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Abstract

Brain-inspired spiking neural networks (SNNs) provide energy-efficient computa-
tion through event-driven processing. However, the shared weights across multiple
timesteps lead to serious temporal feature redundancy, limiting both efficiency and
performance. This issue is further aggravated when processing static images due to
the duplicated input. To mitigate this problem, we propose a parameter-free and
plug-and-play module named Mutual Information-based Temporal Redundancy
Quantification and Reduction (MI-TRQR), constructing energy-efficient SNNs.
Specifically, Mutual Information (MI) is properly introduced to quantify redun-
dancy between discrete spike features at different timesteps on two spatial scales:
pixel (local) and the entire spatial features (global). Based on the multi-scale redun-
dancy quantification, we apply a probabilistic masking strategy to remove redundant
spikes. The final representation is subsequently recalibrated to account for the spike
removal. Extensive experimental results demonstrate that our MI-TRQR achieves
sparser spiking firing, higher energy efficiency, and better performance concur-
rently with different SNN architectures in tasks of neuromorphic data classification,
static data classification, and time-series forecasting. Notably, MI-TRQR increases
accuracy by 1.7% on CIFAR10-DVS with 4 timesteps while reducing energy cost
by 37.5%. Our codes are available at https://github.com/dfxue/MI-TRQR.

1 Introduction

Spiking Neural Networks (SNNs), inspired by the processing mechanisms of biological neural
networks [18], offer an energy-efficient approach to neuromorphic hardware by performing spike-
based accumulation and avoiding the computation of zero-value inputs (i.e., event-driven) [36, 48, 10].
With the release of neuromorphic chips [5, 37] and the proposal of algorithms for various tasks
[56, 11, 87, 79, 50, 63, 73, 64, 55], neuromorphic computing systems are progressing toward practical
deployment in real-world applications [30].

SNNs rely on sequential timesteps to transmit temporal information, and their outputs are typically
averaged across time to improve accuracy [8, 77]. The temporally shared weights induce spatio-
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Figure 1: Visualization of spike features on CIFAR10-DVS: (a) Spike features in PSN [14] and (b)
their MI matrix; (c) Spike features in MI-TRQR and (d) their MI matrix. MI-TRQR reduces the
spiking firing rate by 69.48% (67.07%→ 20.47%) and temporal redundancy by about 24% (computed
from the redundancy reduction between the first timestep and other timesteps, e.g., 0.1507→0.1134).

temporal invariance [22], introducing serious feature redundancy and resulting in a high spiking firing
rate [68, 25], as shown in Fig. 1(a). This phenomenon degrades energy efficiency and compromises
the compactness of learned features. When processing static images, existing methods often duplicate
the same input across all timesteps [12, 20], further exacerbating temporal redundancy in SNNs [68].
This practice has been shown to impair both the energy efficiency and overall performance of SNNs
[48, 38, 69].

Energy efficiency has been a longstanding concern in recent research [54, 49, 46, 4], motivating
the research and development of diverse strategies aimed at reducing redundancy. Kim et al. [25]
found that features at later timesteps had minimal impact on the final predictions, highlighting
considerable temporal redundancy. Yao et al. [68] conducted a systematic yet qualitative analysis on
redundancy. Qin et al. [44] provided a quantitative yet indirect strategy by defining similar spikes
through the cosine similarity of their membrane potential. We argue that it is insufficient to quantify
the redundancy between the spike features due to two intrinsic faults: (1) the inability of a linear tool
to capture correlations between floating-point membrane potentials, and (2) the quantization error
caused by the discontinuous and nonlinear property of the spiking activation function. The absence of
direct redundancy quantification significantly hinders progress toward highly energy-efficient SNNs.

To directly and accurately quantify redundancy between discrete spike features, we propose to use
Mutual Information (MI), which is a principled and widely used metric [43, 81, 82, 57]. Existing
metrics, such as Pearson correlation and Euclidean distance, measure basic similarity but fall short
in capturing the complex and non-linear similarity between high-dimensional spike features [40].
In contrast, Mutual Information (MI) captures complex statistical dependencies through probability
distribution analysis, making it well-suited for quantifying redundancy between the high-dimensional
discrete spike features. In this work, we calculate MI between spike features at different timesteps, as
shown in Fig. 1(b) and (d).

Previous studies analyzing neural recordings from various monkey brain regions have shown that spike
features are significantly less redundant with activity-dependent depression [15]. Predictive coding
has also demonstrated the ability to learn efficient visual representations by removing pixel-wise
redundant spikes [2, 39]. Inspired by these works, we propose a parameter-free, plug-and-play MI-
based Temporal Redundancy Quantification and Reduction (MI-TRQR) module, which is seamlessly
integrated into the SNNs. Specifically, MI is used to quantify temporal redundancy between high-
level spike features on pixel-level (local) and the entire spatial scale (global). These multi-scale
redundancy quantifications are aggregated to compute a pixel-wise probability for removing spikes,
which is achieved using a binary mask. Existing SNNs typically produce final representations
by averaging outputs across timesteps, whether for classification [9, 12, 20] or forecasting [35],
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implicitly assuming a uniform temporal contribution or information distribution. However, due to
the non-uniform information distribution after spike removal, we recalibrate the weights for the
final representation. As illustrated in Fig. 1, MI-TRQR reduces spiking firing rate and temporal
redundancy. The proposed MI-TRQR is validated on neuromorphic data classification, static image
classification, and time-series forecasting tasks. Experimental results demonstrate that our MI-TRQR
obtains more compact representations, improving both performance and energy efficiency. Our
contributions are as follows:

• We use MI to directly and accurately quantify temporal redundancy between high-
dimensional discrete spike features at multiple spatial scales in SNNs.

