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Abstract

Transformers have emerged as a powerful neural network architecture capable of
tackling a wide range of learning tasks. In this work, we provide a theoretical anal-
ysis of their ability to automatically extract structure from data in an unsupervised
setting. In particular, we demonstrate their suitability for clustering when the input
data is generated from a Gaussian mixture model. To this end, we study a simplified
two-head attention layer and define a population risk whose minimization with
unlabeled data drives the head parameters to align with the true mixture centroids.
This phenomenon highlights the ability of attention-based layers to capture underly-
ing distributional structure. We further examine an attention layer with key, query,
and value matrices fixed to the identity, and show that, even without any trainable
parameters, it can perform in-context quantization, revealing the surprising capacity
of transformer-based methods to adapt dynamically to input-specific distributions.

1 Introduction

Attention-based models (Bahdanau et al., 2015), in particular Transformers (Vaswani et al., 2017),
have achieved state-of-the-art performance across a wide range of learning tasks. These include
applications in natural language processing (Devlin et al., 2018; Bubeck et al., 2023; Luong et al.,
2015; Bahdanau et al., 2016) and computer vision (Dosovitskiy et al., 2020; Liu et al., 2021;
Ramachandran et al., 2019). The success of the attention mechanism has been linked to its ability to
capture long-range relationships in input sequences (Bahdanau et al., 2015; Vaswani et al., 2017).
They do this by computing pairwise dependencies between tokens based on learned projections,
without regard to the tokens’ positions in the sequence.

On the theoretical side, a full understanding of attention-based mechanisms has not yet been developed.
This is due to the complexity of the architectures and the diversity of relevant tasks they manage to
achieve. A promising research direction to bridge this gap involves identifying essential features
from real-world problems and constructing minimal yet representative tasks that retain the essential
difficulty—paired with provable models that solve them using attention-based mechanisms. Notable
recent efforts in this vein include Ahn et al. (2023); von Oswald et al. (2023); Yang et al. (2025);
Zhang et al. (2024); Li et al. (2024, 2023). However, the existing literature mainly focuses on
supervised learning aspects, and in particular in-context learning (von Oswald et al., 2023; Zhang
et al., 2024; Garg et al., 2023; Li et al., 2023; Furuya et al., 2024). The goal of in-context learning is
to predict the output corresponding to a new query, given a prompt consisting of input/output pairs.
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Beyond the standard supervised setting, Transformer models are often (pre)trained in practice with
semi-supervised objectives such as masked language modeling (Phuong and Hutter, 2022). This
raises important questions about their statistical behavior and training dynamics in unsupervised
regimes. In this work, we examine Transformers through the lens of clustering, thereby revealing
the inherent capacity of attention mechanisms to perform unsupervised representation learning. To
the best of our knowledge, the only prior theoretical work that explicitly explores clustering with
Transformers is He et al. (2025), who demonstrate that attention layers can mimic the EM algorithm
(Lloyd, 1982), albeit assuming known cluster labels during training. In contrast, our analysis focuses
on the fully unsupervised setting and further provides insight into the functional roles of individual
attention heads in the context of model-based clustering.

Contributions. In this paper, we investigate the behavior of attention layers in an unsupervised
learning setting, where input data is drawn from mixture distributions. We focus on a two-component
Gaussian mixture model. Within this classical clustering framework, we introduce a two-headed linear
attention layer designed to capture cluster membership through attention scores, while remaining
analytically and computationally tractable. To assess the quality of the embeddings produced by the
attention mechanism, we define a theoretical risk analogous to the classical quantization error in
unsupervised learning. We analyze the training dynamics of the proposed predictor under projected
gradient descent and prove that, with appropriate initialization, the algorithm can learn the true
latent centroids of the mixture components, despite the non-convexity of the loss landscape and
without access to cluster labels. To relax the initialization requirements in practice, we further
propose a regularization scheme that promotes disentanglement between attention heads. Our
theoretical findings are supported by numerical experiments under varying conditions, including
different initialization regimes, mixture separability levels, and problem dimensionalities. Overall,
we show that attention-based predictors can successfully adapt to mixture models by learning the
underlying centroids through training. We also study their quantization properties, that is, how the
layer summarizes the input distribution. In the oracle regime, where the attention parameters have
converged to the true centroids, the problem can be viewed as an approximate denoising task, in the
sense commonly used in the statistical physics literature, where each input can be interpreted as a
noisy observation of an underlying centroid, and the transformed token corresponds, to some extent,
to its denoised estimate. Finally, we focus on a particular attention layer in which the key, query,
and value parameters are fixed to the identity matrix. Surprisingly, we show that this type of layer,
despite having no trainable parameters, can still perform in-context quantization, meaning it adapts to
the case where the distribution of each input sequence comes with its own mixing parameters. This
further demonstrates the remarkable ability of transformer-based methods to adapt on the fly to the
underlying data distribution, even when no attention parameters are trained.

Organization. Section 2 introduces the problem and outlines the proposed approach. In Section
3, we address the general problem with linear attention applied to a two-component Gaussian
mixture model. In Section 4, we discuss the quantization properties of attention-based predictor with
oracle parameters. In Section 5, we explore an in-context clustering framework and examine the
quantization capabilities of a simple attention-based layer with no learned parameters. The proofs of
all the theoretical results can be found in the appendices.

2 A starter on attention-based layers and clustering

Data distribution in model-based clustering. In attention-based learning, the key idea is to map a
set of input tokens to a transformed set of output tokens. With this in mind, we consider an input
sequence X ∈ RL×d composed of L tokens (X1, . . . , XL), each token being a vector of Rd, i.e.,
X = (X1, . . . , XL)

⊤. We assume that the tokens are i.i.d. drawn from a simple mixture model: for
1 ≤ ℓ ≤ L,

Xℓ ∼
1

2
N (µ⋆0, σ

2Id) +
1

2
N (µ⋆1, σ

2Id), (Pσ)

with balanced components and where the centroids (µ⋆0, µ
⋆
1) ∈ (Sd−1)2 (i.e., ∥µ⋆0∥2 = ∥µ⋆1∥2 = 1)

are assumed to be orthogonal, i.e., such that ⟨µ⋆0, µ⋆1⟩ = 0. Therefore, for each token, there exists an
associated latent variable, denoted by Zℓ, corresponding to a Bernoulli random variable of parameter
1/2 and encoding its corresponding cluster.
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Attention-based predictors. An attention head made of a self-attention layer can be written as

Hsoftλ(X) = softmaxλ
(
XQK⊤X⊤)XV

where the softmax of temperature λ > 0 is applied row-wise, no skip connection is considered and
the matrices K,Q, V ∈ Rd×p are usually referred to as keys, queries and values. We adopt the
convention that the values are identity matrices; thus, the attention head simply outputs combinations
of the initial tokens weighted by the attention scores. While this simplification is certainly convenient
for facilitating the mathematical analysis that follows, it is also supported by experimental studies
showing comparable performance when the value matrices are removed (He and Hofmann, 2024).
Furthermore, assume that the key and query matrices are equal to the same column matrix µ ∈ Rd×1,
we obtain

Hsoftλ,µ(X) = softmaxλ
(
Xµµ⊤X⊤)X. (1)

With such an architecture, the ℓ-th output vector is therefore given by

Hsoftλ,µ(X)ℓ =
L∑
k=1

softmaxλ
(
X⊤
ℓ µµ

⊤X⊤)
k
Xk, (2)

which corresponds to aggregating the Xk’s when Xk and Xℓ are simultaneously aligned with µ. This
suggests that attention heads may act as effective learners in a clustering framework.

