
Vertical Federated Graph Neural Network for Recommender System

Peihua Mai 1 Yan Pang 1

Abstract
Conventional recommender systems are required
to train the recommendation model using a cen-
tralized database. However, due to data privacy
concerns, this is often impractical when multi-
parties are involved in recommender system train-
ing. Federated learning appears as an excellent
solution to the data isolation and privacy prob-
lem. Recently, Graph neural network (GNN) is
becoming a promising approach for federated rec-
ommender systems. However, a key challenge is
to conduct embedding propagation while preserv-
ing the privacy of the graph structure. Few studies
have been conducted on the federated GNN-based
recommender system. Our study proposes the
first vertical federated GNN-based recommender
system, called VerFedGNN. We design a frame-
work to transmit: (i) the summation of neigh-
bor embeddings using random projection, and
(ii) gradients of public parameter perturbed by
ternary quantization mechanism. Empirical stud-
ies show that VerFedGNN has competitive pre-
diction accuracy with existing privacy preserving
GNN frameworks while enhanced privacy protec-
tion for users’ interaction information.

1. Introduction
Graph neural network (GNN) has become a new state-of-art
approach for recommender systems. The core idea behind
GNN is an information propagation mechanism, i.e., to
iteratively aggregate feature information from neighbors
in graphs. The neighborhood aggregation mechanism en-
ables GNN to model the correlation among users, items,
and related features. Compared with traditional supervised
learning algorithms, GNN can model high-order connec-
tivity through multiple layers of embedding propagation
and thus capture the similarity of interacted users and items

1Department of Analytics and Operations, National University
of Singapore, 119077 Singapore. Correspondence to: Yan Pang
<jamespang@nus.edu.sg>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

(Gao et al., 2022). Besides, the GNN-based model can ef-
fectively alleviate the problem of data sparsity by encoding
semi-supervised signals over the graph (Jin et al., 2020).
Benefiting from the above features, GNN-based models
have shown promising results and outperformed previous
methods on the public benchmark datasets (Berg et al., 2017;
Wang et al., 2019b;a).

Instead of training the model based on their own graphs,
organizations could significantly improve the performance
of their recommendation by sharing their user-item inter-
action data. However, such sharing might be restricted by
commercial competition or privacy concerns, leading to the
problem of data isolation. For example, the data protec-
tion agreement might prohibit the vendors from transferring
users’ personal data, including their purchase and clicking
records, to a third party.

Federated learning (FL), a machine learning setting with
data distributed in multiple clients, is a potential solution
to the data isolation problem. It enables multiple parties
to collaboratively train a model without sharing their local
data (Peyré et al., 2019). A challenge in designing the fed-
erated GNN-based recommender system is how to perform
neighborhood aggregation while keeping the graph topology
information private. Indeed, each client should obtain the
items their users have interacted with in other organizations
to conduct embedding propagation. However, the user inter-
action data are supposed to keep confidential in each party,
adding to the difficulty of federated implementation.

Few studies have been conducted on the federated imple-
mentation of GNN-based recommender systems. To our
best knowledge, FedPerGNN is the first federated GNN-
based recommender system on user-item graphs (Wu et al.,
2022a). However, their work considers a horizontal fed-
erated setting where each client shares the same items but
with different users. This paper studies the vertical feder-
ated setting in which multiple collaborating recommenders
offer different items to the same set of users. In addition,
FedPerGNN expands the local user-item graphs with anony-
mous neighbouring user nodes to perform embedding propa-
gation, which could leak users’ interaction information (see
Section 4.1).

To fill the gap, this paper proposes a vertical federated learn-
ing framework for the GNN-based recommender system

1

Vertical Federated Graph Neural Network for Recommender System

(VerFedGNN)1. Our method transmits (i) the neighbor em-
bedding aggregation reduced by random projection, and (ii)
gradients of public parameter perturbed by ternary quanti-
zation mechanism. The privacy analysis suggests that our
approach could protect users’ interaction data while leverag-
ing the relation information from different parties. The em-
pirical analysis demonstrates that VerFedGNN significantly
enhance privacy protection for cross-graph interaction com-
pared with existing privacy preserving GNN frameworks
while maintaining competitive prediction accuracy.

Our main contributions involves the following:

• To the best of our knowledge, we are the first to study
the GNN-based recommender system in vertical feder-
ated learning. We also provide a rigorous theoretical
analysis of the privacy protection and communication
cost. The experiment results show that the performance
of our proposed federated algorithm is comparable to
that in a centralized setting.

• We design a method to communicate projected neigh-
borhood aggregation and quantization-based gradients
for embedding propagation across subgraphs. Our
method outperforms existing framework in terms of
accuracy and privacy. The proposed framework could
be generalized to the horizontal federated setting.

• We propose a de-anonymization attack against existing
federated GNN framework that infers cross-graph in-
teraction data. The attack is simulated to evaluate its
performance against different privacy preserving GNN
approaces.

2. Literature Review
Graph Neural Network (GNN) for Recommendation:
There has been a surge of studies on designing GNN-based
recommender systems in recent years. Graph convolutional
matrix completion (GC-MC) employs a graph auto-encoder
to model the direct interaction between users and items
(Berg et al., 2017). To model high-order user-item connec-
tivities, neural graph collaborative filtering (NGCF) stacks
multiple embedding propagation layers that aggregate em-
beddings from neighbouring nodes (Wang et al., 2019b).
LightGCN simplifies the design of NGCF by demonstrating
that two operations, feature transformation and nonlinear
activation, are redundant in the GCN model (He et al., 2020).
PinSage develops an industrial application of GCN-based
recommender systems for Pinterest image recommendation
(Ying et al., 2018). To achieve high scalability, it samples
a neighborhood of nodes based on a random walk and per-
forms localized aggregation for the node.

1Source code: https://github.com/maiph123/VerticalGNN

Federated Graph Neural Network: Recent research has
made progress in federated graph neural network. Most of
the work either performs neighborhood aggregation indi-
vidually (Zhou et al., 2020; Liu et al., 2021), or assumes
that the graph topology could be shared to other parties
(Chen et al., 2021). It’s a non-trivial task to incorporate
the cross-client connection while preserving the relation
information between nodes. To protect the graph topology
information, a direct method is to apply differential pri-
vacy on the adjacency matrix (Zhang et al., 2021a), which
requires a tradeoff between privacy protection and model
performance. In FedSage+, a missing neighbour genera-
tor is trained to mend the local subgraph with generated
cross-subgraph neighbors (Zhang et al., 2021b). To our
best knowledge, FedPerGNN is the first work that develops
horizontal federated GNN-based recommender system with
user-item graphs (Wu et al., 2022a). Each client expands
the local user-item graphs with anonymous neighbouring
user node to learn high-order interaction information.

This paper considers the unexplored area, i.e., graph learn-
ing for recommender systems in a vertical federated set-
ting. We show that applying local graph expansion could
leak user interaction information from other parties, and
develop a GNN-based recommender system that leverages
the neighbourhood information across different subgraphs
in a privacy-preserving way.

3. Problem Formulation and Background
3.1. Problem Statement

We assume that P parties collaboratively train a recom-
mender system, where each party holds a set of com-
mon users but non-overlapping items. Denote U =
{u1, u2, ..., uN} as the set of common users and Vp =
{v1, v2, ..., vMp

} as the set of items for party p. The
total item size Mp, p ∈ [1, P] is shared across par-
ties. Assume that user u has Nu neighboring items
N (u) = {v1, v2, ..., vNu}, and item v has Nv neighbor-
ing users N (v) = {u1, u2, ..., uNv}. Denote Np(u) =
{v1, v2, ..., vNp

u
} as the neighboring items for user u in party

p. The related items and users form a local subgraph Gp

in party p. Denote ruv as the rating user u gives to item v.
Our objective is to generate a rating prediction that mini-
mizes the squared discrepancy between actual ratings and
estimate.