• We propose a parameter-free, plug-and-play MI-TRQR module, which removes pixel-wise
redundant spikes based on the multi-scale redundancy quantification. The weight of the final
representation is recalibrated to balance the information distribution.

• We demonstrate the significant advantages of our approach by comparing the energy con-
sumption of MI-TRQR with baseline methods, showing a clear improvement. Extensive
experiments across a range of tasks confirm that our method achieves higher accuracy and
enhanced energy efficiency.

2 Related Work

Redundancy is a critical factor that must be addressed when designing efficient SNNs. In the
following, we briefly review some representative studies that focus on analyzing and/or reducing
redundancy in SNNs.

2.1 Redundancy Analysis

Kim et al. [25] investigated the temporal information distribution and identified the Temporal
Information Concentration (TIC) phenomenon, wherein information is highly concentrated in the
early timesteps after training. This observation highlights the presence of serious temporal redundancy.
Yao et al. [68] conducted a systematic analysis, particularly for event-based vision tasks. They
discussed three key questions (’which’, ’why’, and ’how’) and concluded that redundancy primarily
stems from the spatio-temporal invariance caused by temporally shared weights in SNNs [22]. Qin et
al. [44] introduced the concept of a spike cluster, defined based on the cosine similarity of membrane
potentials across timesteps. Despite substantial progress in redundancy-related research in recent
years, direct quantification of redundancy between spike features across timesteps remains largely
unexplored. In this paper, we address this gap by using MI to directly quantify the redundancy
between spike features at different timesteps.

2.2 Redundancy Reduction

Many methods have been proposed to mitigate redundancy in different ways. Perez et al. [42]
introduced an early sparse backpropagation algorithm tailored for SNNs. Subsequent works further
applied sparsity regularization during backpropagation to enhance the energy efficiency of SNNs
[66, 75]. A recent series of studies [72, 71, 67, 68, 65] presented a cohesive exploration of atten-
tion mechanisms in SNNs. These studies used diverse attention designs to strategically modulate
membrane potential distributions and spiking responses across various dimensions, such as spatial,
temporal, channel-wise, and/or their combinations. They underscored the transformative impact
of attention mechanisms in SNNs, leading to more efficient and accurate models. However, such
attention modules inevitably increase network complexity and introduce additional multiplications,
which may raise hardware costs and hinder deployment on resource-limited edge devices. The
temporal self-erasing method dynamically adjusted the regions of interest for different timesteps
[34]. Another widely adopted approach is to apply penalty functions to encourage the deep net-
work to learn sparser spike representations [41, 74, 27, 78]. These methods often require careful
tuning of many hyperparameters, which may increase the training complexity. In this paper, we
develop a parameter-free and plug-and-play module to enable SNNs to learn compact and powerful
representations.
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Figure 2: Our MI-TRQR module preserves the original spike features at the first timestep. At
subsequent timesteps, local and global redundancy quantification are first aggregated with a training
factor. This aggregation is then used to compute a probability that guides the mask generation. The
generated mask is responsible for removing pixel-wise redundant spikes, aiming to achieve temporal
redundancy reduction. Weight recalibration balances the non-uniform information distribution.

3 Methodology

In this section, we introduce the proposed MI-TRQR module, which is integrated after the final stage
to process the high-level features [83], as shown in Fig. 2. Section 3.1 details how MI is used to
quantify temporal redundancy between spike features. Section 3.2 introduces the temporal redundancy
reduction strategy, removing redundant spikes using the multi-scale redundancy quantification.
Section 3.3 recalibrates the weight of the final representation based on the information density.

3.1 Temporal Redundancy Quantification

MI is particularly effective for evaluating similarity between discrete variables, as elaborated in
Appendix A. Therefore, MI is a suitable metric to quantify temporal redundancy between binary spike
features. Given the four-dimensional binary spike feature S ∈ {0, 1}T×C×H×W where T,C,H,W
indicate the timestep, channel, height, and width respectively, we define two terms to quantify
temporal redundancy.

Definition 1. Global redundancy quantifies the overall temporal redundancy between spike features
at two different timesteps and is denoted as Rg . It is computed as follows:

Rg(i, j) = I(Si;Sj) =
∑
si∈Si

∑
sj∈Sj

p(si, sj) log

(
p(si, sj)

p(si)p(sj)

)
, (1)

where I(Si;Sj) denote MI between spiking features Si,Sj ∈ {0, 1}C×H×W at timestep i and
j. si and sj represent specific values of Si and Sj . p(si) and p(sj) are the marginal probability
distributions of si and sj , respectively. p(si, sj) is their joint probability distribution. Rg(i, j) ≥ 0 is
a float scalar that quantifies the degree of global redundancy between spike features Si and Sj .

Definition 2. Local redundancy quantifies temporal redundancy at the pixel scale. For each spatial
location, we compute the MI between the local spike vectors at two timesteps:
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Rl
h,w(i, j) = I(Si,h,w;Sj,h,w) =

∑
si∈Si,h,w

∑
sj∈Sj,h,w

p(si, sj) log

(
p(si, sj)

p(si)p(sj)

)
, (2)

where ∀h ∈ [1, H],∀w ∈ [1,W ]. Si,h,w,Sj,h,w ∈ {0, 1}C are the raw pixel (spatial location
(h,w)) at timestep i and j, respectively. Rl

h,w(i, j) ≥ 0 is also a float scalar, indicating the pixel-
wise redundancy between Si,h,w and Sj,h,w. It corresponds to the (h,w)-th element of the local
redundancy matrix Rl(i, j) ∈ RH×W .

