alignment prompt as the standard answer
to help generate tuning labels. Fig. 2 shows the pipeline of automatic alignment label generation
mechanism with the prompt of label generation. Then, the reference answers are hidden and the
alignment tuning is performed using the generated labels.

Discussion. To demonstrate the effectiveness of the proposed cross-view alignment tuning, we
provide qualitative comparisons of the street localization probability distribution before and after the
alignment tuning as shown in Fig. 3. Specifically, we set the temperature parameter of LLM to 0.8 to
increase inference variability. Then we perform model inference 100 times for each input street-view
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Figure 4: Overview of the proposed framework, which consists of two-stage training protocols:
cross-view alignment tuning and address Localization tuning.

image with the specific prompt (i.e., identify the specific location of the street-view image). For each
sample, we record the frequency of each street appearing in the 100 inference results to approximate
the model’s understanding of the surrounding street distribution before and after the cross-view
alignment tuning. The red marker on the road map indicates the ground truth location of the input
image, and the highlighted streets are the Top-3 most frequent outputs. It can be observed that the
predicted streets are clustered and distributed close to the ground truth location after cross-view
alignment tuning, indicating that the proposed tuning strategy successfully integrates the knowledge
of urban street distribution with LVLMs.

3.3 TWwWO-STAGE TRAINING PROTOCOLS

Street-View Visual Question-and-Answer Datasets. Due to the absence of a dedicated Visual
Question Answering (VQA) dataset specifically for image address localization, we have constructed
two street-view VQA datasets tailored for address-related question answering (QA). These datasets
are based on image address localization datasets sourced from Pittsburgh (Torii et al., 2013; Xu
et al., 2024) and San Francisco (Berton et al., 2022; Xu et al., 2024). To enrich the diversity of the
QA data, we have conceived three distinct address QA modes: generation, judgment, and multiple-
choice. The generation mode requires the model to answer the accurate address of the location where
the input image was taken. The judgment mode requires the model to judge whether the address in
the question is correct. The multiple-choice mode requires the model to select the correct address
among a given set of addresses. The QA data is generated automatically using language templates
and is organized through a series of multiple dialogue rounds. We have designated the VQA datasets
corresponding to these two cities as Pitts-VQA and SF-Base-VQA. Specifically, Pitts-VQA contains
10,586 locations with 24 images from different viewpoints for each location and 7 rounds of QA for
each image. SF-Base-VQA contains 17,067 locations with 12 images from different viewpoints
for each location and 7 rounds of QA for each image. Both datasets are divided into training sets,
validation sets, and test sets in a ratio of 7:2:1. We will release these two street-view VQA datasets
to the community to promote the research of image address localization.

Model Architecture. Fig. 4 illustrates the architecture of the proposed AddressVLM model, de-
signed based on the framework established by LLaVA (Liu et al., 2024). The model consists of
three modules: the Vision Encoder g, the Vision-Language (VL) Adapter %, and the Pre-trained
LLM f. For an input satellite-view or street-view image I, the Vision Encoder with a Vision Trans-
former (ViT) architecture provides the visual feature Z,, = ¢g(I). The VL Adapter implemented by
an MLP layer maps the visual features into language embedding tokens, expressed as H, = h(Z,),
where H, € RY*P represents refined visual features that are compatible with textual representa-
tions. For another input of textual address query (), we obtain the embedded tokens from the address
query as T, = ©(Q), where O represents the off-the-shelf Tokenizer and Embedding models. Fi-
nally, the compressed visual feature sequence and the text sequence are concatenated to feed into
the Pre-trained LLM module, represented as A = f(H,,Ty).

Supervised Fine-tuning. The overall model undergoes a staged pre-training process that is divided
into two phases: cross-view alignment tuning and address localization tuning. In the first stage,
our objective is to integrate the spatial distribution of streets and districts within the entire city into
LVLM:s through the matching between satellite-view images and street-view images for address
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Table 1: Performance comparisons with other address localization methods on the Pitts-VQA and
SF-Base-VQA datasets.

District Street

Method A Ags
ASG A AN Aq AS Al AM A
< AddressCLIP - - - - - - - - - 82.62
O LLaVA-Phi3-mini 2664 6022 37.81 4552 000 5623 3462 3669 4101  0.00
£ Baseline 8451 9272 9323 9070 6431 9025 9127 8400 8727  60.52
&  GeoReasoner 8329 9165 9150 89.41 61.89 89.87 89.68 82.80 86.03  57.78
AddressVLM (ours) 8873  93.54 9516 9270 7251 9170 9398 8746  90.02  69.60
8 AddressCLIP - - - - - - - - - 87.44
S LLaVA-Phi3-mini 378 7173 4276 4689 0.5 5239  30.85 3385 4031  0.00
Q
&  Baseline 82.19 9346 93.14 9049 6548 8825 8857 8261 8651 5862
2 GeoReasoner 8140 91.07 90.81 8853 62.89 8646 84.64 8008 8426  55.99
w

