
Hierarchical Programmatic Reinforcement Learning
via Learning to Compose Programs

Guan-Ting Liu * 1 En-Pei Hu * 1 Pu-Jen Cheng 1 Hung-Yi Lee 1 Shao-Hua Sun 1

Abstract
Aiming to produce reinforcement learning (RL)
policies that are human-interpretable and can gen-
eralize better to novel scenarios, Trivedi et al.
(2021) present a method (LEAPS) that first learns
a program embedding space to continuously pa-
rameterize diverse programs from a pre-generated
program dataset, and then searches for a task-
solving program in the learned program embed-
ding space when given a task. Despite the encour-
aging results, the program policies that LEAPS
can produce are limited by the distribution of the
program dataset. Furthermore, during searching,
LEAPS evaluates each candidate program solely
based on its return, failing to precisely reward
correct parts of programs and penalize incorrect
parts. To address these issues, we propose to learn
a meta-policy that composes a series of programs
sampled from the learned program embedding
space. By learning to compose programs, our pro-
posed hierarchical programmatic reinforcement
learning (HPRL) framework can produce program
policies that describe out-of-distributionally com-
plex behaviors and directly assign credits to pro-
grams that induce desired behaviors. The experi-
mental results in the Karel domain show that our
proposed framework outperforms baselines. The
ablation studies confirm the limitations of LEAPS
and justify our design choices.

1 Introduction
Deep reinforcement learning (DRL) leverages the recent
advancement in deep learning by reformulating the rein-
forcement learning problem as learning policies or value
functions parameterized by deep neural networks. DRL

*Equal contribution 1National Taiwan University, Taipei, Tai-
wan. Correspondence to: Shao-Hua Sun <shaohuas@ntu.edu.tw>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

has achieved tremendous success in various domains, in-
cluding controlling robots (Gu et al., 2017; Ibarz et al.,
2021; Lee et al., 2019; 2021), playing board games (Silver
et al., 2016; 2017), and strategy games (Vinyals et al., 2019;
Wurman et al., 2022). Yet, the black-box nature of neural
network-based policies makes it difficult for the DRL-based
systems to be interpreted and therefore trusted by human
users (Lipton, 2016; Puiutta & Veith, 2020). Moreover, poli-
cies learned by DRL methods tend to overfit and often fail
to generalize (Zhang et al., 2018; Cobbe et al., 2019; Sun
et al., 2020a; Liu et al., 2022).

To address the abovementioned issues of DRL, program-
matic RL methods (Bastani et al., 2018; Inala et al., 2020;
Landajuela et al., 2021; Verma et al., 2018) explore vari-
ous of more structured representations of policies, such as
decision trees and state machines. In particular, Trivedi
et al. (2021) present a framework, Learning Embeddings
for lAtent Program Synthesis (LEAPS), that is designed
to produce more interpretable and generalizable policies.
Specifically, it aims to produce program policies structured
in a given domain-specific language (DSL), which can be
executed to yield desired behaviors. To this end, LEAPS
first learns a program embedding space to continuously pa-
rameterize diverse programs from a pre-generated program
dataset, and then searches for a task-solving program in the
learned program embedding space when given a task de-
scribed by a Markov Decision Process (MDP). The program
policies produced by LEAPS are not only human-readable
but also achieve competitive performance and demonstrate
superior generalization ability.

Despite its encouraging results, LEAPS has two fundamen-
tal limitations. Limited program distribution: the program
policies that LEAPS can produce are limited by the distribu-
tion of the pre-generated program dataset used for learning
the program embedding space. This is because LEAPS is de-
signed to search for a task-solving program from the learned
embedding space, which inherently assumes that such a
program is within the distribution of the program dataset.
Such design makes it difficult for LEAPS to synthesize pro-
grams that are out-of-distributionally long or complex. Poor

Project page: https://nturobotlearninglab.
github.io/hprl

1

https://nturobotlearninglab.github.io/hprl
https://nturobotlearninglab.github.io/hprl

Hierarchical Programmatic Reinforcement Learning

credit assignment: during the search for the task-solving
program embedding, LEAPS evaluates each candidate pro-
gram solely based on the cumulative discounted return of
the program execution trace. Such design fails to accurately
attribute rewards obtained during the execution trajectories
to corresponding parts in synthesized programs or penalize
program parts that induce incorrect behaviors.

This work aims to address the issues of limited program
distribution and poor credit assignment. To this end, we
propose a hierarchical programmatic reinforcement learning
(HPRL) framework. Instead of searching for a program
from a program embedding space, we propose to learn a
meta-policy, whose action space is the learned program em-
bedding space, to produce a series of programs (i.e., predict
a sequence of actions) to yield a composed task-solving
program. By re-formulating synthesizing a program as pre-
dicting a sequence of programs, HPRL can produce out-of-
distributionally long or complex programs. Also, rewards
obtained from the environment by executing each program
from the composed program can be accurately attributed to
each program, leading to more efficient learning.

To evaluate our proposed method, we adopt the Karel do-
main (Pattis, 1981), which features an agent that can nav-
igate a grid world and interact with objects. Our method
outperforms all the baselines by large margins on a prob-
lem set proposed in (Trivedi et al., 2021). To investigate
the limitation of our method, we design a more challeng-
ing problem set on which our method consistently achieves
better performance compared to LEAPS. Moreover, we in-
spect LEAPS’ issues of limited program distribution and
poor credit assignment with two experiments and demon-
strate that our proposed method addresses these issues. We
present a series of ablation studies to justify our design
choices, including the reinforcement learning algorithms
used to learn the meta-policy, and the dimensionality of the
program embedding space.

2 Related Work
Program Synthesis. Program synthesis methods concern
automatically synthesize programs that can transform some
inputs to desired outputs. Encouraging results have been
achieved in a variety of domains, including string transfor-
mation (Devlin et al., 2017; Hong et al., 2021; Zhong et al.,
2023), array/tensor transformation (Balog et al., 2017; Ellis
et al., 2020), computer commands (Lin et al., 2018; Chen
et al., 2021; Li et al., 2022), graphics and 3D shape pro-
grams (Wu et al., 2017; Liu et al., 2019; Tian et al., 2019),
and describing behaviors of agents (Bunel et al., 2018; Sun
et al., 2018; Shin et al., 2018; Chen et al., 2019; Liao et al.,
2019; Silver et al., 2020). Most existing program synthesis
methods consider task specifications such as input/output
pairs, demonstrations, or natural language descriptions. In

Program ρ := DEF run m(s m)

Repetition n := Number of repetitions

Perception h := frontIsClear | leftIsClear | rightIsClear |
markerPresent | noMarkerPresent

Condition b := perception h | not perception h

Action a := move | turnLeft | turnRight |
putMarker | pickMarker

Statement s := while c(b c) w(s w) | s1; s2 | a |
repeat R=n r(s r) | if c(b c) i(s i) |
ifelse c(b c) i(s1 i) else e(s2 e)

Figure 1. The domain-specific language (DSL) for the Karel do-
main, features an agent that can navigate through a grid world and
interact with objects.

contrast, we aim to synthesize programs as policies that can
be executed to induce behaviors which maximize rewards
defined by reinforcement learning tasks.

Programmatic Reinforcement Learning. Programmatic
reinforcement learning methods (Choi & Langley, 2005;
Winner & Veloso, 2003; Sun et al., 2020a) explore various
programmatic and more structured representations of poli-
cies, including decision trees (Bastani et al., 2018), state
machines (Inala et al., 2020), symbolic expressions (Lan-
dajuela et al., 2021), and programs drawn from a domain-
specific language (Silver et al., 2020; Verma et al., 2018;
2019). Our work builds upon (Trivedi et al., 2021), whose
goal is to produce program policies from rewards. We aim to
address the fundamental limitations of this work by learning
to compose programs to yield more expressive programs.

Hierarchical Reinforcement Learning (HRL). HRL
frameworks (Sutton et al., 1999; Barto & Mahadevan, 2003;
Vezhnevets et al., 2017; Bacon et al., 2017) aims to learn to
operate on different levels of temporal abstraction, allowing
for learning or exploring more efficiently in sparse-reward
environments. In this work, instead of operating on pre-
defined or learned temporal abstraction, we are interested
in learning with a level of abstraction defined by a learned
program embedding space to hierarchically compose pro-
grams. One can view a learned program embedding space
as continuously parameterized options or low-level policies.

Program Induction. Program induction (Graves et al.,
2014; Zaremba & Sutskever, 2015; Reed & De Freitas,
2016; Dong et al., 2019; Ellis et al., 2021) aims to perform
tasks by inducing latent programs for improved generaliza-
tion. Contrary to our work, these methods neither explicitly
synthesize programs nor address RL tasks.

3 Problem Formulation
Our goal is to develop a method that can synthesize a
domain-specific, task-solving program which can be ex-
ecuted to interact with an environment and maximize a

2

Hierarchical Programmatic Reinforcement Learning

discounted return defined by a Markov Decision Process.

Domain Specific Language. In this work, we adapt the
domain-specific language (DSL) for the Karel domain used
in (Bunel et al., 2018; Chen et al., 2019; Trivedi et al., 2021),
shown in Figure 1. This DSL is designed to describe the
behaviors of the Karel agent, consisting of control flows,
agent’s perceptions, and agent’s actions. Control flows such
as if, else, and while are allowed for describing di-
verging or repetitive behaviors. Furthermore, Boolean and
logical operators such as and, or, and not can be included
to express more sophisticated conditions. Perceptions such
as frontIsClear and markerPresent are defined
based on situations in an environment which can be per-
ceived by an agent. On the other hand, actions such as
move, turnRight, and putMarker, describe the prim-
itive behaviors that an agent can perform in an environment.
A program policy considered in our work is structured in
this DSL and can be executed to produce a sequence of
actions based on perceptions.