3.2 Temporal Redundancy Reduction

Based on the redundancy quantification between spike features at multiple spatial scales, we derive a
probability that estimates the likelihood of each pixel-wise spike being redundant. This probability is
then used to generate a pixel-wise temporal redundancy mask, which selectively removes redundant
spikes.

Temporal redundancy-guided probability derivation. The global redundancy between spike
features S1 and St (t ∈ [2, T ]) is served as the global probability factor for spikes removal, denoted
by pgt = Rg(1, t). We observe that the MI of a feature with itself I(S1,S1) is not equal to one.
This is evident from the varying diagonal elements in the MI matrix shown in Fig. 1. Therefore, we
normalize the global probability factor pgt as follows:

pgt =
Rg(1, t)

Rg(1, 1)
=

I(S1;St)

I(S1;S1)
, (3)

where pgt ∈ [0, 1), since I(S1;St) < I(S1;S1) when t ̸= 1, as shown in the Fig 1(b).

Similarly to the computation of pgt in Eq. 3, the local probability factor plt,h,w is defined as follows:

plt,h,w =
Rl

h,w(1, t)

Rl
h,w(1, 1)

=
I(S1,h,w;St,h,w)

I(S1,h,w;S1,h,w)
, (4)

where plt,h,w ∈ [0, 1), similar to the pgt .

In addition, the TIC phenomenon demonstrates that information gradually concentrates on the first
timestep as training goes on [25]. Accordingly, we retain the spikes at the first timestep, as illustrated
in Fig. 2. However, when removing spikes, it is crucial to consider the training epoch, as the
informative spikes are still distributed across the later timesteps during the early training stages. Thus,
we introduce a training-dependent factor pe into the pixel-wise probability pt,h,w:

pt,h,w = pgt × plt,h,w × pe, pe = e/E, (5)

where e and E denote the current training epoch and the total number of epochs, respectively.

Temporal redundancy-based mask. We use the pixel-wise probability pt,h,w to generate a binary
mask at timestep t:

M t =

{
{1}C×H×W if t = 1

[M t,h,w], otherwise
, M t,h,w ∼ B(C, 1− pt,h,w), (6)

where M t ∈ {0, 1}C×H×W denotes the mask at timestep t. M t,h,w ∈ {0, 1}C represents the pixel
at spatial location (h,w). B(·, ·) denotes the Binomial distribution. The spike removal operation using
the mask M t is expressed as:

S̃t = St ⊙M t, (7)

where S̃t denotes the output spike features at timestep t, and ⊙ is the element-wise multiplication.
The mask at the first timestep, M1, consists entirely of one, thereby preserving the original spikes.
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Algorithm 1 The implementation of removing pixel-wise redundant spikes

1: Input: Spike feature S ∈ {0, 1}T×C×H×W , the training factor pe

2: Output: Spike feature S̃ ∈ {0, 1}T×C×H×W

3: Obtain the number of spatial pixels: N = H ×W
4: Flatten spatial dimension: S′ = reshape (S, (T,C,N))
5: Define a matrix filled with 1 for redundancy quantification: ℜ′ ← ones (T,N )
6: for t = 1→ T do
7: Compute global redundancy: Rg(1, t) = I(S′

1;S
′
t)

8: for n = 1→ N do
9: Compute local redundancy: Rl

n(1, t) = I(S′
1,n;S

′
t,n),

10: Get the pixel-wise combined redundancy metric: ℜ′[t, n] = Rg(1, t)×Rl
n(1, t)

11: end for
12: end for
13: Unfold spatial dimension: ℜ = reshape (ℜ′, (T,H,W ))
14: Obtain a T ×N probability matrix: P = ℜ[:, :, :]/ℜ[0, ; , :]× pe

15: Set the probability at the first timestep into zeros: P [0]=0
16: Generate mask: M = [M t,h,w], M t,h,w ∼ B(C, 1− P [t, h, w]),
17: Get the output spike feature with element-wise multiplication: S̃ = S ⊙M

For t ∈ [2, T ], zero values in M t convert active spikes (1) into inactive states (0). Consequently, a
proportion (pt,h,w) of spikes at the pixel St,h,w is removed. The pseudo-code for spike removal is
given in Alg. 1. Spike removal also reduces the spiking firing rate in earlier layers, which is analyzed
in Appendix B.

3.3 Weight Recalibration

The spike removal at later timesteps introduces a significant divergence in information distribution
across timesteps. Consequently, it is unsuitable to simply average temporal outputs for the final
representation, as done in existing works [12, 20, 35]. To address this issue, we adaptively recalibrate
the weight of the final representation using the normalized network spiking firing rate:

αt =
frnett∑T
τ=1 fr

net
τ

, frnett =

∑L
l=1 N

s
l,t∑L

l=1 N
e
l,t

, (8)

where at and frnett denote the weight and network spiking firing rate at timestep t, respectively. Ns
l,t

indicates the number of spikes, and Ne
l,t indicates the total number of elements, both at timestep t and

layer l. L is the total number of layers. In this way, the final representation P is obtained as follows:

P =

T∑
t=1

(αt ×Pt) , (9)

where Pt denotes the representation at timestep t.

4 Experiments

In this section, we report the experimental results for MI-TRQR on both classification and time-series
forecasting tasks. The operation of removing spikes is only used during training. The experimental
setup is described in Appendix C.1.

