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ABSTRACT

Autoregressive language models, despite their impressive capabilities, struggle
with complex reasoning and long-term planning tasks. We introduce discrete
diffusion models as a novel solution to these challenges. Through the lens of
subgoal imbalance, we demonstrate how diffusion models effectively learn diffi-
cult subgoals that elude autoregressive approaches. We propose Multi-granularity
Diffusion Modeling (MDM), which prioritizes subgoals based on difficulty dur-
ing learning. On complex tasks like Countdown, Sudoku, and Boolean Satisfia-
bility Problems, MDM significantly outperforms autoregressive models without
using search techniques. For instance, MDM achieves 91.5% and 100% accu-
racy on Countdown and Sudoku, respectively, compared to 45.8% and 20.7% for
autoregressive models. Our work highlights the potential of diffusion-based ap-
proaches in advancing AI capabilities for sophisticated language understanding
and problem-solving tasks.

1 INTRODUCTION

In recent years, autoregressive language models (LMs; Bengio et al. 2000) have dominated the
landscape of natural language processing and artificial intelligence. Empowered by scaling laws
(Kaplan et al., 2020), these models have demonstrated impressive performance across various ap-
plications (OpenAI, 2022; Achiam et al., 2023; Anthropic, 2023; Team et al., 2023, inter alia).
However, this apparent success masks significant limitations that are becoming increasingly evi-
dent. Autoregressive models inherently struggle with tasks requiring complex reasoning, long-term
planning, and maintaining global coherence (Bubeck et al., 2023; Valmeekam et al., 2023; 2024;
Dziri et al., 2024; Kambhampati et al., 2024). These shortcomings represent substantial challenges
in developing AI systems capable of robust problem-solving and adaptable cognition (Wu et al.,
2022; Zhao et al., 2023; Trinh et al., 2024; Yao et al., 2023; Shinn et al., 2024, inter alia). While
autoregressive approaches have driven considerable progress, their limitations suggest that they may
not be the optimal solution for all aspects of machine intelligence. As the field evolves, it becomes
increasingly important to explore alternative paradigms that can address these inherent drawbacks
and potentially offer new avenues for advancement in AI capabilities.

In response to these limitations, recent research has focused on addressing the inherent constraints
of autoregressive models. Various strategies have been explored, including the integration of search
algorithms at inference (Yao et al., 2024; Besta et al., 2024) and the incorporation of backtracking
supervision during training (Lehnert et al., 2024; Gandhi et al., 2024). However, these approaches
are not without their own drawbacks: the former often incurs significant computational costs, while
the latter frequently results in verbose inputs and suboptimal performance.

To address this challenge, we argue for a fundamentally different modeling approach: discrete diffu-
sion models. While most contemporary language models are autoregressive, diffusion-based models
have become predominant in image (Dhariwal & Nichol, 2021; Rombach et al., 2022; Peebles &
Xie, 2023) and video domains (Ho et al., 2022; Wu et al., 2023a; Brooks et al., 2024). Diffusion
models are also gaining traction in various other applications, such as protein desiging (Xu et al.,
2022; Hoogeboom et al., 2022b; Corso et al., 2023) and planning in reinforcement learning (Jan-
ner et al., 2022; Ajay et al., 2022; Chi et al., 2023). In this work, we reveal that discrete diffusion
models demonstrate significantly superior performance compared to the autoregressive counterparts,
particularly in tasks requiring complex planning and reasoning.
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To substantiate this argument, we first examine the problem through the lens of subgoal imbalance
(§3.1). We present both theoretical and empirical evidence via a synthetic planning task (Figure 1)
to illustrate why autoregressive models struggle with these types of problems, often achieving near-
random performance. In contrast, we demonstrate how diffusion models effectively learn the sub-
goals that challenge autoregressive models (§3.2). The key insight lies in the training objective of
diffusion models, where difficult subgoals are decomposed into a diverse range of interrelated views
within a multi-view learning framework (Xu et al., 2013). Each of these views is more manageable,
resulting in an overall easier and more effective learning process.

Building upon these insights, we propose a natural extension to current discrete diffusion models,
which we term multi-granularity diffusion modeling (MDM; §3.3). This approach prioritizes differ-
ent subgoals based on their difficulty during the learning process, leading to more effective learning
outcomes and faster convergence.

In our experimental evaluation (§4), we focus on substantially more complex problem-solving tasks,
such as Countdown (Gandhi et al., 2024) and Sudoku (Garns, 1979). These tasks demand extensive
planning over a large number of combinations and pose challenges even for commercial Large Lan-
guage Models (e.g., GPT-4 Achiam et al. 2023). Notably, without employing any search techniques,
MDM achieves 91.5% and 100% accuracy on Countdown and Sudoku respectively, while its au-
toregressive counterpart only solves 45.8% and 20.7% of the problems. Additionally, we conduct
experiments on the Boolean Satisfiability Problem (SAT), an NP-complete problem (Cook, 1971)
that represents a wide range of constraint satisfaction problems. Our model exhibits superior per-
formance in solving SAT problems with higher accuracy compared to the autoregressive alternative,
particularly when dealing with an increased number of variables and constraints. Through this sys-
tematic exploration, we aim to demonstrate the potential advantages of diffusion-based approaches
in addressing sophisticated language understanding and generation challenges. All associated code
is available at Anonymous.

2 BACKGROUND

2.1 AUTO-REGRESSIVE MODELING

Let x := (x1, . . . ,xN ) denote a sequence drawn from a data distribution q(x). For decades, it has
been common to factorize the joint probabilities of a sequence of tokens as the product of conditional
probabilities (Jelinek, 1980; Bengio et al., 2000):

pθ(x) = pθ(x1)

N∏
n=2

pθ(xn | x1:n−1), (1)

where θ parameterizes the model distribution and x1:n−1 := x1, . . . ,xn−1. In order to optimize the
generative model pθ(x) to fit the data distribution q(x), we optimize the negative log-likelihood:

LAR = −Eq(x) log pθ(x) = −Eq(x)

N∑
n=1

log pθ(xn | x1:n−1). (2)

2.2 DISCRETE DIFFUSION MODELING

Discrete diffusion models (Sohl-Dickstein et al., 2015; Hoogeboom et al., 2021; Austin et al., 2021)
are a class of latent variable models characterized by a forward noising process and a learned reverse
denoising process. The forward process q(x1:T |x0) =

∏T
t=1 q(xt|xt−1) corrupts the original data

x0 := x into a sequence of increasingly noisy latent variables x1:T := x1, . . . ,xT . The backward
process learns to gradually denoise the latent variables to the data distribution given by:

pθ(x) =
∑

x1:T∼q

p(xT )

T∏
t=1

pθ(xt−1|xt). (3)
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Figure 1: The planning task.
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Figure 2: (Left) Accuracy of different method given 50k training
data. (Right) Minimum data size required to solve (i.e., accuracy
above 90%) subgoal at each planning distance.