Markov Decision Process (MDP). The tasks considered in
this work are defined by finite-horizon discounted MDPs.
The performance of a policy with its rollout (a sequence of
states and actions {(s0, a0), ..., (st, at)}) is evaluated based
on a discounted return

∑T
t=0 γ

trt, where rt = R(st, at)
indicates the reward function and T is the horizon of the
episode. We aim to develop a method that can produce a pro-
gram representing a policy that can be executed to maximize
the discounted return, i.e., maxρ Ea∼EXEC(ρ)[

∑T
t=0 γ

trt],
where EXEC(·) returns the actions induced by executing
the program policy ρ in the environment. This objective is a
special case of the standard RL objective where a policy is
represented as a program in a DSL and the policy rollout is
obtained by executing the program.

4 Approach
Our goal is to design a framework that can synthesize task-
solving programs based on the rewards obtained from MDPs.
We adapt the idea of learning a program embedding space
to continuously parameterized a diverse set of programs
proposed in LEAPS (Trivedi et al., 2021). Then, instead of
searching for a task-solving program in the learned program
embedding space, our key insight is to learn a meta-policy
that can hierarchically compose programs to form a more
expressive task-solving program. Our proposed framework,
dubbed Hierarchical Programmatic Reinforcement Learning
(HPRL), is capable of producing out-of-distributionally long
and complex programs. Moreover, HPRL can make delicate
adjustments to synthesized programs according to rewards
obtained from the environment.

Section 4.1 presents how LEAPS learns a program embed-
ding space to continuously parameterize a set of randomly

generated programs and describes our proposed procedure to
produce a dataset containing more diverse programs. Then,
to reduce the dimension of the learned program embed-
ding for more efficient meta-policy learning, Section 4.2
introduces how we compress the embedding space. Fi-
nally, in Section 4.3, we describe our method for learning
a meta-policy, whose action space is the learned program
embedding space, to hierarchically compose programs and
yield a task-solving program. An overview of our proposed
framework is illustrated in Figure 2.

4.1 Learning a Program Embedding Space

We aim to learn a program embedding space that continu-
ously parameterizes a diverse set of programs. Moreover, a
desired program embedding space should be behaviorally
smooth, i.e., programs that induce similar execution traces
should be embedded closely to each other and programs
with diverging behaviors should be far from each other in
the embedding space.

To this end, we adapt the technique proposed in
LEAPS (Trivedi et al., 2021), which trains an encoder-
decoder neural network architecture on a pre-generated
program dataset. Specifically, a recurrent neural network
program encoder qϕ learns to encode a program ρ (i.e.,
sequences of program tokens) into a program embedding
space, yielding a program embedding v; a recurrent neural
network program decoder pθ learns to decode a program
embedding v to produce reconstructed programs ρ̂. The
program encoder and the program decoder are trained to
optimize the β-VAE (Higgins et al., 2016) objective:

LP
θ,ϕ(ρ) = −Ev∼qϕ(v|ρ)[log pθ(ρ|v)]

+βDKL(qϕ(v|ρ)∥pθ(v)),
(1)

where β balances the reconstruction loss and the represen-
tation capacity of the program embedding space (i.e., the
latent bottleneck).

To encourage behavioral smoothness, Trivedi et al. (2021)
propose two additional objectives. The program behavior
reconstruction loss minimizes the difference between the
execution traces of the given program EXEC(ρ) and the
execution traces of the reconstructed program EXEC(ρ̂).
On the other hand, the latent behavior reconstruction loss
brings closer the execution traces of the given program
EXEC(ρ) and the execution traces produced by feeding the
program embedding v to a learned neural program executor
π(a|v, s):

LL
π,ϕ(ρ, π) = −Ev∼qϕ(v|ρ)[

H∑
t=1

|A|∑
i=1

EXECt,i(ρ)

log π(ai|v, st)],
(2)

where H denotes the horizon of EXEC(ρ), |A| denotes

3

Hierarchical Programmatic Reinforcement Learning

(a) Learning a Program Embedding Space (b) Learning a Meta-Policy to Compose Programs

i-th Predicted

Latent Program

Execute ρi

pθgψ

zi

Environment

si+1
ri+1 πmeta

si
t

ai
t

[si1, . . . , si
Ti

]
[ri1, . . . , ri

Ti
]

[-1]⋅ Σ

def run():

while(markPresent()):

PickMarker()

turnRight()

move()

ρ1

def run():

if frontIsClear():

move()

else:

turnLeft()

ρi−2

def run():

if frontIsClear():

move()

else:

turnLeft()

ρi−1

def run():

if markerPresent():

pickMarker()

else:

move()

i-th Predicted Program ρi

Composed Program
𝒫 = ⟨ρ1, . . . , ρi−2, ρi−1, ρi⟩

Latent

Program

Program ρ
def run():

if markerPresent():

pickMarker()

else:

move()

def run():

if markerPresent():

pickMarker()

else:

move()

LP

Reconstructed

Program ̂ρ

Execute

LL

qϕ pθfω gψ

z

π(a |s, z)
Environment

a1, a2, . . . , at ̂a1, ̂a2, . . . , ̂at
Learning objective

Learnable mapping

Frozen mapping

List operator

Compose

Figure 2. Hierarchical Programmatic Reinforcement Learning. (a) Learning a Program Embedding Space: a continuously
parameterized latent program space can be learned using the program encoder qϕ, decoder pθ , and a neural executor policy π by
optimizing the two reconstruction objectives: LP and LL. To reduce the dimensionality of the program embedding space to facilitate task
learning, we employ a compression encoder fω and a compression decoder gψ . (b) Learning a Meta-Policy to Compose Programs:
given a task described by an MDP, we propose to train a meta-policy πmeta to compose a sequence of programs, and yield a task-solving
program. Specifically, at each macro time step i, the meta-policy πmeta predicts a latent program embedding zi, which can be decoded
to the corresponding program ρi = pθ(gψ(zi)). We then execute the program ρi in the environment, which returns the cumulative
reward ri+1 and the next state si+1 to the meta policy. Then, the meta-policy can synthesize the next program ρi+1 based on si+1. Upon
termination, the predicted task-solving program is composed of a series of synthesized programs P = ⟨ρ1, ρ2, ..., ρ|H|−1, ρ|H|⟩.

the cardinality of the action space, and EXECt,i(ρ) is the
boolean function indicating if the action equals to ai at time
step t while executing program ρ.

We empirically found that optimizing the program behavior
reconstruction loss does not yield a significant performance
gain. Yet, due to the non-differentiability nature of program
execution, optimizing this loss via REINFORCE (Williams,
1992) is unstable. Moreover, performing on-the-fly program
execution during training significantly slows down the learn-
ing process. Therefore, we exclude the program behavior
reconstruction loss, yielding our final objective for learning
a program embedding space as a combination of the β-VAE
objective LP

θ,ϕ and the latent behavior reconstruction loss
LL
π:

min
θ,ϕ,π

LP
θ,ϕ(ρ) + λLL

π(ρ, π), (3)

where λ determines the relative importance of these losses.

4.2 Compressing the Learned Program Embedding
Space

The previous section describes a method for constructing a
program embedding space that continuously parameterizes
programs. Next, given a task defined by an MDP, we aim
to learn a meta-policy that predicts a sequence of program

embeddings as actions to compose a task-solving program.
Hence, a low-dimensional program embedding space (i.e.,
a smaller action space) is ideal for efficiently learning such
a meta-policy. Yet, to embed a large number of programs
with diverse behaviors, a learned program embedding space
needs to be extremely high-dimensional.

Therefore, our goal is to bridge the gap between a high-
dimensional program embedding space with sufficient rep-
resentation capacity and a desired low-dimensional action
space for learning a meta-policy. To this end, we aug-
ment the encoder-decoder architecture with additional fully-
connected layers to further reduce the program embedding
space. Specifically, we employ a compression encoder fω
that takes the output of the program encoder qϕ as input and
compresses it into a lower-dimensional program embedding
z; also, we employ a compression decoder gψ that takes a
program embedding as input and decompresses it to produce
a reconstructed higher-dimensional program embedding v̂,
which is then fed to the program decoder pθ to produce a
reconstructed program ρ̂.

With this modification, the β-VAE objective and the latent

4

Hierarchical Programmatic Reinforcement Learning

behavior reconstruction loss can be rewritten as:

LP
θ,ϕ,ω,ψ(ρ) = −Ez∼fω(z|qϕ(ρ))[log pθ(ρ|(gψ(z)))]

+βDKL(fω(qϕ(z|ρ))∥pθ(gψ(z))),
(4)

and

LL
π,ω,ϕ(ρ, π) = −Ez∼fω(z|qϕ(ρ))[

H∑
t=1

|A|∑
i=1

EXECt,i(ρ)

log π(ai|z, st)],
(5)

We train the program encoder qϕ, the compression encoder
fω, the compression decoder gψ, the program decoder pθ,
and the neural execution policy π in an end-to-end manner
as described in Algorithm 1. We discuss how the dimension
of the program embedding space affects the quality of latent
program embedding space in Section 5.4.2.

Algorithm 1 HPRL: Learning Latent Program Embedding
Space
Input: Program Dataset Dprogram, Training Epoch Nepoch
Output: Compression Decoder gψ, Program Decoder
pθ

1: Initialize the program encoder qϕ and decoder pθ, com-
pression encoder fω and decoder gψ, neural execution
policy π.