3.2. Graph Neural Network (GNN)

General Framework: We adopt a general GNN (Wu et al.,
2022b) framework as the underlying model for our recom-
mender system. In the initial step, each user and item is
offered an ID embedding of size D, denoted by e0u, e

0
v ∈ RD

respectively. The embeddings are passed through K mes-

2

Vertical Federated Graph Neural Network for Recommender System

sage propagation layers:

nk
u = Aggk({ekv ,∀v ∈ N (u)})
ek+1
u = Updatek(e

k
u, n

k
u)

(1)

nk
v = Aggk({eku,∀u ∈ N (v)})
ek+1
v = Updatek(e

k
v , n

k
v)

(2)

where eku and ekv denote the embeddings at the kth layer for
user u and item v, and Aggk and Updatek represent the
aggregation and update operations, respectively. The final
representation for users (items) are given by the combination
of embeddings at each layer:

hu =

K∑
k=0

ake
k
u; hv =

K∑
k=0

ake
k
v (3)

where hu and hv denote the final representation for user
u and item v respectively, K denotes the number of em-
bedding propagation layers, and ak denotes the trainable
parameter implying the weight of each layer.

The rating prediction is defined as the inner product of user
and item representation

r̂uv = hT
uhv (4)

The loss function is computed as:

L =
∑
(u,v)

(r̂uv−ruv)
2+

1

N

∑
u

∥e0u∥22+
1

M

∑
v

∥e0v∥22 (5)

where (u, v) denotes pair of interacted user and item, and N
and M denote the number of users and items respectively.

Aggregation and Update Operations: This paper dis-
cusses three typical GNN frameworks: Graph convolutional
network (GCN) (Kipf & Welling, 2016) , graph attention
networks (GAT) (Veličković et al., 2017), and gated graph
neural network (GGNN) (Li et al., 2015). We illustrate their
aggregation and update operations for user embedding as an
example.

• GCN approximates the eigendecomposition of graph
Laplacian with layer-wise propagation rule:

Aggk : nk
u =

∑
v∈N (u)

1√
NuNv

ekv

Updatek : ek+1
u = σ(W k(eku + nk

u))

(6)

• GAT leverages self-attention layers to assign different
importances to neighboring nodes:

Aggk : nk
u =

∑
v∈N (u)

bkuve
k
v

Updatek : ek+1
u = σ(W k(bkuue

k
u + nk

u))

(7)

where bkuu and bkuv are the importance coefficients com-
puted by the attention mechanism:

bkuv =
exp(b̃kuv)∑

v′∈N (u)∪u exp(b̃
k
uv′)

(8)

where bkuv = Att(eku, e
k
v) is computed by an attention

function.

• GGNN updates the embeddings with a gated recurrent
unit (GRU):

Aggk : nk
u =

∑
v∈N (u)

1

Nu
ekv

Updatek : ek+1
u = GRU(eku, n

k
u)

(9)

3.3. Differential Privacy

We adopt the standard definition of (ϵ, δ)-differential privacy
(Dwork et al., 2014) for our analysis.

Definition 3.1. A randomized function M(x) is (ϵ, δ)-
differentially private if for all x, y such that ∥x− y∥1 ≤ 1
and any measurable subset S ⊆ Range(M),

P (M(x) ∈ S) ≤ eϵP (M(y) ∈ S) + δ (10)

This paper assumes an untrusted server and requires that the
local gradients from each party satisfy (ϵ, δ)-local differen-
tial privacy (Duchi et al., 2013).

4. Proposed Method
4.1. De-anonymization Attack

A straightforward cross-graph propagation solution is to use
anonymous neighborhood embeddings from other graphs
(Wu et al., 2022a). Adapting to the vertical setting, each
party sends the encrypted ids of each item’s related users
to the server, and the server provides each party with the
embeddings of their neighboring items via user matching.

One privacy concern of this approach suffers leakage of in-
teraction information, as is shown by the de-anonymization
attack below. We assume that each organization is accessible
to the set of available items from other parties.

Suppose that party A wants to obtain their users’ interaction
with party B. Party A could create a set of adversarial users
that have registered on other platforms. Each fake user rates
only one item in party B. The interaction information could
be recovered by matching the embeddings for adversarial
and honest users. Denote vi ∈ N (u) as the ith item in user
u’s neighborhood from party B, Nadv as the set of items
given by all fake users, and vj ∈ Nadv as the item rated by
jth adversarial user. The inferred ith item for user u is:

3

Vertical Federated Graph Neural Network for Recommender System

v̂i = arg min
v′∈Nadv

∥e′0v − e0vi∥1 (11)

where ∥ · ∥ computes the l1-norm of inner vectors.

The above attack suggest that revealing the individual em-
bedding for each item is susceptible to privacy leakage. Fol-
lowing, we introduce a new method to obtain embeddings
at the aggregated level.

4.2. Federated Graph Neural Network

Figure 1. Overall framework of VerFedGNN

In the proposed framework, the collaborating parties jointly
conduct model training with a central server. Each client
clp is associated with a party p. Item embeddings e0v should
be maintained privately on each client, while other public
parameters are initialized and stored at the server. At the
initial step, Private Set Intersection (PSI) is adopted to con-
duct secure user alignment (Pinkas et al., 2014). Algorithm
1 outlines the process to perform VerFedGNN. Figure 1
gives the overall framework of our VerFedGNN, and we
will illustrate the key components in the following.

4.3. Neighborhood Aggregation

Instead of sending the individual embeddings of miss-
ing neighbors, each party performs embedding aggrega-
tion locally for each common user before the transmission.
Each party outputs a list of N × D aggregation matrices
[X0

p , X
1
p , ..., X

K−1
p], with each row of Xk

p given by Ep(n
k
u).

Below details the local neighborhood aggregation for the
three GNN frameworks:

GCN requires Nu to perform local aggregation, while shar-
ing Nu could reveal how many items user u has interacted
with in other parties. To preserve the privacy of Np

u , we
develop an estimator from party p’s view in replacement of
Nu:

Ep(Nu) =

∑
i Mi

Mp
·Np

u (12)

Algorithm 1 Federated Vertical Graph Neural Network
FL Server:
Initialize public parameters.
Initialize projection matrix Φ and broadcast the seed.
for t ∈ [1, T] do

Distribute public parameters to clients p ∈ At

Receive and aggregate local gradients from client p for
p ∈ At

Update public parameters with aggregated gradients
end for

Client c, c ∈ [1, P]:
Initialize item embeddings.
for t ∈ [1, T] do

Download public parameters from server
Received projected embedding aggregation Y k

p for
layer k ∈ [0,K − 1] from parties p ∈ At\c
Compute aggregated embeddings matrix Xk

c for layer
k ∈ [0,K − 1]
Derive projected matrix Y k

c using expression 17, and
send to parties p ∈ At\c
Received projected matrix Y k

p for layer k ∈ [0,K − 1]
from parties p ∈ At\c
Reconstruct aggregated embeddings matrix using ex-
pression 18 for layer k ∈ [0,K − 1] and parties
p ∈ At\c
Conduct layer-wise embedding update with X̂k

p for
k ∈ [0,K − 1] and p ∈ At\c
Calculate gradients locally and update private parame-
ters e0v for v ∈ Vp

Perturb gradients for public parameters using ternary
quantization scheme given by Definition 4.2
Upload quantized gradients to server

end for

where Mi denotes the number of items in party i. The
estimator is utilized to perform embedding aggregation:

Ep(n
k
u) =

∑
v∈Np(u)

1√
Ep(Nu)Nv

ekv (13)

GAT calculates importance coefficient bkuv using all item
embeddings for v ∈ Nu, incurring further privacy concern
and communication cost. Therefore, we adapt equation 8 to
obtain Ep(b

k
uv):

Ep(b
k
uv) =

exp(b̃kuv)

exp(b̃kuu +
∑

v′∈Nu
exp(b̃kuv′) ·

∑
i Mi/Mp)

(14)
The neighbor items are aggregated locally using:

Ep(n
k
u) =

∑
v∈Np(u)

bkuve
k
v (15)

4

Vertical Federated Graph Neural Network for Recommender System

GGNN slightly adapt Aggk in equation 9 to perform aggre-
gation:

Ep(n
k
u) =

∑
v∈Np(u)

1

Np
u
ekv (16)

Refer to Appendix A for embedding update with the aggre-
gated neighborhood.

4.4. Random Projection

Though neighborhood aggregation reduces the information
leakage, users might still be susceptible to de-anonymization
attack when they rated few items in other parties. We adopt
random projection (Lindenstrauss, 1984) to perform mul-
tiplicative data perturbation for two reasons: (1) random
projection allows to reduce dimensionality and reconstruct
matrix without prior knowledge of the data; (2) random
projection preserve the pairwise distance between points
with small error (Ghojogh et al., 2021). Below we define a
Gaussian random projection matrix.