AddressVLM (ours)  86.48 9372 9450 92.06 76.09 8892 9275 86.66 89.33  70.45

localization. This alignment tuning procedure is vital for facilitating the second stage of address
localization tuning. In the second stage, we integrate the global prior knowledge of street distribution
information to infer the fine-grained, city-wide address location information. Here, we utilize the
street-view (VQA) data for the second stage tuning without satellite-view images. Both stages are
fine-tuned from the pre-trained LLM using Low-Rank Adaptation (LoRA), which contributes to
the overall performance improvements in address localization. This two-stage approach allows the
model to better capture complex relationships within the image-address pairs, enhancing its ability
to localize addresses accurately by leveraging integrated spatial knowledge.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. AddressVLM is built upon CLIP (Radford et al., 2021) and Phi-3.1-
mini (Abdin et al., 2024) in a LLaVA fashion using the xtuner (Contributors, 2023) framework,
which is implemented with PyTorch. All images are adjusted to 336336 to fit the input size of the
CLIP. More details are provided in Appendix A.

Evaluation Metrics. To rigorously assess the model’s address localization capabilities across di-
verse conversational contexts, we employ various formats and metrics to assess different levels of
localization accuracy. Specifically, we formulate three types of questions: generation, judgment,
and multiple-choice. These three measurement formats are applied at both district and street levels.
We denote the accuracy for Generation, Judgment, and Multiple-choice question related to district
as A§, AJ, and A} respectively, with their average represented as A,. Correspondingly, the ac-
curacies for street-level assessments are denoted as AS, A7, and AM, with an average of A;. The
overall accuracy of both district and street level localization is represented as A. In addition, we
investigate the model’s capability to concurrently generate both street and district information, re-
ferred to as Asq. This metric shares some resemblance to the street-level top-1 accuracy (SA-1)
in AddressCLIP (Xu et al., 2024). However, it is worth noting that the A;4 we report pertains to
generative models, making it a more challenging measure than the discriminative SA-1.

4.2 MAIN RESULTS

Baselines. First, we evaluate the adopted pre-trained LVLM on the metrics above to evaluate its
original capabilities in image address localization, which is denoted by LLaVA-Phi3-mini. Subse-
quently, we reproduce the results of GeoReasoner (Li et al., 2024) at the district and street levels
within a single city as the SOTA method. More method details can be found in Appendix D. Ad-
ditionally, we conduct only address localization tuning on LLaVA-Phi3-mini, and this tuned model
is referred to as Baseline for both GeoReasoner and our AddressVLM. Moreover, we compare the
street-level results with AddressCLIP with A4 only for completeness.

Comparisons. Tab. 1 shows the results of our AddressVLM and the aforementioned models on the
Pitts-VQA and SF-Base-VQA datasets. Focusing exclusively on generative models, our approach
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Table 2: Ablation study of grafting overlap ratio ¢ and satellite image type for cross-view alignment
tuning on the Pitts-VQA and SF-Base-VQA datasets.

Method 5 Pitts-VQA SF-Base-VQA

Ag A A Ags Ag A A Ags
Satellite w/o road 0.3 91.33 85.51 88.36 64.05 90.85 84.57 87.32 65.33
Satellite 0.3 92.05 86.78 89.32 68.98 91.52 85.79 88.67 70.42
Satellite w/o road 0.5 91.09 85.17 88.06 64.63 90.88 84.32 87.41 65.93
Satellite 0.5 92.70 87.46 90.02 69.60 92.06 86.66 89.33 70.45

Table 3: Ablation study of training with different parameters during different training phrases, i.e.
Vision Encoder (VE), VL Adapter (VLA), and LLM. ¢ indicates one module is trainable.

Variants | Stage-1:Alignment Tuning | Stage-2:Localization Tuning | Pitts-VQA |  SF-Base-VQA

| VE VLA LLM | VE VLA LLM | A Ags | A Ags

A v v v 86.58 63.21 86.74 62.94

B v v v v 86.42 62.95 86.31 62.78

C v v v v 87.48 63.03 85.92 61.21

D v v v v v 89.53 66.37 89.63 68.95

E v v v v v 87.37 63.52 87.07 64.68
AddressVIM | v/ v v | v v v | 9002 6960 | 8933 7045