2: for epoch in range(1, Nepoch) do
3: for program ρ in Dprogram do
4: z = fω(qϕ(ρ))
5: ρ̂ = pθ(gψ(z))
6: Compute Ltotal = LPθ,ϕ,ω,ϕ(ρ) + λLLπ,ω,ϕ(ρ, π)
7: Fit ϕ, ω, ψ, θ, π to minimize Ltotal
8: end for
9: end for

4.3 Learning a Meta-Policy to Compose the
Task-Solving Program

Once an expressive, smooth, yet compact program embed-
ding space is learned, given a task described by an MDP, we
propose to train a meta-policy πmeta following Algorithm 2
to compose a task-solving program. Specifically, the learned
program embedding space is used as a continuous action
space for the meta-policy πmeta. We formulate the task of
composing programs as a finite-horizon MDP whose hori-
zon is |H|. At each time step i, the meta-policy πmeta takes
an input state si and predicts one latent program embedding
zi as action, which can be decoded to its corresponding
program ρi using the learned compression decoder and pro-
gram decoder pθ(gψ(zi)). Then, the program ρi is executed
with EXEC(·) to interact with the environment for a pe-
riod from 1 to T i, yielding the cumulative reward ri+1 =∑T i

t=1 r
i
t and the next state si+1 = [si1, s

i
2, ..., s

i
Ti
][−1] af-

ter the program execution. The operator ·[−1] returns the

last object in the sequence, and we take the last state of
the program execution as the next macro input state, i.e.,
si+1 = [si1, s

i
2, ..., s

i
Ti
][−1] = siTi

. A program will termi-
nate when it is fully executed or once 100 actions have been
triggered. Note that the time steps i considered here are
macro time steps, each involves a series of state transitions
and returns a sequence of rewards. The environment will
return the next state si+1 and cumulative reward ri+1 to the
agent to predict the next latent program embedding zi+1.
The program composing process terminates after repeating
|H| steps.

The synthesized task-solving program P is obtained by
sequentially composing the generated program ⟨ρi|i =
1...|H|⟩, where ⟨·⟩ denotes an operator that concatenates
programs in order to yield a composed program. Hence, the
learning objective of the meta-policy πmeta is to maximize
the total cumulative return Jπmeta :

Jπmeta = EP∼πMETA
[

|H|∑
i=1

γi−1Ea∼EXEC(ρi)[r
i+1]. (6)

where γ is the discount factor for macro time steps MDP
and a is the primitive action triggered by EXEC(ρi). We
detail the meta-policy training procedure in Algorithm 2.

Algorithm 2 HPRL: Meta-Policy Training
Input: Program Decoder pθ, Compression Decoder gψ,
Meta-Policy Training Step Tmeta, Horizon |H|
Output: Task Solving Program P

1: Initialize a meta-policy πmeta
2: Load and fix pθ, gψ for Meta-Policy Training
3: for Training Episode in range(1, Tmeta/|H|) do
4: Receive initial state s1 from the Karel environment
5: for i in range(1, |H|) do
6: zi = πmeta(s

i)
7: ρi = pθ(gψ(zi))
8: Interact with the environment by EXEC(ρi)
9: Receive [si1, ..., s

i
T] and [ri1, ..., r

i
Ti
]

10: ri+1 =
∑T i

t=1 r
i
t

11: si+1 = [si1, s
i
2, ..., s

i
Ti
][−1]

12: end for
13: Calculate Jπmeta based on the collected

{(si, zi, ri+1, si+1)|i = 1, ..., |H|}
14: Optimize πmeta to maximize Jπmeta

15: end for

While this work formulates the program synthesis task as a
finite-horizon MDP where a fixed number of programs |H|
are composed, we can instead learn a termination function
that decides when to finish the program composition process,
which is left to future work.

5

Hierarchical Programmatic Reinforcement Learning

(a) DOORKEY (b) ONESTROKE

(c) SEEDER (d) SNAKE

Figure 3. KAREL-HARD Problem Set: The four tasks require
an agent to acquire a set of diverse, goal-oriented, and program-
matic behaviors. This is strictly more challenging compared to the
KAREL problem set proposed in (Trivedi et al., 2021).

5 Experiments
We design and conduct experiments to compare our pro-
posed framework (HPRL) to its variants and baselines.

5.1 Karel domain

For the experiments and ablation studies, we adopt the Karel
domain (Pattis, 1981), which is widely used in program
synthesis and programmatic reinforcement learning (Bunel
et al., 2018; Shin et al., 2018; Sun et al., 2018; Chen et al.,
2019; Trivedi et al., 2021). The Karel agent in a gridworld
can navigate and interact with objects (i.e., markers). The
action and perception are detailed in Figure 1.

To evaluate the proposed framework and the baselines, we
consider two problem sets. First, we use the KAREL prob-
lem set proposed in (Trivedi et al., 2021), which consists of
six tasks. Then, we propose a more challenging set of tasks,
KAREL-HARD problem set (shown in Figure 3), which con-
sists of four tasks. In most tasks, initial configurations such
as agent and goal locations, wall and marker placement, are
randomly sampled upon every episode reset.

KAREL Problem Set. The KAREL problem set intro-
duced in (Trivedi et al., 2021) consists of six tasks: STAIR-
CLIMBER, FOURCORNER, TOPOFF, MAZE, CLEAN-
HOUSE and HARVESTER. Solving these tasks requires
the following ability. Repetitive Behaviors: to conduct
the same behavior for several times, i.e., placing markers
on all corners (FOURCORNER) or move along the wall
(STAIRCLIMBER). Exploration: to navigate the agent
through complex patterns (MAZE) or multiple chambers
(CLEANHOUSE). Complexity: to perform specific actions,

i.e., put markers on marked grid (TOPOFF) or pick mark-
ers on marked grid (HARVESTER). For further description
about the KAREL problem set, please refer to Section C.1.

KAREL-HARD Problem Set. We design a more challeng-
ing set of tasks, the KAREL-HARD problem set. The ability
required to solve the tasks in this problem set can be cate-
gorized as follows: Two-stage exploration: to explore the
environment under different conditions, i.e., pick up the
marker in one chamber to unlock the door, and put the
marker in the next chamber (DOORKEY). Additional Con-
straints: to perform specific actions under restrictions, i.e.,
traverse the environment without revisiting the same posi-
tion (ONESTROKE), place exactly one marker on all grids
(SEEDER), and traverse the environment without hitting a
growing obstacle (SNAKE). More details about the KAREL-
HARD problem set can be found in Section C.2.

5.2 Experimental Settings

Section 5.2.1 introduces the procedure for generating the
program dataset used for learning a program embedding
space. The implementation of the proposed framework is
described in Section 5.2.2.

5.2.1 Karel DSL Program Dataset Generation with
Our Improved Generation Procedure

The Karel program dataset used in this work includes one
million programs. All the programs are generated based on
syntax rules of the Karel DSL with a maximum length of 40
program tokens. While Trivedi et al. (2021) randomly sam-
ple to generate program sequences, we propose an improved
program generation procedure as follows. We filter out
counteracting programs (e.g., termination state equals initial
state after program execution), repetitive programs (e.g.,
programs with long common sub-sequences) and programs
with canceling action sequences (e.g., turnLeft followed
by turnRight). These rules significantly improve the
diversity and expressiveness of the generated programs and
induce a more diverse and complex latent program space.
More details can be found in Section E.

5.2.2 Implementation

Encoders & Decoders. We use GRU (Cho et al., 2014)
layer to implement both the program encoder qϕ and the
program decoder pθ mentioned in Section 4.1 with a hidden
dimension of 256. The last hidden state of the encoder qϕ
is taken as the uncompressed program embedding v. This
program embedding v can be further compressed to a 64-
dimensional program embedding z using the compression
encoder fω and compression decoder gψ constructed by the
fully-connected neural network as described in Section 4.2.

Neural Program Executor. The neural program executor

6

Hierarchical Programmatic Reinforcement Learning

π is implemented as a recurrent conditional policy π(·|z, s)
using GRU layers, which takes the abstract state s and the
program embedding z at each time step as input and predicts
the execution trace.

Meta-Policy. To implement the meta-policy πmeta, we
use convolutional layers (Fukushima & Miyake, 1982;
Krizhevsky et al., 2017) to extract features from the Karel
states and then process them with GRU layers for predict-
ing program embeddings. To optimize the meta-policy, we
use two popular reinforcement learning algorithms, PPO
(Schulman et al., 2017) and SAC (Haarnoja et al., 2018),
and report their experimental results as HPRL-PPO and
HPRL-SAC, respectively.

More details on hyperparameters, training procedure, and
implementation can be found in Section D.

5.2.3 Baseline Approaches

We compare HPRL with the following baselines.

• Best-sampled. It randomly samples 1000 programs
from the learned program embedding space and reports
the highest return achieved by the sampled programs.

• DRL and DRL-abs. Deep RL baselines from (Trivedi
et al., 2021). DRL observes a raw state (grids) in-
put from the Karel environment, while DRL-abs is a
recurrent neural network policy that takes abstracted
state vectors from the environment as input. The ab-
stracted state vectors consist of binary values of the
current state (e.g., [frontIsClear() == True,
markerPresent()==False, ...]).

• VIPER. A programmatic RL method proposed by Bas-
tani et al. (2018). It uses a decision tree to imitate the
behavior of a learned DRL policy.

• LEAPS. A programmatic RL framework proposed by
Trivedi et al. (2021) that uses Cross-Entropy Method
(Rubinstein, 1997) to search task-solving program in a
learned continuous program embedding space.

• LEAPS-ours. The LEAPS framework trained on the
proposed Karel program dataset described in Section
5.2.1. This is used to compare our proposed program
dataset generation procedure with the generation ap-
proach used in (Trivedi et al., 2021).

More details of these baselines can be found in Section B.

5.3 Experimental Results

We evaluate the cumulative return of all methods on the
KAREL problem set and the KAREL-HARD problem set.
The results of the two problem sets are presented in Table
1 and Table 2, respectively. The range of the cumulative
return is within [0, 1] on all tasks. Section C describes
the detailed definition of the reward function for each task.
The performance of DRL, DRL-abs, VIPER, and LEAPS

reproduced with the implementation provided by Trivedi
et al. (2021). The average cumulative return and standard
deviation of all the methods on each task are evaluated over
five random seeds to ensure statistical significance.