The softmax nonlinearity used in the attention head (1) introduces a coupling between tokens, which
undoubtedly complicates the mathematical analysis. To address this difficulty, we propose to look at
a simplified linear attention head, still parameterized by µ ∈ Rd, and defined for 1 ≤ ℓ ≤ L, as

H lin,µ(X)ℓ =
2

L

L∑
k=1

(λX⊤
ℓ µµ

⊤Xk)Xk. (3)

This head uses a linear activation function instead of the traditional softmax found in practical
architectures, and has already received interest in several mathematical studies (see Zhang et al., 2024;
von Oswald et al., 2023; Han et al., 2023; Katharopoulos et al., 2020). This model is a particular case
of Gaussian sequence multi-index models (Cui, 2025), which were already used to study attention
models (Cui et al., 2024; Arnaboldi et al., 2025; Troiani et al., 2025), albeit not in a clustering context.

Note that when µ is chosen to be µ⋆0, then for tokens Xℓ and Xk whose corresponding latent variables
Zℓ and Zk are both equal to 0 (i.e., the samples belong to the same cluster centered at µ⋆0), the
vectors Xℓ and Xk are likely to be aligned with µ⋆0. In this case, we have (X⊤

ℓ µµ
⊤Xk)Xk ≃ Xk.

Conversely, if Xℓ and Xk are associated with different latent variables (e.g., Zℓ = 0 and Zk = 1),
then (X⊤

ℓ µµ
⊤Xk)Xk ≃ 0. This behavior suggests that when setting µ = µ⋆0, and if Xℓ belongs to

the cluster centered at µ⋆0, the sum
∑L
k=1(λX

⊤
ℓ µµ

⊤Xk)Xk effectively aggregates the Xk’s from the
same cluster, whose expected number is L/2, motivating the renormalizing factor of 2/L. Overall,
H lin,µ⋆

0 (X)ℓ can be seen as producing an empirical mean of the tokens belonging to the same cluster,
serving as an estimator of the corresponding centroid.

Therefore, assuming that the number of clusters in the data is known, it is natural to consider an
attention-based predictor composed of two attention heads, parameterized by µ0 and µ1 ∈ Rd,

T lin,µ0,µ1(X) = H lin,µ0(X) +H lin,µ1(X). (4)

Metric loss. As no label is available, we focus on minimizing the following theoretical loss:

L(T ) def
=

1

L

L∑
ℓ=1

E
[
∥Xℓ − T (X)ℓ∥22

]
, (5)

where T is an arbitrary attention-based predictor. The distinctive feature of this risk lies in the fact
that, if the predictor were able to return, for each token Xℓ, its associated centroid µ⋆Zℓ

, the risk would
exactly correspond to a quantization error, characteristic of a standard clustering task. Note that,
due to the independence of the tokens, we have L(T ) = E∥X1 − T (X)1∥22, so we can confine the
following theoretical analysis on the minimization of the predictive error for the first token only.
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PGD iterates. In this paper, we focus on the training dynamics of Transformer-based predictors
when minimizing the theoretical risk L. While we acknowledge that, in practice, an empirical version
of this risk is typically used, analyzing the optimization of the theoretical risk is already a non-trivial
task, which offers valuable insights into the behavior observed in practice.

For a given predictor T lin,µ0,µ1 made of two linear attention heads parameterized respectively by µ0

and µ1, one can reinterpret the objective L as a function R of the parameters (µ0, µ1), defined by

R(µ0, µ1) = L(T lin,µ0,µ1). (6)

Note that the computation of the risk also depends on the choice of the underlying data distribution.
However, as is common practice in the literature, we do not explicitly indicate the dependence of the
risk on the data distribution. This should not hinder understanding, as the distributional assumptions
and context will always be made clear. As we rely on the theoretical analysis on an expression of this
risk restricted to the sphere, we consider as a gradient strategy, the Projected (Riemaniann) Gradient
Descent (PGD) algorithm (Boumal, 2023). Given an initialization (µ0

0, µ
0
1) ∈ (Sd−1)2 and a step size

γ > 0, the PGD iterates (µk0 , µ
k
1) ∈ (Sd−1)2 are recursively defined by:

µk+1
0 =

µk0 − γ(Id − µk0(µ
k
0)

⊤)∇µ0R(µk0 , µ
k
1)

∥µk0 − γ(Id − µk0(µ
k
0)

⊤)∇µ0
R(µk0 , µ

k
1)∥2

,

µk+1
1 =

µk1 − γ(Id − µk1(µ
k
1)

⊤)∇µ1R(µk0 , µ
k
1)

∥µk1 − γ(Id − µk1(µ
k
1)

⊤)∇µ1
R(µk0 , µ

k
1)∥2

.

(PGD)

In what follows, we analyze the convergence of these iterates to the oracle centroids, both theoretically
and numerically.

3 Training dynamics: The centroids are learned as attention parameters

In this section, we analyze the training dynamics of an attention layer optimized by minimizing
the risk R through the PGD iterations defined in (PGD). We focus on the case of clustering data
generated from a Gaussian mixture model, as specified in (Pσ), where the input tokens are i.i.d.
samples

Xℓ ∼
1

2
N (µ⋆0, σ

2Id) +
1

2
N (µ⋆1, σ

2Id),

for 1 ≤ ℓ ≤ L, where (µ⋆0, µ
⋆
1) ∈ (Sd−1)2 are orthogonal unit vectors. As a first step toward

a mathematical understanding of Transformer-based layers in clustering settings, we have also
considered the degenerate case σ2 = 0, in which the data are drawn from a mixture of Dirac masses.
We perform a detailed analysis of the training dynamics under this simplified setting, which provides
valuable intuition and serves as a foundation for the subsequent study of the non-degenerate mixture
model. For completeness, this preliminary analysis is presented in Appendix A.

3.1 Theoretical analysis

Preliminary computations. We start by introducing the following quantities:

κ0
def
= ⟨µ⋆0, µ0⟩, κ1

def
= ⟨µ⋆1, µ1⟩, η0

def
= ⟨µ1, µ

⋆
0⟩, η1

def
= ⟨µ0, µ

⋆
1⟩, ξ

def
= ⟨µ0, µ1⟩, (7)

and derive a closed-form expression for the risk w.r.t. this reparameterization. Although the full
expression is somewhat complex (see Appendix C.1), the following proposition highlights its key
structural properties, as being a polynomial in these five variables.
Proposition 3.1. Under the Gaussian mixture model (Pσ), consider the attention-based predictor
T lin,µ0,µ1 composed of two linear heads parameterized by (µ0, µ1) ∈ (Sd−1)2. Then, there exists a
function R< : [−1, 1]5 7→ R such that R(µ0, µ1) = R<(κ0, κ1, η0, η1, ξ) and

R<(κ0, κ1, η0, η1, ξ) ∈ span
(
{κ40, η40 , κ41, η41 , κ20η20 , κ21η21 , κ20η21 , κ21η20 , κ0η0κ1η1,
κ20, η

2
0 , κ

2
1, η

2
1 , κ0η0ξ, κ1η1ξ, ξ

2, 1}
)
.

(8)

We remark that when η0, η1, and ξ are fixed to 0, most of the monomials vanish, yielding a fully
explicit formula for the risk (see Lemma C.1 in the appendices). Far from being a mere rewrite, this
step provides the algebraic foundation for all the exact calculations and insights that follow.
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Optimality conditions. Given the complexity of the theoretical analysis, we focus on a simplified
setting by restricting our study to parameters (µ0, µ1) lying on a specific manifold2:

M = {(µ0, µ1) ∈ (Sd−1)2 : ⟨µ⋆1, µ0⟩ = 0, ⟨µ⋆0, µ1⟩ = 0, ⟨µ0, µ1⟩ = 0}. (9)

In terms of notation, it is equivalent to assume that η0 = 0, η1 = 0, ξ = 0. Therefore on this manifold,
we adopt the shorthand notation R<(κ0, κ1)

def
= R<(κ0, κ1, 0, 0, 0).

Lemma 3.2. Under the Gaussian mixture model (Pσ), the risk R< restricted to M has the form

R<(κ0, κ1) = A(κ40 + κ41) +B(κ20 + κ21) + Cκ20κ
2
1 +D, (10)

for A,B,C,D non-negatives constants, dependent on σ and L, made explicit in Lemma C.1.