achieves the best results across all metrics on both datasets. Specifically, the zero-shot performance
of LLaVA-Phi3-mini is subpar on both datasets, primarily due to its inadequate fine-grained and
multi-modal understanding of urban environments. Nevertheless, it is worthy noting that its perfor-
mance in district-level judgment (A7) is better than random guessing (60.22% vs. 50% and 71.73%
vs. 50% on both datasets), suggesting that it does have a foundational level of urban knowledge.
After applying our two-stage tuning to LLaVA-Phi3-mini, there is a significant improvement in Ad-
dressVLM'’s overall performance compared to the zero-shot setting (+49.01% and +49.02% on both
datasets in terms of A), indicating that our framework can effectively enhance the model’s image
address localization capabilities. For the SOTA method GeoReasoner, the key lies in the first-stage
reasoning tuning that aims at coarse-grained recognition and enhanced reasoning ability. While this
strategy yields benefits at the country level, it has been observed that the limited distinctions in
street scenes within the same city can lead to a detrimental effect, resulting in decreases of 2.74%
and 2.63% in terms of A4, on both datasets. In contrast, our AddressVLM constructs a satellite im-
age and street-view image alignment task in the first-stage tuning, effectively integrating knowledge
about street names and global street distribution into the model. Compared to the baseline of directly
applying localization tuning, the proposed alignment tuning stage brings significant and consistent
performance gains, e.g., +9.08% and +11.83% in terms of A4, on both datasets. Furthermore, we
can observe a performance gap between our AddressVLM and AddressCLIP in terms of street and
district localization performance (Ag4;), suggesting that it is still challenging for open-set generative
models to achieve comparable results as closed-set classification models in specific tasks. This is a
promising direction and we would like to explore it in future work.

4.3 ABLATION STUDY

Grafting Mechanism of Cross-view Alignment Tuning. The cross-view alignment tuning is a
pivotal step for the effectiveness of AddressVLM, with various options for constructing the visual
data. The first key factor is the overlap ratio ¢ (default 6 = 0.5) of the longer side of the street-
view image to the satellite image. The second factor is the type of satellite images, i.e., whether
the satellite image is labeled with textual street names. The ablation results with different grafting
ratios and satellite map types are shown in Tab. 2. It is shown that reducing 6 to 0.3 leads to a
decline in performance, indicating that excessively small street view images fail to provide sufficient
visual details. Meanwhile, removing street labels from satellite images also results in performance
degradation since satellite maps inadequately represent street layouts, which lack the OCR road
information. Therefore, we finally adopt satellite images with street names and set § = 0.5.

Training Components in LVLM. Whether the training parameters in LVLMs are frozen or not
usually affects its performance on domain-specific tasks. To this end, we explore the impact of
freezing or unfreezing components of AddressVLM as shown in Tab. 3, which includes the Vision
Encoder (VE), VL Adapter (VLA), and LLM. Our baseline setup (Variant A) involves unfreezing



Under review as a conference paper at ICLR 2025

View Ag View AYf View AZ View AY View A Loc Ag Loc AYf Loc AS Loc AY Loc A
View 4, View Ag View AL ViewA; == View Ags Loc A} Loc Ag Loc AL LocA; =4 LocAss

90 90

80 80

Accuracy (%)
Accuracy (%)

20 40 80 100 20 40

60 60
Density (%) Density (%)
(a) Pitts-VQA (b) SF-Base-VQA

Figure 5: Ablation on different densities of street-view images for address localization on the Pitts-
IAL and SF-IAL-Base datasets.

Table 4: Effect of mixed training on both Pitts-IAL and SF-IAL-Base datasets.

District Street

Train / Test A Ads
AG Aj AN Aq ASG Aj AN Aq

Pitts / Pitts 8873 9354 9516 9270 7251 9170 9398 8746  90.02  69.60

Pitts + SF/Pitts ~ 89.24 9317 9516  92.66 7290 9277 9434 8818 9037  70.63

SF/SF 8648 9372 9450 9206 7609 8892 9275  86.66  89.33 7045

Pitts + SF/ SF 87.40 94.24 94.92 92.66 77.05 91.97 93.00 88.48 90.55 71.36

the VLA during both two stages, while the LLM is unfrozen solely in the second stage. Notably,
unfreezing the LLM during the first stage yields the most substantial performance improvement.
Similarly, unfreezing the VE in the second stage usually achieves better performance than freezing
the VE, since the target of the second stage training is street-view images and unfreezing the VE
enables the model to better adapt to urban street scenes. Ultimately, unfreezing all parameters
leads to the best performance. This result can be attributed to the task’s strong specificity and
the availability of a large-scale dataset, which facilitates comprehensive parameter optimization for
optimal results. These findings align with previous conclusions in the community (Lin et al., 2024).

Density of Street-view Images. We investigate the impact of different densities of street-view im-
ages used for the address localization tuning, which can be reflected in two aspects: i) The density
of viewpoints, meaning how many street views are available for a single location (e.g., 100%, 50%,
25%, 12.5%). ii) The density of locations, referring to the down-sampling rate of locations (e.g.,
100%, 75%, 50%, 25%). We decouple these factors for separate analysis as shown in Fig. 5. As ob-
served, in terms of viewpoint density, the model maintains over 88% performance when the number
of street views exceeds 6 in terms of (A). For location density, the model retains over 71% perfor-
mance even when locations are down-sampled to 50% in terms of (Ags). The results indicate that
our approach has strong generalization capabilities even with lower data densities. Meanwhile, we
notice that the sensitivity of our method to viewpoint and location density is similar, which suggests
that the density of these two dimensions is equally significance to the localization performance.