Definition 4.1. For q ≪ Nu, a Gaussian random projection
matrix Φ ∈ Rq×Nu has elements drawn independently from
Gaussian distribution with mean 0 and variance 1/q.

Each active party sends a list of q ×D projected matrices
to other participants:

Y k
p = ΦXk

p (17)

for k ∈ [0,K − 1]. The recipient recover the perturbed
aggregation matrices X̂k

p , k ∈ [0,K − 1]:

X̂k
p = ΦTY k

p (18)

4.5. Privacy-preserving Parameter Update

The gradients of public parameters could leak sensitive in-
formation about the users. For example, if two users rated
the same items, the gradients for their embeddings would
be similar. Therefore, a participant could infer subscribers’
interaction history by comparing their embeddings with ad-
versarial users. We introduce a ternary quantization scheme
(Wang & Başar, 2022) to address this issue.

Definition 4.2. The ternary quantization scheme quantizes
a vector x = [x1, x2, ..., xd]

T ∈ Rd as follows:

Q(x) = [q1, q2, ..., qd], qi = rsign(xi)bi, ∀1 ≤ i ≤ d
(19)

where r is a parameter such that ∥x∥∞ ≤ r, sign repre-
sents the sign of a value, and bi are independent variables
following the distribution{

P (bi = 1|x) = |xi|/r
P (bi = 0|x) = 1− |xi|/r

(20)

The ternary quantization scheme is adopted in place of Gaus-
sian or Laplace noise for two reasons: (1) The scale of Gaus-
sian or Laplace noise is determined by the sensitivity that
could be significant for high dimensional data. For GNN
model with large size, directly adding the calibrated noises
would greatly distort the direction of gradients. On the other
hand, the quantization scheme ensures that the sign of each
element in the gradient is not reversed by the stochastic
mechanism. (2) For user embeddings, the gradients is a
Nu × D matrix with communication cost proportional to
user size. Under the quantization scheme, parties could
send a much smaller sparse matrix indexed by the non-zero
binary elements.

4.6. Partial Participants

We consider the case where in each iteration, only a portion
of clients participates in model training. The challenge is
that both the embedding update and gradient computation
contain components summed over all clients to capture the
complete graph structure. To address this issue, we develop
an estimator of the total summation based on the subsets of
components received.

Denote ci as the component send by party i, and At as the
set of participating clients in iteration t. The estimation
E(C) is given by:

E(C) =

∑
i Mi∑

i∈At
Mi

∑
i

ci (21)

Specifically, the component ci is Ep(n
k
u), k ∈ [0,K −

1] for embedding update, and local gradients for gradient
computation, respectively.

5. Theoretical Performance Analysis
5.1. Privacy Analysis

The privacy of the algorithm is analyzed for two communi-
cation stages: (i) neighborhood exchange, and (ii) gradient
transmission. We assume honest-but-curious (Yang et al.,
2019) participants for the analysis, i.e., the participant will
not deviate from the defined training protocol but attempt to
learn information from legitimately received messages.

Neighborhood exchange: Suppose that an attacker would
like to infer the original aggregation matrix Xk

p given Y k
p .

The model can be analyzed as an underdetermined system
of linear equations with more unknowns than equations
y = Φx, where x is a column vector in Xk

p and y is the
corresponding column in Y k

p . We start with the definition
of l-secure (Du et al., 2004).
Definition 5.1. A matrix Φ is l-secure if a submatrix Φk

formed by removing any l columns from Φ has full row
rank.

5

Vertical Federated Graph Neural Network for Recommender System

Lemma 5.2. Let Ψ be an l × N matrix, where each row
is a nonzero linear combination of row vectors in Φ. If Φ
l-secure, the linear equations system y = Ψx involves at
least 2l variables if these l vectors are linearly independent.
Theorem 5.3. For 2q ≤ m+1, let Φ be a q×m matrix with
entries independently chosen from Gaussian distribution.
For a linear system of equations y = Φx, it’s impossible to
solve the exact value of any element in x.

The proof is given in Appendix B and C. As long as we
select q ≤ (m+ 1)/2, the privacy of aggregation matrix is
protected in the sense that the attacker cannot identify the
exact value of any elements in the original data.

Next, we consider the possibility to infer users’ interac-
tion history from the reconstructed aggregation matrix. Ap-
pendix E demonstrates the NP-hardness of finding a subset
of items that match the aggregated embeddings.

Gradient transmission: The gradient transmitted to server
is perturbed by the ternary quantization scheme. The follow-
ing theorem shows that the ternary quantization can achieve
(0, 1

r) differential privacy.
Theorem 5.4. The ternary quantization scheme given by
Definition 4.2 achieves (0, 1

r)-differential privacy for indi-
vidual party’s gradients in every iteration.

Proof. The privacy guarantee has been proved by (Wang &
Başar, 2022) in Theorem 3.

Remark 5.5. The ternary quantization still achieves (0, 1
r)-

differential privacy when the l1 norm in Definition 3.1 is
replaced with any lp norm with p ≥ 1 (see Appendix D).

5.2. Utility Analysis

The federated algorithm involves two sources of error: (i)
random projection and reconstruction of aggregation matrix,
and (ii) stochastic ternary quantization mechanism. We will
discuss the concerns one at a time.

Random projection and matrix reconstruction: The re-
constructed matrix Xk

p , k ∈ [0,K − 1], p ∈ [1, P − 1]
doesn’t deviate much from the original matrix with the fol-
lowing bounded MSE.
Theorem 5.6. Let Φ be a random matrix defined in Defini-
tion 4.1. For any X ∈ RNu×D,

EΦ[∥ΦTΦX −X∥2F] =
(m+ 1)

p
∥X∥2F (22)

where ∥ · ∥ represents the Frobenius norm of inner matrix.

Refer to Appendix F for the proof of Theorem 5.6.

Ternary quantization mechanism: In Appendix G we
provide an convergence analysis for the gradient perturbed
mechanism.

5.3. Communication Analysis

The communication cost is analyzed in terms of the total
message size transferred between parties. We assume that
the participation rate α, the number of participating clients
divided by that of total clients in an iteration, remains un-
changed throughout the training. Suppose that each number
in embedding matrix and public parameters requires s1 bits,
and that in quantized gradients requires s2 bits, respectively.

Downloading public parameters requires to transfer
O(αpKD(D +Nu)Ts1) bits. It takes O(αpqDKs1) bits
for each party to communicate neighborhood aggregation
matrix per iteration, which adds up to O(α2p2qDKTs1) in
total.

For gradient transmission, each party is expected to have
O(|ξ|1/r) nonzero entries in their upload matrix, where
|ξ|1 denotes the l1 norm of public parameters. It takes
O(αp|ξ|1Ts2/r) bits to upload quantized gradients from
clients to the server,

Summing up the above processes, the algorithm involves
O(αpT (KD(D+Nu)s1+αpqDKs1+ |ξ|1s2/r)) bits of
communication cost.

6. Experiment
6.1. Dataset and Experiment Settings

Dataset: We use two benchmark datasets for recommenda-
tion, MovieLens-1M2 (ML-1M) and BookCrossing3. For
BookCrossing we randomly select 6000 users and 3000
items. The items are divided into non-overlapping groups
to simulate the vertical federated setting.

Implementation and Hyper-parameter Setting: Ap-
pendix H details the implementation and hyperparameters.

6.2. Experiment Result

6.2.1. COMPARISON WITH DIFFERENT METHODS

We compare our proposed method with several centralized
and federated recommender system, including: matrix fac-
torization (MF) (Koren et al., 2009), central implementation
of GNN (CentralGNN), federated GNN with graph expan-
sion (FedPerGNN) (Wu et al., 2022a), adaption of FedSage
and FedSage+ to GNN-based recommender system (Zhang
et al., 2021b). We implement the GNN-related methods
using the three GNN frameworks introduced in section 3.2.

We compare the methods along four dimensions in table
1: (i) high-order interaction: modeling of high-order con-
nectivity with graph propagation; (ii) gradient protection:

2https://grouplens.org/datasets/movielens/1m/
3http://www2.informatik.uni-freiburg.de/ cziegler/BX/

6

Vertical Federated Graph Neural Network for Recommender System

sending perturbed or encrypted gradients instead of raw gra-
dients; (iii) cross graph neighborhood: usage of missing
links across parties or subgraphs.