Overall KAREL Performance. The experimental results
on Table 1 show that HPRL-PPO outperforms all other
approaches on all tasks. Furthermore, HPRL-PPO can com-
pletely solve all the tasks in the KAREL problem set. The
Best-sampled results justify the quality of the learned latent
space as tasks like STAIRCLIMBER and MAZE can be en-
tirely solved by one (or some) of 1000 randomly sampled
programs. However, all 1000 randomly sampled programs
fail on tasks that require long-term planning and exploration
(e.g., FOURCORNER, CLEANHOUSE and HARVESTER),
showing the limit of the simple search-based method. On
the other hand, we observe that LEAPS-ours outperforms
LEAPS on all of the six tasks in the KAREL problem set,
showing that the proposed program generation process helps
improve the quality of the program embedding space and
leads to the better program search result.

Overall KAREL-HARD Performance. To further testify
the efficacy of the proposed method, we evaluate Best-
sampled, LEAPS, LEAPS-ours, HPRL-PPO, and HPRL-
SAC on the KAREL-HARD problem set. HPRL-PPO outper-
forms other methods on ONESTROKE and SEEDER, while
all approaches perform similarly on DOORKEY. The com-
plexity of ONESTROKE, SEEDER, and SNAKE makes it
difficult for Best-sampled and LEAPS to find sufficiently
long and complex programmatic policies that may not even
exist in the learned program embedding space. In contrast,
HPRL-PPO addresses this by composing a series of pro-
grams to increase the expressiveness and perplexity of the
synthesized program. We also observe that LEAPS-ours
achieve better performance than LEAPS, further justifying
the efficacy of the proposed program generation procedure.

PPO vs. SAC. HPRL-SAC can still deliver competitive
performance in comparison with HPRL-PPO. However, we
find that HPRL-SAC is more unstable on complex tasks
(e.g., TOPOFF) and tasks with additional constraints (e.g.,
SEEDER). On the other hand, HPRL-PPO is more stable
across all tasks and achieves better performance on both
problem sets. Hence, we adopt HPRL-PPO as our main
method in the following experiments.

Qualitative Results. Figure 4 presents the programs syn-
thesized by LEAPS, LEAPS-ours, and HPRL-PPO. The
programs produced by LEAPS are limited by the maximum
length and the complexity of the pre-collected program
dataset. On the other hand, HPRL-PPO can compose longer
and more complex programs by synthesizing and concate-
nating shorter and task-oriented programs due to its hierar-
chical design. More examples of synthesized programs can
be found in Section G.

7

Hierarchical Programmatic Reinforcement Learning

Table 1. Mean return and standard deviation of all methods across the KAREL problem set, evaluated over five random seeds. HPRL-PPO
outperforms all prior approaches and achieves the maximum score on all tasks. HPRL-SAC completely solves four out of six tasks.

Method STAIRCLIMBER FOURCORNER TOPOFF MAZE CLEANHOUSE HARVESTER

Best-Sampled 1.00 ± 0.00 0.25 ± 0.00 0.60 ± 0.07 1.00 ± 0.00 0.05 ± 0.04 0.17 ± 0.00
DRL 1.00 ± 0.00 0.29 ± 0.05 0.32 ± 0.07 1.00 ± 0.00 0.00 ± 0.00 0.90 ± 0.10

DRL-abs 0.13 ± 0.29 0.36 ± 0.44 0.63 ± 0.23 1.00 ± 0.00 0.01 ± 0.02 0.32 ± 0.18
VIPER 0.02 ± 0.02 0.40 ± 0.42 0.30 ± 0.06 0.69 ± 0.05 0.00 ± 0.00 0.51 ± 0.07
LEAPS 1.00 ± 0.00 0.45 ± 0.40 0.81 ± 0.07 1.00 ± 0.00 0.18 ± 0.14 0.45 ± 0.28

LEAPS-ours 1.00 ± 0.00 0.50 ± 0.47 0.82 ± 0.11 1.00 ± 0.00 0.28 ± 0.27 0.82 ± 0.16

HPRL-SAC 1.00 ± 0.00 1.00 ± 0.00 0.61 ± 0.25 1.00 ± 0.00 0.99 ± 0.02 1.00 ± 0.00
HPRL-PPO 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 2. Mean return and standard deviation of all methods across
the KAREL-HARD problem set, evaluated over five random seeds.
HPRL-PPO achieves best performance across all tasks.

Method DOORKEY ONESTROKE SEEDER SNAKE

Best-Sampled 0.50 ± 0.00 0.55 ± 0.34 0.17 ± 0.00 0.20 ± 0.00
LEAPS 0.50 ± 0.00 0.65 ± 0.19 0.51 ± 0.21 0.21 ± 0.15

LEAPS-ours 0.50 ± 0.00 0.72 ± 0.06 0.57 ± 0.02 0.25 ± 0.07

HPRL-SAC 0.50 ± 0.00 0.76 ± 0.05 0.27 ± 0.10 0.28 ± 0.15
HPRL-PPO 0.50 ± 0.00 0.80 ± 0.02 0.58 ± 0.07 0.28 ± 0.11

LEAPS
DEF run m(

turnRight
turnLeft
pickMarker
move
move
move
WHILE c(rightIsClear c)

w(
turnLeft
move
move
w)

turnLeft
turnLeft
turnLeft
turnLeft
m)

LEAPS-ours
DEF run m(

move
turnRight
pickMarker
pickMarker
WHILE c(rightIsClear c)

w(
turnLeft
move
move
w)

turnRight
move
move
move
m)

HPRL-PPO
DEF run m(

move
WHILE c(noMarkersPresent

c) w(
move
move
turnLeft
w)

move
turnLeft
m)

DEF run m(
move
WHILE c(noMarkersPresent

c) w(
move
move
turnLeft
w)

m)
DEF run m(

move
WHILE c(noMarkersPresent

c) w(
move
move
turnLeft
w)

move
turnLeft
m)

Figure 4. Synthesized Programs on SNAKE. HPRL synthesizes
a longer and more complex program, outperforming LEAPS.

5.4 Additional Experiments

This section investigates (1) whether LEAPS (Trivedi et al.,
2021) and our proposed framework can synthesize out-of-
distributional programs, (2) the necessity of the proposed
compression encoder and decoder, and (3) the effective-
ness of learning from dense rewards made possible by the
hierarchical design of our framework.

5.4.1 Synthesizing Out-of-Distributional Programs

Programs that LEAPS can produce are fundamentally lim-
ited by the distribution of the program dataset since it
searches for programs in the learned embedding space.
More specifically, it is impossible for LEAPS to synthesize
programs that are significantly longer than the programs
provided in the dataset. This section aims to empirically
verify this hypothesis and evaluate the capability of generat-
ing out-of-distributional programs. We create a set of target
programs of lengths 25, 50, 75, and 100, each consisting
of primitive actions (e.g., move, turnRight). Then, we
ask LEAPS and HPRL to fit each target program based on
how well the program produced by the two methods can
reconstruct the behaviors of the target program. The recon-
struction performance is calculated as one minus the nor-
malized Levenshtein Distance between the state sequences
from the execution trace of the target program and from the
execution trace of the synthesized program. The result is
presented in Table 3.

HPRL consistently outperforms LEAPS with varying target
program lengths, and the gap between the two methods
grows more significant when the target program becomes
longer. We also observe that the reconstruction score of
LEAPS drops significantly as the length of target programs
exceeds 40, which is the maximum program length of the
program datasets. This suggests that HPRL can synthesize
out-of-distributional programs. Note that the performance
of HPRL can be further improved when setting the horizon
of the meta-policy |H| to a larger number. Yet, for this
experiment, we fix it to 5 to better analyze our method. More
details (e.g., evaluation metrics) can be found in Section F.

8

Hierarchical Programmatic Reinforcement Learning

Table 3. Learning to synthesize out-of-distributional programs.
HPRL demonstrates superior performance in synthesizing out-
of-distributionally long programs compared to LEAPS. The gap
between the two methods grows more significant when the length
of the target program increases.

Method Program Reconstruction Performance
Len 25 Len 50 Len 75 Len 100

LEAPS 0.59 (0.14) 0.31 (0.10) 0.20 (0.05) 0.13 (0.08)
HPRL 0.60 (0.03) 0.36 (0.03) 0.29 (0.03) 0.26 (0.02)

Improvement 1.69% 16.13% 45.0% 100.0%

Table 4. Dimensionality of the Program Embedding Space. The
64-dimensional program embedding space demonstrates the best
task performance with satisfactory reconstruction results.

dim(z) Reconstruction Task Performance
Program Execution CLEANHOUSE SEEDER

16 81.70% 63.21% 0.47 (0.06) 0.21 (0.02)
32 94.46% 86.00% 0.84 (0.27) 0.35 (0.16)
64 97.81% 95.58% 1.00 (0.00) 0.58 (0.07)

128 99.12% 98.76% 1.00 (0.00) 0.57 (0.03)
256 99.65% 99.11% 1.00 (0.00) 0.55 (0.11)

5.4.2 Dimensionality of Program Embedding Space

Learning a higher-dimensional program embedding space
can lead to better optimization in the program reconstruction
loss (Eq. 4) and the latent behavior reconstruction loss (Eq.
5). Yet, learning a meta-policy in a higher-dimensional
action space can be unstable and inefficient. To investigate
this trade-off and verify our contribution of employing the
compression encoder fω and compression decoder gψ, we
experiment with various dimensions of program embedding
space and report the result in Table 4.

The reconstruction accuracy measures whether learned en-
coders and decoders can perfectly reconstruct an input pro-
gram or its execution trace. The task performance evaluates
the return achieved in CLEANHOUSE and SEEDER since
they are considered more difficult from each problem set.
The result indicates that a 64-dimensional program embed-
ding space achieves satisfactory reconstruction accuracy and
performs the best on the tasks. Therefore, we adopt this (i.e.,
dim(z) = 64) for HPRL on all the tasks.