Due to the intractable marginalization, we typically optimize a variational upper bound on the neg-
ative log-likelihood:

LDM = Eq(x0)

[
DKL[q(xT |x0)||p(xT )]︸ ︷︷ ︸

LT

+

T∑
t=2

Eq(xt|x0)

[
DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)]

]︸ ︷︷ ︸
Lt−1

−Eq(x1|x0)[log pθ(x0|x1)]︸ ︷︷ ︸
L0

]
, (4)

where LT is a constant when one uses a fixed prior p(xT ). By defining both the forward and
backward distribution as categorical distribution, e.g., q(xt|xt−1) = Cat(xt;p = Q⊤

t xt−1) where
Qt is a pre-defined K × K transition matrix and K is the size of categories, and pθ(xt−1|xt) =
q(xt−1|xt, f(xt;θ)), the forward process posterior q(xt−1|xt,x0) and each KL term can be calcu-
lated analytically (Hoogeboom et al., 2021; Austin et al., 2021).

3 SUBGOAL IMBALANCE AND MULTI-GRANULARITY DIFFUSION MODELS

In this section, we employ a motivation example (§3.1) to elucidate the challenges faced by autore-
gressive models in specific scenarios. Through this analysis, we introduce the concept of subgoal
imbalance—wherein some subgoals are inherently more difficult than others—which offers insights
into these difficulties. We then extend our discussion in §3.2 to examine how diffusion models
can more effectively address and learn these hard subgoals, effectively overcoming the limitations
observed in autoregressive approaches. We finally propose Multi-granularity Diffusion Modeling
(MDM; §3.3) as a natural extension of discrete diffusion models to better address these challenges
and improve performance on complex tasks requiring planning and reasoning.

3.1 SUBGOAL IMBALANCE IN AUTOREGRESSIVE AND DIFFUSION MODELING

We designed a simple planning task to serve as our running example. Consider the example in
Figure 1, where the input for the task consists of a set of shuffled edges from the graph shown below.
At the end of the input sequence, the start and goal nodes are specified to indicate the path the model
needs to find. The objective of this task is to identify the correct path in the graph and output its
constituent edges. The complexity of this problem arises from distracting factors (highlighted in
orange) that potentially mislead the path selection. For instance, at node 7, with the goal being node
9, the model must plan over a distance of 3 nodes to determine that the correct next choice should be
node 5 rather than 0. We define this span as the Planning Distance (PD), a parameter adjustable in
our synthetic task data. Intuitively, as the PD increases, the model faces greater difficulty in learning
to determine the correct subsequent node. We formalize this intuition as subgoal imbalance.

Proposition 1 (Subgoal imbalance due to the unknown data distribution q(x)) Given the true
data distribution q(x) is usually unknown, the difficulty of learning each subgoal xn can differ
significantly based on how we parametrize the model distribution, and some subgoals may require
substantially more data to learn or may even be infeasible to learn.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Subgoal imbalance in autoregressive modeling. The autoregressive modeling parametrizes the
model distribution pθ(x) into pθ(x1)

∏N
n=2 pθ(xn | x1:n−1). Given the true data distribution q(x)

is unknown, the generation of individual tokens may not inherently follow an autoregressive pattern
(i.e., xn ̸∼ q(xn | x1:n−1)). Consequently, the difficulty of learning these subgoals can differ
significantly. Given only the left context, some subgoals may require substantially more data to
learn or may even be infeasible to learn.

Setup. We synthesize the data with only one distracting path. We randomize node numbers in
[0, 10] and the intersection positions in [0, 5]. We further designed this task to be symmetric, en-
suring that simply training with reversed output, as suggested by Bachmann & Nagarajan (2024),
cannot solve subgoals with all PDs. For comparison, we include Auto-regressive (AR), reverse
AR (Bachmann & Nagarajan, 2024), and teacherless training (Monea et al., 2023; Bachmann &
Nagarajan, 2024), which can be seen as a lookahead method that produce all target tokens from the
source input, and our proposed diffusion model (detailed in §3.2). For all the models, we keep the
model architecture fixed as the same 3-layer Transformer with approximately 6M parameters. More
details can be found in Appendix §C.

Discussion. We examine the performance of all the models in two scenarios. In the first scenario,
we generate a fixed number of 50k instances with mixed planning distance. We plot the accuracy on
the held-out evaluation set for each model in the left figure of Figure 2. Our findings indicate that
autoregressive models (AR and Reverse AR) are only effective in solving cases where the PD equals
0 or 1 (or equivalently, 5 and 4 in the reverse setting). Due to the aforementioned subgoal imbalance
phenomenon, when PD is less than 2, the task barely involves any planning, allowing models to sim-
ply copy from the input with ease. However, for larger PDs, AR models barely outperform random
guessing. Teacherless training fails to adequately fit the training data, resulting in the production of
illegal paths. In contrast, our diffusion model achieves perfect accuracy across all PD values.

In the second scenario, we investigate whether the challenging subgoals can be naturally resolved
through data or model scaling, akin to the success observed in large language models (Kaplan et al.,
2020; Wei et al., 2022a). To investigate this question, we gradually increase the size of the dataset
for each model with different PDs and plot the minimum data size required to solve the subgoal
in the right figure of Figure 2. We find that the autoregressive models (AR and Reverse AR) can
learn the easy cases of PD equal to 0 and 1 (or equivalently, 5 and 4 in the reverse setting) with
only 10k data points. However, exponentially larger amounts of data are required to address in-
creasingly challenging subgoals. Both teacherless training and diffusion models exhibit a similar
U-shaped curve in their performance. This similarity can be attributed to the fact that teacherless
training can be conceptualized as a special case of diffusion without an iterative noising and denois-
ing process. In these models, solving edge PDs necessitates slightly more data. We hypothesize that
this phenomenon occurs because the distance to other positions is shorter from the middle position
(i.e., higher closeness centrality), thus providing the middle position with more nearby tokens to
aid in prediction. Overall, autoregressive models require significantly more data to address all PDs
compared to diffusion models, highlighting their relative data inefficiency.

In addition to our previous experiments, we conducted a series of tests to examine the effect of
increasing the parameter count in autoregressive models while maintaining a fixed dataset size of
50,000 instances. Our findings reveal that scaling the original 6 million parameter model to 85
million, 303 million, and 1.5 billion parameters fails to resolve all PDs. Only upon fine-tuning a
substantially larger model, specifically the LLaMA 7B model (Touvron et al., 2023), did we observe
successful resolution of all PD subgoals.