4.1 Comparison with Other Methods

Neuromorphic data classification. On CIFAR10-DVS, MI-TRQR consistently surpasses PSN [14]
in both accuracy and energy efficiency across different timesteps, as shown in Tab. 1. When T=4,
PSN vs. MI-TRQR: Accuracy, 82.3% vs. 83.9%(+1.6%); Power, 0.72mJ vs. 0.45mJ (-0.27mJ,
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Table 1: Comparison with other methods on neuromorphic datasets. Power denotes the energy cost
of inference one test sample. ↑ and ↓ indicate desired metric direction. Results denoted by ♠ were
obtained through our reimplementation.

Dataset Model Network T Accuracy (↑%) Power (↓mJ)
C

IF
A

R
10

-D
V

S
DeepTAGE [33] VGG-11 10 81.2 -

TIM [53] Spikformer 10 81.6 -
SEMM [85] Spikformer-2-256 16 82.9 -

RM-SNN [71] VGG 10 82.9 -
STAtten [29] SpikingReformer-4-384 16 83.9 -

QKFormer [84] HST-2-256 16 84.0 -
CLIF [21] VGG 10 86.1 -

PSN [14] VGG
4 82.3 0.72
8 85.3 1.28

10 85.9 1.20

MI-TRQR (ours) VGG
4 83.9±0.05 0.45±0.06
8 86.2±0.12 0.74±0.07

10 86.5±0.13 0.84±0.07

Gait

ASA [68] 3-Layer SNN 10 83.2 -
3D GCN [60] - 1 86.0 -
DSNN [70] 4-Layer SNN - 90.2 -
PSN [14] 3B-Net 10 88.8♠ 0.19

MI-TRQR (ours) 3B-Net 10 90.6±0.13 0.13±0.08

Table 2: Comparison with other methods on ImageNet.

Method Model Network T Accuracy (↑%) Power (↓mJ)

ANN2SNN

Hybird [47] ResNet34 250 61.48 -
Tandem [62] VGG-16 16 65.08 -

Two-stage [61] ResNet34 16 67.77 -
Optimal [3] ResNet34 32 69.37 -

Direct
Training

OSR+OTS [89] ResNet34 4 67.54 -
EnOF-SNN [17] ResNet34 4 67.40 -

rateM [76] MS-ResNet34 4 70.01 -
GAC-SNN [45] MS-ResNet34 6 70.42 3.38
IMP+LTS [52] SEW-ResNet50 4 71.83 3.11

PSN [14]
SEW-ResNet18 4 67.63 2.42
SEW-ResNet34 4 70.54 3.70
SEW-ResNet50 4 72.01♠ 4.11

Direct
Training MI-TRQR (ours)

SEW-ResNet18 4 68.28±0.12 1.92±0.07
SEW-ResNet34 4 71.06±0.11 3.06±0.09
SEW-ResNet50 4 73.23±013 3.09±0.08

↓37.50%). Similar advantages of our MI-TRQR are observed when T=8,10. MI-TRQR shows 1.8%
accuracy improvement and 31.6% energy reduction over PSN on Gait (T=10).

Static data classification. On ImageNet, MI-TRQR consistently outperforms PSN across different
backbones, as shown in Tab. 2. For example, with ResNet50, PSN vs. MI-TRQR: Accuracy, 72.01%
vs. 73.23% (+1.22%); Power, 4.11mJ vs. 3.09mJ (-1.02mJ, ↓ 24.82%). More experiments on
CIFAR10/100 are provided in Appendix C.2.1. On CIFAR10, PSN vs. MI-TRQR: Accuracy, 95.32%
vs. 95.83% (+0.51%); Power, 1.32mJ vs. 0.35mJ (-0.97mJ, ↓ 73.48%).

Time-series forecasting. In Tab. 3, we show the superiority of our MI-TRQR over CPG-PE [35] in
two metrics (R2 and RSE) on the Electricity dataset with various prediction lengths 6,24,48,96.
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Table 3: Results on Electricity. Our results are averaged across 3 random seeds.

Method Metric Eletricity Avg.
6 24 48 96

Spikformer [86] R2↑ .956 .955 .953 .943 .952
RSE ↓ .371 .375 .386 .450 .396

CPG-PE [35] R2↑ .971 .971 .968 .962 .968
RSE ↓ .304 .308 .311 .439 .341

MI-TRQR (ours) R2↑ .973 .972 .972 .967 .971
RSE ↓ .292 .307 .297 .368 .316

Table 4: Impact of local redundancy (LR) and global redundancy (GR) on CIFAR10-DVS.

Method LR GR T Accuracy (↑%) Firing rate (↓%) Training time

PSN [14] - - 4 82.3 14.47 24.1s

MI-TRQR (ours)
✓ - 4 83.2 (↑0.9) 9.73 (↓32.76) 51.1s
- ✓ 4 83.4 (↑1.1) 10.91 (↓24.60) 24.8s
✓ ✓ 4 84.0 (↑1.7) 8.35 (↓42.29) 51.9s

Table 5: Impact of MI-TRQR placement on CIFAR10-DVS.