5.4.3 Learning from Episodic Reward

We design our framework to synthesize a sequence of pro-
grams, allowing for accurately rewarding correct programs
and penalizing wrong programs (i.e., better credit assign-
ment) with dense rewards. In this section, we design ex-
periments to investigate the effectiveness of this design. To
this end, instead of receiving a reward for executing each
program (i.e., dense) in the environment, we modify CLEAN-
HOUSE and SEEDER so that they only return cumulative
rewards after all |H| programs have been executed (i.e.,

Figure 5. Learning from Episodic Reward. We compare learning
from dense and episodic rewards in CLEANHOUSE and SEEDER.
Learning from dense rewards achieves better sample efficiency in
both tasks, which is made possible by the hierarchical design of
our proposed framework.

episodic). The learning performance is shown in Figure
5, demonstrating that learning from dense rewards yields
better sample efficiency compared to learning from episodic
rewards. This performance gain is made possible by the
hierarchical design of HPRL, which can better deal with
credit assignment. In contrast, LEAPS (Trivedi et al., 2021)
is fundamentally limited to learning from episodic rewards.

6 Conclusion
We propose a hierarchical programmatic reinforcement
learning framework (HPRL), which re-formulates solving a
reinforcement learning task as synthesizing a task-solving
program that can be executed to interact with the environ-
ment and maximize the return. Specifically, we first learn a
program embedding space that continuously parameterizes
a diverse set of programs generated based on our proposed
program generation procedure. Then, we train a meta-policy,
whose action space is the learned program embedding space,
to produce a series of programs (i.e., predict a series of
actions) to yield a composed task-solving program. Ex-
perimental results in the Karel domain demonstrate that
HPRL consistently outperforms baselines by large margins.
Ablation studies justify our design choices, including the
RL algorithms for learning the meta-policy and the dimen-
sionality of the program embedding space. Additional ex-
perimental results confirm the two fundamental limitations
of LEAPS (Trivedi et al., 2021) and attribute the superior
performance of HPRL to addressing these limitations.

Acknowledgement
This work was supported by the National Taiwan University
and its Department of Electrical Engineering, Graduate In-
stitute of Networking and Multimedia, Graduate Institute
of Communication Engineering, and College of Electrical
Engineering and Computer Science. The authors also ap-
preciate the fruitful discussion with the members of NTU
Robot Learning Lab.

9

Hierarchical Programmatic Reinforcement Learning

References
Bacon, P.-L., Harb, J., and Precup, D. The option-critic

architecture. In Association for the Advancement of Arti-
ficial Intelligence, 2017.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S.,
and Tarlow, D. Deepcoder: Learning to write programs.
In International Conference on Learning Representations,
2017.

Barto, A. G. and Mahadevan, S. Recent advances in hierar-
chical reinforcement learning. Discrete Event Dynamic
Systems, 2003.

Bastani, O., Pu, Y., and Solar-Lezama, A. Verifiable re-
inforcement learning via policy extraction. In Neural
Information Processing Systems, 2018.

Bunel, R. R., Hausknecht, M., Devlin, J., Singh, R., and
Kohli, P. Leveraging grammar and reinforcement learning
for neural program synthesis. In International Conference
on Learning Representations, 2018.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf,
H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N.,
Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter,
C., Tillet, P., Such, F. P., Cummings, D., Plappert, M.,
Chantzis, F., Barnes, E., Herbert-Voss, A., Guss, W. H.,
Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I.,
Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A. N.,
Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,
A., Knight, M., Brundage, M., Murati, M., Mayer, K.,
Welinder, P., McGrew, B., Amodei, D., McCandlish, S.,
Sutskever, I., and Zaremba, W. Evaluating large language
models trained on code. arXiv preprint arXiv:2107.03374,
2021.

Chen, X., Liu, C., and Song, D. Execution-guided neu-
ral program synthesis. In International Conference on
Learning Representations, 2019.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug. arXiv preprint
arXiv:2304.05128, 2023.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y.
On the properties of neural machine translation: Encoder-
decoder approaches, 2014.

Choi, D. and Langley, P. Learning teleoreactive logic pro-
grams from problem solving. In International Conference
on Inductive Logic Programming, 2005.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman,
J. Quantifying generalization in reinforcement learning.
In International Conference on Machine Learning, 2019.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A.-r., and Kohli, P. Robustfill: Neural program learning
under noisy i/o. In International Conference on Machine
Learning, 2017.

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and Zhou, D.
Neural logic machines. In International Conference on
Learning Representations, 2019.

Ellis, K., Wong, C., Nye, M., Sable-Meyer, M., Cary, L.,
Morales, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. B. Dreamcoder: Growing generalizable, inter-
pretable knowledge with wake-sleep bayesian program
learning. arXiv preprint arXiv:2006.08381, 2020.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales, L.,
Hewitt, L., Cary, L., Solar-Lezama, A., and Tenenbaum,
J. B. Dreamcoder: Bootstrapping inductive program syn-
thesis with wake-sleep library learning. In SIGPLAN
International Conference on Programming Language De-
sign and Implementation 2021, 2021.

Fukushima, K. and Miyake, S. Neocognitron: A self-
organizing neural network model for a mechanism of
visual pattern recognition. In Competition and Coopera-
tion in Neural Nets: Proceedings of the US-Japan Joint
Seminar, 1982.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep rein-
forcement learning for robotic manipulation with asyn-
chronous off-policy updates. In IEEE International Con-
ference on Robotics and Automation, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
Conference on Machine Learning, 2018.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. beta-
vae: Learning basic visual concepts with a constrained
variational framework. In International Conference on
Learning Representations, 2016.

Hong, J., Dohan, D., Singh, R., Sutton, C., and Zaheer,
M. Latent programmer: Discrete latent codes for pro-
gram synthesis. In International Conference on Machine
Learning, 2021.

Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P., and
Levine, S. How to train your robot with deep reinforce-
ment learning: lessons we have learned. The International
Journal of Robotics Research, 2021.

10

Hierarchical Programmatic Reinforcement Learning

Inala, J. P., Bastani, O., Tavares, Z., and Solar-Lezama,
A. Synthesizing programmatic policies that inductively
generalize. In International Conference on Learning
Representations, 2020.

Jain, N., Vaidyanath, S., Iyer, A., Natarajan, N.,
Parthasarathy, S., Rajamani, S., and Sharma, R. Jig-
saw: Large language models meet program synthesis. In
International Conference on Software Engineering, 2022.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Communications of the ACM, 2017.

Landajuela, M., Petersen, B. K., Kim, S., Santiago, C. P.,
Glatt, R., Mundhenk, N., Pettit, J. F., and Faissol, D.
Discovering symbolic policies with deep reinforcement
learning. In International Conference on Machine Learn-
ing, 2021.

Lee, Y., Sun, S.-H., Somasundaram, S., Hu, E., and Lim, J. J.
Composing complex skills by learning transition policies.
In International Conference on Learning Representations,
2019.

Lee, Y., Szot, A., Sun, S.-H., and Lim, J. J. Generalizable
imitation learning from observation via inferring goal
proximity. In Neural Information Processing Systems,
2021.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,
Lago, A. D., Hubert, T., Choy, P., d’Autume, C. d. M.,
Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J., Gowal,
S., Cherepanov, A., Molloy, J., Mankowitz, D. J., Rob-
son, E. S., Kohli, P., de Freitas, N., Kavukcuoglu, K.,
and Vinyals, O. Competition-level code generation with
alphacode. Science, 2022.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter,
B., Florence, P., and Zeng, A. Code as policies: Language
model programs for embodied control. In arXiv preprint
arXiv:2209.07753, 2022.

Liao, Y.-H., Puig, X., Boben, M., Torralba, A., and Fidler,
S. Synthesizing environment-aware activities via activity
sketches. In IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

Lin, X. V., Wang, C., Zettlemoyer, L., and Ernst, M. D.
Nl2bash: A corpus and semantic parser for natural lan-
guage interface to the linux operating system. In Interna-
tional Conference on Language Resources and Evalua-
tion, 2018.

Lipton, Z. C. The mythos of model interpretability. In
ICML Workshop on Human Interpretability in Machine
Learning, 2016.

Liu, G.-T., Lin, G.-Y., and Cheng, P.-J. Improving gen-
eralization with cross-state behavior matching in deep
reinforcement learning. In Autonomous Agents and Mul-
tiagent Systems, 2022.

Liu, Y., Wu, J., Wu, Z., Ritchie, D., Freeman, W. T., and
Tenenbaum, J. B. Learning to describe scenes with pro-
grams. In International Conference on Learning Repre-
sentations, 2019.

Pattis, R. E. Karel the robot: a gentle introduction to the art
of programming. John Wiley & Sons, Inc., 1981.

Poesia, G., Polozov, O., Le, V., Tiwari, A., Soares, G., Meek,
C., and Gulwani, S. Synchromesh: Reliable code gener-
ation from pre-trained language models. arXiv preprint
arXiv:2201.11227, 2022.

Puiutta, E. and Veith, E. M. S. P. Explainable reinforce-
ment learning: A survey. In Holzinger, A., Kieseberg, P.,
Tjoa, A. M., and Weippl, E. R. (eds.), Machine Learning
and Knowledge Extraction - International Cross-Domain
Conference, CD-MAKE, 2020.

Reed, S. and De Freitas, N. Neural programmer-interpreters.
In International Conference on Learning Representations,
2016.

Rubinstein, R. Y. Optimization of computer simulation mod-
els with rare events. European Journal of Operational
Research, 1997.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shin, E. C., Polosukhin, I., and Song, D. Improving neural
program synthesis with inferred execution traces. In
Neural Information Processing Systems, 2018.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
Nature, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., and Hassabis, D.
Mastering the game of go without human knowledge.
Nature, 2017.

Silver, T., Allen, K. R., Lew, A. K., Kaelbling, L. P., and
Tenenbaum, J. Few-shot bayesian imitation learning with
logical program policies. In Association for the Advance-
ment of Artificial Intelligence, 2020.

11

Hierarchical Programmatic Reinforcement Learning

Sun, S.-H., Noh, H., Somasundaram, S., and Lim, J. Neural
program synthesis from diverse demonstration videos. In
International Conference on Machine Learning, 2018.

