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Abstract

Accurate prediction of patient-level disease status from single-cell RNA sequencing
(scRNA-seq) data is critical to enabling precision diagnostics. However, study-
specific artifacts induce spurious correlations that limit generalization and inter-
pretability. We studied this problem in the context of Multiple Instance Learning
(MIL), a framework where each patient is modeled as a set of single-cell pro-
files. To improve robustness to domain shifts, we propose an adversarial and
metric-based approach that learns domain-invariant representations while preserv-
ing task-relevant biological variation. We benchmarked our method on a systemic
lupus erythematosus (SLE) dataset with synthetically added spurious features and
evaluated its performance on two real-world scRNA-seq atlases: a cross-tissue
immune dataset and a COVID-19 severity atlas. Across all settings, we observed
consistent improvements in out-of-domain accuracy and more biologically faithful
model attributions. Our findings establish a new standard for robust, interpretable
patient-level prediction under domain shifts using scRNA-seq.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) enables high-resolution profiling of gene expression at the
cellular level and has become a cornerstone in modern biomedical research. While most applications
have focused on cell-level analyses, an emerging and highly promising direction is patient-level
disease classification [1, 2, 3, 4], where each patient is modeled as an unordered set of cells. This
formulation opens the door to building interpretable, generalizable models that could not only
improve diagnostic performance but also offer deeper insights into disease mechanisms. However,
like many tasks involving multi-study data integration, patient-level prediction faces a key challenge:
spurious correlations introduced by batch effects, demographic shifts, or protocol differences. These
correlations can lead models to rely on non-causal features, resulting in poor generalization and
misleading interpretations. To address this, we propose a domain-adversarial strategy to enforce
representation invariance across environments (Figure 1). Our contributions are threefold: (1) we
systematically evaluated the limitations of existing domain generalization methods under controlled
spurious correlations; (2) we introduced a bag-level, Conditional Domain-Adversarial Neural Network
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(CDANN)-based approach enhanced with CenterLoss to promote intra-class compactness [5, 6]; and
(3) we demonstrated improved out-of-domain accuracy and more stable feature attributions on both a
semi-synthetic benchmark and two public datasets.

2 Related Work

2.1 Multiple Instance Learning

Multiple Instance Learning (MIL) is a weakly supervised framework where labels are provided
at the group (or “bag”) level, while individual instances remain unlabeled. Bags are treated as
samples drawn from a latent distribution, and the outcome depends on a weighted combination of
instance-level contributions. This perspective is well-suited to biological settings where subtle but
informative signals are distributed across specific subpopulations of cells, e.g., transcriptional shifts
in key cell types correspond to patient-level disease phenotypes.

In recent years, MIL has seen a shift toward embedding-level approaches, where each instance is first
encoded into a vector and then aggregated into a bag-level representation via a permutation-invariant
function. Foundational work like DeepSets [7] established theoretical guarantees for such models,
proving that any permutation-invariant function can be decomposed as a sum over transformed
instances. Building on this, attention-based pooling methods like AttMIL [8] introduced instance-
level importance weighting, improving both flexibility and interpretability.

Further advances include the Set Transformer [9], which uses attention mechanisms to model higher-
order interactions between instances, and SetNorm [10], which improves training stability and
representation quality for high-dimensional data. These innovations have been widely adopted
in computational biology, where the order of cells in a sample is irrelevant but their contextual
relationships are crucial.

In our work, we adopted this modern embedding-based MIL formulation for patient-level disease
classification from scRNA-seq data. We used DeepSets++ [10] as the core architecture for encoding
sets of single-cell profiles into compact, informative patient-level embeddings.

2.2 Patient-level Phenotype Prediction

Patient-level modeling from scRNA-seq has been explored via MIL architectures such as
CloudPred[1], ProtoCell4P[2], scMILD[3], and SingleDeep[4]. MIL is especially well-suited to this
setting because each patient can be represented as a bag of cells, and the phenotype is determined
by complex patterns across heterogeneous subpopulations rather than individual cells. By treating
cells as instances and patients as bags, MIL enables direct patient-level prediction while also offering
interpretable insights into which cellular subsets drive phenotypic variation. Existing approaches
emphasize set-based aggregation and interpretability, but they are primarily based on empirical risk
minimization (ERM) and typically do not address distributional shifts across cohorts or study sites.