Method Placement T Accuracy(↑%) Firing rate(↓%) Training time

PSN [14] - 4 82.3 14.47 24.1s

MI-TRQR(ours)

After layer 4 4 82.8(↑0.5) 11.52(↓20.39%) 597.3s
After layer 6 4 83.4(↑1.1) 10.18(↓29.65%) 171.6s

After layer 6+8 4 83.5(↑1.2) 9.74(↓32.69%) 222.6s
After layer 8(last) 4 84.0(↑1.7) 8.35(↓42.29%) 51.9s

4.2 Ablation Study

We conducted ablation studies on CIFAR10-DVS to verify the impact of weight recalibration and the
effectiveness, efficiency, and optimal placement of the MI-TRQR module. Additional ablation results
on CIFAR10 are provided in Appendix C.2.2. More ablation studies are provided in Appendix C.3.

Effectiveness. In Tab. 4, we quantitatively show the gains of incorporating local and/or global
redundancy for learning more compact representations. By leveraging multi-scale redundancy, MI-
TRQR obtains the best accuracy of 84.0%(+1.7%). We also report the training time per epoch to
provide a comprehensive comparison.

Efficiency. In Tab. 4, we can see that using multi-scale redundancy reduces the spiking firing rate by
42.29% (from 14.47% to 8.35%). The detailed spike counts and firing rates are presented in Fig. 3.
Key observations are: (1) MI-TRQR consistently fires fewer spikes than PSN at each timestep; (2)
its spike removal propagates from deeper layers to shallower layers; (3) it consistently reduces the
spiking firing rate across various datasets (CIFAR10 in Appendix C.2.2).

MI-TRQR placement. In Tab. 5, we report the results when MI-TRQR is integrated after different
convolutional layers. Results show that positioning MI-TRQR after the last stage (layer 8) yields
the biggest advantages in both accuracy and firing rate compared to PSN, confirming the benefit of
targeting MI-TRQR to high-level features. In addition, the computation of probability pt,h,w in Eq.
5 is spatiotemporally dependent, with a computational complexity of O(T ) for global redundancy
and O(T ×H ×W ) for local redundancy. Inserting the module into earlier layers leads to a higher
computational cost. We provide the corresponding time of training an epoch.

Weight recalibration. Tab. 6 presents the impact of weight recalibration on CIFAR10-DVS. MI-
TRQR with reweighting yields the highest accuracy while consuming the least energy.
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(b) Number of spikes during training at t=2.
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(c) Number of spikes during training at t=3.
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(d) Number of spikes during training at t=4.
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(f) Layer-wise spiking firing rate of VGG.

Figure 3: Comparison of the number of spikes and firing rate in different methods on CIFAR10-DVS.

Table 6: Impact of weight recalibration on CIFAR10-DVS.

Method Reweighting T Accuracy (↑%) Firing rate (↓%)

PSN [14] - 4 82.3 14.47

MI-TRQR (ours) - 4 83.4(↑1.1) 9.22(↓36.28)
✓ 4 84.0(↑1.7) 8.35(↓42.29)

4.3 Visualization

CIFAR10-DVS. In Fig. 1, we can observe that MI-TRQR reduces the spiking firing rate by 69.48%
(67.07%→ 20.47%) and temporal redundancy by approximately 24% (e.g., 0.1507→0.1134) even
at a shallow layer.

ImageNet. In Fig. 4, we visualize spike features and their MI matrices. We can see that MI-TRQR
significantly decreases the temporal redundancy between spike features by 79% (e.g.,) and reduces
the average spiking firing rate by 18.39% (23.34% vs. 28.60%). These results demonstrate that
MI-TRQR can effectively remove redundant spikes and enhance representation compactness.

5 Conclusion and Limitations

In this paper, we propose an effective and efficient module, named MI-TRQR. Based on the temporal
redundancy quantification using MI, MI-TRQR identifies and removes pixel-wise redundant spikes,
enabling SNNs to learn more compact and powerful representations. Experimental results on various
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(a) PSN ResNet18  Average firing rate=28.60%
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(c) MI-TRQR ResNet18  Average firing rate=23.34%

(b) PSN MI matrix
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Figure 4: Visualization of spike features after stage 4 of ResNet18 on ImageNet: (a) Spike features in
PSN and (b) their MI matrix; (c) Spike features in MI-TRQR and (d) their MI matrix. For a single
sample, the spike features has shape [T,C,H,W ] (timestep, channel, height, width). Since T = 4,
we first split it into four [C,H,W ] features (shown on the left). We plot each channel in a small grid.
We report the average spiking firing rates under the spike features. MI-TRQR reduces the spiking
firing rate by 18.39% (28.60%→ 23.34%) and temporal redundancy by about 79% (computed from
the redundancy reduction between the first timestep and other timesteps, e.g., 0.5837→0.1081)

tasks demonstrate that MI-TRQR consistently outperforms baseline methods in both accuracy and
energy efficiency. To the best of our knowledge, this is the first study to use MI to quantify redundancy
between spike features in SNNs, providing a foundation for subsequent related research.

Limitations Although our method does not introduce extra cost during inference, it requires comput-
ing mutual information between spike features during training, resulting in increased computational
cost and longer training time.
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Figure 5: Forward and backward process in vanilla and MI-TRQR method. We detail the forward
and backward propagation processes of a layer of the SNN network, only considering the calculation
in the spatial domain. When performing convolution calculations, the padding (without drawing)
and stride are set to 1. A masked spike S11 is marked in red. The differences in the computing
formulations between different methods are enclosed by boxes of various colors.