3.2 EFFECTIVE HARD SUBGOAL LEARNING IN DIFFUSION MODELING

These experiments collectively indicate that diffusion models are significantly more effective in
learning challenging subgoals arising from subgoal imbalance. To elucidate why diffusion models
exhibit this superior capability, we first establish a connection between autoregressive (AR) models
and diffusion models by reformulating Equation (4). Instead of evaluating the KL divergence be-
tween two complicated categoricals (Hoogeboom et al., 2021), we consider discrete diffusion with
absorbing state and simplify it as the weighted cross-entropy losses (Austin et al., 2021; Zheng et al.,
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2023; Shi et al., 2024; Sahoo et al., 2024):

DKL[q(xt−1|xt,x0)||pθ(xt−1|xt) = −w(t)

N∑
n=1

1xt,n ̸=x0,nx
⊤
0,n log f(xt;θ)n, (5)

where w(t) = αt−1−αt

1−αt
∈ (0, 1] is a time-dependent reweighting term which places higher weight

when t approaching 0. We then rewrite Equation (4) as:

LDM = Eq(x0)

N∑
n=1

T∑
t=1

w(t)Eq(xt|x0)u(x0,xt, n;θ)︸ ︷︷ ︸
− log pDM(xn|x ̸=n)

, (6)

where u(x0,xt, n;θ) := −1xt,n ̸=x0,n
x⊤
0,n log f(xt;θ)n is the cross entropy loss on token n.

1 2 3 4 5 6 7 8 9 10
Timestep

10−4

10−2

100

L
o

ss

− log pAR(xn|x1:n−1)

− log pDM(xn|x 6=n)

− log pDM(xn|x1:n−1)

Figure 3: Loss for a specific hard
subgoal, i.e., PD=3, in Diffusion
and AR modeling. We also show
the unweighted loss u(x0,xt, n;θ)
at different timestep t and context
xt in diffusion modeling.

We can now systematically compare the losses of au-
toregressive (AR) and diffusion models (DM), specifically
− log pAR(xn | x1:n−1) and − log pDM(xn | x̸=n), as ex-
pressed in Equations (2) and (6), respectively. In Figure 3, we
examine a specific hard subgoal with Planning Distance (PD)
equals 3 in both model types. The loss levels of AR and diffu-
sion models are depicted using blue and red lines, respectively.
The overall loss − log pDM(xn | x ̸=n) in the diffusion model
remains relatively low compared to its autoregressive counter-
part − log pAR(xn | x1:n−1), corroborating the superior per-
formance of the diffusion model on these challenging subgoals
in our experiments.

Further analysis of the unweighted loss u(x0,xt, n;θ) in the
diffusion model, based on 1,000 samples of xt ∼ q(xt|x0),
reveals a clear trend: as the number of timesteps increases,
resulting in more noise in xt, objectives in smaller timesteps
(i.e., recovery from less noisy data) become significantly eas-
ier to learn. From a multi-view learning perspective (Xu et al., 2013), each xt can be interpreted
as a distinct view of x0, where each view provides different information about x0. In the diffusion
process, by exploring the consistency and complementary properties of different views offered by
a diverse range of interrelated objectives u(x0,xt, n;θ), our findings suggest that objectives chal-
lenging to learn in AR models become more effective, promising, and exhibit better generalization
in diffusion models.

This phenomenon is particularly evident when examining scenarios where mask noise is applied to
positions after the hard token, i.e., xt = x1:n−1, where the diffusion model learns the hard subgoal
similarly to AR models. We plot this loss as − log pDM(xn | x1:n−1) in the figure. Unlike in the AR
model, where this learning is consistently difficult, in diffusion models, this challenging subgoal is
addressed at a much more manageable level during the learning process.

3.3 MULTI-GRANULARITY DIFFUSION MODELING

These observations provide valuable insights, i.e., diffusion modeling builds on a diverse range of
interrelated views from the data x0 to handle a challenging subgoal. To handle multiple challeng-
ing subgoals in real data, we should prioritize different subgoals based on their difficulty during
the learning process to achieve more effective learning outcomes and faster convergence, and this
naturally translates to prioritizing difficult views as the learning of a subgoal depends on learning
interrelated views related to it. Building on this, we propose the multi-granularity diffusion model
as a natural extension of the discrete diffusion model.

In practice, to optimize Equation (6), we typically employ Monte Carlo sampling, which results in:

LDM =

N∑
n=1

T∑
t=1

w(t)u(x0,xt, n;θ). (7)
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For a sequence of length N , the probability of sampling the same xt in AR is 1. However, in
diffusion, this probability reduces to 1/C

t(N−1)/T
N−1 due to the randomness in sampling xt, potentially

reducing the training efficiency of diffusion models. We note that Equation (7) employs a sequence-
level reweighting term w(t) to indicate the importance of xt. However, individual tokens within
the sequence, given their imbalanced difficulties, are not properly reweighted. To address this, we
propose multi-granularity diffusion modeling (MDM), which introduces an additional token-level
reweighting mechanism to enhance training efficiency:

LMDM =

N∑
n=1

T∑
t=1

w(t)v(xt,n)u(x0,xt, n;θ), (8)

where v(xt,n) = α(1 − exp(−u(·)))β is the adaptive token-level reweighting term. Setting β > 0
reduces the relative loss for easy tokens while emphasizing harder tokens, and α is used to control
the relative reweighting magnitude. For inference, we employ an easy-first TopK decoding strat-
egy, which has demonstrated superior performance compared to the random decoding method used
by Austin et al. (2021). This finding aligns with similar observations documented in prior stud-
ies (Savinov et al., 2021; Zheng et al., 2023). We provide a detailed derivation and algorithm of the
training and inference process in Appendix §A and §B, respectively.

4 EXPERIMENTS

In Section §3.1 we show our model works well on a straightforward planning task with only one
hard subgoal. However, it is important to note that real-world scenarios often involve instances with
multiple challenging subgoals. In this section, we aim to assess the performance of our model in
tackling three considerably more complex problem-solving tasks that necessitate deliberate plan-
ning. Detailed experimental setup can be found in Appendix §C.

4.1 COUNTDOWN

Countdown (Countdown, 2024) is a mathematical reasoning challenge and is a generalized version
of the game of 24, which even advanced models such as GPT-4 struggle with (Yao et al., 2024).
The goal of Countdown is to use the given numbers and arithmetic operations (+ − ∗/) to obtain a
target number. For example, given 4 numbers “97,38,3,17” and a target number “14”, a step-by-step
solution is “97-38=59,59-17=42,42/3=14”.

Table 1: Results on the Countdown (CD) task with
increasing complexity.

Params CD 3 CD 4 CD 5
Autoregressive

GPT-2 Scratch
6M 94.1 31.9 4.3

85M 95.9 45.8 5.1
303M 96.4 41.3 4.5

Stream-of-Search 250M - 54.2 -

LLaMA 7B 95.7 41.1 6.7
13B 96.5 51.1 7.4

Diffusion
VDM 85M 99.1 73.4 16.3
D3PM 85M 99.4 83.1 27.6
RDM 85M 99.5 87.0 45.8

MDM (Ours)
6M 98.1 52.0 27.0

85M 99.5 91.5 46.6
303M 99.9 88.3 39.0

Setup. We follow Gandhi et al. (2024) to
generate 500k problems with target numbers
ranging from 10 to 100 and randomly hold
out 10% of the targets for ‘out-of-distribution’
evaluation. We consider three subtasks with
increasing complexity by varying the number
of input digits in {3,4,5}. Given that search-
augmented prompting approaches (Yao et al.,
2024) have recently been employed to address
the limitations of AR, we also compare with
such approaches by training on Countdown 4
and evaluating on the same game of 24 test set
as Yao et al. (2024).