Our work extends these approaches by introducing explicit domain generalization techniques into the
MIL pipeline.

2.3 Invariant Learning

Learning invariant representations is central to domain generalization, especially in biological settings
where technical effects, donor variability, or cohort shifts introduce spurious signals. A variety
of methods have been developed to enforce robustness across environments, including risk-based
regularization, adversarial alignment, and metric-based constraints, which we will now describe in
more detail.

Risk-based Domain Generalization. Several recent methods attempt to improve robustness across
training environments by modifying the training objective itself. These include Empirical Risk
Minimization (ERM), Group Distributionally Robust Optimization (GroupDRO )[11], Invariant Risk
Minimization (IRM)[12], and Risk Extrapolation (REx)[13]. All these methods operate by computing
environment-specific risks and adjusting the optimization objective to promote generalization.
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Figure 1: Illustration of problem setting and application of the proposed CDANN+CenterLoss
approach. Provided a multi-study multi-patient scRNA-seq dataset, we aim to produce a domain-
invariant representation of each patient for robust patient phenotype classification. By training over
multiple studies/environments with plausible spurious features, we incentivize the model to learn
relevant features shared across the environments.

Adversarial Domain Alignment. While classic domain generalization methods such as IRM,
GroupDRO, and REx aim to encourage invariance to spurious correlations, recent analyses suggest
they may fall short in fully removing them from the learned representations. In particular, [14] shows
that these methods often highlight core features no better than ERM, and primarily act by reweighting,
rather than removing spurious signals. This is problematic in high-stakes applications such as
biomedical prediction, where reliance on non-causal features can undermine generalization and
interpretability. To address this, adversarial strategies seek to explicitly erase environment-specific
information from the representation.

Adversarial domain adaptation methods such as Domain-Adversarial Neural Networks (DANN) [15]
introduce a domain classifier d trained to predict the source environment from the learned features
ϕ(x), while the feature encoder ϕ is trained adversarially to fool d via a gradient reversal layer:

min
ϕ,f

max
d

E∑
e=1

E(x,y)∼De
[ℓ(f(ϕ(x)), y)− λ · ℓdomain(d(ϕ(x)), e)] .

This results in domain-invariant embeddings. However, aligning all domains can erase task-relevant
differences (e.g., disease signal in biology).

To remedy this, Conditional DANN (CDANN) [5] conditions the domain classifier on the predicted
label, preserving class semantics during alignment. CDANN is especially useful in settings with
label-dependent domain shifts, such as cell-type composition differences across patients. In our
setting, we apply the conditioning to patient-level predictions.

Metric Learning Losses. Beyond domain alignment, robust feature learning can be enhanced by
metric-based constraints that shape the geometry of the embedding space. Two notable examples are
ArcFace[16] and CenterLoss[6], which encourage angular separation between classes and intra-class
compactness, respectively. While ArcFace introduces an angular margin between class embeddings,
CenterLoss penalizes deviation from class-specific centroids. The full formulations of these objectives
are presented in Section 4.

In this work, we combined CDANN with CenterLoss to jointly promote domain invariance and class
discriminability, aiming for robust, interpretable patient-level prediction in scRNA-seq data.
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3 Methods

3.1 Notation and Model Components

We model each patient indexed by i as a bag of ni cells with cells indexed by j, represented as a
multiset:

Xi = {xij}ni
j=1, xij ∈ Rd,

where ni is the total bag size, with a corresponding disease label yi ∈ [1 . . .K]. Each bag is
sampled from a domain (or environment) e ∈ E , such that the training dataset is partitioned into Ne

domain-specific subsets:
De = {(Xe

i , y
e
i )}

Ne
i=1.

We aim to minimize the test domain risk:

min
f

E(X,y)∼Detest
[ℓ(f(X), y)]

for a learned model f and classification loss ℓ, while having access only to data from a subset of
domains Etrain during training. This setup falls under the domain generalization setting, where the
test environment is unknown a priori.

3.2 CDANN with CenterLoss

Our model combines Conditional Domain-Adversarial Neural Networks (CDANN) with CenterLoss
to promote domain invariance and class compactness. Given a bag Xi, the encoder ϕ produces an
embedding zi = ϕ(Xi). We use the permutation-invariant DeepSets++ [10] model class for ϕ. The
loss comprises three terms:

Classification Loss:
Lcls =

∑
i

ℓ(softmax(g(zi), yi)

where g(·) is a small multi-layer perceptron (MLP) mapping embeddings zi to a logit vector. The
cross-entropy loss ℓ then encourages the predicted class to match the true disease label yi.