A Mutual Information

Mutual information (MI), first formalized in Shannon’s information theory [51], provides a general-
ized dependence measure between random variables. Unlike measures limited to linear relationships,
MI captures complex statistical dependencies through probability distribution analysis. This property
makes it suitable for quantifying similarity between discrete spike features in SNNs. The MI between
two spike features S and S′ is expressed as:

I(S;S′) =
∑
s∈S

∑
s′∈S′

p(s, s′) log

(
p(s, s′)

p(s)p(s′)

)
(10)

where s and s′ indicate the values in feature S and S′, respectively. p(s, s′) is the joint probability
distribution, and p(s) and p(s′) are the marginal probability distributions. MI satisfies two fundamen-
tal properties: (1) Non-negativity (I(S;S′) ≥ 0) ensures meaningful information measures, and a
higher MI value indicates greater similarity. I(S;S′) = 0, if and only if S and S′ are independent
random variables. (2) Symmetry (I(S;S′) = I(S′;S)) reflects bidirectional dependence.

B Analysis of MI-TRQR

B.1 Analysis of Forward Propagation

SNNs become a promising alternative to ANNs, contributing to their advantages in energy efficiency.
Unlike ANNs, SNNs achieve inter-layer communication with binary signals (0-nothing or 1-spike)
[36]. As a kind of neuromorphic computing algorithm, SNNs only compute sparse spike-based
accumulation (AC) and avoid handling the zero-value inputs [48], such as the calculation of membrane
potential U = WS, as shown in Fig. 5. The energy consumption of SNNs EConv is influenced
by the spiking firing rates of input features. Referring to the equation in [45], the inference energy
consumption of a network is computed as follows:

16



Enet = EMAC · FL1
Conv + EAC · T · (

N∑
n=2

FLn
Conv · frnConv +

M∑
m=1

FLm
FC · frmFC) (11)

where FLn
Conv, FLm

FC , frnConv, and frmFC are the FLOPs and spiking firing rate of the n-th
convolution and m-th FC layer. N and M are the total number of convolution and FC layers. EMAC

and EAC are the energy consumption of MAC and AC operation. Following the works [74, 19], we
assume that EMAC = 4.6pJ and EAC = 0.9pJ .

In forward propagation, our MI-TRQR removes some spikes. We can see the effect on the calculation
of membrane potential U l+1

22 :

Vanilla: U l+1
22 = W 11 +W 13 +W 32 (12)

MI-TRQR: U l+1
22 = W 13 +W 32 (13)

where l indicates the layer number. We can see that MI-TRQR requires less accumulation than the
vanilla method.

B.2 Analysis of Backward Propagation

In the backward propagation, we discuss the partial derivative of loss on different variables with
different methods in the following three cases. Firstly, we denote the partial derivative of loss on the
l + 1-th layer membrane potential U l+1 as:

δ =
∂L

∂U l+1
(14)

where δ is the partial derivative, as shown in Fig. 5.

Case 1: The partial derivative of loss on weight. Similar to ANNs, the partial derivative is:

∂L

∂Wm,n
=

H∑
i=1

W∑
j=1

δi,jSi+m−2,j+n−2 (15)

where H and W indicate the height and width of features. The difference is that the spike feature S
is a sparse binary tensor, meaning the computing of Eq. 15 is spike-based accumulation. For example,
with different methods, the partial derivative of loss on W 22 is:

Vanilla:
∂L

W 22
= δ11 + δ13 + δ32 + δ44 (16)

MI-TRQR:
∂L

W 22
= δ13 + δ32 + δ44 (17)

We can observe that the gradient calculation of MI-TRQR requires less accumulation than the vanilla
method, meaning the parameter update in MI-TRQR removes the redundant/invalid gradient in the
vanilla method.

Case 2: The partial derivative of loss on spike features is computed with:

∂L

∂Sm,n
=

k∑
i=1

k∑
j=1

W i,jδm−i+2,n−j+2 (18)

where k indicates the size of the convolution kernel. However, the calculation of this partial derivative
has a precondition: The input feature needs to involve the forward calculation, which means that the
input feature must be non-zero. In other words, the gradient of the zero input is zero. Thus, the partial
derivative of loss on the spike S11 is:
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Vanilla:
∂L

S11
= W 11δ22 +W 12δ21 +W 21δ12 +W 22δ11 (19)

MI-TRQR:
∂L

S11
= 0 (20)

We can see that the partial derivative of loss on the removed spike in the two methods is completely
different. Thus, we perceive that removing a spike means removing its derivative/gradient.

Case 3: The partial derivative of loss on the l-th layer membrane potential U l is easily obtained
based on case 2. This partial derivative can be represented as:

∂L

∂U l
=

∂L

∂S

∂S

∂U l
=

∂L

∂S
Hea′(U l) (21)

where Hea′(U l) indicates the derivative of Hea(U l). Specifically, with different methods, the partial
derivative of loss on the membrane potential U l

11 is:

Vanilla:
∂L

U l
11

=
∂L

∂S11
Hea′(U l

11) (22)

MI-TRQR:
∂L

U l
11

= 0× Hea′(U l
11) = 0 (23)

We can see that the removed spike can influence the gradient of the membrane potential at the previous
layer.

Summary. Through the above formula derivation and analysis, we can conclude that removing the
spikes after the last convolutional layer can affect the derivative of the previous membrane potential,
and further affect the weight gradient and parameter updates at the previous layers. In this way,
MI-TRQR can learn compact and powerful representations in SNNs.

C Experiments

C.1 Experimental Setup

Datasets.