Table 2 summarizes the performance in terms of RMSE for
different methods. For VerFedGNN, we use privacy budget
1
r = 1

3 , reduced dimension q = Nu/5, and participation
rate α = 1. It can be observed that our proposed method
achieves lower RMSE than other federated GNN algorithms
in most scenarios, and clearly outperform MF by an average
of 4.7% and 18.7% respectively for ML-1M an BookCross-
ing dataset. The RMSE in VerFedGNN slightly increases
over the central implementation, with average percentage
difference ≤ 1.8%.

6.2.2. HYPER-PARAMETER STUDIES

We use GCN as an example to study the impact of hyper-
parameters on the performace of VerFedGNN.

Participation rate: The participation rate is changed from
0.2 to 1, with results presented in figure 2. Using GCN
model, the percentage differences over the fully partici-
pation case are within 0.15% for ML-1M and 0.7% for
BookCrossing when α reaches to 0.5. The other two models
gives RMSE ≤ 0.92 for ML-1M and ≤ 1.2 for BookCross-
ing when α > 0.5.

(a) ML-1M (b) BookCrossing

Figure 2. RMSE with varying participation rate α.

Privacy budget: A smaller the privacy budget 1
r suggests

that the transmitted gradients leak less user information.
Figure 3 presents the tradeoff between privacy budget 1

r
and model performance. GGNN model is most sensitive
to the change in privacy budget, while GAT model remains
effective against the increase in 1

r .

Dimension Reduction: We further analyze the effective-
ness of our model with varying dimension reduction ratio
q/Nu. As is shown in figure 4, GCN and GAT are more ro-
bust to the change in neighborhood dimension q, with error
increase by 0.5% for ML-1M and 1.5% for BookCrossing
when Nu/q increases to 100.

(a) ML-1M (b) BookCrossing

Figure 3. RMSE with varying privacy budget 1
r

.

(a) ML-1M (b) BookCrossing

Figure 4. RMSE by inverse dimension reduction ratio Nu/q.

6.2.3. DE-ANONYMIZATION ATTACK

To verify the effectiveness of our model against de-
anonymization attack, we simulate this attack to compare
the inference accuracy of VerFedGNN with the other two
methods using cross graph neighborhood: FedPerGNN and
FedSage+. For FedSage+, we match the generated embed-
dings of honest and adversarial users using equation 11. The
attack for VerFedGNN utilized the recovered aggregation
embeddings. Specifically, we find the subset of adversarial
item embeddings leading to smallest l1 distance with each
users’ neighborhood aggregation. Refer to appendix I for
more illustrations.

Table 3 reports the attack accuracy for the three federated
algorithm using GCN model. The experiment is conducted
under three cases regarding the proportion of items rated
by the adversarial users pad. One important observation
is that our algorithm greatly reduces the attack accuracy
compared with the two baseline methods. FedPerGNN
results in highest F1 and precision of 100% as the attacker
could match the embeddings exactly with adversarial users.

6.2.4. COMMUNICATION COST

Figure 5 presents the communication cost measured in the
size of bits to be transferred in each iteration. We find that
the communication cost is nearly proportional to user size

7

Vertical Federated Graph Neural Network for Recommender System

Table 1. Comparison of different approaches

MF CentralGNN FedPerGNN FedSage FedSage+ VerFedGNN

High-order interaction ×
√ √ √ √ √

Gradient protection × ×
√

× ×
√

Cross graph neighborhood × ×
√

×
√ √

Data storage Central Central Local Local Local Local

Table 2. Performance of different methods. The values denote the
mean± standard deviation of the performance.

Model ML-1M BookCrossing

MF MF 0.9578 ±0.0016 1.9972 ±0.0063

CentralGNN
GCN 0.9108 ±0.0007 1.5820 ±0.0050

GAT 0.9062 ±0.0029 1.5478 ±0.0071

GGNN 0.9046 ±0.0045 1.6562 ±0.0040

FedPerGNN
GCN 0.9282 ±0.0012 1.6892 ±0.0068

GAT 0.9282 ±0.0017 1.6256 ±0.0048

GGNN 0.9236 ±0.0023 1.6962 ±0.0050

FedSage
GCN 0.9268 ±0.0012 1.6916 ±0.0118

GAT 0.9242 ±0.0041 1.6256 ±0.0048

GGNN 0.9268 ±0.0008 2.6596 ±0.0133

FedSage+
GCN 0.9194 ±0.0041 1.6335 ±0.0065

GAT 0.9146 ±0.0033 1.6078 ±0.0039

GGNN 0.9180 ±0.0002 1.8788 ±0.0401

VerFedGNN
GCN 0.9152 ±0.0013 1.5906 ±0.0030

GAT 0.9146 ±0.0010 1.5830 ±0.0131

GGNN 0.9076 ±0.0024 1.6962 ±0.0050

Nu and participation rate α. Besides, random projecting the
neighborhood aggregation matrix with q = 1

5Nu saves the
communication bits by 50.6% with gradient quantization,
and applying the quantization scheme reduces the commu-
nication cost by over 30% when Nu/q ≥ 4.

(a) User size (b) Dimension

Figure 5. Communication cost by user size and dimension for GCN

6.2.5. OTHER STUDIES

For other studies, we simulate the de-anonymization attack
against VerFedGNN under the case with and without dimen-

Table 3. Attack accuracy for three federated algorithms using GCN
model on ML-1M.

pad Methods Precision Recall F1

0.2
FedPerGNN 1.00 ±0.00 0.21 ±0.01 0.34 ±0.01

FedSage+ 0.14 ±0.00 0.03 ±0.01 0.05 ±0.01

VerFedGNN 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00

0.5
FedPerGNN 1.00 ±0.00 0.49±0.03 0.66 ±0.02

FedSage+ 0.22 ±0.03 0.08 ±0.00 0.11 ±0.00

VerFedGNN 0.02 ±0.01 0.01 ±0.00 0.01 ±0.00

0.8
FedPerGNN 1.00 ±0.00 0.81±0.01 0.90 ±0.01

FedSage+ 0.26 ±0.02 0.10±0.01 0.14 ±0.01

VerFedGNN 0.02 ±0.00 0.01 ±0.00 0.02 ±0.00

sion reduction, and evaluate the model performance when
Laplace noise is employed in place of ternary quantization
scheme (see Appendix J).

7. Conclusion
This paper proposes VerFedGNN, a framework for GNN-
based recommender systems in a vertical federated setting.
The cross-graph interactions are transferred in form of neigh-
borhood aggregation matrix perturbed by random projection.
We adopt ternary quantization scheme to protect the privacy
of public gradietns. Our approach could learn the rela-
tion information across different graphs while preserving
users’ interaction data. Empirical studies on two benchmark
datasets show that: (1) VerFedGNN achieves comparative
prediction performance with SOTA privacy preserving GNN
models. (2) The neighborhood aggregation combined with
random projection significantly reduces the attack accuracy
compared with existing cross-graph propagation methods.
(3) Optimizing dimension reduction ratio Nu/q and partic-
ipation rate α could lower the communication cost while
maintaining accuracy.

This work opens up new possibilities for the federated GCN-
based recommendation. Firstly, it’s interesting to develop a
scalable federated framework with up to millions of users.
Secondly, the framework could be extended to other fed-
erated scenarios, such as transfer federated recommender
systems with few overlapping nodes (Yang et al., 2020).

8

Vertical Federated Graph Neural Network for Recommender System

References
Berg, R. v. d., Kipf, T. N., and Welling, M. Graph

convolutional matrix completion. arXiv preprint
arXiv:1706.02263, 2017.

Chen, F., Li, P., Miyazaki, T., and Wu, C. Fedgraph: Fed-
erated graph learning with intelligent sampling. IEEE
Transactions on Parallel and Distributed Systems, 33(8):
1775–1786, 2021.

Du, W., Han, Y. S., and Chen, S. Privacy-preserving multi-
variate statistical analysis: Linear regression and classi-
fication. In Proceedings of the 2004 SIAM international
conference on data mining, pp. 222–233. SIAM, 2004.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Duchi, J. C., Jordan, M. I., and Wainwright, M. J. Local
privacy and statistical minimax rates. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science,
pp. 429–438. IEEE, 2013.

Dwork, C., Roth, A., et al. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theo-
retical Computer Science, 9(3–4):211–407, 2014.

Emiris, I. Z., Karasoulou, A., and Tzovas, C. Approximating
multidimensional subset sum and minkowski decomposi-
tion of polygons. Mathematics in Computer Science, 11
(1):35–48, 2017.