Adversarial Domain Loss:

Ldomain =
∑
i

ℓdomain(d(zi, ŷi), ei)

The domain discriminator d is conditioned on the predicted label ŷi, forcing the encoder to remove
environment-specific information.

Center Loss:
Lcenter =

∑
i

∥zi − cyi∥22

This term encourages embeddings zi to cluster around their respective class centers cyi . Each cyi

denotes the learnable vector associated with class yi. In practice, the centers are updated after each
batch by moving them towards the empirical mean of their assigned embeddings with a momentum-
like rule:

cy ← α cy + (1− α) c̃y ∀y ∈ [1 . . .K],

where c̃y is the class centroid over the batch and α ∈ [0, 1] controls the update rate.

The total training objective is:

L = λclass · Lclass + λd · Ldomain + λc · Lcenter.

We explored different scheduling strategies for the coefficients λd and λclass to improve training
stability. In particular, we warm-started the model by initially disabling the adversarial loss (i.e.,
λd = 0), allowing the classifier to first learn task-relevant features. After this warm-up phase, we
gradually increased λd while alternating updates between the classifier and the domain discriminator.
This procedure avoided the common collapse scenario where early adversarial updates overpowered
a still-untrained classifier.
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4 Results

4.1 Setup and Problem Formulation

In real-world biological datasets, domain shifts arise naturally due to demographic variation, technical
effects, or study-specific factors. These shifts may cause spurious correlations between non-causal
features and the prediction target. While a model trained on multiple environments might learn to
ignore such spurious signals if all environments are seen during training, its performance can degrade
dramatically when evaluated on a held-out domain where spurious correlations differ.

To systematically study this challenge, we built two controlled settings where certain environments
contain features that are strongly or weakly correlated with the label, but these associations are
absent or inverted in others. We created four environments as follows: (1), (2), and (3) are used for
training/validation where the spurious feature is either strongly or weakly correlated with the label,
while environment (4) contains an anti-correlated spurious feature and serves as the test domain
(Supp. Figure 1). This setup highlights the failure modes of models that rely too heavily on features
that are not consistent predictors across training environments.

For real datasets, we did not have access to ground-truth spurious features. Instead, we constructed
environments based on prior understanding of which patient-level metadata would be most likely to
exhibit distribution shifts across groups.

4.2 Colored MNIST

Before applying our method to biological data, we first validated our approach on the well-known
Colored MNIST benchmark. In this setting, the digit classification task was corrupted by a spurious
feature—color—which is strongly correlated with the label during training but inverted at test time.

We reproduced this setup by assigning each digit a specific color in the training environments (e.g.,
red for digit 1, green for digit 7) and flipping the color-label association in the test environment. This
simulated a domain shift where the spurious cue becomes misleading. Our goal was to test whether
metric learning losses and adversarial training could prevent reliance on this spurious feature.

Figure 2: Colored MNIST proof-of-concept. (a) Dataset design with color as a spurious cue, flipped at
test time. (b) UMAP of digit embeddings after ERM training: color dominates and induces clustered
confounding. (c) UMAP after CDANN training: embeddings are class-discriminative, with no visible
influence of color.

Standard ERM (Appendix 6.2) achieved high training accuracy but completely failed under spurious
inversion, with test accuracy dropping to 7% (see Supp. Table 1). In contrast, our CDANN +
CenterLoss model restored performance to nearly 100% on the held-out domain. The UMAP
visualizations (Figure 2) confirmed this: while ERM embeddings clustered by color, revealing
dependence on the spurious feature, CDANN successfully removed this confounding, yielding
clusters that aligned purely with digit identity.

This experiment served as a clear validation of our approach: adversarial training combined with
compactness-inducing regularization could effectively suppress spurious correlations and recover
causal decision boundaries.
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4.3 Semi-synthetic SLE benchmark

Next, we created a semi-synthetic variant of a Systemic Lupus Erythematosus (SLE) scRNA-seq
dataset [17] (See Appendix 6.3 for data preprocessing details). We defined environments based
on patient age groups, leveraging the fact that disease severity in lupus is strongly age-dependent.
This correlation introduced a natural spurious feature: any gene expression signal linked to age may
confound disease prediction if not properly disentangled.