Scalability for Multiple Cities. Considering that image address localization may involve multiple
cities in practice, we evaluate the scalability of AddressVLM on the Pitts-VQA and SF-Base-VQA
datasets. Specifically, we merge these datasets and train a unified AddressVLM using the proposed
two-stage tuning, then evaluate it on both test sets. As shown in Tab. 4, surprisingly, the performance
of this unified model surpasses the performance of each separate model slightly on both datasets.
We speculate that more cross-view data of the same task facilitates model learning how to locate the
street-view image using a map for reference. This finding further demonstrates the scalability of our
pipeline, suggesting its potential to extend capabilities across more cities or even an entire country.

4.4 QUALITATIVE RESULTS

Effectiveness of Cross-view Alignment Tuning. To demonstrate the effectiveness of the proposed
cross-view alignment tuning on the final address localization quality, we present examples with cor-
rect positioning by our model with the alignment tuning, as shown in Fig. 6. We present street-view
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Figure 6: Qualitative visualization comparison of the impact of whether using the first-stage cross-
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Figure 7: Qualitative comparison of address question-answering capabilities with general LVLMs.

images that are predicted incorrectly without the first-stage alignment tuning. It can be observed
that there exists high degree of similarity between the street views near the mispredicted streets and
those of the ground truth streets. This challenge is difficult to address by only using the second-stage
address localization tuning. In contrast, the first-stage alignment tuning supplements the missing
global street information and establishes connections between street-view images, thus helping the
model better confirm the location of the street-view image during the address localization stage.

Comparisons with General LVLMs. We further present examples of AddressVLM in real-world
inference and provide a qualitative comparison with SOTA general LVLMs, e.g., GPT-40 (Achiam
etal., 2023), Sonnet 3.5 (Claude, 2024), and Qwen2-VL (Qwen, 2024; Bai et al., 2023) and LLaVA-
Phi3-mini, as shown in Fig. 7. Our approach consistently delivers high-quality results across var-
ious VQA scenarios. In contrast, the performance of SOTA models is significantly constrained
by whether the input images contain sufficient identifiable information, such as street names and
landmarks. This demonstrates that with minimal fine-tuning, AddressVLM can achieve a granu-
lar understanding of urban environments using only 4B parameters. This ensures its feasibility for
future on-device deployment and updates.

5 CONCLUSION

In this work, we propose AddressVLM for city-wide address localization, which can perform flex-
ible address question-answering for street-view images. The core idea is to leverage cross-view
alignment tuning between satellite-view images and street-view images to integrate a global under-
standing of street distribution into LVLM. This contains two key components, namely the satellite
and street view image grafting mechanism, and the automatic alignment label generation mecha-
nism. The model undergoes two-stage fine-tuning, including cross-view alignment tuning and ad-
dress localization tuning. Extensive experiments show that the proposed AddressVLM surpasses
general LVLMs and SOTA localization LVLMs, and can be extended to multiple cities. In future
work, we would like to explore cities on different continents and adopt larger LVLMs.
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APPENDIX

A IMPLEMENTATION DETAILS

All our experiments are conducted using the xtuner framework on 8 RTX 3090 GPUs. The torch
version is 2.4.0, the CUDA version is 12.1, and the transformers version is 4.37.2. The main hyper-
parameter settings are given in Tab. 5.

Table 5: Hyper-parameter settings of the both two tuning stage.

Hyper-parameter Values
Batch Size 4x8
Gradient Accumulation 16
Learning Rate le-5
Weight Decay 0

Betas (0.9, 0.999)
Warmup Ratio 0.03

LoRA Rank 128

LoRA Dropout 0.05
Model Max Length 2048 — (336/14)?

B DATASETS DETAILS

We provide detailed information about the two constructed VQA datasets as a supplementary to
Sec. 3.3, listed in Tab. 6. The dataset information includes the number of locations, the number of
street view images, and the proportions of various dialogue types in the muti-turn conversations for
both Pitts-VQA and SF-Base-VQA datasets. Generally, the distribution of address question types in
the training set is balanced (1:1:1). In the test set, to accommodate both answer types (Yes/No) in
judgment questions, we increased the judgment questions for each district-related and street-related
question with answers set as ”Yes” or "No”, respectively. As a result, the proportion of judgment
questions is nearly twice that of the generation and multiple-choice questions.

Table 6: More details of the constructed Pitts-VQA and SF-VQA datasets.