Gao, C., Wang, X., He, X., and Li, Y. Graph neural networks
for recommender system. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data
Mining, pp. 1623–1625, 2022.

Ghojogh, B., Ghodsi, A., Karray, F., and Crowley, M.
Johnson-lindenstrauss lemma, linear and nonlinear ran-
dom projections, random fourier features, and random
kitchen sinks: Tutorial and survey. arXiv preprint
arXiv:2108.04172, 2021.

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., and Wang, M.
Lightgcn: Simplifying and powering graph convolution
network for recommendation. In Proceedings of the 43rd
International ACM SIGIR conference on research and
development in Information Retrieval, pp. 639–648, 2020.

Jin, B., Gao, C., He, X., Jin, D., and Li, Y. Multi-behavior
recommendation with graph convolutional networks. In
Proceedings of the 43rd International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pp. 659–668, 2020.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Kolesnikov, V. Multidimensional subset sum problem. 1997.

Koren, Y., Bell, R., and Volinsky, C. Matrix factorization
techniques for recommender systems. Computer, 42(8):
30–37, 2009.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R.
Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493, 2015.

Lindenstrauss, W. J. J. Extensions of lipschitz maps into a
hilbert space. Contemp. Math, 26(189-206):2, 1984.

Liu, K., Kargupta, H., and Ryan, J. Random projection-
based multiplicative data perturbation for privacy pre-
serving distributed data mining. IEEE Transactions on
knowledge and Data Engineering, 18(1):92–106, 2005.

Liu, Z., Yang, L., Fan, Z., Peng, H., and Yu, P. S. Feder-
ated social recommendation with graph neural network.
ACM Transactions on Intelligent Systems and Technology
(TIST), 2021.

Peyré, G., Cuturi, M., et al. Computational optimal trans-
port: With applications to data science. Foundations and
Trends® in Machine Learning, 11(5-6):355–607, 2019.

Pinkas, B., Schneider, T., and Zohner, M. Faster private set
intersection based on {OT} extension. In 23rd USENIX
Security Symposium (USENIX Security 14), pp. 797–812,
2014.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Wang, H., Lian, D., and Ge, Y. Binarized collaborative fil-
tering with distilling graph convolutional networks. arXiv
preprint arXiv:1906.01829, 2019a.

Wang, X., He, X., Wang, M., Feng, F., and Chua, T.-S.
Neural graph collaborative filtering. In Proceedings of the
42nd international ACM SIGIR conference on Research
and development in Information Retrieval, pp. 165–174,
2019b.

Wang, Y. and Başar, T. Quantization enabled privacy pro-
tection in decentralized stochastic optimization. IEEE
Transactions on Automatic Control, 2022.

Wu, C., Wu, F., Lyu, L., Qi, T., Huang, Y., and Xie, X. A
federated graph neural network framework for privacy-
preserving personalization. Nature Communications, 13
(1):1–10, 2022a.

9

Vertical Federated Graph Neural Network for Recommender System

Wu, S., Sun, F., Zhang, W., Xie, X., and Cui, B. Graph
neural networks in recommender systems: a survey. ACM
Computing Surveys, 55(5):1–37, 2022b.

Yang, L., Tan, B., Zheng, V. W., Chen, K., and Yang, Q. Fed-
erated recommendation systems. In Federated Learning,
pp. 225–239. Springer, 2020.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine
learning: Concept and applications. ACM Transactions
on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 974–983,
2018.

Zhang, C., Zhang, S., James, J., and Yu, S. Fastgnn: A
topological information protected federated learning ap-
proach for traffic speed forecasting. IEEE Transactions
on Industrial Informatics, 17(12):8464–8474, 2021a.

Zhang, K., Yang, C., Li, X., Sun, L., and Yiu, S. M. Sub-
graph federated learning with missing neighbor genera-
tion. Advances in Neural Information Processing Systems,
34:6671–6682, 2021b.

Zhou, J., Chen, C., Zheng, L., Wu, H., Wu, J., Zheng, X.,
Wu, B., Liu, Z., and Wang, L. Vertically federated graph
neural network for privacy-preserving node classification.
arXiv preprint arXiv:2005.11903, 2020.

10

Vertical Federated Graph Neural Network for Recommender System

A. Embedding Update with Neighborhood Aggregation
A.1. Embedding Update for GCN

Suppose the active client c receive Ep(n
k
u) from other parties p ̸= c. The update function for user embedding is:

ek+1
u = σ(W k(eku +

∑
p

Ep(n
k
u))) (23)

The update for item embedding is conducted locally:

Aggk : nk
v =

∑
u∈N (v)

1√
Ec(Nu)Nv

eku, Updatek : ek+1
v = σ(W k(ekv + nk

v)) (24)

A.2. Embedding Update for GAT

Suppose the active client c receive Ep(n
k
u) from other parties p ̸= c. The update function for user embedding is:

ek+1
u = σ(W k(Ec(b

k
uu)e

k
u +

∑
p

Ep(n
k
u))) (25)

The update for item embedding is conducted locally:

Aggk : nk
v =

∑
u∈N (v)

bkvue
k
u, Updatek : ek+1

v = σ(W k(bvve
k
v + nk

v)) (26)

where bkvv and bkvu are computed as:

bkvu =
exp(b̃kvu)∑

u′∈N (v)∪v exp(b̃
k
vu)

(27)

where bkvu = Att(ekv , e
k
u) is computed by an attention function.

A.3. Embedding Update for GGNN

Suppose the active client c receive Ep(n
k
u) from other parties p ̸= c. The update function for user embedding is:

ek+1
u = GRU(eku,

1∑
i Mi

∑
p

Ep(n
k
u) ·Mp) (28)

The update for item embedding is conducted locally:

Aggk : nk
v =

∑
u∈N (v)

1

Nv
eku, Updatek : ek+1

v = GRU(ekv , n
k
v) (29)

B. Proof of Lemma 5.2
Proof. The proof follows by a proper Gaussian elimination on the system of linear equations. See, for instance, Theorem
4.3 in (Du et al., 2004).

C. Proof of Theorem 5.3
Proof. According to Theorem 4.4 in (Liu et al., 2005), when 2q − 1 ≤ m, a submatrix Φk formed by removing any q − 1
columns from Φ has full rank with probability 1, i.e., the linear system is (q − 1)-secure with probability 1. Hence, any
nonzero linear combination of the row vectors in Φ contains at least q − 1 nonzero elements. According to lemma 5.2, we
cannot find q − 1 linearly equations that solve these variables. Therefore, the solutions to any variable in x are infinite.

11

Vertical Federated Graph Neural Network for Recommender System

D. Interpretation of Theorem 5.4
D.1. Explanation of Remark 5.5

The original definition of differential privacy uses l1 norm to denote the number of different records for two sets. In our
study, the inputs are continuous and thus we use lp-norm to measure the lp-distance between two vectors. The neighboring
datasets can be interpreted as vectors close to each other in terms of lp-distance.

D.2. Explanation of (0, 1
r)-DP

The privacy budget is controlled by two parameters ϵ and δ. The (0, 1/r)-differential privacy is formulated as:

P (M(x) ∈ S) ≤ P (M(y) ∈ S) +
1

r
(30)

Therefore, the (0, 1
r)-DP suggests that the absolute difference of probability density at each point differs by at most 1

r .

D.3. Lower Bound of Reconstruction Attack Error

We take p = ∞ as an example to derive a proof for the lower bound of reconstruction attack error for the lp norm.

Theorem D.1. Let h = M(x) be the model output given input vector x, and x̂(h) be the reconstructed input on observing
h. For a (ϵ, δ)-DP mechanism M with l1 replaced by l∞, the reconstruction error defined as mean square error (MSE) is
lower bounded by:

E[∥x̂(h)− x∥22] ≥ O

(∑
i θ

2
i

e2ϵ + eϵδ2 − 1

)
(31)

where θi = infx |∂µ(x)i/∂xi| and µ(x) = E[x̂(h)].

Proof. The MSE is lower bounded by:

E[∥x̂(h)− x∥22] ≥
∑
i

V ar (x̂(h)i) (32)

Then we examine the bound of V ar (x̂(h)i). From Hammersley-Chapman-Robbins Bound, we have:

V ar (x̂(h)i) ≥
(µ(x+ ei)i − µ(x)i)

2

E[(p(h;x+ ei)/p(h;x)− 1)2]
=

(µ(x+ ei)i − µ(x)i)
2

e2ϵ + eϵE[2δ/p(h;x) + δ2/p(h;x)2]− 1
(33)

where E[·] is the expectation taken over p(h;x), p(h;x) is the density function of h given x, and ei is the standard basis
vector with ith coordinate equal to 1.