Baselines. Our primary comparison involves
autoregressive models trained from scratch,
employing the GPT-2 architecture (Radford
et al., 2019) with parameter sizes ranging from 6M, 85M, and 303M (denoted as GPT-2 Scratch).
We also include larger pre-trained AR models LLaMA (Touvron et al., 2023) with sizes 7B and
13B. These models are fine-tuned using the same dataset. In addition, we compare with Stream-of-
Search (Gandhi et al., 2024), which augments the dataset with search trajectory such that the AR
model can be taught to search. Furthermore, we compare with several existing diffusion models,

6
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both continuous models VDM (Kingma et al., 2021) and discrete models D3PM Austin et al. (2021)
and RDM (Zheng et al., 2023). By default, we use the absorbing noise for discrete diffusion as
it significantly outperforms the multinomial one (Austin et al., 2021; Zheng et al., 2023). Finally,
we consider in-context learning (Brown et al., 2020; Wu et al., 2023c; Ye et al., 2023a) based on
GPT-4, including vanilla input-output (IO), chain-of-thought (CoT; Wei et al. 2022b), CoT with
Self-consistency (CoT-SC; Wang et al. 2023) and Tree-of-thought (ToT; Yao et al. 2024). We use 5
in-context examples following Yao et al. 2024.

Results on Countdown. As shown in Table 1, diffusion-based approaches demonstrate superior
performance across all three Countdown tasks compared to autoregressive models, especially as the
complexity of the tasks increases. We have several key findings based on the result. Firstly, the 6M
diffusion model outperforms both the 303M GPT-2 model trained from scratch and the pretrained
13B LLaMA model, indicating that the modeling approach sometimes outweighs the sheer number
of parameters. Secondly, while training with search trajectory supervision (Stream-of-search) does
provide some benefits, its effectiveness is limited. Importantly, training the entire search trajectory
as a sequence poses additional challenges due to its long length, such as in the case of Countdown
5 where the search trajectories can span 60,000 tokens. Lastly, our model surpasses all previous
diffusion models, demonstrating the efficacy of the multigranularity loss.

Table 2: Accuracy and token cost
on game of 24.

Acc. # Token
Prompting
GPT-4 IO 7.3 x28
GPT-4 CoT 4.0 x61
GPT-4 CoT-SC 9.0 x241
GPT-4 ToT 74.0 x186
Supervised training
GPT-2 Scratch 18.8 x1
MDM 76.0 x1

Results on Game of 24. As shown in Table 2, the performance
of the GPT-4 with IO, CoT, and CoT-SC prompting methods
from Yao et al. (2024) is unsatisfactory for the given task, with
only accuracy below 10%. The introduction of ToT, which in-
corporates a search algorithm designed by human experts into
the decoding process, significantly enhances the performance
of GPT-4. This integration allows the AR model to backtrack
as needed, resulting in notable improvements. However, this
paradigm requires the assessment of intermediate steps using
LLM, resulting in considerable computational costs due to the
need for multiple LLM calls. We list the token cost in Table 2
with more details in Appendix D.1. ToT consumes 186 times
more tokens than MDM, showcasing the ‘internal’ search capability by promoting global consis-
tency in diffusion modeling. In summary, our model, despite having a parameter size of only 85M,
significantly outperforms both the AR task-specific model of the same size (GPT-2 Scratch) in terms
of performance and the larger general pre-trained model (GPT-4) in computation cost, indicating it
is challenging for model scaling and decoding strategies to substitute the advantages of modeling
paradigm.

4.2 SUDOKU
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Figure 4: (Left) Accuracy on Sudoku. (Right) Accuracy on
boolean satisfiability problem with increasing difficulty.

Sudoku is a classical logic-
based number placement puzzle
that has gained popularity due
to its rigorous intellectual de-
mands. The goal of Sudoku is
to meticulously fill a 9 × 9 grid
with numerical digits, ensuring
that every column, row, and 3 ×
3 subgrid contains all the num-
bers from 1 to 9.

Setup. We collect one million solved games from Park (2016) and use the first 100k as our training
set and the subsequent 1k as the testing set. We employ the digit 0 to represent the vacant position
that needs to be filled. We then transform the 9 × 9 grid into a sequence of 81 digits, which serves
as the model input. To illustrate, an example input appears as “080050060...603100007” (omitted
for brevity), while the corresponding output is represented as “789251364...653184297”. During
tokenization, we treat each digit as a separate token.
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Random TopK
No reweighting 82.1 87.3
Original sequence-reweighting 83.1 88.5
+ token-reweighting (α=0.25, β=1) 84.9 90.4
+ token-reweighting (α=1, β=1) 82.4 89.3
+ token-reweighting (α=0.25, β=2) 82.4 87.9
Linear sequence-reweighting 79.6 87.0
+ token-reweighting (α=0.25, β=1) 83.2 88.0
+ token-reweighting (α=1, β=1) 86.7 90.4
+ token-reweighting (α=0.25, β=2) 85.6 91.5

Table 3: Ablation on training reweighting strategies
and inference decoding methods.
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Figure 5: Evaluation accuracy
throughout the training process
for AR and MDM with different
reweighting strategies.

Result. We show the results in the left figure of Figure 4. As the size of the AR model increases,
the performance remains unsatisfactory. For instance, the LLaMA model achieves a performance of
only 32.9 with 13B parameters. In contrast, our model, which has only 6M parameters, is able to
perfectly solve all the problems, demonstrating the significant advantage brought by the modeling
architecture.

4.3 BOOLEAN SATISFIABILITY PROBLEM

The Boolean satisfiability problem, commonly known as SAT, is a foundational problem in com-
puter science that has been rigorously proven to be NP-complete (Cook, 1971). This challenging
combinatorial problem is attractive as a broad range of search problems from domains such as soft-
ware verification, test pattern generation, planning, scheduling, and combinatorics can all routinely
be solved by reducing to an appropriate SAT problem (Gomes et al., 2008). The goal of SAT is to
determine whether a given Boolean formula represented in conjunctive normal form (CNF) can be
assigned a set of values (0 or 1) to its variables, such that the formula evaluates to true (1). An ex-
ample formula with three variables can be (x1∨¬x2)∧(¬x1∨x2∨x3)∧¬x1 and an corresponding
assignment is x1 = 0, x2 = 0, x3 = 1.

Setup. Given the number of variables n and clauses m, we iteratively sample k = 3 variables
(and their polarities) uniformly at random until m clauses are obtained. To ensure that we get
relatively hard instances of SAT, we take advantage of the well-studied family of random k-SAT
problem (Ding et al., 2015) and set the m to be close to m = 4.258n + 58.26n−2/3 given n, as it
has been observed that SAT solvers are slow to determine the satisfiability of a formula when m is
near the threshold (Crawford & Auton, 1996). We consider increasing numbers of variables from
{5,7,9} and generate 50k training data for n = 5, 7 and 100k for n = 9, as well as additional 1k
testing data for each n.