Proposition 3.3. Consider R<(κ0, κ1), there exists λ⋆(σ, L) > 0 such that the points (±1,±1) are
global minima of R<(κ0, κ1).

This result demonstrates that, under a suitable condition on the temperature parameter—specifically,
when λ = λ⋆(σ, L)—the points ±µ⋆0 and ±µ⋆1 are global minimizers of the risk. The explicit
form of λ⋆(σ, L) is provided in Proposition C.2 in the appendices. Moreover, it is worth noting
that as the variance σ2 of the Gaussian components tends to zero, λ⋆(σ, L) approaches the value
λ⋆0 = L+1

L+3 ,which coincides with the value previously identified in the degenerate case (P0). On the

other hand, when σ is fixed and L grows large, λ⋆(σ, L) tends toward λ⋆∞ = 1+4σ2

1+5σ2+6σ4 , which will
guide us to properly choose λ in our numerical experiments.

Convergence analysis. In what follows, we show that the (PGD) iterates can indeed converge to
global minimizers, provided they are suitably initialized on the manifold M.
Theorem 3.4. Under the Gaussian mixture model (Pσ), consider the attention-based predictor
T lin,µ0,µ1 composed of two linear heads. Take λ ∈]0, λ⋆(σ, L)], with λ⋆(σ, L) defined as in Proposi-
tion 3.3. Then there exists γ̄ > 0 such that for any stepsize 0 < γ < γ̄, and for a generic initialization
(µ0

0, µ
0
1) ∈ M, the iterates (µk0 , µ

k
1) generated by (PGD) converge to the centroids (up to a sign), i.e.

(µk0 , µ
k
1) −−−−→

k→∞
(±µ⋆0,±µ⋆1).

Theorem 3.4 underlines the capabilities of linear attention-based predictors in a clustering framework.
With appropriate initialization, the attention heads align with the true underlying centroids even when
trained without access to labels. This result shows that attention layers can uncover and encode the
latent structure of the input distribution in a fully unsupervised setting through their parameters.

3.2 Experimental verification of the theoretical results

Setting. To better reflect practical algorithmic behavior, we implement Projected Stochastic Gra-
dient Descent (PSGD; see Appendix F.1), which serves as an empirical counterpart to the (PGD)
iterates by relying on sample-based estimations.

In what follows, we use the metric referred to as distance to the centroids (up to a sign), given by

min
π∈S2

min
s∈{−1,1}2

√√√√ 1∑
i=0

∥µ̂π(i) − siµ⋆i ∥2, (11)

where S2 is the permutation group of two elements, µ⋆0, µ
⋆
1 denote the true centroids, respectively,

while µ̂0, µ̂1 are the parameters returned by (PSGD). Note that this distance is invariant under
relabeling and sign flips of the head parameters. More implementation details related to the following
experiments can be found in Appendix F.2.

It is worth noting that the assumption of orthogonality of the centroids on the unit sphere always results
in a constant distance between the centroids, namely ∥µ⋆0−µ⋆1∥2 =

√
2. In this setting, to characterize

2up to relabeling the head parameters, since a priori, µ0 (resp. µ1) does not have to be automatically related
to µ⋆

0 (resp. µ⋆
1).
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the separation between the two modes of the mixture, one can introduce a notion of interference that
depends solely on the variance level of each mode and which is defined as I(σ) = P(Xσ >

√
2
2 ),

where Xσ ∼ N (0, σ2). Remark that this function is increasing with supremum 0.5. This motivates
the choice of two contrasting scenarios for the numerical experiments: a low-interference regime
with σ = 0.3, where I(0.3) ≈ 0.01, and a high-interference regime with σ = 1, where I(1) ≈ 0.24.
More implementation details of the following numerical experiments can be found in Appendix F.2.
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Figure 1: Distance to centroids vs (PSGD)
iterations for the minimization of R (there-
fore without regularization), with an initial-
ization on the manifold M. 10 runs, 95%
percentile intervals are plotted.

Results. When initialization is done on the manifold,
the training analysis depicted in Figure 1 demonstrates
linear convergence of the head parameters toward the
centroids (up to a sign) during the first 103 iterations,
which is in line with the obtained theoretical results.
The error then plateaus at around 10−2 in the low-
interference setting (σ = 0.3), and around 10−1 in the
high-interference setting (σ = 1). This saturation phe-
nomenon is attributed to the stochasticity introduced
by (PSGD) in place of (PGD) in the simulations.

3.3 Generalizations

We consider several generalizations of our theoretical
setting, to give insight on the role of our assumptions.

Random initialization on the unit sphere (outside of the manifold). When the initialization
is performed outside the manifold, PGD iterates only partially align with the underlying centroids.
A way to handle arbitrary initializations (suggested by our analysis in the degenerate case, see
Appendix A), is to introduce a regularized risk minimization problem:

min
µ0,µ1∈Sd−1

Rρ(µ0, µ1), with Rρ(µ0, µ1)
def
= R(µ0, µ1) + ρr(µ0, µ1), (Pρ)

for ρ > 0 and the regularization term defined by r(µ0, µ1) = E[⟨µ0, X1⟩2⟨µ1, X1⟩2]. The role
of this term is to encourage the orthogonality conditions on µ0, µ1, thereby compensating for
initializations that may fall outside the manifold M. Numerical results show that the centroids can be
recovered with an appropriate level of regularization (see Figure 2a). Note that, as the strength of the
regularization increases, it gradually overrides the original objective and impairs the alignment of the
head parameters with the true centroids —an effect that becomes more pronounced at higher noise
levels. In Figure 2b, we fix the regularization strength and observe linear convergence towards the
centroids over the course of 4× 103 iterations. The error eventually plateaus near 10−3 for σ = 0.3
and near 10−1 for σ = 1. This shows that the regularization strategy inspired by the analysis of the
simplified Dirac mixture case remains effective in the more realistic setting of Gaussian mixtures. In
this context as well, it enhances the interpretability of the attention parameters by encouraging their
alignment with the unknown components of the underlying mixture.
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(a) Distance to centroids after 5000 iterations vs regu-
larization strength ρ for the minimization of Rρ.
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(b) Distance to centroids vs (PSGD) iterations for the
minimization of Rρ, with regularization ρ = 0.2.

Figure 2: Performance of (PSGD), when initializing on the unit sphere and minimizing the regular-
ized risk (Pρ). 10 runs, 95% percentile intervals are plotted.
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In Appendix G.1, we present additional experiments in higher-dimensional settings, highlighting the
impact of dimensionality on the training dynamics.

Orthogonality of the clusters. The framework studied in this paper assumes that the centroids of
the clusters are orthogonal. Relaxing this assumption to allow for potential overlap between centroid
directions significantly complicates the theoretical analysis by introducing additional terms. That
said, the analysis in the orthogonal case remains highly informative for the non-orthogonal setting,
particularly in high-dimensional regimes. Indeed, when the true centroids are randomly sampled on
the sphere, they become nearly orthogonal as the dimension d increases. In such cases, learning the
attention heads via the regularized risk minimization Pρ remains meaningful and yields compelling
empirical results (see Appendix G.2).

Euclidean gradient instead of Riemannian gradient. The use of projected Riemannian gradient
descent is both natural and mathematically justified in our setting, as we are able to compute the risk
function only for parameters constrained to lie on the unit sphere. This constraint, however, is not
a practical limitation: our numerical experiments indicate that standard projected SGD heuristics
exhibit similar behavior to the theoretically grounded Riemannian updates, see Appendix G.3. We
emphasize that the projection step is essential for the algorithm’s proper functioning.

More clusters. A natural extension is to consider the case of K centroids and attention heads. We
perform an experiment in the case K = 3, which shows recovery of the centroids, see details in
Appendix G.4. The main difference with the case K = 2 is the regularization term which now writes

r(µ0, µ1, µ2) =
∑

0≤i<j≤2

⟨µi, X1⟩2⟨µj , X1⟩2

to promote pairwise orthogonality between the parameters. This approach should further generalize
to the case of K orthonormal centroids with K < d.