Sun, S.-H., Wu, T.-L., and Lim, J. J. Program guided agent.
In International Conference on Learning Representations,
2020a.

Sun, Z., Zhu, Q., Xiong, Y., Sun, Y., Mou, L., and Zhang,
L. Treegen: A tree-based transformer architecture for
code generation. In Association for the Advancement of
Artificial Intelligence, 2020b.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 1999.

Tian, Y., Luo, A., Sun, X., Ellis, K., Freeman, W. T., Tenen-
baum, J. B., and Wu, J. Learning to infer and execute 3d
shape programs. In International Conference on Learning
Representations, 2019.

Trivedi, D., Zhang, J., Sun, S.-H., and Lim, J. J. Learning
to synthesize programs as interpretable and generalizable
policies. In Advances in Neural Information Processing
Systems, 2021.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri,
S. Programmatically interpretable reinforcement learning.
In International Conference on Machine Learning, 2018.

Verma, A., Le, H., Yue, Y., and Chaudhuri, S. Imitation-
projected programmatic reinforcement learning. In Neu-
ral Information Processing Systems, 2019.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jader-
berg, M., Silver, D., and Kavukcuoglu, K. Feudal net-
works for hierarchical reinforcement learning. In Interna-
tional Conference on Machine Learning, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 2019.

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. Codet5:
Identifier-aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. In Empirical
Methods in Natural Language Processing, 2021.

Wang, Y., Le, H., Gotmare, A. D., Bui, N. D., Li, J., and
Hoi, S. C. Codet5+: Open code large language models
for code understanding and generation. arXiv preprint
arXiv:2305.07922, 2023.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 1992.

Winner, E. and Veloso, M. Distill: Learning domain-specific
planners by example. In International Conference on
Machine Learning, 2003.

Wu, J., Tenenbaum, J. B., and Kohli, P. Neural scene de-
rendering. In IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

Wurman, P. R., Barrett, S., Kawamoto, K., MacGlashan, J.,
Subramanian, K., Walsh, T. J., Capobianco, R., Devlic,
A., Eckert, F., Fuchs, F., et al. Outracing champion gran
turismo drivers with deep reinforcement learning. Nature,
2022.

Zaremba, W. and Sutskever, I. Reinforcement learn-
ing neural turing machines-revised. arXiv preprint
arXiv:1505.00521, 2015.

Zhang, C., Vinyals, O., Munos, R., and Bengio, S. A
study on overfitting in deep reinforcement learning. arXiv
preprint arXiv:1804.06893, 2018.

Zhong, L., Lindeborg, R., Zhang, J., Lim, J. J., and Sun, S.-
H. Hierarchical neural program synthesis. arXiv preprint
arXiv:2303.06018, 2023.

12

Hierarchical Programmatic Reinforcement Learning

Appendix

A Discussion

A.1 Synthesizing Programs with Large-Language Models

Recently, leveraging large-language models (LLM) for program generation tasks has received increasing attention. For
example, OpenAI Codex (Chen et al., 2021), AlphaCode (Li et al., 2022), and related works (Chen et al., 2023; Poesia et al.,
2022; Sun et al., 2020b; Jain et al., 2022) aim to produce Python/C++ code from natural language descriptions. In contrast,
our goal is to synthesize programs that describe the behaviors of learning agents from rewards.

On the other hand, Liang et al. (2022) utilize LLMs to generate behavioral instructions given task-oriented prompts. However,
their problem formulation involves human interventions to provide task-specific prompts, which significantly deviates from
our problem formulation, which is to synthesize task-solving programs purely based on rewards automatically.

Lastly, fine-tuning LLMs trained on code, such as CodeT5 (Wang et al., 2021) and CodeT5+ (Wang et al., 2023) models, on
Karel programs and leveraging its embedding space as the action space is another promising way to further enhance the
performance of the proposed method.

A.2 Limitations

Karel Domain DSL. In this work, we choose the Karel DSL (Figure 1) due to its popularity among prior works (Bunel et al.,
2018; Shin et al., 2018; Sun et al., 2018; Chen et al., 2019; Trivedi et al., 2021) and the expressiveness of the behavioral
description for the agent. Incorporating the proposed HPRL framework for synthesizing programs with a more general DSL
is worth further exploring.

Deterministic Environments. The Karel domain features a deterministic environment, where any action has a single
guaranteed effect without the possibility of failure or uncertainty. Designing a DSL and a program synthesis framework that
can synthesize task-solving programs in stochastic environments is another promising research direction.

B Method Details
The details of each method are described in this section.

B.1 HPRL

The overall framework of HPRL consists of two parts: the pre-trained decoder, as mentioned in Section 4.1, and the
meta-policy described in Section 4.3. The decoder is constructed with a one-layer unidirectional GRU, where the hidden
size and input size are set to 256. Additionally, we employ a compression decoder to further compress the latent program
space. This is achieved by using a fully-connected linear neural network with an output dimension of 256 and a latent
embedding dimension of [16, 32, 64, 128]. Please note that the VAE with 256-dimensions program embedding space does
not include the fully connected linear neural network. The meta-policy neural network consists of a CNN neural network
as a state feature extractor and a fully-connected linear layer for the action and value branch. The CNN neural network
includes two convolutional layers. The filter size of the first convolutional layer is 32 with 4 channels, and the filter size of
the second convolutional layer is 32 with 2 channels. The output of the state embedding is flattened into a vector of the same
size as the output action vector.

B.2 DRL

The DRL method implements a deep neural network trained using the Proximal Policy Optimization (PPO) algorithm for
2M time steps. It learns a policy that takes raw states (grids) from the Karel environment as input and predicts the next
action. The raw state is represented by a binary tensor that reflects the state of each grid.

B.3 DRL-abs

DRL-abs utilizes a deep neural network with a recurrent policy and is trained using the PPO algorithm, which
has demonstrated better performance compared to the Soft Actor-Critic (SAC) algorithm. It is also trained for
2M time steps. Instead of using the raw states (grids) of Karel, it takes abstract states as input. These ab-

13

Hierarchical Programmatic Reinforcement Learning

stract states are represented by a binary vector that encompasses all returned values of perceptions of the cur-
rent state, e.g., [frontIsClear() == True, leftIsClear() == False, rightIsClear() == True,
markerPresent() == False, noMarkersPresent() == True].

B.4 VIPER

VIPER is a programmatic RL framework proposed by Bastani et al. (2018) that utilizes a decision tree to imitate the
behavior of a given neural network teacher policy. Bastani et al. (2018) utilizes the best DRL policy networks as its teacher
policy. While VIPER lacks the ability to synthesize looping behaviors, it can be effectively employed for evaluating other
approaches that utilize a program embedding space to synthesize more complex programs.

B.5 LEAPS

LEAPS is a programmatic RL framework introduced by Trivedi et al. (2021). The training framework of LEAPS consists
of two stages. In the first stage, a model with an encoder-decoder architecture is trained to learn a continuous program
embedding space. In the second stage, the Cross-Entropy Method (Rubinstein, 1997) is utilized to search through the learned
program embedding space and optimize the program policy for each task.

B.6 LEAPS-ours

LEAPS-ours utilizes the same framework as LEAPS but is trained on our proposed dataset while learning a program
embedding space.

C Problem Set Details

C.1 KAREL Problem Set Details

The KAREL problem set introduced in (Trivedi et al., 2021) consists of six different tasks: STAIRCLIMBER, FOURCORNER,
TOPOFF, MAZE, CLEANHOUSE and HARVESTER. The performance of the policy networks is measured by averaging the
rewards obtained from 10 randomly generated initial configurations of the environment. All experiments are conducted on
an 8× 8 grid, except for the CLEANHOUSE task. Figure 6 visualizes one of the random initial configurations and its ideal
end state for each KAREL task.

STAIRCLIMBER. In this task, the agent is asked to move along the stair to reach the marked grid. The initial location of the
agent and the marker is randomized near the stair, with the marker placed on the higher end. The reward is defined as 1 if
the agent successfully reaches the marked grid and 0 otherwise.

FOURCORNER. The goal of the agent in this task is to place a marker on each corner of the grid to earn the reward. If any
marker is placed in the wrong location, the reward is 0. The initial position of the agent is randomized near the wall. The
reward is calculated by multiplying the number of correctly placed markers by 0.25.

TOPOFF. In this task, the agent is asked to place markers on marked grids and reach the rightmost grid of the bottom row.
The reward is defined as the consecutive correct states of the last rows until the agent puts a marker on an empty location
or does not place a marker on a marked grid. If the agent successfully reaches the rightmost grid of the last row, a bonus
reward is granted. The agent is always initiated on the leftmost grid of the bottom row, facing east, while the locations of
markers in the last row are randomized.

MAZE. In this task, the agent has to navigate to reach the marked destination. The locations of markers and the agent, as
well as the configuration of the maze, are randomized. The reward is 1 if the agent successfully reaches the marked grid or
otherwise 0.

CLEANHOUSE. There is some garbage (markers) scattered around the apartment, and the agent is asked to clean them up.
The agent’s objective is to collect as many markers as possible on the grid. The apartment is represented by a 14x22 grid.
While the agent’s location remains fixed, the positions of the markers are randomized. The reward is calculated by dividing
the number of markers collected by the total number of markers in the initial Karel state.

HARVESTER. The goal is to collect more markers on the grid, with markers appearing in all grids in the initial Karel
environment. The reward is defined as the number of collected markers divided by the total markers in the initial state.

14

Hierarchical Programmatic Reinforcement Learning

C.2 KAREL-HARD Problem Set Details

Since all the tasks in the original Karel benchmark are well-solved by our method, we proposed a newly designed Karel-Hard
benchmark to further evaluate the capability of HPRL. We define the state transition functions and reward functions for
DOORKEY, ONESTROKE, SEEDER, and SNAKE based on Karel states. Each task includes more constraints and more
complex structures, e.g., two-phase structure for DOORKEY, the restriction of no revisiting for ONESTROKE.