Result. As shown in the right figure of Figure 4, MDM performs well in solving scenarios with
five variables, while the AR model falls slightly short. As the number of variables increases, both
our model and the AR model experience a certain degree of decrease in accuracy. However, the per-
formance gap between the two models widens as the difficulty of the task increases. This indicates
that our diffusion model exhibits a more pronounced advantage in handling more challenging tasks
than the AR counterpart.

4.4 ANALYSIS

On the Effect of Training and Decoding Strategies. As listed in Table 3, we find that changing
the sequence-reweighting strategies has only led to a slight improvement in performance. However,
when a suitable parameter is selected for token-reweighting, a more significant improvement can be
observed. Additionally, the easy first decoding (TopK) outperforms the random one, which aligns
with previous findings (Ghazvininejad et al., 2019; Zheng et al., 2023). We compare the evaluation
accuracy along the training process in Figure 5. By aligning the AR training steps with the diffu-
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sion process, we can see AR converges rapidly, with the performance tends to plateau afterward.
The utilization of our multi-granularity loss, which incorporates sequence and token reweighting,
demonstrates superior performance, particularly during the middle stages of training. This implies
that the inclusion of such a loss function contributes to enhanced convergence during the training
process.

Eq1 Eq2 Eq3 Ans.Overall
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Figure 6: (a) Accuracy and speed (samples per second)
trade-off by varying the diffusion timesteps on Countdown
4 (left y-axis) and 5 (right y-axis).(b) Ratio of planning (left
y-axis) and calculation (right y-axis) error at each reasoning
step on Countdown 4.

On Decoding Speed. We assess the
trade-off between accuracy and de-
coding speed by comparing the per-
formance of the AR model (GPT-
2 Scratch 85M) and MDM (85M).
The speed metric is determined by
the number of samples processed us-
ing a batch size of 1 on the NVIDIA
GeForce V100 GPU. As shown in
Figure 6(a), MDM can flexibly con-
trol the trade-off between accuracy
and decoding speed by varying the
diffusion timesteps. Notably, by
employing just one diffusion step,
MDM demonstrates a remarkable
10x improvement in speed compared
to AR, while maintaining superior ac-
curacy with 75% and 12.7% com-
pared to 45.8% and 5.1% of AR on Countdown 4 and 5, respectively. We observed that the slope of
countdown 4 is smaller compared to countdown 5 in the trade-off. This suggests that for tasks with
lower complexity, diffusion demonstrates a more noticeable speed advantage by setting a smaller
diffusion step. In addition, it also indicates that sacrificing some efficiency for performance im-
provements becomes particularly evident when dealing with more intricate tasks.

Error Analysis: The Regretful Compromise. To gain a deeper understanding of error patterns
in AR and MDM, we conducted an error analysis on Countdown 4. For instance, given the input
“7,38,3,1” and the target number 14, a correct solution would be “97-38=59,59-17=42,42/3=14”.
We divide the solution into four parts: equation 1, equation 2, equation 3, and answer checking.
First, from a calculation perspective, we assess the error ratio in each equation by comparing the
left-hand side and the right-hand side, regardless of whether the correct number was chosen. As
shown in Figure 6(b), the bar plot demonstrates that the majority of calculation errors for AR are
concentrated in Equation 3. For example, given input “16,4,40,51” and target 87, the prediction of
AR is “51-40=11,16*4=64,11+64=87” while the correct solution is “16/4=4,40+51=91,91-4=87”.
We can observe that in the last equation, the model realizes that it needs to output 87 as the final
result. Therefore, even though the model most likely knows that 11 + 64 actually equals 75 given
the low calculation error in the former equations, it reluctantly outputs 87 due to it being the last
equation. This significantly increases the number of calculation errors in the third equation. We
call this phenomenon ‘The Regretful Compromise’. The reason for this is that the AR model made
incorrect choices of numbers or operations in previous equations. This is demonstrated by examining
the step at which the models fail the task, as depicted in Figure 6(b). It is evident that there is a
notable frequency of planning errors in the first equation for the AR model, where the number of
errors is significantly higher compared to our model. This highlights the limitations of the left-to-
right decoding approach in AR, which adversely affects its planning ability.

5 RELATED WORK

5.1 AUTOREGRESSIVE MODELING

Starting from Bengio et al. (2000) and later Sutskever et al. (2011), the autoregressive modeling
paradigm, where the prediction of a token only depends on the preceding context, is widely adopted
in modeling language, until recently (OpenAI, 2022; Achiam et al., 2023; Anthropic, 2023; Team
et al., 2023; Touvron et al., 2023; Jiang et al., 2023; Bai et al., 2023, inter alia). Theoretically, the
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autoregressive Transformers have limited expressive power, but their capabilities can be expanded
given sufficient chain-of-thought intermediate steps (Wei et al., 2022b; Merrill & Sabharwal, 2023;
Malach, 2023). However, Lin et al. (2021) demonstrates that the expressing of some next-tokens
requires super-polynomial computational resources and is NP-hard to approximate. Numerous ad-
vancements have been made upon the AR paradigm to compensate for modeling deficiencies, such
as reverse training (Lee et al., 2023; Golovneva et al., 2024),fill-in-the-middle training (Bavarian
et al., 2022), future-token prediction (Qi et al., 2020; Gloeckle et al., 2024), lookahead attention (Du
et al., 2023) during the training stage, as well as search-augmented decoding (Lu et al., 2022; Xie
et al., 2023; Yao et al., 2024, inter alia) during inference. In practice, autoregressive next-token pre-
dictors are shown to be ill-suited for planning tasks (Bubeck et al., 2023; Valmeekam et al., 2023;
2024; Dziri et al., 2024; Kambhampati et al., 2024). Besides, Bachmann & Nagarajan (2024); Lin
et al. (2024) find not all tokens are equal and some tokens are hard to learn in the AR pretraining
stage, implying the introduced subgoal imbalance phenomenon also exists in the general text corpus.

5.2 NON-AUTOREGRESSIVE MODELING

The non-autoregressive (NAR) generation method, which produces all target tokens simultaneously
given the source context, is first proposed by (Gu et al., 2017) in the text field for machine transla-
tion, primarily due to the efficiency consideration. While a series of advancements have been made
afterward (Lee et al., 2018; Gu et al., 2019; Ghazvininejad et al., 2019; Qian et al., 2021; Huang
et al., 2022, inter alia), traditional NAR models still tend to underperform AR models in terms of
generation quality (Xiao et al., 2023). Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020), a powerful class of generative models known for their impressive image-generation capabil-
ities (Dhariwal & Nichol, 2021), have recently been applied to the field of text generation (Hooge-
boom et al., 2021; Austin et al., 2021; Li et al., 2022; Campbell et al., 2022; Dieleman et al., 2022;
Chen et al., 2023; Ye et al., 2023b; Lovelace et al., 2024), reinforcement learning (Janner et al., 2022;
Chi et al., 2023) and protein design (Xu et al., 2022; Hoogeboom et al., 2022b; Corso et al., 2023). In
essence, diffusion models perform a multi-step denoising process to progressively convert a random
noise into a data sample, and the denoising procedure can be seen as parameterizing the gradients
of the data distribution (Song & Ermon, 2019), connecting them to score matching (Hyvärinen &
Dayan, 2005) and energy-based models (LeCun et al., 2006). For text, the diffusion model can be
seen as an extension of the traditional iterative NAR models (Gong et al., 2022) and has been shown
to approach or outperform AR models on text perplexity (Han et al., 2023; Lou et al., 2023; Gulra-
jani & Hashimoto, 2024), diversity (Gong et al., 2022; 2023; Zhang et al., 2023) as well as various
seq-to-seq tasks (Wu et al., 2023b; Zheng et al., 2023; Ye et al., 2024). In contrast, we compare
diffusion with AR from a perspective of subgoal imbalance and demonstrates the effectiveness of
diffusion in tasks requiring complex reasoning and planning.