Therefore, the MSE is lower bounded by:

E[∥x̂(h)− x∥22] ≥ O

(∑
i θ

2
i

e2ϵ + eϵδ2 − 1

)
(34)

Remark D.2. For ϵ = 0, we have that:

E[∥x̂(h)− x∥22] ≥ O

(∑
i

θ2i /δ
2

)
(35)

E. NP-hardness of Finding Missing Neighbors from Reconstructed Matrix
E.1. Missing Neighbors for GCN

Let Ep(n̂
k
u) be the recovered neighborhood for user u in party p. Denote êkvj/

√
Ep(Nu) as the reconstructed embedding from

adversarial user j for vj ∈ Nadv . The attacker should find the subset S ∈ Nadv such that
∑

vj∈S êkvj/
(√

Ep(Nu)
√
|S|
)
=

Ep(n̂
k
u). The inference attack for GGNN can be summarized as a multi-dimensional subset squared-root average problem.

12

Vertical Federated Graph Neural Network for Recommender System

Problem E.1 (k-dimensional Subset Squared-root Average (kD-SSA)). Input: a set of vectors S = {ni|1 ≤ i ≤ n} ⊂ Zk,
for k ≥ 1, and a target vector t ∈ Zk. Output: YES if there exists a subset S′ ⊆ S such that

∑
i∈S′ ni/

√
|S′| = t, and NO

otherwise.

We claim the NP-hardness of the problem.

Theorem E.1. The kD-SSA problem is NP-complete.

Proof. Prior literature showed that the k-dimensional Subset Sum (kD-SS) problem is NP-complete (Emiris et al., 2017;
Kolesnikov, 1997).
Problem E.2 (k-dimensional Subset Sum (kD-SS)). Input: a set of vectors S = {ni|1 ≤ i ≤ n} ⊂ Zk, for k ≥ 1, and a
target vector t ∈ Zk. Output: YES if there exists a subset S′ ⊆ S such that

∑
i∈S′ ni = t, and NO otherwise.

We start with the reduction of kD-SS to Size M kD-SS.
Problem E.3 (Size M k-dimensional Subset Sum (M-kD-SS)). Input: a set of vectors S = {ni|1 ≤ i ≤ n} ⊂ Zk, for k ≥ 1,
a target subset size M and a target vector t ∈ Zk. Output: YES if there exists a subset S′ ⊆ S such that

∑
i∈S′ ni = t and

|S′| = M , and NO otherwise.

It’s clear that M-kD-SS ∈ NP as we can verity that a subset equals t and has size M in polynomial time. Next we show the
reduction of kD-SS to M-kD-SS.

Let S1 = {ni|1 ≤ i ≤ n} ⊂ Zk and t be the input to kD-SS. We form S2 by adding n zero-vectors in to S1. Let S2,
M = n, and t be the input to M-kD-SS. Let S′

1 be the solution to kD-SS, and S′
2 is constructed by adding n− |S′

1| to S′
1.

The reduction works clearly in polynomial time.

Next, we claim that S′
1 ∈ kD-SS iif S′

2 ∈ M-kD-SS, i.e., S′
1 is a solution to kD-SS iif S′

2 is a solution to M-kD-SS.

⇒: If the elements in S′
1 sums up to t, the same is true for S′

2 that’s of size n. Therefore, S′
2 is a solution to M-kD-SS.

⇐: If S′
2 is a solution to M-kD-SS, then the solution to kD-SS S′

1 can be formed by removing the zero vectors in S′
2.

Now, we have demonstrated the NP-completeness of M-kD-SS, and will return back to the kD-SSA problem.

kD-SSA ∈ NP as we can verity that a subset sum divided by its square-root size equals to t in polynomial time. Next we
show the reduction of M-kD-SS to kD-SSA.

Let S1 = {ni|1 ≤ i ≤ n} ⊂ Zk, M and t be the input to M-kD-SS. We form S2 by adding to S1 a vector vM consisting of
MaxN ·

√
M + 1, such that:

MaxN ≫
|tj |+

∑
i∈S1

|ni
j |

|√r1 −
√
r2|

,∀r1 ̸= r2, r1, r2 ∈ [1, |S2|],∀j ∈ [1, k] (36)

MaxN is much larger than any subset sum of absolute values in S1 ∪{t}. Let S2, and t/
√
M + 1+MaxN be the input to

kD-SA. Let S′
1 be the solution to M-kD-SS, and S′

2 is constructed by adding vector vM to S′
1. The reduction works clearly

in polynomial time.

We proceed to claim that S′
1 ∈ M-kD-SS iif S′

2 ∈ kD-SSA, i.e., S′
1 is a solution to M-kD-SS iif S′

2 is a solution to kD-SSA.

⇒: If S′
1 is a solution to M-kD-SS, then the square-root average of S′

2 is given by:∑
i∈S′

1

ni
j + vMj

 · 1√
M + 1

=
tj√

M + 1
+MaxN (37)

for 1 ≤ j ≤ k. Thus S′
2 is a solution to kD-SA.

⇐: Let S′
2 be a solution to kD-SA. Suppose vM /∈ S′

2, then:∑
i∈S′

2

ni
j

 · 1√
|S′

2|
=

tj√
M + 1

+MaxN (38)

13

Vertical Federated Graph Neural Network for Recommender System

for 1 ≤ j ≤ k. The equation doesn’t hold since tj
M+1 +MaxN should be much larger than the sum of any subsets of

S2\vM . The argument shows that vM ∈ S′
2, giving the following expression:MaxN ·

√
M + 1 +

∑
i∈S′

2\vM

ni
j

 · 1√
|S′

2|
=

tj√
M + 1

+MaxN

⇕

MaxN

(√
M + 1−

√
|S′

2|
)

=
tj |S′

2|√
M + 1

−
∑

i∈S′
2\vM

ni
j

(39)

for 1 ≤ j ≤ k. Suppose that |S′
2| is not of size M + 1, then the equation doesn’t hold given that MaxN should be a very

large number. Therefore, we prove by contradiction that S′
2 is of size M + 1 and includes vM . Then the S′

1 formed by
removing vM should be a solution to M-kD-SS.

E.2. Missing Neighbors for GAT

Let Ep(n̂
k
u) be the recovered neighborhood for user u in party p. Denote bkuv ê

k
vj as the reconstructed embedding from

adversarial user j for vj ∈ Nadv. One challenge to the inference attack is the unknown coefficient bkuv. We consider a
simpler problem where bkuv is know in advance for every pair of nodes, and show that even the simplified version belongs to
NP-complete.

Given the coefficient bkuv, the attacker can compute êkvj for vj ∈ Nadv. Then it should find the subset S ∈ Nadv such that∑
vj∈S bkuvj ê

k
vj = Ep(n̂

k
u). This is essentially the k-dimensional Subset Sum (kD-SS) problem that belongs to NP-complete.

E.3. Missing Neighbors for GGNN

Let Ep(n̂
k
u) be the recovered neighborhood for user u in party p. Denote êkvj

as the reconstructed embedding from adversarial
user j for vj ∈ Nadv. The attacker should find the subset S ∈ Nadv such that

∑
vj∈S êkvj

/|S| = Ep(n̂
k
u). The inference

attack for GGNN can be summarized as the multi-dimensional subset average problem.
Problem E.4 (k-dimensional Subset Average (kD-SA)). Input: a set of vectors S = {ni|1 ≤ i ≤ n} ⊂ Zk, for k ≥ 1, and a
target vector t ∈ Zk. Output: YES if there exists a subset S′ ⊆ S such that

∑
i∈S′ ni/|S′| = t, and NO otherwise.

We aim to show the NP-hardness of the problem.

Theorem E.2. The kD-SA problem is NP-complete.

Proof. As we have demonstrated the NP-completeness of M-kD-SS in the proof of Theorem E.1, we will show its reduction
to the kD-SA problem.

kD-SA ∈ NP as we can verity that a subset averages to t in polynomial time. Next we show the reduction of M-kD-SS to
kD-SA.