The performance of the policy networks is measured by averaging the rewards of 10 random environment initial configura-
tions. The range of cumulative reward in all KAREL-HARD tasks is [0.0, 1.0]. Figure 7 visualizes one of the random initial
configurations and its ideal end state for each KAREL-HARD task.

DOORKEY. An 8× 8 grid is split into two areas: a 6× 3 left chamber and a 6× 2 right chamber. The two chambers are
unconnected in the beginning. The agent has to pick up the marker in the left chamber to unlock the door, and then get into
the right chamber to place the marker on the top of the target(marker). The initial location of the agent, the key(marker) in
the left room and the target(marker) in the right room are randomly initialized. The reward is defined as 0.5 for picking up
the key and the remaining 0.5 for placing the marker on the marked grid.

ONESTROKE. The goal is to make the agent traverse all grids without revisiting. The visited grids will become a wall and
the episode will terminate if the agent hits the wall. The reward is defined as the number of grids visited divided by the total
empty grids in the initial Karel environment. The initial location of the agent is randomized.

SEEDER. The goal is to put markers on each grid in the Karel environment. The episode will end if markers are repeatedly
placed. The reward is defined as the number of markers placed divided by the total number of empty grids in the initial
Karel environment.

SNAKE. In this task, the agent acts as the head of the snake, and the goal is to eat (i.e., pass through) as much food (markers)
as possible without hitting its body. There is always exactly one marker existing in the environment until 20 markers have
been eaten. Once the agent passes a marker, the snake’s body length will increase by 1, and a new marker will appear at
another position in the environment. The reward is defined as the number of markers eaten divided by 20.

D Hyperparameters and Settings

D.1 LEAPS

Following the setting of LEAPS(Trivedi et al., 2021), we experimented with sets of hyperparameters when searching the
program embedding space to optimize the reward for both LEAPS and LEAPS-ours. The LEAPS settings are described
in Table 5 and Table 6. S, σ, # Elites, Exp Decay and DI represent population size, standard deviation, percentage of
population elites, exponential σ decay and initial distribution, respectively.

Karel-Hard tasks

Table 5. LEAPS experiment settings on KAREL-HARD tasks.

LEAPS S σ # Elites Exp Decay DI

DOORKEY 32 0.25 0.1 False N(0, 0.1Id)
ONESTROKE 64 0.5 0.05 True N(1, 0)

SEEDER 32 0.25 0.1 False N(0, 0.1Id)
SNAKE 32 0.25 0.2 False N(0, Id)

Reconstruction tasks

15

Hierarchical Programmatic Reinforcement Learning

Table 6. LEAPS experiment settings on Program Reconstruction tasks.

LEAPS S σ # Elites Exp Decay DI

Len 25 32 0.5 0.05 True N(0, Id)
Len 50 32 0.5 0.2 True N(0, 0.1Id)
Len 75 64 0.5 0.05 True N(0, 0.1Id)
Len 100 64 0.5 0.1 True N(0, 0.1Id)

D.2 LEAPS-ours

Karel tasks

Table 7. LEAPS-ours experiment settings on KAREL tasks.

LEAPS-ours S σ # Elites Exp Decay DI

STAIRCLIMBER 32 0.5 0.05 True N(0, 0.1Id)
FOURCORNERS 32 0.5 0.1 True N(1, 0)

TOPOFF 64 0.25 0.05 True N(0, 0.1Id)
MAZE 64 0.1 0.2 False N(1, 0)

CLEANHOUSE 64 0.5 0.05 True N(1, 0)
HARVESTER 64 0.5 0.05 True N(1, 0)

Karel-Hard tasks

Table 8. LEAPS-ours experiment settings on KAREL-HARD tasks.

LEAPS-ours S σ # Elites Exp Decay DI

DOORKEY 64 0.5 0.2 True N(1, 0)
ONESTROKE 64 0.5 0.05 True N(1, 0)

SEEDER 64 0.5 0.05 True N(0, 0.1, Id)
SNAKE 32 0.25 0.05 False N(0, 0.1, Id)

D.3 HPRL

Pretraining VAE

Table 9. Hyperparameters of VAE Pretraining
Parameter Value/Setting

Latent Embedding Size 64
GRU Hidden Layer Size 256

GRU Layer for Encoder/Decoder 1
Batch Size 256

Nonlinearity Tanh
Learning Rate 0.001

Latent Loss Coefficient(β) 0.1

RL training on Meta Policies

The Hyperparameters for HPRL-PPO and HPRL-SAC training are reported in Table 10. For each task, we test on 5 different
random seeds and take the average to measure the performance.

16

Hierarchical Programmatic Reinforcement Learning

Table 10. Hyperparameters of HPRL-PPO and HPRL-SAC Training
Training
Settings SAC PPO

Max # Subprogram 5 5
Max Subprogram Length 40 40

Batch Size 1024 256

Specific Parameters

Init. Temperature: 0.0002
Actor Update Frequency: 200
Critic Target Update Frequency: 200
Num Seed Steps: 20000
Replay Buffer Size: 5M
Training Steps: 25M
Alpha Learning Rate: 0.0001
Actor Learning Rate: 0.0001
Critic Learning Rate: 0.00001
β: [0.9, 0.999]
Critic τ : 0.005
Number of parallel actors: 16
Discount factor: 0.99
Q-critic Hidden Dimension: 16

Learning Rate: 0.00005
Entropy Coefficient: 0.1
Rollout Size: 12800
Eps: 0.00001
α: 0.99
γ: 0.99
Use GAE: True
GAE lambda: 0.95
Value Loss Coefficient: 0.5
Clip Param: 0.2
Max grad. norm.: 0.5
Number of mini-batches: 10
Update Epochs: 3
Training Steps: 25M

Table 11. The statistical distribution of programs containing each token in our generated dataset.

IFELSE IF WHILE REPEAT

Our Dataset 41% 47% 54% 22%

E The KAREL Program Datasets Generation
The Karel program dataset used in this work includes 1 million program sequences, with 85% as the training dataset and
15% as the evaluation dataset. In addition to sequences of program tokens, the KAREL program dataset also includes
execution demonstrations (e.g., state transition and action sequence) of each program in the dataset, which can be used for
the latent behavior reconstruction loss described in Section 4.1.

To further improve the data quality, we added some heuristic rules while selecting data to filter out the programs with
repetitive or offsetting behavior. The unwanted programs that we drop while collecting data are mainly determined by the
following rules:

• Contradictory Primitive Actions: turnLeft followed by turnRight, pickMarker followed by putMarker, or
vice versa.

• Meaningless Programs: end_state == start_state after program execution
• Repetitive behaviors: a program which has the longest common subsequence of tokens longer than 9

We further analyze the distribution of the generated program sequences based on the control flow (e.g., IF, IFELSE)
and loop command (e.g., WHILE, REPEAT). The statistical probabilities of programs containing control flow or loop
commands are listed in Table 11. Results show that more than 40% of the programs in the collected program sequences
contain at least one of the control of loop commands, ensuring the diversity of the generated programs.

F Evaluation Metric for Learning to Synthesize Out-of-distributional Programs
Measure the Performance. To measure the performance of programs synthesized by different methods, we first collect
and execute each target program, yielding a target state sequence τtarget = [s1, s2, . . . , sTtarget

]. Then, we reset the Karel
environment to the initial state s1. For our proposed framework, we synthesize a sequence of programs with the following
procedure and optimize a program reconstruction reward to match the target program. As described in Section 4.3, at each
macro training time step n, 1 ≤ n ≤ |H|, we collect the state sequence τP = [sP1 , s

P
2 , . . . , s

P
TP

] from the executing of

17

Hierarchical Programmatic Reinforcement Learning

task-solving program P = ⟨ρi|i = 1, .., n⟩, and calculate the program reconstruction reward rn = 1−D(τtarget, τP) where
D is the normalized Levenshtein distance. For executing the programs synthesized by LEAPS and LEAPS-ours, we simply
start executing programs after resetting the Karel environment to the initial state s1 and calculating the return.

G Synthesized Programs
In this section, we provide qualitative results (i.e., synthesized programs) of our proposed framework (HPRL-PPO), LEAPS,
and LEAPS-ours. The programs synthesized for the tasks in the KAREL problem set are shown in Figure 8 (STAIRCLIMBER,
TOPOFF, and CLEANHOUSE), Figure 9 (FOURCORNER, MAZE), and Figure 10 (HARVESTER). The programs synthesized
for the tasks in the KAREL-HARD problem set are shown in Figure 11 (DOORKEY), Figure 12(ONESTROKE), and Figure
13 (SEEDER and SNAKE).

18

Hierarchical Programmatic Reinforcement Learning

stairClimber

(a) STAIRCLIMBER

fourCorners

(b) FOURCORNERtopOff

(c) TOPOFF

maze

(d) MAZEharvester

(e) HARVESTERcleanHouse

(f) CLEANHOUSE

Figure 6. Illustrations of the initial and desired final state of each task in the KAREL Problem set introduced in by Trivedi et al. (2021).
Note that these illustrations are from (Trivedi et al., 2021). The position of markers, walls, and agent’s position are randomly set according
to the configurations of each tasks. More details are provided in Section C.1.

19

Hierarchical Programmatic Reinforcement Learning

(a) DOORKEY (b) ONESTROKE

(c) SEEDER (d) SNAKE

Figure 7. Illustrations of the initial and final state of each task in the proposed KAREL-HARD Problem Set. The position of markers, walls,
and agent’s position are randomly set according to the configurations of each tasks. More details are provided in Section C.2.