In selected source environments, we synthetically introduced a spurious correlation between the
disease label and gene expression (Supp. Figure 1). Specifically, we defined class 1 as the positive
class in our binary classification task (e.g., patients with the disease), and we injected a spurious
signal by artificially modifying the expression level of a designated gene or gene set such that it
became predictive of class 1 only within those environments. In the strong spurious setting, this was
done by upregulating the gene(s) across all cells of class 1 patients in the spurious domains, while
ensuring that this correlation is absent or even reversed in the held-out test domain. In the weak
spurious setting, the same gene(s) were perturbed only in a subset of cells per patient, introducing
within-patient heterogeneity and weakening the strength of the spurious association.

When no spurious correlations were introduced, all models, including ERM, GroupDRO, REx, and
CDANN, achieved high predictive accuracy (Table 1) across all environments. This confirmed that
the core task was learnable and that none of the models struggled when spurious features were
either absent or consistent across domains. We initially included IRM in our experiments; however,
consistent with prior reports, it exhibited severe optimization instabilities and failed to achieve
meaningful accuracy. As a result, we do not report its results in Table 1.

Figure 3: Patient-level embeddings learned by CDANN + Center Loss in the semi-synthetic SLE
spurious setup. Color denotes class label. Patients clustered by class rather than by environment,
indicating successful invariance to spurious domain-specific signals.

In the presence of spurious correlations, particularly in the held-out domain where the spurious
association was flipped, ERM and GroupDRO failed to generalize, with accuracy collapsing to nearly
zero. REx showed some robustness but still performed poorly. In stark contrast, CDANN combined
with CenterLoss remained robust and achieves over 60% accuracy in this challenging setting, without
any tuning or data augmentation (Table 1).

These results highlighted that only CDANN combined with CenterLoss effectively ignored spurious
signals and maintained high accuracy under distribution shifts. To better understand this robustness,
we visualized the learned patient-level embeddings (Figure 3). Despite the presence of environment-
specific confounding, CDANN learned a representation where patients clustered by class rather than
by spurious environment, confirming its ability to learn invariant, task-relevant features.

Importantly, interpretability analysis revealed that once these regularization and adversarial com-
ponents were added, the top contributing genes were more aligned with known SLE biology. For
example, MHC Class II components (HLA-DRB1, DQA1) and FCGR3A were among the most
influential features, consistent with autoimmune signaling pathways in SLE.
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Table 1: Test accuracy results across different datasets and methods. The best performing method is
bolded for each dataset.

Dataset CDANN + CenterLoss ERM GroupDRO REx
Colored MNIST 0.98 0.07 0.26 0.00
Semi-synthetic SLE [17] (w/o spurious eff.) 0.906 0.891 0.891 0.906
Semi-synthetic SLE [17](w/ spurious eff.) 0.634 0.00 0.008 0.052
Cross-tissue Immune Atlas [18] 0.795 0.682 0.773 0.773
COVID-19 Atlas [19] 0.712 0.654 0.552 0.677

At the cell type level, ablation-based and DeepLIFT[20] methods (See Appendix 6.5) highlighted
the role of plasmablasts and pDCs in disease prediction. Removing plasmablasts caused a sharp
drop in disease classification probability, in line with their known role in autoantibody production.
These results were more stable across training regimes compared to gradient-based attributions and
DeepLIFT results.

4.4 Cross-tissue immune Atlas

The cross-tissue immune atlas [18] (see Appendix 6.3 for data preprocessing details) profiles immune
cells from 13 organs across 16 donors. Each bag corresponded to a donor–organ pair, and we defined
the task to be predicting the organ of origin inferred from immune profiles. Donor-specific biases
and organ heterogeneity introduced possible spurious associations. As such, patients were treated as
environments and organs with 13-class labels. We subsampled each set of cells such that each bag
contained ≤2,000 cells. Finally, we evaluated the models on held-out donor-organ pairs.

CDANN shrank the generalization gap from 29% to 17%—an absolute improvement of ∼11% on
unseen donors (See detailed results in Supp. Table 2). Examining the UMAP embedding (Figure 3)
showed that while ERM embeddings still clustered by donor, CDANN collapsed donor variation and
revealed tight, organ-specific clusters.