4 Attention-based layers as approximate quantizers

We have seen that attention-based predictors can adapt to mixture models by learning the underlying
centroids through training. In this section, we investigate the quantization properties of an attention-
based predictor whose parameters have converged to the true centroids. To guide our analysis, we
introduce the optimal quantizer T ⋆ as a statistical benchmark within a standard clustering framework.
This oracle predictor returns the true centroid of each token, that is, for 1 ≤ ℓ ≤ L, T ⋆(X)ℓ = µ⋆Zℓ

where Zℓ is encoding the latent cluster of the token Xℓ. One can immediately note that the risk of the
optimal quantizer is given by

L(T ⋆) = E
[∥∥X1 − µ⋆Z1

∥∥2
2

]
= dσ2.

Returning to the attention-based predictor T lin,µ⋆
0 ,µ

⋆
1 with oracle parameters, the first key observation

is that it closely resembles an optimal quantizer: its ℓ-th output aligns, on average, with the centroid
of the cluster to which the ℓ-th token belongs, as shown by the next lemma.
Proposition 4.1. Under the Gaussian mixture model (Pσ), it holds that

E[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1 = c] = µ⋆c

λ

L
[(L+ 1) + 2(L+ 3)σ2], for c = {0, 1}.

Therefore, choosing λ = L
(L+1)+2(L+3)σ2 leads to unbiased approximate quantization, i.e.,

E[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1 = c] = µ⋆c .

One can next characterize the asymptotic risk and variance of the oracle attention-based predictor.

Proposition 4.2. Under the Gaussian mixture model (Pσ), fix the temperature λ = 1+4σ2+4σ4

1+6σ2+12σ4+8σ6 .
Then, the risk of the attention-based predictor T lin,µ⋆

0 ,µ
⋆
1 with oracle parameters µ⋆0 and µ⋆1 satisfies

lim
L→∞

L(T lin,µ⋆
0 ,µ

⋆
1 ) = σ2(d− 2).

Moreover, for an arbitrary value of λ, when L→ ∞, we get

lim
L→∞

Var[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1 = c] = 2λ2σ2(1 + 2σ2)2.
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Strikingly, as the input sequence length L increases, we find that

lim
L→∞

L(T lin,µ⋆
0 ,µ

⋆
1 )

L(T ⋆)
= 1− 2

d
.

This result shows that the attention-based predictor asymptotically achieves a lower risk than the
optimal quantizer. This phenomenon can be partly explained by the fact that the comparison
is not entirely fair: the predictors T lin,µ⋆

0 ,µ
⋆
1 and T ⋆ do not belong to the same class of func-

tions. Indeed, the optimal quantizer T ⋆ is only allowed to return two fixed vectors and relies
on a single input token to predict the associated centroid (albeit with access to the latent label).
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Figure 3: Comparison between inputs and
embeddings (d = 10, σ = 0.3, L = 500,
λ = 1

1+2σ2 , µ⋆0 = e10, µ
⋆
1 = −e1, ej is the j-

th vector of the canonical basis of R10). PCA
fitted on input tokens was used to project both
input and transformed tokens to 2D.

On the other hand, the image of attention-based en-
coder T lin,µ⋆

0 ,µ
⋆
1 is not discrete, and moreover this

estimator aggregates a growing sequence of random
variables, all drawn from the same mixture. The
aggregation of multiple inputs can be seen as a vari-
ance reduction mechanism, which reduces the risk
(this is also evident in the proof of Proposition 4.2,
where the risk is shown to decrease as L increases).
Note that the gap vanishes in a high-dimensional
setting d→ ∞.

Another insightful comparison between the predic-
tors T lin,µ⋆

0 ,µ
⋆
1 and T ⋆ is through their conditional

variances Var[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1 = c]. While the

conditional variance of the optimal quantizer is null
by definition, it is positive for the linear attention
layer, and asymptotically independent of d as shown
in Proposition 4.2. This once again highlights the
fact that these two quantifiers belong to function
classes of different complexity. These properties are
illustrated in Figure 3: we observe that the attention-
based embeddings are approximate projections of the inputs on the line between the two centroids.
In particular, the variance of the embedded point cloud is lower than the variance of the inputs,
illustrating that (for λ independent of d and d large enough),

0 < lim
L→∞

Var[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1 = c] = 2λ2σ2(1 + 2σ2)2 < dσ2 = Var[X1|Z1 = c].

5 In-context clustering

5.1 Setting

So far, we have considered the traditional setting for model-based clustering, with a mixture of
Gaussian made of two components: each token was assumed to be distributed as follows

Xℓ ∼
1

2
N (µ⋆0, σ

2Id) +
1

2
N (µ⋆1, σ

2Id)

with fixed centroids µ⋆0 and µ⋆1 of unit-norm and orthogonal. We have shown that despite the non-
convexity of the problem, attention-based predictors including two heads could perform approximate
quantization and discover the underlying centroids encoded in their parameters. Note that for an
input sequence of tokens X = (X1| . . . |XL)

⊤ ∈ RL×d, the first output of the type of attention-based
predictor considered in this paper, parameterized by µ0 and µ1, can be rewritten as

T lin,µ0,µ1(X)1 =
2

L

L∑
ℓ=1

λ(X⊤
1 µ0µ

⊤
0 Xℓ)Xℓ + λ(X⊤

1 µ1µ
⊤
1 Xℓ)Xℓ

=
2

L

L∑
ℓ=1

λX⊤
1 (µ0µ

⊤
0 + µ1µ

⊤
1 )XℓXℓ.
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Therefore, when we consider two linear heads parameterized by row vectors for the queries and keys,
and constrain them to be orthogonal, the setup can be interpreted as a single attention head with a
query/key matrix of rank 2. Interestingly, we are able to effectively train this rank-2 query/key head
by leveraging the non-convex optimization of two simple, row-structured heads.

Let us now challenge the clustering setting, by assuming that each input sequence is still drawn
from a 2-component mixture, but with its own centroids, i.e., for each input sequence Xi =
(Xi1, . . . , XiL)

⊤ ∈ RL×d, i = 1, . . . , n, we assume the tokens (Xiℓ)ℓ to be i.i.d., such that the
ℓ-th token is distributed as

Xiℓ|µ⋆i0, µ⋆i1 ∼ 1

2
N (µ⋆i0, σ

2Id) +
1

2
N (µ⋆i1, σ

2Id),

for some random orthogonal centroids µ⋆i0 and µ⋆i1 of unit-norm.

If the prior distribution over the centroids is concentrated along preferred directions, say µ⋆⋆0 and
µ⋆⋆1 , then the predictor T lin,µ0,µ1 will likely perform well, as the Transformer’s parameters will
tend to align with these directions after training. Conversely, if the centroids are distributed in an
isotropic way, T lin,µ0,µ1 will struggle with in-context clustering due to its limited flexibility, as only
two parameters µ0 and µ1 govern the embedding, whereas the centroids vary significantly from one
input sequence to another. To address this issue, a natural idea is to give more degrees of freedom
to the predictor by increasing the number of linear attention heads. Specifically, if we consider d
attention heads whose parameters are constrained to be row vectors (µc)c=1,...,d ∈ (Rd)d, each of
unit norm and mutually orthogonal, we obtain the following attention layer: for an input sequence
X = (X1, . . . , XL)

⊤ ∈ RL×d, and for 1 ≤ ℓ ≤ L,

T ctx(X)ℓ =
d∑
c=1

H lin,µc(X)ℓ =
2λ

L

d∑
c=1

L∑
k=1

(X⊤
ℓ µcµ

⊤
c Xk)Xk =

2λ

L

L∑
k=1

(
X⊤
ℓ

( d∑
c=1

µcµ
⊤
c

)
︸ ︷︷ ︸

Id

Xk

)
Xk,

so finally,

T ctx(X)ℓ =
2λ

L

L∑
k=1

X⊤
ℓ XkXk. (12)

Somewhat surprisingly, using d simplified linear heads in parallel, while enforcing orthogonality
among their parameters, ultimately amounts to employing an attention layer with no trainable
parameters. In what follows, we discuss the properties of T ctx in an in-context clustering framework.