6 CONCLUSION

This paper presents an extensive analysis of the limitations of auto-regressive (AR) language models
when applied to planning tasks that involve deliberate planning, both in controlled settings and real-
world contexts. Based on an advanced understanding, we propose an improved diffusion model,
named MDM, that performs significantly better than AR and previous diffusion models on vari-
ous sophisticated planning tasks. Our findings underscore the necessity to reevaluate the sequence
modeling paradigm for modern large language models, especially in tackling challenging problem-
solving tasks.
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A MORE BACKGROUND AND DERIVATION OF DISCRETE DIFFUSION
MODELS

A.1 BACKGROUND

Discrete diffusion probabilistic models are first introduced in Sohl-Dickstein et al. (2015) for bi-
nary data, and later extended to categorical data in (Hoogeboom et al., 2021). Austin et al. (2021)
provides a general form of discrete diffusion and introduces multiple transition matrices, includ-
ing an absorbing variant that draws close connections to masked language models (Devlin et al.,
2019). Several subsequent works push this line of research further from various aspects, such as
incorporating editing-based operations (Johnson et al., 2022; Reid et al., 2022), casting permuted
language models (Yang et al., 2019) as diffusion models (Hoogeboom et al., 2022a), developing a
continuous-time framework (Campbell et al., 2022), parameterizing the routing mechanism (Zheng
et al., 2023), and investigating score functions for learning the reverse process Sun et al. (2023); Lou
et al. (2023).

A.2 DERIVATION SETUP

We now provide a detailed derivation of the loss in Equation (6). For a clear illustration, we initiate
derivation with a single random variable x0 and ultimately link it with the multi-variable sequence
x0. Suppose x0 ∼ q(x0) is a discrete random variable with K possible categories and represented
as a one-hot vector. The forward process q(x1:T |x0) =

∏T
t=1 q(xt|xt−1) corrupts the original data

x0 into a sequence of increasingly noisy latent variables x1:T := x1, . . . ,xT . The learned backward
process pθ(x0:T ) = p(xT )

∏T
t=1 pθ(xt−1|xt) gradually denoises the latent variables to the data dis-

tribution. In discrete diffusion, both the forward and backward distribution are defined as categorical
distribution, e.g., q(xt|xt−1) = Cat(xt;p = Q⊤

t xt−1) and pθ(xt−1|xt) = q(xt−1|xt, f(xt;θ)),
where Qt is a pre-defined transition matrix of size K ×K (Hoogeboom et al., 2021; Austin et al.,
2021).

A.3 THE MARGINAL AND POSTERIOR

Starting from x0, we obtain the following t-step marginal and posterior at time t− 1:

q(xt|x0) = Cat
(
xt;p = Q

⊤
t x0

)
, with Qt = Q1Q2 . . .Qt

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)
= Cat

(
xt−1;p =

Qtxt ⊙Q
⊤
t−1x0

x⊤
t Q

⊤
t x0

)
, (9)

where q(xt|xt−1,x0) = q(xt|xt−1) due to the Markov property of the forward process. The
KL divergence between q and pθ can be computed by simply summing over all possible values
of each random variable. The cumulative products Qt, which can be computed in closed form or
precomputed for all t depending on the choice Qt, may be prohibitive for large T and number of
categories. Therefore, two commonly used forms of Q are introduced by Hoogeboom et al. (2021)
and Austin et al. (2021), which ensures Qt can still be computed efficiently, allowing the framework
to scale to a larger number of categories.

A.4 TRANSITION MATRIX

Austin et al. (2021) introduced multiple types of the transition matrix Qt, such as uniform (Hooge-
boom et al., 2021), absorbing, discretized Gaussian and token embedding distance. The absorbing
noise for discrete diffusion has been demonstrated to outperform the others (Austin et al., 2021),
where the transition matrix is given by :

[Qt]ij =


1 if i = j = m

1− βt if i = j ̸= m

βt if j = m, i ̸= m

.

The transition matrix can also be written as (1 − βt)I + βt1e
⊤
m, where em is a vector with a one

on the absorbing state m and zeros elsewhere. Since m is an absorbing state, the corruption process
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converges not to a uniform distribution but to the point-mass distribution on m. The transition
matrices Q = Q1Q2 . . .Qt can be computed in closed form. Specifically, we transition to another
token with probability βt and stay the same with probability 1 − βt in each step. After t steps, the
only operative quantity is the probability of not yet having transitioned to another token, given by
αt =

∏t
i=0(1− βi). Therefore, we have Qt = αtI + (1− αt)1e

⊤
m.

A.5 DERIVATION OF ELBO

In order to optimize the generative model pθ(x0) to fit the data distribution q(x0), we typically
minimize a variational upper bound on the negative log-likelihood, defined below:

− log pθ(x0)

= − log

∫
pθ(x0,x1, . . . ,xT )dx1 · · · dxT

= − log

∫
pθ(x0,x1, . . . ,xT )

q(x1, . . . ,xT |x0)
q(x1, . . . ,xT |x0)dx1 · · · dxT

= − logEq(x1,...,xT |x0)

[pθ(x0,x1, . . . ,xT )

q(x1, . . . ,xT |x0)

]
≤ −Eq(x1,...,xT |x0)

[
log

pθ(x0,x1, . . . ,xT )

q(x1, . . . ,xT |x0)

]
= −Eq(x1,...,xT |x0)

[
log

pθ(x0|x1)pθ(xT )
∏T

t=2 pθ(xt−1|xt)

q(xT |x0)
∏T

t=2 q(xt−1|xt,x0)

]
= −Eq(x1,...,xT |x0)

[
log pθ(x0|x1)−

T∑
t=2

log
q(xt−1|xt,x0)

pθ(xt−1|xt)
− log

q(xT |x0)

pθ(xT )

]
= −Eq

[
log pθ(x0|x1)−

T∑
t=2

DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)]−DKL[q(xT |x0)||p(xT )]︸ ︷︷ ︸
LT (const)

]

= −Eq(x1|x0)log pθ(x0|x1)︸ ︷︷ ︸
L0

+

T∑
t=2

Eq(xt|x0)

[
DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)]

]
︸ ︷︷ ︸

Lt−1

+LT (const).