Figure 4: Gradient-based interpretation and gene expression signature of COVID-19 severity. (a)
UMAP projection of patient samples colored by COVID-19 severity class. (b) The same UMAP
projection colored by the normalized expression of IGKC. The expression IGKC (immunoglobulin κ
constant region) tracks the severity gradient, consistent with plasmablast expansion in severe disease,
suggesting its role as a molecular marker of control-to-moderate-to-severe transition.

4.5 COVID-19 Atlas

The COVID-19 atlas [19] (see Appendix 6.3 for data preprocessing details) aggregates peripheral
blood mononuclear cell (PBMC) profiles from 284 donors across six cities. Patients were grouped by
collection site (city), and each bag represented the set of cells from one patient. Some cities exhibited
site-specific biases (e.g., due to hospital protocols or demographic composition), allowing for implicit
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spurious correlations with the label, disease severity (control, moderate, severe). We held out one city
for evaluation.

ERM again overfitted to site-specific batch effects, losing 27% from training to test (See Supp.
Table 3 for details. CDANN almost halved this regression and recovered 6% absolute accuracy,
going up to 71% (See Table 1). Again, embedding plots illustrated the shift: ERM separated cities,
whereas CDANN formed city-invariant severity gradients.

A DeepLIFT-based attribution (see Supp. Figure 4) identified IGKC (immunoglobulin κ light-chain
constant region) as a key driver of the moderate-to-severe transition. Elevated IGKC reflects the
expansion of plasmablasts/plasma cells. Consistently, IGKC is co-expressed with other immunoglob-
ulin transcripts (e.g., IGHG1, IGLC2, JCHAIN) within plasmablasts/plasma cells [21], aligning with
the surge of these cells in severe COVID-19 [22].

5 Discussion

To the best of our knowledge, this is the first work to introduce domain-adversarial learning for
patient-level phenotype prediction using scRNA-seq data. Our results underscore the importance of
domain generalization for patient-level disease prediction in scRNA-seq. Across both semi-synthetic
and real-world datasets, we showed that standard methods such as ERM and GroupDRO can fail catas-
trophically in the presence of distribution shifts—particularly when spurious correlations invert across
environments. By contrast, the CDANN model, augmented with CenterLoss, consistently improved
generalization to held-out domains while yielding more biologically meaningful attributions.

Robustness under controlled stress tests. Our semi-synthetic SLE benchmark revealed how
easily classical methods can overfit to spurious structure. When artificial correlations were intro-
duced and flipped at test time, both ERM and GroupDRO approached random performance, while
CDANN+CenterLoss achieved over 60% accuracy. Importantly, these gains were obtained without
any tuning to the held-out domain, validating the utility of domain-adversarial and metric-based
regularization for causal feature learning.

Interpretability and biological alignment. In all datasets, feature attributions produced by
CDANN were more consistent with known biology. In the SLE dataset [17], top-ranked genes
included MHC class II components and FCGR3A; in the COVID-19 atlas [19], our model identified
an immunoglobulin gene (IGKC) and CXCR2 as key severity markers, in line with recent literature on
immune activation. These findings suggest that domain-invariant training not only improves accuracy
but also enhances interpretability by steering models toward biologically grounded signals.

Limitations and practical challenges. One key limitation of our evaluation lies in the artificiality
of the semi-synthetic benchmark. While our setup provided a controlled environment to test general-
ization under label–spurious decoupling, the magnitude of spurious inversion may be stronger than
typically observed in practice. Moreover, CDANN remains sensitive to hyperparameters and can
collapse during training, particularly when class imbalance or noise is high. These instabilities pose a
barrier to deployment in applied biomedical workflows.

Future directions. Improving the stability and robustness of domain-invariant learning in weakly
labeled, heterogeneous biological data remains an open challenge. Promising future directions include:
(1) latent environment inference [23] to avoid reliance on explicit domain labels, (2) biologically
informed priors [24] to guide regularization, and (3) hybrid contrastive-adversarial approaches [25]
that combine robustness with representation richness. Additionally, incorporating self-supervised
pretraining or cell-type–aware aggregation may improve model performance in low-data regimes.