Statistics Pitts-VQA SF-Base-VQA
Train Test Train Test
Covered Area 20 km? 20 km? 6 km? 6 km?
Number of locations 7410 798 11946 1707
Number of Districts 19 19 15 15
Number of Streets 194 165 121 110
Number of images 177840 19152 143352 20484
Number of questions 533520 168409 430056 181943

Additionally, the question templates for different types of questions and address is given in Tab. 7.
Each address type includes 10 distinct templates, resulting in 20 templates in total. Subsequently,
different question types are generated by appending different prompts for the three question cate-
gories, as shown in Tab. 8. We replace the contents in ’[]”” with the ground truth location names (e.g.
street and district) before appending them to the address prompts.

C VISUAL DATA CONSTRUCTION OF CROSS-VIEW ALIGNMENT TUNING

Multiple methods are available for constructing input images for cross-view alignment tuning, as
illustrated in Fig. 8. The first method involves stitching the map and street view images at approxi-
mately a 1:1 ratio. This approach appears to preserve the most information from both the map and
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Table 7: Question Templates for VQA Data Generation.

Address Type | Template

Tell me the district where this image was captured.

I’m curious about the district, where is this?

In which urban district was this photo taken?

Can you identity which district this is?

What district is shown in this photograph?

What major district does the photo fall under?

I’m looking for the name of the district in this photo, can you help?
Can you specify the district shown in this photo?

Which district is depicted in the photo?

What’s the name of the district shown in the photo?

District

Identify the street in this image, please.

What is the street seen in this picture called?

On which boulevard or street was this taken?

Give me the name of the street that appears in this photograph.
Where was this, can you name the street?

What’s the name of the avenue or street captured in this shot?
The street in this image, what is it named?

What’s the name of this street shown in the photo?

Can you tell me which road this is?

What thoroughfare is depicted here?

Street

Table 8: Appended Prompts to Generate Different Question Types.

Question Type | Template

Generation | Answer the question using a single word or phrase.
Judgement | Is this image taken [On STREET/IN DISTRICT], Yes or No?

Multiple Choice | Which of the following [STREET/DISTRICT] correctly represents
the location shown in the image?
(A) [OPTION A] (B) [OPTION B] (C) [OPTION C] (D) [OPTION D].
Please select the correct option (A/B/C/D).

street view. However, since most LVL.Ms only accept square-shaped input images (e.g., 336x336),
the necessary padding and resizing operations result in a decreased number of effective visual to-
kens, which is detrimental to model learning. The second method entails inputting the two images
separately. While this strategy allows for maintaining distinct features of both images, it may lead
the model to overly rely on the street view content at the expense of the map information. Addition-
ally, this approach effectively doubles the number of visual tokens, negatively impacting training
efficiency. To mitigate these issues and encourage the model to focus on the overall street distri-
bution information from the map, while also conforming to the LVLM input size requirements and
ensuring training efficiency, we adopt the third method for visual data construction. The size of the
map is resized to 336x336 to fit the input size of LVLMs.

D REPRODUCTION OF GEOREASONER

The training process for GeoReasoner (Li et al., 2024) consists of two stages. The first stage involves
coarse-grained localization at the country level, accompanied by intricate reasoning derived from
game data. The second stage is centered on fine-grained localization at the city level, utilizing
Google Street View data. In our study, we replicate this pipeline to achieve district and street-
level localization within the same urban area. A primary distinction between GeoReasoner and our
AddressVLM lies in the data employed during the first stage. In the original work of GeoReasoner,
the first stage data integrates external knowledge sourced from real geo-localization games. For
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AddressVLM

(a) Two images stitched

AddressVLM

(b) Two images input separately 1 (c) Two images grafted

AddressVLM

Figure 8: Three ways of combining the satellite-view and street-view images.

( N\ ( )
GeoReasoner Prompt: GeoReasoner Label:
Examine the image presented, and The image is indeed captured in North Beach, San
deduce from which neighborhood it Francisco. The distinct architectural and streetscape
was most likely captured, providing style characteristic of North Beach can be observed in
your rationale. (Hint: This image was * the white building with a green awning. The building's
taken in North Beach within San design, along with the presence of a tree and a car
Francisco. Begin your response by parked on the street, suggests a quaint and charming
confirming its location in North Beach, wavavie-mistral7e | Neighborhood. The North Beach neighborhood is known
then substantiate your claim by for its Italian heritage and is characterized by narrow
analyzing the distinct architectural and streets, historic buildings, and a vibrant cultural scene.
streetscape style characteristic of The image captures the essence of this neighborhood,

\North Beach that in this image. ) \making it a likely location within North Beach. )

Figure 9: An example of the prompt and the generated reasoning label for the first stage of GeoRe-
asoner. The model of LLaVA-v1.6-Mistral-7B is adopted for label generation.

district-level localization, we generate reasoning data by emulating the reasoning generation pipeline
utilized for our cross-view tuning data, as detailed in Appendix C. An example of the prompt and
the generated reasoning label for the first stage of GeoReasoner is presented in Fig. 9. To facilitate
a comprehensive comparison across various metrics outlined in Sec. 4.1, we employ the same VQA
data for training the second stage of GeoReasoner.