A.6 DERIVATION FOR EQUATION (6)

The categorical distribution q(xt−1|xt,x0) based on Equation (9) is given as:

q(xt−1|xt,x0)

=
Qtxt ⊙Q

⊤
t−1x0

x⊤
t Q

⊤
t x0

=
[(1− βt)xt + βtσxt1]⊙ [αt−1x0 + (1− αt−1)em]

αtx⊤
t x0 + (1− αt)x⊤

t em

=
(1− βt)αt−1xt⊙x0+(1− βt)(1−αt−1)xt⊙em+βtαt−1σxt

1⊙x0+βt(1−αt−1)σxt
1⊙em

αtx⊤
t x0 + (1− αt)x⊤

t em

=
(1− βt)αt−1xt⊙x0 + (1− βt)(1−αt−1)σxt

xt + βtαt−1σxt
x0 + βt(1−αt−1)σxt

em
αtx⊤

t x0 + (1− αt)σxt

,

where σxt
:= em(u = xt) represents the probability of noise drawn from em being equal to xt.

Note xt ⊙ x0 = 0 if xt ̸= x0 otherwise 1. Thus the computation of q(xt−1|xt,x0) breaks down
into two cases:

q(xt−1|xt,x0) =

{
ηtxt + (1− ηt) em, if xt = x0

λtx0 + (1− λt) em(xt), if xt ̸= x0,
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where ηt := 1− βt(1−αt−1)em(u=xt)
αt+(1−αt)em(u=xt)

, λt :=
αt−1−αt

1−αt
, and em(xt) = (1− βt)xt + βtem denotes a

noise distribution that interpolates between xt and em.

Recall the distribution pθ(xt−1|xt) is parameterized by q(xt−1|xt, f(xt;θ)), the KL divergence
between q(xt−1|xt,x0) and pθ(xt−1|xt) becomes 0 when xt = x0. In the case of absorbing
diffusion, xt = em if xt ̸= x0 and em(xt) = em. q(xt−1|xt,x0) has probability λt on index
x0 and 1 − λt on the absorbing state. The model f(xt;θ) has zero-probability on the absorbing
state as it never predicts the mask token. Therefore, pθ(xt−1|xt) also has 1− λt probability on the
absorbing state. Putting them together, we derive the KL divergence as:

DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)] = 1xt ̸=x0 [λt log
λt

f(xt;θ)x0

+ (1− λt) log
1− λt

1− λt
]

= −λt1xt ̸=x0
x⊤
0 log f(xt;θ) + C,

where 1xt ̸=x0 is 1 if xt ̸= x0 otherwise 0, and C is a constant. Moreover, given α0 = 1 by definition
and λ0 = 1, we have:

L(x0) = −Eq(x0)

T∑
t=1

λtEq(xt|x0)1xt ̸=x0
x⊤
0 log f(xt;θ)

for a single random variable, and

L(x0) = −
N∑

n=1

Eq(x0,n)

T∑
t=1

λtEq(xt,n|x0,n)1xt,n ̸=x0,nx
⊤
0,n log f(xt,n;θ)

for x0 that represents a sequence of random variables x0 = (x0,1, . . . ,x0,N ), where the λt also
represents the reweighting term w(t) in Equation (6).

B ALGORITHMS FOR TRAINING AND INFERENCE

The detailed algorithms for training and inference are illustrated in Algorithm 1 and 2, respectively.
For conditional training and inference, we split x into [xsrc;xtgt] and freeze the condition part xsrc

during training and inference.

Algorithm 1 Training MDM

Input: neural network f (·;θ), data distribution pdata(x0,1:N ), a custom sequence reweighting
term w(t), token reweighting parameters α and γ, timesteps T .
Output: model parameters θ.
repeat

Draw x0,1:N ∼ pdata(x0,1:N );
Draw t ∈ Uniform({1, . . . , T});
Draw xt ∼ q(xt|x0);
for n = 1, 2, . . . , N do

Let u(x0,xt, n;θ) := 1xt,n ̸=x0,nx
⊤
0,n log f(xt;θ)n;

Let v(xt,n) = α(1− expu(x0,xt, n;θ))
γ ;

end for
Lθ = −w(t)

∑N
n=1 v(xt,n)u(x0,xt, n;θ);

Minimize Lθ with respect to θ;
until converged
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Algorithm 2 Sampling from MDM

Input: trained network f (·;θ), mask token id m, timesteps T , temperature τ .
Output: generated sample x0.
for n = 1, 2, . . . , N do

Initialize xT,n = m;
end for
for t = T, . . . , 1 do

Define indicator et = TopK (f(xt;θ)) with indices in top-t/T values set to 1 and others 0;
for n = 1, 2, . . . , N do

Draw x̃0,n ∼ Categorical (f(xt;θ)/τ);
xt−1,n = et,nx̃0,n + (1− et,n)m;

end for
end for
Return x0,1:N .

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 TASK DETAILS

Table 4: Dataset statistics. Minimal and CD are short for the minimal planning task and Countdown,
respectively.

Minimal CD3 CD4 CD5 Sudoku 3-SAT 5v 3-SAT 7v 3-SAT 9v
Train Instance 50k 500k 500k 500k 100k 50k 50k 100k
Test Instance 1k 1k 1k 1k 1k 1k 1k 1k
Avg Input Token 47 11 13 16 81 245 269 305
Avg Output Token 21 16 25 35 81 9 13 17
Max Input Token 49 12 15 18 81 245 269 305
Max Output Token 23 22 35 52 81 9 13 17

We show the statistics and input-output examples on each dataset in Table 4 and Table 10, respec-
tively.

Table 5: Model parameters with varying model size.

Tiny Base Medium
Parameters 6M 85M 303M
Num of Layer 3 12 24
Num of Head 12 12 16
Hidden Dim 384 768 1024

C.2 MDM IMPLEMENTATION DETAILS

We conduct all the experiments on NVIDIA V100-32G GPUs, and we use 8 GPUs for training
and sampling. We mainly consider comparing diffusion and AR models trained from scratch with
different model sizes, with arguments for each size listed in Table 5. We use the GPT-2 architecture
for both MDM and AR. We set the learning rate to 1e-3 for the tiny model and 3e-4 for others, and
we set the batch size to 1024 across all the models and tasks. We train MDM for 1200 epochs on
the minimal planning task, 300 epochs on Sudoku, and 600 epochs on other datasets. By default,
we set the diffusion sampling steps to T = 20 for tasks with average output tokens larger than 20,
otherwise T = 10. We use a decoding temperature τ = 0.5 for all tasks. For all the experiments,
we have verified the statistical significance by running them multiple times.
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C.3 BASELINE IMPLEMENTATION DETAILS

We train the AR model until convergence, and the number of training epochs is set to 200 for the
minimal planning task, 300 for SAT, and 40 for others. We keep other parameters, e.g., batch size
and learning rate, the same as training MDM.

For LLaMA (Touvron et al., 2023), we use LoRA fine-tuning (Hu et al., 2021) with lora rank setting
to 16. We use a learning rate of 1e-4, a batch size of 256, and train for a maximum of 20 epochs to
ensure the model has converged. For GPT-4, we borrow the numbers from Yao et al. (2024).