CIFAR10/100 [26], two small datasets, contain 50,000 training and 10,000 test samples. ImageNet
[6] is a large-scale dataset of about 1.3 million images (1.25 million for training and 0.5 million for
testing) across 1,000 classes. CIFAR10-DVS [31], an event-stream dataset converted from CIFAR10
with dynamic vision sensors, includes 10,000 event streams in 10 classes. DVS128 Gait [59]
contains 4200 samples in 20 classes from 21 volunteers. Electricity [28] captures hourly electricity
consumption measured in kilowatt-hours (kWh).

Implementation. We adopt the PSN [14] and STMixer [7] as baselines of the classification task.
We adopt the CPG-PE [35] as the baseline of the time-series forecasting task. We follow their
experimental setup, such as network architecture, training methods, data preprocessing, etc. All
experiments were conducted on a Ubuntu 20.04.6 LTS server with 8 NVIDIA GeForce RTX 3090.
The MI dependence is calculated with the TorchMetrics package.

For DVS128 Gait, we designed a small 3B-Net. Its structure is c128k3s1-BN-PLIF-SEW Block-
MPk2s2*3-FC20. Here, c128k3s1 denotes a convolution layer with channels 128, kernel size 3, and
stride 1. PLIF refers to the PLIF spiking neuron [13]. MPk2s2 represents the max pooling with kernel
size 2 and stride 2. SEW Block is a custom-designed SEW block, expressed as c32k3s1-BN-PLIF-
c128k3s1-BN-PLIF. The symbol *3 indicates that the structure in is repeated three times.
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Table 7: Comparison with other methods on CIFAR10/100.

Dataset Method Backbone T Accuracy (↑%) Power (↓mJ)

C
IF

A
R

10

TAB [24] ResNet19 4 94.76 -
RevSFormer [80] RevSFormer-4-384 4 95.34 -
TCJA-SNN [88] ResNet18 4 95.60 -

PSN [14] Modified PLIF Net 4 95.32 1.32

MI-TRQR (Ours) Modified PLIF Net 4 95.83±0.10 0.35±0.05

STATA [90] Spikingformer 4 95.8 -
STAtten [29] SDT-2-512 4 96.03 -
STMixer [7] STMixer-4-384-32 4 96.01 0.95

MI-TRQR (Ours) STMixer-4-384-32 4 96.64±0.12 0.51±0.08

C
IF

A
R

10
0

SLT-TET [1] ResNet19 4 75.01 -
NDOTA [23] VGG11 4 76.18 -

LietE-SNN [32] - 6 77.10 -

PSN♠ [14] ResNet18 4 75.75 0.43
ResNet19 4 76.14 1.78

MI-TRQR (Ours) ResNet18 4 76.70±0.12 0.31±0.08
ResNet19 4 77.70±0.10 1.24±0.07

ST [16] ST-4-384 4 79.69 -
SNN-ViT [58] SDT 4 80.1 -

SDT+SEMM [85] SDT 4 80.26 -
STMixer [7] STMixer-4-384-32 4 81.87 1.08

MI-TRQR (Ours) STMixer-4-384-32 4 83.06±0.11 0.77±0.08

Table 8: Impact of local redundancy (LR) and global redundancy (GR) on CIFAR10.

Method LR GR T Accuracy (↑%) Firing rate (↓%)

PSN [14] - - 4 95.32 16.39

MI-TRQR (ours)
✓ - 4 95.53 (↑0.21) 10.59 (↓35.39)
- ✓ 4 95.77 (↑0.45) 8.98 (↓45.21)
✓ ✓ 4 95.83 (↑0.51) 5.36 (↓67.30)

C.2 Experimental Results on CIFAR10/100

C.2.1 Comparison with other methods

CIFAR10. Tab. 7 presents the classification performance and energy consumption of various
methods on CIFAR-10. MI-TRQR achieves 95.83% accuracy, outperforming PSN (95.32%) by
+0.51% while reducing energy consumption by 73.48% (0.35mJ vs. 1.32mJ). With the STMixer-
4-384-32 backbone, MI-TRQR attains 96.64% accuracy, surpassing STMixer (96.01%) by 0.63%
while reducing energy consumption by 46.3% (0.51 mJ vs. 0.95 mJ).

CIFAR100. As shown in Tab. 7, MI-TRQR consistently outperforms PSN across both ResNet18 and
ResNet19 backbones, achieving 76.70% and 77.70% accuracy respectively, compared to 75.75% and
76.14% of PSN, while also reducing power consumption from 0.43 mJ and 1.78 mJ to 0.31 mJ and
1.24 mJ. With the STMixer-4-384-32 backbone, MI-TRQR attains 83.06% accuracy, outperforming
the original STMixer (81.87%) by 1.19% while reducing energy consumption by 28.70% (0.77 mJ
vs. 1.08 mJ).

C.2.2 Ablation Study on CIFAI10

We conduct ablation studies on CIFAR10 to validate the effectiveness of our redundancy designs in
MI-TRQR. As summarized in Tab. 8, both local and global redundancy contribute to performance
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(a) Number of spikes during training at t = 1.
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(b) Number of spikes during training at t = 2.
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(c) Number of spikes during training at t = 3.
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(d) Number of spikes during training at t = 4.
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(e) Network spiking firing rate during training.
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(f) Layer-wise spiking firing rate of the network.