E IMPLEMENTATION DETAILS OF QUALITATIVE RESULTS

E.1 QUALITATIVE RESULTS IN SEC. 3.2

In Fig. 3, we conduct a quantitative analysis of the cross-view alignment tuning by examining the
outputs from two distinct models. While the first stage utilizes grafted images as inputs, our prin-
cipal objective is to establish a connection between street-view images and the street addresses.
Consequently, we employ only street-view images as the input for this analytical evaluation.

After Cross-view Alignment Tuning. For discriminative models like CLIP, we can compare the
embeddings of street views and address texts to assess whether the model effectively associates
street layouts with street views. However, this method is not suitable for the generative models
discussed in this study. Instead, we leverage the inherent randomness in the output of generative
models. Specifically, we increase the temperature of the model during inference from 0.1 to 0.8 to
encourage output variability. By performing inference for 100 times on the same input image, we
can count the number of different valid streets, approximating the output distribution for the model
for a given input.

Before Cross-view Alignment Tuning. Since the image address localization task is quite challeng-
ing, the model without any downstream fine-tuning (zero-shot model) struggles to produce valid
street outputs directly. Therefore, we organize all the street names generated by the model above
into options, allowing the zero-shot model to select one street from this given list for output. The
difference between the prompts of these two models is given in Fig. 10.

E.2 QUALITATIVE RESULTS IN SEC. 4.4

In Sec. 4.4, we demonstrate the results of four current state-of-the-art proprietary and open-source
models on several samples in our datasets. Our AddressVLM is capable of generating outputs
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After Cross-view Alignment Tuning Before Cr iew Alj Tuning
Prompt:

Which street is the image located?

Select an answer from [Boulevard of Allies, Wood Street, Market Street, B
Street, Crosstown Boulevard, Stanwix Street, Sixth Ave, Liberty Ave, First Ave]
and output it directly.

Prompt:
Which street is the image located?

Figure 10: Prompts for models before and after cross-view alignment tuning for qualitative results
in Sec. 4.4.

Table 9: Detailed results of the ablation studies on the complementary metrics.

District Street

BN

Ablations Ads

ASG A5 AY Ay A Al AM A,
Satellite w/oroad (0.3) 8593 93.00 9370 9133 6724 9L18 9255 8551 8836  64.05

Satellite (0.3) 87.32 9293 94.59  92.05 71.61 91.04 9327 86.78 89.32  68.98
Satellite w/o road (0.5) 86.23 9242 9354  91.09 6797 90.50  91.79 85.17 88.06  64.63
Variant A 85.57  90.73 92.03 89.77  65.60  89.42  90.39 8390  86.58  63.21
Variant B 8548  90.65 92.12 89.59  65.05 89.21 90.02 83.44 8642 6295
8 Variant C 84.86  91.98 92.85 9034  66.39  90.63 91.46 8475 87.48  63.03
> Variant D 8736 93.23 95.08 9266  71.19 9158  93.85 87.02  89.53 66.37
ki Variant E 85.00  92.02  92.65 90.34  66.64  90.27  91.05 84.54 8737  63.52
-9
View-4/24 69.14 8429  83.90 80.21 36.08 77.68  77.71 67.25 73.58  31.55
View-7/24 76.54  89.38 88.33 85.73  46.75 8590  86.14  76.13 80.83 4225
View-13/24 83.67  92.28 9234  90.04 61.60 89.58  90.69 82.84 8636  58.04
Location-1/4 70.95 8591 83.97 81.47 38.81 7791 7892 6835 7476 34.14
Location-2/4 79.53 89.62  89.40 86.91 54.17 86.59 87.79 7876 8274  50.16
Location-3/4 84.06  92.18 92,69 90.18 6334  88.73 90.88 8290 8646  60.19
AddressVLM 88.73 9354  95.16 9270 7251 91.70  93.98 87.46  90.02  69.60
Satellite w/o road (0.3) 84.11 91.82  92.64  90.85 7359  88.38  90.51 84.57 8732 6533
Satellite (0.3) 8588 9310 9392 9152 7527 88.04  92.18 85.79  88.67  70.42
Satellite w/o road (0.5) 8439  91.85 9279  90.88  73.87 88.35 90.68 8432 8741 65.93
Variant A 8292 9260 9241 90.07  69.29  88.27 88.13 83.47 86.74  62.94
< Variant B 8290 9250  92.03 89.92 6890  87.14 87.97 82.77 86.31 62.78
9 Variant C 82.05 91.99 9226 89.51 67.90  87.13 87.53 8239 8592 6121
) Variant D 85.87  94.73 95.16 9257 7460  90.22  92.05 86.76  89.63 68.95
a Variant E 83.55 92.25 92.75 90.15  71.28 87.91 89.20  84.06 87.07  64.68
& View-2/12 70.47 88.39  87.11 8347  43.01 80.31 76.87  70.08 76.71 35.65
View-4/12 7752 91.18 90.74 87.57  56.05 84.97 84.54 7759 8253  48.83
View-8/12 84.23 92.11 9394 9034 7120 87.12  90.23 84.74  87.63 64.72
Location-1/4 75.14  89.77 88.84 85.78 4939  79.06 80.04  71.95 78.80  41.83
Location-2/4 81.52 92,69 9227 89.72 6442  86.62 88.02 8149 8556  57.81
Location-3/4 85.17  93.85 9392 91.64 7270 87.80  91.55 84.94 8826  66.53
AddressVLM 86.48 9372 9450  92.06 76.09 8892 9275 86.66  89.33 70.45