For all the diffusion baselines, we use the same transformer architecture as GPT-2 to control the
variables. We set the training parameters the same as MDM, e.g., number of training epochs to 600,
learning rate to 3e-4, and batch size to 1024. During inference, we set decoding timesteps to 20 for
all diffusion models as we didn’t observe a clear performance improvement when scaling to 1024.

D ADDITIONAL EXPERIMENTS

D.1 TOKEN CONSUMPTION ON GAME OF 24

We show the detailed accuracy and token consumption on the game of 24 in Table 6.

Table 6: Detailed accuracy and token consumption on game of 24.

Accuracy Prompt Tokens Generate Tokens
GPT-4 IO 7.3 1k 18
GPT-4 CoT 4.0 2.2k 67
GPT-4 CoT-SC 9.0 2.2k 6.7k
GPT-4 ToT 74.0 1.4k 2.5k
GPT2-Scratch 18.8 11 26
MDM 76.0 11 26

D.2 AR WITH TOKEN REWEIGHTING

We show the accuracy of AR with the same token reweighting mechanism in Equation 8 on the
minimal planning task in Table 7. We find that applying token reweighting to AR models still
cannot solve subgoals with PD larger than 1 (i.e., with accuracy around 50%), similar to the original
AR.

Table 7: Results of AR with token reweighting.

Planning Distance AR AR with token reweighting
0 100 100
1 100 100
2 51.1 52.1
3 46.9 51.5
4 52.0 50.3
5 49.9 51.9
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D.3 SCALING BOTH DATA AND MODEL SIZE

As an extension of Table 1, we show the accuracy of AR and MDM when both data and model size
are increased in Table 8. We find scaling both data and model size is effective for both AR and
MDM.

Table 8: Results of scaling both model and data size.

AR MDM
85M model, 500k data 45.8 91.5
303M model, 500k data 41.3 88.3
303M model, 1M data 53.3 95.6

D.4 CASE STUDY

Table 9: Example predictions on Countdown 4. For each sub-equation, we mark the planning error
in red and the calculation error in bold. AR exhibits more calculation errors in the last equation due
to incorrect planning in the previous steps.

Numbers Goal Groundtruth AR Prediction MDM Prediction
64,36,52,42 14 64-52=12,36/12=3,42/3=14 64/36=2,52/2=26,42-26=14 64-52=12,36/12=3,42/3=14
9,73,99,75 81 75-73=2,9*2=18,99-18=81 99+75=174,174/9=16,73+16=81 75-73=2,9*2=18,99-18=81
2,52,20,73 57 52-20=32,32/2=16,73-16=57 2*20=40,73-52=21,40+21=57 52-20=32,32/2=16,73-16=57
9,80,4,5 89 9+80=89,5-4=1,89*1=89 9-5=4,4/4=1,80+1=81 9+80=89,5-4=1,89*1=89
65,2,61,22 96 65-61=4,2+22=24,4*24=96 65-61=4,22*4=88,2+88=90 65-61=4,2+22=24,4*24=96
42,47,9,14 81 47-42=5,14-5=9,9*9=81 47-42=5,14*5=70,9+70=89 47-42=5,14*5=70,9+70=81
41,4,48,20 96 41*4=164,48+20=68,164-68=96 48-41=7,20-7=13,4*13=92 4*20=80,41-40=2,48*2=96
21,36,3,42 39 42-36=6,3*6=18,21+18=39 36-21=15,15/3=5,42-5=37 42-21=21,36/3=12,21-12=39

We show more prediction cases of the autoregressive model and our model in Table 9.
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Table 10: Task details by showing example input and output for each dataset.

Task Input Example Output Example
Minimal Planning 2,10/10,4/11,5/2,0/8,2/0,11/6,2/1,9/5,3/4,1-

8,3
8,2/2,0/0,11/11,5/5,3

Countdown 3 15,44,79,50 44-15=29,79-29=50
Countdown 4 86,28,13,31,96 86+28=114,31-13=18,114-

18=96
Countdown 5 50,36,82,44,31,51 44-36=8,82*31=2542,

8+2542=2550,2550/50=51
Sudoku 080050060

460907108
005000029
970006500
000872031
300049000
004025003
010000480
603100007

789251364
462937158
135468729
978316542
546872931
321549876
894725613
217693485
653184297

3-SAT 5v 1,4,5/1,-4,-5/2,-4,5/-1,-2,5/3,4,5/-2,-4,-
5/2,3,-4/-2,-3,5/1,2,4/1,-2,3/-1,3,5/1,-2,-
4/1,4,-5/1,-2,-5/1,2,-5/-1,-3,-4/-1,3,-5/-
1,3,4/2,-4,-5/-1,-4,5/1,-3,-5/1,3,-5/1,-3,-
4/-2,3,5/1,2,5/-1,2,-4/1,-2,4/1,-4,5/3,4,-5/-
1,2,-3/1,-3,5/-2,4,5/1,-2,5/-1,2,5/1,3,-4/-
1,-4,-5/-2,-3,-4/2,4,5/-2,3,-4/-3,4,5/2,-3,5

1,2,3,-4,5

3-SAT 7v -2,-3,-7/2,-4,-7/-3,4,-5/1,2,-3/1,5,-7/-5,-
6,-7/2,-5,6/2,-5,-6/-3,-4,6/-1,2,-4/-3,6,7/-
2,-5,6/2,3,-7/-1,2,3/-2,3,-4/-1,3,7/1,-2,-
7/2,4,6/1,2,-7/2,-3,-6/1,-2,6/-1,5,7/3,-6,-
7/2,6,7/-2,-6,-7/-2,3,-5/3,5,-6/-2,6,-7/-1,-
2,-7/5,-6,-7/2,-6,-7/-2,5,7/-3,-4,5/2,3,-
4/-3,5,-7/3,-4,5/-2,3,-6/1,2,-6/1,4,-
7/1,4,7/2,4,5/1,5,-6/1,3,4/2,3,7/1,-2,4

1,2,3,4,5,6,-7

3-SAT 9v 3,-4,-6/1,3,5/2,-7,8/1,-3,6/2,-3,-8/-4,-5,-
7/1,-6,-9/1,8,-9/2,3,-9/3,-5,9/-3,7,9/-2,-
3,9/-1,-5,-9/-2,-7,-9/-1,3,5/2,-5,-9/4,-7,-
9/-2,3,-8/2,3,7/2,-4,6/-2,3,5/-2,-6,-8/-3,-
4,-8/-2,6,7/-3,4,6/-3,-6,9/2,7,-9/2,4,-5/-
3,-5,8/-4,5,-7/-4,-6,-8/2,-6,9/2,-5,9/1,4,-
9/5,8,9/1,-6,7/-3,6,-9/1,4,-5/4,-6,9/-
1,2,6/1,-2,-5/1,-2,-9/-4,7,9/-1,-4,-7/-
3,5,-8/-1,-3,6/-2,-3,6/-3,6,9/-1,-5,8/1,-5,-
9/1,4,8

1,2,3,4,-5,6,-7,-8,9
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