More formally, we refer to as the in-context clustering as a setting in which the input consists
of a generic sequence of L tokens X1, . . . , XL, sampled from a Gaussian mixture model whose
component means (centroids) are randomly drawn on the unit sphere: µ⋆0 ∼ U(Sd−1) and µ⋆1 |µ⋆0 arbitrarily distributed on Sd−1 ∩ (µ⋆0)

⊥

X1, . . . , XL|µ⋆0, µ⋆1 ∼ 1
2N (µ⋆0, σ

2Id) +
1
2N (µ⋆1, σ

2Id)

Associated with each token Xℓ, we still consider a latent variable Zℓ, corresponding to a Bernoulli
random variable of parameter 1/2 and encoding its corresponding cluster, so that

Xℓ|µ⋆0, µ⋆1, Zℓ ∼ N (µ⋆Zℓ
, σ2Id).

5.2 Linear attention layers can perform in-context approximate quantization

We first observe, that similarly to the fixed centroids setting of Section 4, the attention-based encoder
T ctx performs an approximate in-context quantization of the input distribution by aggregating se-
quences sampled from a Gaussian mixture. Specifically, as formalized below, this simple architecture
effectively aligns its output with the correct centroid.
Proposition 5.1. For c ∈ {0, 1}, one has

E
[
T ctx(X)1|µ⋆1, µ⋆0, Z1 = c

]
=

2λ

L

[
(1 + (d+ 2)σ2) + (L− 1)

(
1

2
+ σ2

)]
µ⋆c .

Choosing λ = L
2

1

1+(d+2)σ2+(L−1)( 1
2+σ

2)
yields an unbiased embedding, i.e.,

E
[
T ctx(X)1|µ⋆1, µ⋆0, Z1 = c

]
= µ⋆c .

9



In what follows, we characterize the risk and variance of the attention-based embedding T ctx defined
in (12), when the input sequence contains an infinite number of tokens.
Proposition 5.2. In the asymptotic regime where L→ ∞, one has that

lim
L→∞

L(T ctx) = (1 + σ2d)− 2λ(1 + 4σ2 + 2dσ4) + 4λ2

(
2

(
σ2 +

1

2

)3

+ (d− 2)σ6

)
.

Choosing the temperature λ = 1+4σ2+2dσ4

4
(
2(σ2+ 1

2 )
3
+(d−2)σ6

) gives

lim
L→∞

L(T ctx) = σ2(d− 2)
1 + 2σ2

1 + 6σ2 + 12σ4 + 4dσ6
≤ σ2(d− 2).

Moreover, the conditional variance of the embedding satisfies when L→ ∞
lim
L→∞

Var
[
T ctx(X)1|µ⋆1, µ⋆0, Z1 = c

]
= 2λ2σ2(1 + 4σ2 + 2dσ4).

Choosing λ = 1
1+2σ2 , we obtain an unbiased embedding with a conditional variance of

2σ2 1 + 4σ2 + 2dσ4

(1 + 2σ2)2
.

As in the fixed centroids setting (Proposition 4.2), we retrieve that for a suitable choice of λ, the loss
satisfies

lim
L→∞

L(T ctx)

L(T ⋆)
=

(
1− 2

d

)
1 + 2σ2

1 + 6σ2 + 12σ4 + 4dσ6
≤
(
1− 2

d

)
.
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Figure 4: Comparison between inputs and
embeddings (d = 10, σ = 0.3, L = 500,
λ = 1

1+2σ2 , µ⋆0 = e10, µ
⋆
1 = −e1). PCA

was fitted on the input tokens and was used to
project both input and transformed tokens to
2D.

This result is all the more surprising given that it
emerges in a more complex setting, yet with a sim-
pler mechanism. Unlike the attention-based pre-
dictor T lin,µ0,µ1 , which benefits from access to the
true centroids and a trainable architecture, the in-
context encoder T ctx achieves a smaller asymptotic
risk without any learned parameters. The ability of
T ctx to extract meaningful representations illustrates
the relevance of the key-query-value structure in the
attention mechanism, even stripped of any learnable
parameter and of the softmax nonlinearity.

It is worth noting that for d ≥ 2, taking λ = 1
1+2σ2 ,

lim
L→∞

Var
[
T ctx(X)1|µ⋆1, µ⋆0, Z1 = c

]
= 2σ2 1 + 4σ2 + 2dσ4

(1 + 2σ2)2

≤ σ2d = Var [X1|µ⋆1, µ⋆0, Z1 = c] .

Therefore, in the regime of infinite input sequences (L→ ∞) and for the appropriate value of λ, the
embedding becomes unbiased and exhibits a variance reduction effect compared to the input data
points, as illustrated in Figure 4 and previously discussed in Section 4.

6 Conclusion

This work offers a mathematically grounded, principled perspective on the unsupervised learning
capabilities of attention mechanisms within mixture models. By combining a classical clustering
framework with simplified yet non-trivial attention architectures, we present theoretical and empirical
evidence showing that, when properly trained, attention layers can effectively recover latent structure
in data. Our analysis provides insight into the training dynamics, quantization behavior, and design
choices, such as attention head regularization.

We further investigate an in-context setting, where attention-based models still perform efficient
approximate quantization, and achieve lower risk than the optimal quantizer. Future directions include
exploring richer attention architectures, closer to that used in practice, which may further challenge
the theoretical analysis.

10



Acknowledgments

The authors would like to thank Gérard Biau and Lenka Zdeborová for insightful discussions. This
work was supported by the Projet Émergence(s) of the City of Paris. P.M. is supported by a Google
PhD Fellowship. Part of this work was done while P.M. was visiting the Simons Institute for the
Theory of Computing.

Code availability

Our code is available at
https://github.com/rodrigomaulen/Attention-based-clustering

References
Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-

ment preconditioned gradient descent for in-context learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
LziniAXEI9.

Luca Arnaboldi, Bruno Loureiro, Ludovic Stephan, Florent Krzakala, and Lenka Zdeborova. Asymp-
totics of sgd in sequence-single index models and single-layer attention networks. arXiv preprint
arXiv:2506.02651, 2025.

Hedy Attouch. Viscosity solutions of minimization problems. SIAM Journal of Optimization, 3:
769–806, 1996.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. 3rd International Conference on Learning Representations, 2015.

Dzmitry Bahdanau, Jan Chorowski, and Dmitriy Serdyuk. Neural machine translation by jointly
learning to align and translate. 3rd International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4945–4949, 2016.

Nicolas Boumal. An Introduction to Optimization on Smooth Manifolds. Cambridge University,
2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: Composable transformations of Python+NumPy programs. https://github.com/
google/jax, 2018.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Lee Peter, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, and et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv:2303.12712, 2023.

Hugo Cui. High-dimensional learning of narrow neural networks. Journal of Statistical Mechanics:
Theory and Experiment, 2025(2):023402, 2025.

Hugo Cui, Freya Behrens, Florent Krzakala, and Lenka Zdeborová. A phase transition between
positional and semantic learning in a solvable model of dot-product attention. In Advances in
Neural Information Processing Systems, volume 37. Curran Associates, Inc., 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, and Dirk Weissenborn. An image is worth
16x16 words: Transformers for image recognition at scale. International Conference on Learning
Representations, 2020.

Takashi Furuya, Maarten V. de Hoop, and Gabriel Peyré. Transformers are universal in-context
learners, 2024. URL https://arxiv.org/abs/2408.01367.

11

https://github.com/rodrigomaulen/Attention-based-clustering
https://openreview.net/forum?id=LziniAXEI9
https://openreview.net/forum?id=LziniAXEI9
https://github.com/google/jax
https://github.com/google/jax
https://arxiv.org/abs/2408.01367


Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes, 2023. URL https://arxiv.org/abs/2208.
01066.

Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. Flatten transformer: Vision
transformer using focused linear attention, 2023. URL https://arxiv.org/abs/2308.00442.

Bobby He and Thomas Hofmann. Simplifying transformer blocks. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
RtDok9eS3s.

Yihan He, Hong-Yu Chen, Yuan Cao, Jianqing Fan, and Han Liu. Transformers versus the em
algorithm in multi-class clustering. arXiv:2502.06007v1, 2025.

L. Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency
distribution. Biometrika, 12(1):134–139, 1918.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention, 2020. URL https://arxiv.org/
abs/2006.16236.

Kenneth Lange. Optimization, volume 2 edition. Springer, New York, 2013.

Yingcong Li, M. Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as
algorithms: Generalization and stability in in-context learning, 2023. URL https://arxiv.org/
abs/2301.07067.

Zihao Li, Yuan Cao, Cheng Gao, Yihan He, Han Liu, Klusowkski Jason, Jianqing Fan, and Mengdi
Wang. One-layer transformer provably learns one-nearest neighbor in context. Advances in Neural
Information Processing Systems, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the
IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

Stuart Lloyd. Least squares quantization in PCM. IEEE transactions on information theory, 28(2):
129–137, 1982.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421, 2015.

Pierre Marion and Raphael Berthier. Leveraging the two timescale regime to demonstrate convergence
of neural networks. In Advances in Neural Information Processing Systems, volume 36, 2023.

Pierre Marion, Raphaël Berthier, Gérard Biau, and Claire Boyer. Attention layers provably solve
single-location regression, 2024. URL https://arxiv.org/abs/2410.01537.

Lorenzo Noci, Chuning Li, Mufan Bill Li, Bobby He, Thomas Hofmann, Chris J. Maddison, and
Daniel M. Roy. The shaped transformer: Attention models in the infinite depth-and-width
limit. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=PqfPjS9JRX.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. arXiv:2207.09238, 2022.

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jonathon
Shlens. Stand-alone self-attention in vision models. In 33rd Conference on Neural Information
Processing Systems (NeurIPS 2019), Vancouver, Canada, 2019.

Michael Shub. Global Stability of Dynamical Systems. Springer, New York, 1987.

Emanuele Troiani, Hugo Cui, Yatin Dandi, Florent Krzakala, and Lenka Zdeborova. Fundamental
limits of learning in sequence multi-index models and deep attention networks: high-dimensional
asymptotics and sharp thresholds. In Forty-second International Conference on Machine Learning,
2025.

12

https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2308.00442
https://openreview.net/forum?id=RtDok9eS3s
https://openreview.net/forum?id=RtDok9eS3s
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2301.07067
https://arxiv.org/abs/2301.07067
https://arxiv.org/abs/2410.01537
https://openreview.net/forum?id=PqfPjS9JRX


Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30:6000–6010, 2017.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pages 35151–35174, 2023. URL https:
//arxiv.org/abs/2212.07677.

Hongru Yang, Zhangyang Wang, Jason D. Lee, and Yingbin Liang. Transformers provably learn
two-mixture of linear classification via gradient flow. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://openreview.net/forum?id=AuAj4vRPkv.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

A Training dynamics in the degenerate case

In this section, we discuss the training behavior of the Transformer-based predictor T lin,µ0,µ1 in the
context of clustering, assuming the data are drawn from the degenerate mixture model, where for
1 ≤ ℓ ≤ L,

Xℓ ∼
1

2
δµ⋆

0
+

1

2
δµ⋆

1
, (P0)

(the orthogonal centroids µ⋆0 and µ⋆1 still lie on the unit sphere). We emphasize that despite its apparent
simplicity, this study framework is already sufficient to reveal some of the complexity inherent in the
clustering task carried out by a self-attention layer.

A.1 Theoretical analysis

Since training is performed by minimizing the risk R, the first steps of our analysis focus on studying
the critical points and extrema of this risk.

Critical points and minimizers. First, we reparameterize the problem using the quantities

κ0
def
= ⟨µ⋆0, µ0⟩, κ1

def
= ⟨µ⋆1, µ1⟩, η0

def
= ⟨µ1, µ

⋆
0⟩, η1

def
= ⟨µ0, µ

⋆
1⟩. (13)

The scalar products κ0 and κ1 measure the alignment of the parameters µ0 and µ1 with the true
centroids µ⋆0 and µ⋆1, respectively, while the scalar products η0 and η1 capture their orthogonality
with the inverted centroids µ⋆1 and µ⋆0. The theoretical risk w.r.t. κ0, κ1, η0 and η1 reads as follows.
The proof of this result and the following are given in Appendix B.
Proposition A.1. Under the degenerate mixture model (P0), considering the attention-based predictor
T lin,µ0,µ1 composed of two linear heads parameterized by µ0 and µ1, the theoretical risk R can be
re-expressed as a function R< : R4 → R such that R(µ0, µ1) = R<(κ0, κ1, η0, η1), where

R<(κ0, κ1, η0, η1) = 1− λ
L+ 1

L
(κ20 + κ21 + η20 + η21) + λ2

L+ 3

2L
([κ20 + η20 ]

2 + [κ21 + η21 ]
2)

+ λ2
L− 1

L
(κ0η1 + κ1η0)

2.

(14)

In addition, if (µ0, µ1) ∈ (Sd−1)2 are prescribed to the unit sphere, then dom(R<) = [−1, 1]4.
Remark A.2. After a direct computation, we note that the critical points of the risk R correspond to
those of its reparameterized version, R<, i.e.,

(µ0, µ1) ∈ crit(R) ⇐⇒ (κ0, κ1, η0, η1) ∈ crit(R<).

Proposition A.3 (Characterization of global minima). Consider R< : R4 → R defined as in
Proposition A.1 with λ⋆0 = L+1

L+3 , then a point (κ0, κ1, η0, η1) belongs to argmin(R<) if and only if

κ20 + η20 = 1, κ21 + η21 = 1, and κ0η1 + κ1η0 = 0. (15)
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While the characterization can be made for any value of λ, choosing λ⋆0 = L+1
L+3 simplifies the system

by setting the first two conditions equal to 1. Moreover, this specific value provides a critical upper
bound on the temperature parameter that guarantees recovery of the underlying centroids via risk
minimization, as highlighted in the theorem below, and discussed in Remark B.2 in the appendices.

The proof of this result in Appendix B also characterizes all critical points, beyond global minima.

Convergence analysis. From the characterization of the minima of R given in Proposition A.3, we
observe that the points (κ0, κ1, η0, η1) that saturate the first two equations (i.e., satisfy κ20 = κ21 = 1
and η20 = η21 = 0) correspond to global minimizers of the risk that also recover the centroids (up to
a sign). However, in general, other global minimizers may exist that do not exhibit this saturation
behavior and are therefore disconnected from centroid recovery. In the next result, we show that under
appropriate initialization conditions, the (PGD) algorithm converges to the desired global minimum,
which aligns with the clustering objective. To this end, we introduce the following manifold

M̃ = {(µ0, µ1) ∈ (Sd−1)2 : ⟨µ⋆1, µ0⟩ = 0, ⟨µ⋆0, µ1⟩ = 0}. (16)

Theorem A.4. Under the Dirac mixture model (P0), consider the attention-based predictor T lin,µ0,µ1

composed of two linear heads. Take λ ∈]0, L+1
L+3 ]. Then there exists γ̄ > 0 such that for any stepsize

0 < γ < γ̄, and for a generic initialization (µ0
0, µ

0
1) ∈ M̃, the sequence of iterates (µk0 , µ

k
1),

generated by (PGD), converges to the centroids (up to a sign), i.e.,

(µk0 , µ
k
1) −−−−→

k→∞
(±µ⋆0,±µ⋆1).

Proof. This is a direct consequence of Theorem 3.4 with σ = 0.