Let S1 = {ni|1 ≤ i ≤ n} ⊂ Zk, M and t be the input to M-kD-SS. We form S2 by adding to S1 a vector vM consisting
of MaxN · (M + 1), such that MaxN is much larger than any subset sum of absolute values in S1 ∪ {t}. Let S2, and
t/(M + 1) +MaxN be the input to kD-SA. Let S′

1 be the solution to M-kD-SS, and S′
2 is constructed by adding vector

vM to S′
1. The reduction works clearly in polynomial time.

We proceed to claim that S′
1 ∈ M-kD-SS iif S′

2 ∈ kD-SA, i.e., S′
1 is a solution to M-kD-SS iif S′

2 is a solution to kD-SA.

⇒: If S′
1 is a solution to M-kD-SS, then the average of S′

2 is given by:∑
i∈S′

1

ni
j + vMj

 · 1

M + 1
=

tj
M + 1

+MaxN (40)

for 1 ≤ j ≤ k. Thus S′
2 is a solution to kD-SA.

14

Vertical Federated Graph Neural Network for Recommender System

⇐: Let S′
2 be a solution to kD-SA. Suppose vM /∈ S′

2, then:∑
i∈S′

2

ni
j

 · 1

|S′
2|

=
tj

M + 1
+MaxN (41)

for 1 ≤ j ≤ k. The equation doesn’t hold since tj
M+1 +MaxN should be much larger than any other elements in S2. The

argument shows that vM ∈ S′
2, giving the following expression:MaxN · (M + 1) +

∑
i∈S′

2\vM

ni
j

 · 1

|S′
2|

=
tj

M + 1
+MaxN

⇕

MaxN (M + 1− |S′
2|) =

tj |S′
2|

M + 1
−

∑
i∈S′

2\vM

ni
j

(42)

for 1 ≤ j ≤ k. Suppose that |S′
2| is not of size M+1, then the equation doesn’t hold since MaxN ≫ | tj |S

′
2|

M+1 −
∑

i∈S′
2\vM ni

j |.
Therefore, we prove by contradiction that S′

2 is of size M + 1 and includes vM . Then the S′
1 formed by removing vM

should be a solution to M-kD-SS.

F. Proof of Theorem 5.6
Proof. The reconstruction MSE can be written as:

EΦ[∥ΦTΦX −X∥2F] = EΦ[
∑
i

∥ΦTΦXi −Xi∥2F] =∑
i

(XT
i EΦ[Φ

TΦΦTΦ]Xi − 2XT
i E[ΦTΦ]Xi +XT

i Xi)
(43)

where Xi denote the ith column of X.

Then we can compute the expectation of the random matrix. Let A = ΦTΦΦTΦ, and B = ΦTΦ. The expectation of
elements in A is:

E(Aij) =

{ m+1
p + 1, i = j

0, i ̸= j
(44)

The expectation of elements in B is:

E(Bij) =

{
1, i = j
0, i ̸= j

(45)

Plug in the expectation of A and B, the MSE is computed as:

EΦ[∥ΦTΦX −X∥2F] =
(m+ 1)

p
∥X∥2F (46)

G. Convergence Analysis of Ternary Quantization Mechanism
This section provides the convergence analysis of the ternary quantization scheme. The loss function in 5 can be decomposed
as:

L = f(x) =
∑
p

 ∑
(u,v)∈U×Vp

(r̂uv − ruv)
2 +

1

M

∑
v∈Vp

∥e0v∥2


︸ ︷︷ ︸
fp(x)

+
1

N

∑
u∈U

∥e0u∥2 =
∑
p

fp(x) +
1

N

∑
u∈U

∥e0u∥2 (47)

15

Vertical Federated Graph Neural Network for Recommender System

The second term can be ignored since it can be computed at the server. Denote gtp as the unbiased estimation of gradients
using the raw aggregation matrix, g̃tp as the biased estimation of gradients using the projected matrix X̂k, k ∈ [0,K − 1],
and q(g̃tp) as the gradients perturbed by ternary quantization. We start with some properties of the ternary scheme from
Definition 4.2.

Lemma G.1. Under the ternary quantization scheme given by Definition 4.2, it holds that:

E[q(g̃tp)] = g̃tp, E[q(g̃tp)− g̃tp] ≤ |ζp|r2, ∀p, t (48)

where |ζp| denotes the number of parameters.

Proof. The proof follows by directly computing E[qi] and E[q(g̃tp)− g̃tp]:

E[q(g̃tp)] = sign(g̃tp) · r ·
|g̃tp|
r

= g̃tp

E[q(g̃tp)− g̃tp] =
∑
i

r|xi| ≤
∑
i

r2 = |ζp|r2
(49)

We further need the following assumptions for the proof.

Assumption G.2. (1) Each party p has Lipschitz continuous function fp(·) with Lipschitz gradients

∥∇fp(x)−∇fp(y)∥ ≤ L1∥x− y∥ (50)

where x and y denote any vectors of public parameters, and (1) always has at least one optimal solution x∗, i.e.,∑p
i=1 ∇fp(x∗) = 0.

(2) Denote the gradient with regards to parameter as a function of all parameters and the received neighborhood matrix:

gtp = hζt
p
(ξ,X0, ..., XK−1), g̃tp = hζt

p
(ξ, X̂0, ..., X̂K−1),∀t, p (51)

We assume that hζt
p
(x) is a Lipschitz function:

|hζt
p
(x)− hζt

p
(y)| ≤ L2∥x− y∥,∀p, t (52)

(3) The Frobenius norm of aggregated neighborhood matrix is bounded by G:

∥Xk∥2F ≤ G,∀k ∈ [0,K − 1] (53)

(4) There exists a constant M such that the bias of gradient estimation is bounded by:

∥btp∥2 + σ2 ≤ M∥∇fp(x
t)∥2,∀p, t (54)

where btp = E[g̃tp − gtp] is the bias of gradient estimation.

Based on the above assumptions, we can have the following convergence guarantee.

Theorem G.3. Under Assumption G.2, if each party sends to server the unbiased quantized gradients given by Definition
4.2 for aggregation and update, we get:

min
t

E[∥∇f(xt)∥2] ≤ O

(
|ζ|r2 +K(m+ 1)L2G/p

log T

)
(55)

by choosing the learning rate γt = 1
(t+1)ML1

.

16

Vertical Federated Graph Neural Network for Recommender System

Proof. Based on the Lipschitz smoothness assumption, it holds that:

f(xt+1) ≤ f(xt)− γt⟨∇f(xt),
∑
p

q(g̃tp)⟩+
L1(γ

t)2∥
∑

p q(g̃
t
p)∥2

2
(56)

By taking the expectation, we have:

E[f(xt+1)] ≤ E[f(xt)]− γtE[∥∇f(xt)∥2]− γt
∑
p

E⟨f(xt), btp⟩

+
L1(γ

t)2

2

(∑
p

[
E[∥q(g̃tp)− g̃tp∥2] + E[∥f(xt) + btp∥2]

]) (57)

By selecting γt = 1
(t+1)ML1

, it follows that:

(
1

(t+ 1)ML1
− 1

2(t+ 1)2M2L1

)
E[∥∇f(xt)∥2] ≤ E[f(xt)]− E[f(xt+1)] +

∑
p

(
E[∥q(g̃tp)− g̃tp∥2] + E[∥btp∥2]

)
2(t+ 1)2M2L1

(58)
Aggregating both sides over all iterations, we have:

min
t

E[∥∇f(xt)∥2] ≤ O

(∑
p

(
E[∥q(g̃tp)− g̃tp∥2] + E[∥btp∥2]

)
log T

)
(59)

Next, we examine the bound of E[∥btp∥2]. Under the Lipschitz assumption of hζt
p
(x), it holds that:

E[∥btp∥2] ≤
K(m+ 1)L2G

p
(60)

Plug equation 48 and 60 into the convergence function, we have:

min
t

E[∥∇f(xt)∥2] ≤ O

(
|ζ|r2 +K(m+ 1)L2G/p

log T

)
(61)

H. Implementation and Hyper-parameters Setting
The experiment is implemented on Ubuntu Linux 20.04 server with 16-core CPU and 64GB RAM, where the programming
language is Python.

Cross-validation is adopted to tune the hyper-parameter, where the training-validation-testing ratio is 60%-20%-20%. Each
experiment is run for five rounds. The model parameters are updated using Adagrad algorithm (Duchi et al., 2011). Based
on the hyper-parameter optimization, we set embedding dimension D to 6, layer size K to 2, learning rate η to 0.05, and
neighbor threshold thd to 4 for ML-1M and 8 for BookCrossing. We use sigmoid as the activation function.