In sum, our work provides a principled benchmark and methodological framework for tackling
spurious correlations in patient-level scRNA-seq analysis. It highlights the limitations of conventional
training pipelines and offers a concrete step toward robust and interpretable clinical prediction from
high-dimensional single-cell data.
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6 Appendix

6.1 Additional comments on robust feature learning

Beyond domain alignment, robust feature learning can be enhanced by metric-based constraints that
shape the geometry of the embedding space. Two notable examples are ArcFace [16] and CenterLoss
[6].

ArcFace introduces an angular margin between class centers to promote discriminability:

LArcFace = − log
es·cos(θy+m)

es·cos(θy+m) +
∑

j ̸=y e
s·cos(θj)

,

where θy is the angle between the input and its class center, m is a margin, and s is a scaling factor.
This loss has been successful in face recognition but can be unstable under high class imbalance.

CenterLoss [6] directly penalizes the distance between embeddings and their class centroids:

Lcenter =

N∑
i=1

∥ϕ(xi)− cyi
∥22 ,

with cyi the learned center of class yi. This encourages intra-class compactness while complementing
a standard classification loss. It is particularly useful for biological data where classes (e.g., disease
severity) can be diffuse or overlapping.

6.2 Baselines and Training Objectives

To benchmark robustness, we compare four risk-based domain generalization methods. Empirical
Risk Minimization (ERM) minimizes the average loss across environments,

min
f

1

E

E∑
e=1

Re(f) := min
f

1

E

E∑
e=1

E(X,y)∼De
[ℓ(f(X), y)],

but is vulnerable to spurious correlations. GroupDRO mitigates this by optimizing for the worst-case
environment risk,

min
f

max
e

E(X,y)∼De
[ℓ(f(X), y)],

though it can be overly conservative. Invariant Risk Minimization (IRM) enforces invariance by
penalizing the gradient of the loss with respect to a shared classifier across environments,

min
f

∑
e

E(X,y)∼De
[ℓ(f(X), y)] + λ

∑
e

∥∥∇w|w=1.0E[ℓ(w · f(X), y)]
∥∥2 ,

but suffers from optimization challenges. Risk Extrapolation (REx) promotes robustness by
penalizing the variance of risks across environments:

min
f

1

E

∑
e

Re(ϕ,w) + β · Var(R1, . . . , RE).

All baseline methods consistently failed to generalize under distribution shift on the semi-synthetic
SLE dataset, performing poorly on held-out domains with inverted spurious correlations.

6.3 Data preprocessing

All datasets were obtained from the cellxgene portal under their respective publications [26]. To
enable consistent input across cohorts, we restricted the feature space to the top 100 highly variable
genes (HVGs) using the seurat_v3 flavor with the library UUID as the batch key.

For each dataset, raw count matrices were subset to the selected HVGs and stored as sparse matrices
to reduce the memory footprint. Within each study (environment), counts were normalized on a
per-cell basis using size-factor normalization to a fixed target library size (105 counts per cell),
followed by log1p transformation. This procedure ensured that technical effects such as sequencing
depth were adjusted locally within each cohort.
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6.4 Implementation details

All experiments were conducted using PyTorch with deterministic seeding and GPU acceleration.
Models were trained at the patient (bag) level with a batch size of 32.

Model architecture. Unless otherwise specified, we used a DeepSets++ encoder with instance
hidden dimension 32, followed by a bag-level MLP classifier with hidden size 64, dropout 0.4, and
one hidden layer. Domain-adversarial models (DANN/CDANN) employed a discriminator with one
hidden layer of size 32 and dropout 0.3. The number of output classes depended on the expected
classification task. All linear layers were initialized using Xavier uniform initialization.

Training procedure. Models were trained for 200 epochs using Adam with a cyclical learning
rate schedule (CyclicLR) between 10−4 and 10−3 (base 5 × 10−4), with a linear warm-up phase
(step_size_up = 100). For CDANN, λclass was kept at 1 during the entire training, while λadv was
ramped with a logistic curve over the first 50 epochs with an added constant offset (+0.1) to stabilize
early training. Entropy regularization was included with weight 1.0.

Regularizers. When CenterLoss was used, it was with weight λcenter = 1.0 and exponential update
parameter α = 0.7. For IRM and REx, the variance/gradient penalties were weighted by λpenalty = 0.5
and 1.0, respectively.