Figure 6: Comparison of the number of spikes and firing rate in different methods on CIFAR10.

improvements over the PSN [14]. Using local redundancy alone improves accuracy by 0.21% while
reducing the firing rate by 35.39%. Feature redundancy demonstrates stronger effects, achieving a
0.45% accuracy gain with 45.21% fewer spikes. Notably, combining both mechanisms yields the best
results - our full model attains 95.83% accuracy (+0.51%) with only 5.36% firing rate, representing
a 67.30% reduction in spike activity. The number of spikes and firing rates in various methods are
shown in Fig. 6. Specifically, the number of spikes at four timesteps during training is shown from
Fig. 6a to 6d. It can be seen that our MI-TRQR consistently fired fewer spikes than PSN at each
timestep. The overall spiking firing rates during training are plotted in Fig. 6e. The firing rate of our
MI-TRQR is reduced by 67.29% compared to that of PSN (5.36% vs. 16.39%). The layer-wise firing
rates of the Modified PLIF Net are presented in Fig. 6f. Our MI-TRQR has a lower firing rate than
PSN at every layer of the Modified PLIF Net.

C.3 Extended Ablation Studies

C.3.1 Spike normalization

To verify the effect of spike normalization in Eq. 5, we apply identical removal ratios to all spikes.
Specifically, after obtaining the mask M t with pt,,h,w, we shuffle its elements to generate a random
mask for spike removal. Results in Tab. 9 indicate that both the MI-based ratio and the removed
spikes play essential roles.

In Tab. 10, we evaluate different static penalty factors that increase with timesteps and serve as a
regularizer on the number of spikes. The results show that these static penalties effectively suppress
redundant spikes and improve overall performance. Notably, MI-TRQR achieves higher accuracy
with a lower firing rate.
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Table 9: Effect of a random mask on CIFAR10-DVS when T=4.

Method Shuffle T Accuracy(↑%) Firing rate(↓%)

PSN [14] - 4 82.3 14.47

MI-TRQR (ours) ✓ 4 83.4 (↑1.1) 8.51 (↓41.19)
- 4 84.0 (↑1.7) 8.35 (↓42.29)

Table 10: Effect of static penalty factors on CIFAR10-DVS when T=4.

Method t = 1 t = 2 t = 3 t = 4 Accuracy(↑%) Firing rate(↓%)

PSN [14] - - - - 82.3 14.47

Static penalty
0 0.1 0.2 0.3 83.0 (↑0.7) 10.83 (↓25.16)
0 0.15 0.3 0.45 82.9 (↑0.6) 9.55 (↓34.00)
0 0.2 0.4 0.6 82.8 (↑0.5) 10.61 (↓26.68)

MI-TRQR (ours) - - - - 84.0 (↑1.7) 8.35 (↓42.29)

Table 11: Effect of different techniques on CIFAR10-DVS when T=4.

Method Technique T Accuracy(↑%) Firing rate(↓%)

PSN [14] - 4 82.3 14.47

Absolute distance Euclidean 4 82.4 (↑0.1) 11.74 (↓18.87)
Linear similarity Pearson 4 82.5 (↑0.2) 10.92 (↓24.53)
Feature direction Cosine 4 82.9 (↑0.6) 9.59 (↓33.72)
MI-TRQR (ours) MI 4 84.0 (↑1.7) 8.35 (↓42.29)

Table 12: Effect of different factors on CIFAR10-DVS when T=4.

Method Factor a T Accuracy(↑%) Firing rate(↓%)

PSN [14] - 4 82.3 14.47

MI-TRQR (ours)
0.5 4 84.5 (↑2.2) 10.66 (↓26.33)
1 4 84.0 (↑1.7) 8.35 (↓42.29)
2 4 82.7 (↑0.4) 8.16 (↓43.61)

C.3.2 Other techniques

We replace MI with simpler similarity measures, including Euclidean similarity (via 1/(1+Euclidean
distance)), Pearson correlation, and Cosine similarity. As shown in Tab. 11, spiking firing rates still
decrease with these alternatives, while MI-TRQR achieves higher accuracy and a lower firing rate.

C.3.3 Scaling factor

We multiply pt,h,w (Eq. 5) with an additional factor a, and evaluate the results under different setting
in Tab. 12. As shown, the factor a influences the trade-off between accuracy and firing rate.

C.3.4 Mask generation strategies

In our method, we adopt Bernoulli-based masks to remove redundant spikes in a data-dependent
manner, without introducing additional hyperparameters. This design also admits a clear theoretical in-
terpretation. To further validate its effectiveness, we compare it with a global redundancy-based thresh-
olding approach for pixel-wise spike removal. Specifically, for the feature St ∈ {0, 1}C×H×W (t >
1), we compute the global redundancy pgt (Eq. 3) and the local redundancy plt,h,w (Eq. 4). If
plt,h,w > pgt , the spike feature St,h,w ∈ {0, 1}C is set into 0. As shown in Tab. 13, MI-TRQR with
Bernoulli-based masks achieves better performance.
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Table 13: Effect of mask generation strategies on CIFAR10-DVS when T=4.

Method Mask type T Accuracy(↑%) Firing rate(↓%)

PSN [14] - 4 82.3 14.47

MI-TRQR (ours) Global threshold 4 82.6 (↑0.3) 8.97 (↓38.01)
Bernoulli 4 84.0 (↑1.7) 8.35 (↓42.29)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state our contributions in the field of
SNNs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the final section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

23



Justification: The paper provides a complete proof of the proposed method in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will upload our code and data to Github upon acceptance. We have shown
our experiment results in the Experiment Section, which can be reproduced by referring to
the submitted code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The dataset used in this article is publicly available, and the source code will
be uploaded to ensure that others can reproduce the experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have shown our experimental settings and implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean as well as the standard deviation accuracy in experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The energy consumption is provided in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and confirmed that the research conducted in the paper conforms,
in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original paper for datasets we used are all cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We adopt public datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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