This result demonstrates that, despite the non-convexity of the objective function, the key and query
row matrices of a linear attention layer trained via (PGD) align with the centroids of the underlying
Dirac mixture. Although the setting is simplified, it already highlights the representational role of key
and query matrices in attention-based learning, and serves as a foundation for addressing the more
general case of Gaussian mixtures.

Note that the convergence is up to a sign, a consequence of the symmetry inherent in H lin,µ.
Nonetheless, this sign ambiguity does not affect the output of the attention layer. To resolve this
ambiguity and identify the true centroids, one could compare likelihoods or perform a hard assignment
step, selecting the centroid that minimizes the total distance to all points within its assigned cluster.
Besides, by generic initialization, we mean that the set of initializations (µ0

0, µ
0
1) ∈ M̃ for which

(PGD) fails to recover the centroids is of Lebesgue measure zero with respect to M̃.

Initialization on the manifold M̃ relies on prior knowledge of the centroids, which may be impractical.
While a theoretical analysis under generic initialization on the unit sphere would be of interest, it
remains analytically intractable due to the complexity of the resulting dynamical system derived from
(PGD). In the following, however, we present numerical experiments incorporating a regularization
term that proves effective in solving the problem without initialization constraints.

A.2 Numerical experiments

In this section, we study the empirical convergence of the (PGD) iterates when the data follows the
degenerate mixture model (P0).

Results. Figure 5a clearly illustrates that when initialized on the manifold M̃, the (PSGD) iterates,
over the objective function R, converge to the centroids, as established in Theorem A.4.

The situation differs outside the manifold, where numerical evidence shows that the Transformer
parameters only partially align with the true centroids as shown in Figure 5b. In fact, we observe
empirically that each parameter learns a mixture of both centroids. This indicates that the (PSGD)
iterates may converge to optima that do not coincide with the underlying centroids. To mitigate this
and better guide the learning process, we propose using a specific form of regularization:

r(µ0, µ1)
def
= E[⟨µ0, X1⟩2⟨µ1, X1⟩2]. (17)
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(a) Initialization on the manifold M̃
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(b) Initialization on the sphere (Sd−1)2

Figure 5: Distance to centroids vs (PSGD) iterations for the minimization of R, with data drawn
from the degenerate case (P0). 10 runs, 95% percentile intervals are plotted.

Therefore, we train the attention-based predictor H lin,µ0,µ1 now by minimizing the regularized risk

min
µ0,µ1∈Sd−1

Rρ(µ0, µ1) with Rρ(µ0, µ1)
def
= R(µ0, µ1) + ρr(µ0, µ1), (P̃ρ)

where ρ > 0 denotes the strength of the regularization. It can be rigorously shown that as ρ approaches
0, the minimizers of Rρ converge to those of R, exhibiting the saturation phenomenon, desirable to
bolster the interpretability of the attention heads. We refer to Appendix B.3 for more details.
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(a) Distance to centroids vs. regularization strength
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(b) Distance to centroids vs iterations (ρ = 0.1).

Figure 6: Convergence analysis of the (PSGD) iterates for the minimization of the regularized risk
Rρ, under the degenerate mixture case (P0). 10 runs, 95% percentile intervals are plotted.

In Figure 6a, we observe that a relatively small regularization parameter (of the order of 10−1)
is sufficient to achieve centroid alignment, with numerical error below 10−14. In Figure 6b, we
fix the regularization parameter and observe that over the course of 104 iterations, the attention
head parameters exhibit linear convergence towards the true centroids. This numerical experiment
highlights the effectiveness of this form of regularization in enhancing the interpretability of attention
heads—by promoting their disentanglement—in the context of mixture models.

B Proofs of Section A (degenerate case)

In this section, we present the postponed proofs that support and elaborate on the arguments developed
in the main text. We begin by characterizing the critical points of the Dirac mixture risk, then proceed
to a discussion on the effects of a regularization term in the Dirac setting. Finally, we outline the
proofs of Theorems A.4 and 3.4, which constitute the main theoretical results of our work.

B.1 Proof of Proposition A.1 (expression of the risk in the degenerate case)

To facilitate the analysis that follows, we introduce the notation ek(µ)
def
= λX⊤

1 µµ
⊤Xk, for 1 ≤ k ≤

L, which allows us to write

R(µ0, µ1) = E

[∥∥∥X1 −
2

L

L∑
k=1

(ek(µ0) + ek(µ1))Xk

∥∥∥2
2

]
.
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In what follows, we give an expression of the risk of an attention-based predictor, in the case where
the data is distributed according to the Dirac mixture model (P0). Then, the risk of an attention-based
predictor T lin,µ0,µ1 can be written as

R(µ0, µ1) = E

[∥∥∥X1 −
2

L

L∑
k=1

(ek(µ0) + ek(µ1))Xk

∥∥∥2
2

]

= E
[
∥X1∥2

]
− 4

L

L∑
k=1

E
[
⟨X1, (ek(µ0) + ek(µ1))Xk⟩

]
+

4

L2
E

[∥∥∥ L∑
k=1

(ek(µ0) + ek(µ1))Xk

∥∥∥2]

= 1− 4

L

L∑
k=1

E
[
⟨X1, (ek(µ0) + ek(µ1))Xk⟩

]
+

4

L2

L∑
k=1

E[∥(ek(µ0) + ek(µ1))Xk∥2]

+
8

L2

∑
1≤k<j≤L

E
[
(ek(µ0) + ek(µ1))(ej(µ0) + ej(µ1))⟨Xk, Xj⟩

]
= 1− 4

L
E[(e1(µ0) + e1(µ1))∥X1∥2]︸ ︷︷ ︸

def
=(I0)

+
4

L2
E
[
∥(e1(µ0) + e1(µ1))X1∥2

]︸ ︷︷ ︸
def
=(II0)

+
8

L2

L∑
k=2

E
[
(e1(µ0) + e1(µ1))(ek(µ0) + ek(µ1))⟨X1, Xk⟩

]
︸ ︷︷ ︸

def
=(III0)

− 4

L

L∑
k=2

E
[
⟨X1, (ek(µ0) + ek(µ1))Xk⟩

]
︸ ︷︷ ︸

def
=(I)

+
4

L2

L∑
k=2

E
[
∥(ek(µ0) + ek(µ1))Xk∥2

]
︸ ︷︷ ︸

def
=(II)

+
8

L2

∑
1<k<j≤L

E
[
(ek(µ0) + ek(µ1))(ej(µ0) + ej(µ1))⟨Xk, Xj⟩

]
︸ ︷︷ ︸

def
=(III)

.

We compute (I) by conditioning on Z1, Zk,

E
[
(ek(µ0) + ek(µ1))⟨X1, Xk⟩

]
= E

[
E[(ek(µ0) + ek(µ1))⟨X1, Xk⟩|Z1, Zk]

]
= λE[(⟨µ⋆Z1

, µ0⟩⟨µ⋆Zk
, µ0⟩+ ⟨µ⋆Z1

, µ1⟩⟨µ⋆Zk
, µ1⟩)⟨µ⋆Z1

, µ⋆Zk
⟩]

= λ
κ20 + κ21 + η20 + η21

4
.

This leads to (I) = λL−1
L (κ20 + κ21 + η20 + η21).

Similarly for (II), conditioning on Z1, Zk,

E
[
∥(ek(µ0) + ek(µ1))Xk∥2

]
= E

[
E[∥(ek(µ0) + ek(µ1))Xk∥2|Z1, Zk]

]
= λ2E[∥(⟨µ⋆Z1

, µ0⟩⟨µ⋆Zk
, µ0⟩+ ⟨µ⋆Z1

, µ1⟩⟨µ⋆Zk
, µ1⟩)µ⋆Zk

∥2]

= λ2
[κ20 + η20 ]

2 + [κ21 + η21 ]
2

4
+ λ2

(κ0η1 + κ1η0)
2

2
.

Which gives (II) = λ2 L−1
L2 ([κ20 + η20 ]

2 + [κ21 + η21 ]
2) + λ2 2(L−1)

L2 (κ0η1 + κ1η0)
2.