Warm-start and alternating strategies. In adversarial setups, we employed a warm-start strategy
where the discriminator was initially unfrozen for 15 epochs, then alternated between frozen/unfrozen
blocks of 35 and 15 epochs, respectively. This prevented the discriminator from overfitting and
allowed the feature extractor to periodically refine representations without adversarial pressure.
Similarly, the class loss weight in CDANN was deliberately delayed to ensure that the shared feature
extractor stabilized before being jointly optimized for class and domain discrimination.

6.5 DeepLIFT analysis

DeepLIFT (Learning Important Features through Propagating Activation Differences) [20] is a feature
attribution method that decomposes the difference between a model’s output and that of a reference
baseline into additive contributions from each input feature. In contrast to gradient-based saliency,
which can be highly local and unstable, DeepLIFT propagates contribution scores through the network
such that the sum of feature attributions matches the output difference relative to the baseline.

In our study, we applied DeepLIFT to two complementary settings: (i) gene-level attribution,
where contributions are assigned to highly variable genes, and (ii) cell-type-level attribution, where
contributions are aggregated across groups of cells belonging to the same type. Importantly, DeepLIFT
provides feature-wise scores, that is, it identifies which input features (genes or aggregated cell-type
profiles) are most influential for model predictions, rather than producing explanations tied to a
specific patient.

The reference baseline was defined as the mean embedding across all cells in the dataset, ensuring
that contributions were interpreted relative to an “average cell.” For each patient bag, DeepLIFT
attributions were computed with respect to the true label, and absolute values of the scores were
averaged across cells. This yielded (a) mean gene-level importance vectors for each class (control and
diseased) as well as globally across patients, and (b) cell-type-level importance scores, obtained by
averaging contributions over all cells of the same type. These aggregated results provided interpretable
insights into which subsets of genes and cell types drive patient-level phenotype predictions.
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6.6 Supplementary Tables

Supplementary Table 1: Test accuracy (%) of digit 7 with red color across different training scenarios.
Columns correspond to color setups: (1) Control : only red digits (1 and 7) are seen during training,
(2) Red as spurious feature of digit 1 : green-1, green-7 and only red-1 digits are seen during
training.

Method Red-7 Test Acc. (1) Red-7 Test Acc. (2)
ERM 100% 07%
GroupDRO 100% 26%
REx 99% 00%
CDANN + CenterLoss 100% 98%

Supplementary Table 2: Cross-tissue organ prediction on held-out patients.

Method Train Acc. Test Acc. Generalization Gap (Train-Test)

ERM 0.978 0.682 0.296
CDANN + Center Loss 0.967 0.795 0.172

Supplementary Table 3: COVID-19 severity prediction on held-out cities.

Method Train Acc. Test Acc. Generalization Gap (Train-Test)

ERM 0.924 0.654 0.27
CDANN + Center Loss 0.890 0.712 0.178

6.7 Supplementary Figures

Supplementary Figure 1: Schematic of environment setup. Spurious features may vary across
environments: some are spurious-aligned (Env 2), neutral (Env 1-3), or spurious-inverted (Env 4).
The goal is to generalize to held-out domains (Env 4) with different spurious associations.
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Supplementary Figure 2: Attribution of a gene with synthetically-added spurious effects (ACTB)
under different training strategies. (a) Gradient-based importance when the model is trained with
ERM. (b) DeepLIFT-based importance when the model is trained with ERM. (c) Gradient-based
importance when the model is trained with CDANN + CenterLoss. (d) DeepLIFT-based importance
when the model is trained with CDANN + CenterLoss. Together, panels (a–b) show that under ERM
the spurious gene gradually gains importance over epochs, indicating the model increasingly relies
on the spuriously correlated signal. In contrast, panels (c–d) show that with CDANN + CenterLoss,
the spurious gene remains near baseline attribution and is effectively disregarded, demonstrating
improved robustness to spurious correlations.

Supplementary Figure 3: UMAP visualizations of patient embeddings colored by organ of origin.
(left) Embeddings obtained from a model trained with ERM, showing limited separation between
tissue types. (right) Embeddings from a model trained with CDANN + CenterLoss, displaying clearer
clustering by tissue and improved disentanglement of donor-specific features.
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Supplementary Figure 4: The top 20 genes by maximum DeepLIFT-based gene importance across
disease severity classes for COVID-19 classification. The top gene is IGKC, also known as im-
munoglobulin κ constant.
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