as the requirement in the prompt. However, the outputs of other LVLMs are more diverse and
uncontrollable. Therefore, for each sample, we conduct multiple inferences (5-10 times) for each
input, and display several most frequently responses.

F DETAILED RESULTS OF ABLATION STUDIES

We provide the detailed results of the ablation studies under all the metrics in Tab 9.

G MORE QUALITATIVE RESULTS

Case Study. We demonstrate more examples where AddressVLM accurately locates while the base-
line model without cross-view alignment tuning makes errors in localization, as shown in Fig. 11.
We also provide some failure cases that both model can not localize correctly in Fig. 11. One can
see that these images are of low visual cues, which are difficult to recognize even for human experts.

More Comparisons with General LVLMs. Fig. 12 demonstrates more qualitative results and
comparisons between various general LVLMs given different types of input prompts and images.
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Reed Street, Crawford-Roberts

w/o Stagel
Foreside Place, Crawford-Roberts
w Stagel

Reed Street, Crawford-Roberts

Rose Street, Crawford-Roberts

e z Bz
w/o Stagel
Colwell Street, Crawford-Roberts
w Stagel

Rose Street, Crawford-Roberts

Sandusky Street, North Shore

w/o Stagel
Isabella Street, North Shore

w Stagel
Sandusky Street, North Shore

Mazeroski Way, North Shore
A

w/o Stagel

West General Robinson Street, North Shore

w Stagel
Mazeroski Way, North Shore

Freyburg Street, South Side Flats

w/o Stagel
Locust Street, Uptown
w Stagel
Freyburg Street, South Side Flats

Reed Street, Crawford-Roberts

AT
w/o Stagel

Colwell Street, Crawford-Roberts

w Stagel

Reed Street, Crawford-Roberts

Arlington Avenue, Mount Washington

w/o Stagel
West Carson Street, South Shore
w Stagel
Arlington Avenue, Mount Washington

River Avenue, North Shore

w/o Stagel
Anderson Street, North Shore
w Stagel

River Avenue, North Shore

(a) Examples where AddressVLM predicts correctly but the Baseline model predicts incorrectly

East General Robinson Street, North Shore

w/o Stagel

Bingham Street, South Side Flats
w Stagel

Tustin Street, Uptown

Penn-Lincoln Parkway, Downtown

w/o Stagel
Boulevard of the Allies, Uptown
w Stagel

Three Rivers Heritage Trail, Uptown

Armstrong Tunnel, Uptown

w/o Stagel
Liberty Tunnel, Mount Washington
w Stagel

Boulevard of the Allies, Uptown

Centre Avenue, Hill District

w/o Stagel
Elmore Street, Hill District

w Stagel
Wylie Avenue, Hill District

o i

Colwell Street, Crawford-Roberts

w/o Stagel
Fifth Avenue, West Oakland

'w Stagel

Fifth Avenue, Crawford-Roberts

Addison Street, Hill District

w/o Stagel

Elmore Street, Hill District

w Stagel

North Canal Street, East Allegheny

Bigelow Boulevard, Strip District

w/o Stagel
Lincoln Highway, Strip District

w Stagel
Lincoln Highway, Strip District

w/o Stagel

Bingham Street, South Side Flats
w Stagel
P.J. McArdle Roadway, South Side Slopes

(b) Failure Cases

Figure 11: More examples where AddressVLM accurately locates while the baseline model makes
errors in localization (a), as well as failure cases (b).
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Vine Street, Crawford

w4 What district is this photo &
taken in? Answer the question
using a single word or phrase.

AddressVL_

What street is this photo taken .
8 on? Answer the question using
a single word or phrase.

/]

Forbes Ave, Downtown
VK

L

@

AddressVLM

Second Ave, Dowgtowny °
Which street and district is the .
m image located? Answer the

question using a single phrase.

ntown

What district is this photo
taken in? Answer the question
using a single word or phrase.

9

AddressVLM

What street is this photo taken .
¥ on? Answer the question using
a single word or phrase.
‘e

AddressVl_

Which street and district is the a

m image located? Answer the
question using a single phrase.

Liberty Bridge, South Side Flats

; _ @1. The image is located in the downtown
area of Pittsburgh, Pennsylvania.
e AddressVLM

Washington Place, Downtown

What district is this photo &
taken in? Answer the question
using a single word or phrase.