20

Hierarchical Programmatic Reinforcement Learning

Karel Programs

STAIRCLIMBER
LEAPS
DEF run m(

WHILE c(noMarkersPresent c) w(
turnRight
move
w)

WHILE c(rightIsClear c) w(
turnLeft
w)

m)

LEAPS-ours
DEF run m(

turnRight
turnRight
WHILE c(noMarkersPresent c) w(

turnRight
move
w)

m)

HPRL-PPO
DEF run m(

WHILE c(noMarkersPresent c) w(
turnRight
move
turnRight
move

w)
m)

TOPOFF
LEAPS
DEF run m(

WHILE c(noMarkersPresent c) w(
move
w)

putMarker
move
WHILE c(not c(markersPresent c)

c) w(
move
w)

putMarker
move
WHILE c(not c(markersPresent c)

c) w(
move
w)

putMarker
move
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
m)

LEAPS-ours
DEF run m(

WHILE c(not c(rightIsClear c) c
) w(

WHILE c(not c(
markersPresent c) c) w(

move
w)

putMarker
move
w)

WHILE c(not c(rightIsClear c) c
) w(

pickMarker
w)

m)

HPRL-PPO
DEF run m(

REPEAT R=5 r(
move
WHILE c(noMarkersPresent c)

w(
move
w)

putMarker
r)

m)

CLEANHOUSE
LEAPS
DEF run m(

WHILE c(noMarkersPresent c) w(
turnRight
move
move
turnLeft
turnRight
pickMarker
w)

turnLeft
turnRight
m)

LEAPS-ours
DEF run m(

move
WHILE c(noMarkersPresent c) w(

turnRight
move
WHILE c(frontIsClear c) w(

move
pickMarker
w)

w)
m)

HPRL-PPO
DEF run m(

WHILE c(noMarkersPresent c) w(
turnRight
move
pickMarker
pickMarker
w)

m)
DEF run m(

WHILE c(noMarkersPresent c) w(
turnRight
move
pickMarker
pickMarker
w)

m)
DEF run m(

WHILE c(noMarkersPresent c) w(
turnRight
move
pickMarker
pickMarker
w)

m)
DEF run m(

WHILE c(noMarkersPresent c) w(
turnRight
move
pickMarker
pickMarker
w)

m)

Figure 8. Example programs on Karel tasks: STAIRCLIMBER, TOPOFF and CLEANHOUSE. The programs with best rewards out of
all random seeds are shown.

21

Hierarchical Programmatic Reinforcement Learning

FOURCORNER
LEAPS
DEF run m(

turnRight
move
turnRight
turnRight
turnRight
WHILE c(frontIsClear c) w(

move
w)

turnRight
putMarker
WHILE c(frontIsClear c) w(

move
w)

turnRight
putMarker
WHILE c(frontIsClear c) w(

move
w)

turnRight
putMarker
WHILE c(frontIsClear c) w(

move
w)

turnRight
putMarker
m)

LEAPS-ours
DEF run m(

REPEAT R=5 r(
WHILE c(frontIsClear c) w(

move
w)

IFELSE c(not c(rightIsClear
c) c) i(

turnLeft
putMarker
i)

ELSE e(
putMarker
e)

r)
m)

HPRL-PPO
DEF run m(

move
WHILE c(frontIsClear c) w(

move
w)

putMarker
turnLeft
m)

DEF run m(
move
WHILE c(frontIsClear c) w(

move
w)

putMarker
turnLeft
m)

DEF run m(
move
WHILE c(frontIsClear c) w(

move
w)

putMarker
turnLeft
m)

DEF run m(
move
WHILE c(frontIsClear c) w(

move
w)

putMarker
turnLeft
m)

MAZE
LEAPS
DEF run m(

IF c(frontIsClear c) i(
turnLeft
i)

WHILE c(noMarkersPresent c) w(
turnRight
move
w)

m)

LEAPS-ours
DEF run m(

WHILE c(noMarkersPresent c) w(
turnRight
move
w)

turnRight
turnRight
turnRight
m)

HPRL-PPO
DEF run m(

WHILE c(noMarkersPresent c) w(
turnRight
move
w)

WHILE c(noMarkersPresent c) w(
turnRight
move
w)

m)

Figure 9. Example programs on Karel tasks: FOURCORNER and MAZE. The programs with best rewards out of all random seeds are
shown.

22

Hierarchical Programmatic Reinforcement Learning

HARVESTER
LEAPS
DEF run m(

turnLeft
turnLeft
pickMarker
move
pickMarker
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
turnLeft
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
turnLeft
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
turnLeft
pickMarker
move
pickMarker
move
pickMarker
move
m)

LEAPS-ours
DEF run m(

WHILE c(leftIsClear c) w(
REPEAT R=4 r(

pickMarker
move
r)

turnLeft
pickMarker
move
turnLeft
pickMarker
move
w)
turnLeft
pickMarker
turnLeft

m)

HPRL-PPO
DEF run m(

REPEAT R=4 r(
REPEAT R=4 r(

pickMarker
turnRight
move
pickMarker
turnRight
move
pickMarker
move
pickMarker
move
r)

turnRight
pickMarker
move
pickMarker
move
pickMarker
move
r)

m)

Figure 10. Example programs on Karel tasks: HARVESTER. The programs with best rewards out of all random seeds are shown.

23

Hierarchical Programmatic Reinforcement Learning

Karel-Hard Programs

DOORKEY
LEAPS
DEF run m(

move
turnRight
putMarker
pickMarker
move
WHILE c(leftIsClear c) w(

pickMarker
move
w)

m)

LEAPS-ours
DEF run m(

WHILE c(rightIsClear c) w(
turnRight
pickMarker
turnLeft
pickMarker
pickMarker
pickMarker
pickMarker
move
turnLeft
move
w)

m)

HPRL-PPO
DEF run m(

REPEAT R=4 r(
REPEAT R=4 r(turnRight move

pickMarker move
pickMarker move r)

pickMarker move r)
m)

DEF run m(
REPEAT R=5 r(

turnRight move
REPEAT R=5 r(move r)
move pickMarker move
r)

m)
DEF run m(

REPEAT R=4 r(
REPEAT R=4 r(

turnRight move
REPEAT R=3 r(

move pickMarker
move pickMarker r)

r)
r)

m)
DEF run m(

REPEAT R=4 r(
REPEAT R=4 r(

turnRight move
pickMarker move
pickMarker
REPEAT R=2 r(

pickMarker move
pickMarker pickMarker

r)
r)

r)
m)

DEF run m(
REPEAT R=4 r(

turnRight
REPEAT R=4 r(

turnRight move move
pickMarker move
r)

move pickMarker move
r)

move pickMarker
m)

Figure 11. Example programs on Karel-Hard tasks: DOORKEY. The programs with best rewards out of all random seeds are shown.

24

Hierarchical Programmatic Reinforcement Learning

ONESTROKE
LEAPS
DEF run m(

REPEAT R=9 r(
turnRight
turnRight
WHILE c(frontIsClear c) w(

move
w)

turnRight
WHILE c(frontIsClear c) w(

move
w)

r)
turnRight
m)

LEAPS-ours
DEF run m(

turnRight
WHILE c(frontIsClear c) w(

WHILE c(frontIsClear c) w(
WHILE c(frontIsClear c)

w(
WHILE c(frontIsClear

c) w(
move
w)

turnRight
w)

turnRight
w)

turnRight
w)

turnRight
m)

HPRL-PPO
DEF run m(

WHILE c(frontIsClear c) w(move
w) turnRight

WHILE c(frontIsClear c) w(move
w) turnRight

WHILE c(frontIsClear c) w(move
w) turnRight

m)
DEF run m(

WHILE c(frontIsClear c) w(move
w) turnRight

WHILE c(frontIsClear c) w(move
w) turnRight

WHILE c(frontIsClear c) w(move
w) turnRight

m)
DEF run m(

WHILE c(frontIsClear c) w(move
w) turnRight

WHILE c(frontIsClear c) w(move
w) turnRight

WHILE c(frontIsClear c) w(move
w) turnRight

WHILE c(frontIsClear c) w(move
w) turnRight

m)
DEF run m(

WHILE c(frontIsClear c) w(move
w) turnRight

WHILE c(frontIsClear c) w(move
w) turnRight

WHILE c(frontIsClear c) w(move
w) turnRight

m)

Figure 12. Example programs on Karel-Hard tasks: ONESTROKE. The programs with best rewards out of all random seeds are shown.

25

Hierarchical Programmatic Reinforcement Learning

SEEDER
LEAPS
DEF run m(

WHILE c(noMarkersPresent c) w(
turnRight
putMarker
move
move
w)

turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
m)

LEAPS-ours
DEF run m(

WHILE c(noMarkersPresent c) w(
putMarker
move
turnRight
move
w)

turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
m)

HPRL-PPO
DEF run m(

putMarker move
putMarker move
putMarker move
putMarker move
putMarker move
turnRight move
m)

DEF run m(
putMarker move
putMarker move
putMarker move
putMarker move
putMarker move
turnRight move
putMarker move
m)

DEF run m(
putMarker move
putMarker move
putMarker move
putMarker move
turnRight move
putMarker move
turnRight move
m)

DEF run m(
putMarker move
putMarker move
putMarker move
putMarker move
turnRight move
putMarker move
turnRight move

DEF run m(
putMarker move
putMarker move
putMarker move
putMarker move
turnRight move
putMarker move
turnRight move
m)

SNAKE
LEAPS
DEF run m(

turnRight
turnLeft
pickMarker
move
move
move
WHILE c(rightIsClear c) w(

turnLeft
move
move
w)

turnLeft
turnLeft
turnLeft
turnLeft
m)

LEAPS-ours
DEF run m(

move
turnRight
pickMarker
pickMarker
WHILE c(rightIsClear c) w(

turnLeft
move
move
w)

turnRight
move
move
move
m)

HPRL-PPO
DEF run m(

move
WHILE c(noMarkersPresent c) w(

move
move
turnLeft
w)

move
turnLeft
m)

DEF run m(
move
WHILE c(noMarkersPresent c) w(

move
move
turnLeft
w)

m)
DEF run m(

move
WHILE c(noMarkersPresent c) w(

move
move
turnLeft
w)

move
turnLeft
m)

Figure 13. Example programs on Karel-Hard tasks: SEEDER and SNAKE. The programs with best rewards out of all random seeds
are shown.

26