We consider privacy parameter r from 2 to 50, inverse dimension reduction ratio Nu/q from 1 to 100, and participation
rate from 0.2 to 1. The immediate gradients are clipped within [−0.5, 0.5] so that ∥g1 − g2∥∞ ≤ 1 before applying ternary
quantization.

I. De-anonymization Attack for VerFedGNN
I.1. Attack for GCN

The attacker can obtain the vj’s reconstructed weighted embedding ê0vj = Rec(e0vj/
√

Nvj) from adversarial user j for
vj ∈ Nadv. For any honest user u, given their perturbed embedding aggregation for the initial layer Ep(n̂

0
u), the attacker

17

Vertical Federated Graph Neural Network for Recommender System

could develop a mixed integer programming problem, with binary variables xp ∈ {0, 1}Np
v denoting the presence of item v

in user u’s neighborhood. Denote N p
adv as the items rated by the adversarial users in party p.

objective: ∥Ep(n̂
0
u)−

∑
vj∈Np

adv

xp
vj Rec(e0vj/

√
Nvj)/

√
c)∥1

s.t.:
∑

vj∈Nadv

xvj = c
(62)

for c ∈ [1, Np
v]. As enumerating c from 1 to Np

v has complexity of O(2N
p
v), we set the upper limit of c as 3 to make it

computationally feasible.

I.2. Attack for GAT

The attacker can obtain the vj’s reconstructed weighted embedding ê0vj = Rec(e0vjEp(b
0
uv)) from adversarial user j for

vj ∈ Nadv. One challenge is that the attacker couldn’t obtain the Ep(b
0
uv), u ∈ N (u), v ∈ N p(v) to find the matched

subset items. A efficient solution is to estimate Ep(b
0
uv) with attacker’s local average of connected tuples, and obtain the

estimated ê0vj . The attacker could develop a integer programming.

objective: ∥Ep(n̂
0
u)−

∑
vj∈Np

adv

xp
vj b̄uv ê

0
vj∥1 (63)

where b̄uv denote the average of buv from party p’s view.

I.3. Attack for GNN

The attacker can obtain the vj’s reconstructed weighted embedding ê0vj = Rec(e0vj
) from adversarial user j for vj ∈ Nadv .

Given honest user u’s aggregated embedding Ep(n̂
0
u), the attacking party could develop a integer programming similar to

equation 62.

objective: ∥Ep(n̂
0
u)−

∑
vj∈Np

adv

xp
vj Rec(e0vj)/c)∥1

s.t.:
∑

vj∈Nadv

xvj = c
(64)

for c ∈ [1, Np
v]. We set the upper limit of c as 3 to make it computationally feasible.

J. Experiment Results of Other Studies
J.1. Impact of Random Projection on De-anonymization attack

To investigate the effectiveness of dimension reduction mechanism in terms of privacy protection, we simulate the de-
anonymization attack against VerFedGNN under the case with and without dimension reduction. The impact is conducted
using GCN and GGNN models as in GAT the unknown buv hinders the launch of our attack. Without random projection, the
attach challenge comes from two sources: (i) it’s computationally infeasible to enumerate the combination of all items, and
thus we limit the rated item size no larger than 3 from each party; (ii) only a proportion of item is accessed by the adversarial
users.

The results are reported in Table 4 and 5 assuming pad = 0.5. It can be observed that for BookCrossing, F1 is significantly
reduced by more than 70% for both models. For ML-1M, F1 is reduced by 12% and 30% for GCN and GGNN models,
respectively. The higher accuracy of BookCrossing might result from its sparser interaction matrix that makes it more likely
to infer the rated items.

18

Vertical Federated Graph Neural Network for Recommender System

Table 4. Attack accuracy with and without random projection on ML-1M dataset

Models Precision Recall F1

With Random Projection GCN 0.0176 ±0.0074 0.0107 ±0.0056 0.0132 ±0.0064

GGNN 0.0210 ±0.0041 0.0134 ±0.0035 0.0160 ±0.0027

Without Random Projection GCN 0.0395 ±0.0102 0.0097 ±0.0038 0.0150 ±0.0051

GGNN 0.0511 ±0.0125 0.0148 ±0.0050 0.0228 ±0.0069

Table 5. Attack accuracy with and without random projection on BookCrossing dataset

Models Precision Recall F1

With Random Projection GCN 0.0026 ±0.0010 0.0071 ±0.0052 0.0037 ±0.0018

GGNN 0.0033 ±0.0002 0.0064 ±0.0006 0.0044 ±0.0002

Without Random Projection GCN 0.0361 ±0.0139 0.0077 ±0.0027 0.0127 ±0.0045

GGNN 0.0500 ±0.0176 0.0224 ±0.0108 0.0305 ±0.0129

J.2. Adding Laplace Noise on Gradients

we evaluate the model performance of our framework when Laplace noise is added to the gradients in place of ternary
quantization scheme. We set ϵ = 1 for Laplace mechanism and r = 1

3 for ternary quantization scheme. The results are
presented in the Table 6.

Table 6. Performance of different methods. The values denote the mean± standard deviation of the performance.

Model ML-1M BookCrossing

Laplace
GCN 0.9594 ±0.0014 1.7360 ±0.0114

GAT 0.9318 ±0.0013 1.6936 ±0.0191

GGNN 0.9304 ±0.0008 1.7042 ±0.0164

Ternary Quantization
GCN 0.9152 ±0.0013 1.5906 ±0.0030

GAT 0.9146 ±0.0010 1.5830 ±0.0131

GGNN 0.9076 ±0.0024 1.6962 ±0.0050

J.3. Scalability of VerFedGNN

To validate the scalability of VerFedGNN, we conducted supplementary experiments on Yelp dataset4, with 6,990,280 ratings,
1,987,929 users, and 150,346 items. We followed most of the hyper-parameters in Appendix H, except that embedding
dimension D = 20. The model is successfully deployed on the dataset. We use GCN model as an example to explain the
performance.

VerFedGNN achieves RMSE of 1.312, a small drop from 1.302 of CentralGNN while still a significant improve from 1.41
of MF method. In terms of computation cost, the per epoch computation time is around 18 seconds on client side and 5
seconds on server side.

The per iteration communication cost is 660.9MB per party at participation of 0.5, adding up to 6609MB for all parties.
The transmission time required for this communication cost is 89 seconds under a per-client bandwidth of 100MB/s. The
communication time could be reduced by having each party selecting a portion of common users in each round, rather than
updating on on all users. For example, by choosing 1/20 users in each iteration, the communication time would be reduced
to 4.5 second. The method for conducting user selection will be the subject of future research.

4https://www.yelp.com/dataset

19

Vertical Federated Graph Neural Network for Recommender System

Table 7. Attack accuracy against gradients using GCN model on ML-1M.

pad Methods Precision Recall F1

0.2
FedPerGNN 0.0832 ±0.026 0.0094 ±0.003 0.0168 ±0.006

FedSage+ 0.2383 ±0.102 0.0116 ±0.003 0.0220 ±0.006

VerFedGNN 0.0527 ±0.007 0.0030 ±0.0012 0.0057 ±0.002

0.5
FedPerGNN 0.1033 ±0.013 0.0105±0.001 0.0191 ±0.003

FedSage+ 0.2775 ±0.067 0.0123 ±0.002 0.0236 ±0.004

VerFedGNN 0.0675 ±0.021 0.0036 ±0.003 0.006 ±0.005

0.8
FedPerGNN 0.1061 ±0.019 0.0018±0.004 0.0210 ±0.007

FedSage+ 0.1485 ±0.016 0.0119±0.005 0.0251 ±0.008

VerFedGNN 0.0623 ±0.026 0.0037 ±0.002 0.0070 ±0.003

J.4. De-anonymization Attack against Gradients

To examine the effectiveness of gradient protection, we ran experiments on de-anonymization attack against the user
embedding gradients, with steps given as followed:

• Obtain the gradients for adversarial users.

• Find a subset of adversarial users such that their gradient sum is closest to the victim’s gradient. (For ternary
quantization, we normalized the gradient sum to [−1, 1]).

• The inferred items are those rated by the adversarial users.

Table 7 compares the attack accuracy under three federated methods using GCN model on ML-1M datasets. The ternary
quantization mechanism significantly lowers the risk from inference attack.

20