£2.
Addlessvl_

u What street is this photo taken -
i

on? Answer the question using
a single word or phrase.

2
AddvessVI-M—

Which street and district is the &

m image located? Answer the

question using a single phrase.

Which street and district is the (]
. image located? Answer the
question using a single phrase.

Qwen2-VL
1. main. [Hallucination]

“-g'.,;_ @ @1. The image is located in the downtown
m area of a city.
y AddressVLM

Qwen2-VL
1. main. [Hallucination]

6 1. The image is located in the downtown
o area of a city.

@1. Hill District of Pittsburgh, Pennsylvania.
Add,mv,_M_ 2. The image is located in a residential

GPT-d0 Sonnet *
1. | cannot determine the ... [Failed] @ 1. Rust Belt. [Invalid]
2. I'm unable to identify the specific district 2. Appalachian city. [City level]
based solely on the image provided...[Failed] | 3. don't have enough context to... [Failed]
Qwen2-VL LlavA
1. downtown. [Surrounding district] AL Rural. [Invalid]
2. The photo appears to be taken in an 2. Hill district. [Surrounding district]
urban or suburban area with a ... [Invalid] 3. Downtown. [Surrounding district]

Sonnet

1. The street name is not visible in the prov%
image, so | cannot ... [Failed]
2. The street name is not discernible ... [Failed]
LLaVA
1. Fashion [Invalid]
2. Madrid [City level]
3. Main [Hallucination]

GPT-d0
1. Forbes Avenue.

2. Cherry Way [Invalid]

3. Smithfield Street [Hallucination]

Without specific landmarks or signs, it's
difficult to determine the exact street. [Failed]

GPT-40 Sonnet
1. Holland Tunnel, Manhattan. [HaIIucinatio@ 1. This appears to be an Urban district. *
2. W 33rd Street, Hudson Yards. [Hallucination] 2. The image appears to depict an urban street
3. West Side Highway, Hell's Kitchen. [Hallucingliqn]i" a downtown district.
Qwen2-VL o LLavA
1. Woodland ave [Hallucination]
2. Highway 40 [Invalid]
3.1-94 [Invalid]

GPT-40 Sonnet *
@ 1. Financial District [Hallucination]

2. Hennepin Avenue, Downtown

1. Philadelphia. [City level]
2. Downtown.

Qwen2-VL h LLavA
@1. downtown. Al. Financial [Invalid]

2. Without specific landmarks or more 2. Downtown

context, it's difficult to pinpoint ... [Failed]

GPT-80 Sonnet
1.1am unable to determine the street from@ 1. City street [Hal.luc.ination] *
this image alone. [Failed] 2. Downtown. [District level]

2. | cannot determine the street ... [Failed] 3.The image does not provide enough ... [Failed.
LaVA

1. Fifth avenue
2. Cross street [Hallucination]
3. Main [Hallucination]

2. The photo is taken on Wall Street.

GPT-40
1. Fort Pitt Boulevard, Downtown Pittsburg|

2. Grant Street, Downtown Pittsburgh.

Sonnet
1. The image does not provide enough *
contextual information ... [Failed]

T Uava
1. Downtown
2. Chicago [City level]
2. Without specific landmarks ... [Failed] 3. 13th street [Hallucination]

GPT-80 Sonnet %
1. Downtown

2. Based on the image, this appears to be taken
ina downtown ...

T lavA
Al. Downtown.

Qwen2-VL

1. Downtown.
2. Strip District. [Hallucination]

Qwen2-VL

1. downtown.

2. This photo appears to be taken in a city
district, likely a downtown ...

Sonnet
1. The street name is not visible in the *
provided image. [Failed]

GPT-40
1. Sorry, | can't determine the street based @
this image. [Failed]
2. | cannot determine the street ... [Failed] K
Qwen2-VL
1. main. [Hallucination]
2. The photo is taken on a street in an urban
area, but the specific street name is ... [Failed]

o LlavA
1. Main. [Hallucination]
2. This photo is taken on a residential street.
[Hallucination]
GPT-d0 Sonnet
1. 9th Street, Cultural District. [Hallucinatio L. Urban street in a downtown area. *
2. The image appears to be located on a
downtown city street.
T ava
1. Chicago [City level]
2. Murray st and west 14th st [Hallucination]
3. Downtown

Qwen2-VL

2. Downtown area of Pittsburgh.
Sonnet

1. Unidentified residential street. [Failed]
2. residential street in an unnamed district.
[Failed]

o LlaVA
1. Santa fe, downtown [Hallucination]
2. Rocky hill [Invalid]
3. 1st street [Hallucination]

GPT-40
1.1I'm unable to determine the specific stre@
and district based on the image alone. [Failed]
2. | cannot determine the specific ... [Failed]
Qwen2-VL

district, but the specific street ... [Failed]

Figure 12: More qualitative examples of comparison with the general LVLMs.
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