Finally, to compute (III), note that

E
[
(ek(µ0) + ek(µ1))(ej(µ0) + ej(µ1))⟨Xk, Xj⟩

]
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= E
[
E[(ek(µ0) + ek(µ1))(ej(µ0) + ej(µ1))⟨Xk, Xj⟩|Z1, Zk, Zj ]

]
= λ2E[(⟨µ⋆Z1

, µ0⟩⟨µ⋆Zk
, µ0⟩+ ⟨µ⋆Z1

, µ1⟩⟨µ⋆Zk
, µ1⟩)(⟨µ⋆Z1

, µ0⟩⟨µ⋆Zj
, µ0⟩+ ⟨µ⋆Z1

, µ1⟩⟨µ⋆Zj
, µ1⟩)

· ⟨µ⋆Zk
, µ⋆Zj

⟩]

= λ2
[κ20 + η20 ]

2 + [κ21 + η21 ]
2

8
+ λ2

(κ0η1 + κ1η0)
2

4
,

leading to (III) = λ2 (L−1)(L−2)
2L2 [[κ20 + η20 ]

2 + [κ21 + η21 ]
2 + 2(κ0η1 + κ1η0)

2].

In a similar fashion, we get that

(I0) = (κ20 + κ21 + η20 + η21),

(II0) = [κ20 + η20 ]
2 + [κ21 + η21 ]

2,

(III0) = [κ20 + η20 ]
2 + [κ21 + η21 ]

2.

Putting everything together, we obtain that the risk can be written in terms of κ0, κ1, η0, η1, i.e.,
R(µ0, µ1) = R<(κ0, κ1, η0, η1), where:

R< def
= 1− λ

[
2

L
+
L− 1

L

]
(κ20 + κ21 + η20 + η21)

+ λ2
[
2

L2
+

2(L− 1)

L2
+
L− 1

L2
+

(L− 1)(L− 2)

2L2

]
([κ20 + η20 ]

2 + [κ21 + η21 ]
2)

+ λ2
[
(L− 1)(L− 2)

L2
+

2(L− 1)

L2

]
(κ0η1 + κ1η0)

2

= 1− λ
L+ 1

L
(κ20 + κ21 + η20 + η21) + λ2

L+ 3

2L
([κ20 + η20 ]

2 + [κ21 + η21 ]
2)

+ λ2
L− 1

L
(κ0η1 + κ1η0)

2.

B.2 Proof of Proposition A.3 (critical points of the risk in the degenerate case)

Proposition B.1. Consider R< : R4 → R defined as in Proposition A.1 with λ = λ⋆0 = L+1
L+3 , then

we characterize its critical points by

1. The point (0, 0, 0, 0) is a local maximum.

2. The points (κ0, 0, η0, 0), where κ20 + η20 = 1, and (0, κ1, 0, η1), where κ21 + η21 = 1, are
strict saddle points.

3. The points (κ0, κ1, κ1, κ0) and (κ0, κ1,−κ1,−κ0), where κ20 + κ21 = L+3
2(L+1) , are strict

saddle points.

4. (κ0, κ1, η0, η1) belongs to argmin(R<) if and only if: κ20 + η20 = 1,
κ21 + η21 = 1,

κ0η1 + κ1η0 = 0.
(18)

Proof. Let us define ζ0 = (κ0, η0), ζ1 = (η1, κ1), then there exists a function R<< : R2 ×R2 → R,
such that R<(κ0, κ1, η0, η1) = R<<(ζ0, ζ1), in fact, let us define A = (L+1)2

L(L+3) , B = (L+1)2

2L(L+3) , C =
(L+1)2(L−1)
L(L+3)2 , then with the value of λ defined in the proposition, we obtain

R<<(ζ0, ζ1) = 1−A(∥ζ0∥2 + ∥ζ1∥2) +B(∥ζ0∥4 + ∥ζ1∥4) + C⟨ζ0, ζ1⟩2.

To analyze its critical points, we take the partial derivatives,

∇ζ0R<<(ζ0, ζ1) = −2Aζ0 + 4B∥ζ0∥2ζ0 + 2C⟨ζ0, ζ1⟩ζ1,

17



∇ζ1R<<(ζ0, ζ1) = −2Aζ1 + 4B∥ζ1∥2ζ1 + 2C⟨ζ0, ζ1⟩ζ0.

And also, we compute its Hessian, we define

∇2
ζ0,ζ0R

<<(ζ0, ζ1) = −2AI2 + 4B(2ζ0ζ
⊤
0 + ∥ζ0∥2I2) + 2Cζ1ζ

⊤
1 ,

∇2
ζ0,ζ1R

<<(ζ0, ζ1) = 2C(ζ0ζ
⊤
1 + ζ⊤0 ζ1I2),

∇2
ζ1,ζ0R

<<(ζ0, ζ1) = 2C(ζ1ζ
⊤
0 + ζ⊤0 ζ1I2),

∇2
ζ1,ζ1R

<<(ζ0, ζ1) = −2AI2 + 4B(2ζ1ζ
⊤
1 + ∥ζ1∥2I2) + 2Cζ0ζ

⊤
0

Then the Hessian will be defined by

∇2R<<(ζ0, ζ1) =

(
∇2
ζ0,ζ0

R<<(ζ0, ζ1) ∇2
ζ0,ζ1

R<<(ζ0, ζ1)
∇2
ζ1,ζ0

R<<(ζ1, ζ0) ∇2
ζ1,ζ1

R<<(ζ0, ζ1)

)
(19)

To find the critical points, we solve the following system of equations:

−2Aζ0 + 4B∥ζ0∥2ζ0 + 2C⟨ζ0, ζ1⟩ζ1 = 0,

−2Aζ1 + 4B∥ζ1∥2ζ1 + 2C⟨ζ0, ζ1⟩ζ0 = 0.
(20)

(0, 0) is a local maximum. We see that a trivial solution to this system is (ζ0, ζ1) = (0, 0), and
replacing into the Hessian matrix, we see directly that this point is a local maximum.

(0, ζ1), (ζ0, 0) are strict saddle points. We check the case when ζ0 = 0, ζ1 ̸= 0, then we need to
solve

−2Aζ1 + 4B∥ζ1∥2ζ1 = 0.

Since ζ1 ̸= 0, this forces −2A+ 4B∥ζ1∥2 = 0. Replacing (0, ζ1) into the Hessian matrix gives us

∇2R<<(0, ζ1) =

(
−2AI2 + 2Cζ1ζ

⊤
1 0

0 8Bζ1ζ
⊤
1

)
.

And eig(∇2R<<(0, ζ1)) = eig(−2AI2 + 2Cζ1ζ
⊤
1 ) ∪ eig(8Bζ1ζ

⊤
1 ), where eig is the set of eigen-

values of a matrix. We have that

eig(−2AI2 + 2Cζ1ζ
⊤
1 ) = {−2A, 2(C −A)},

eig(8Bζ1ζ
⊤
1 ) = {0, 8B∥ζ1∥2}

where we have used that 8B = 4A. We also note that C − A < 0, then we conclude there are 2
negative eigenvalues and 1 positive eigenvalue, concluding that these points are strict saddle points,
due to symmetry we conclude the same for the points of the form (ζ0, 0) for ∥ζ0∥2 = 1.

Non-trivial critical points. We will first show that the critical points that are of the form (ζ0, ζ1)
for ζ0 ̸= 0, ζ1 ̸= 0 necessarily satisfy ∥ζ0∥ = ∥ζ1∥ ≠ 0, multiplying the first equation of (20) by ζ0
and the second by ζ1, then subtracting both resulting expressions we obtain 4B(∥ζ1∥4 − ∥ζ0∥4) =
2A(∥ζ1∥2 − ∥ζ0∥2), and then

(∥ζ0∥2 − ∥ζ1∥2)(−1 + ∥ζ0∥2 + ∥ζ1∥2) = 0,

thus either ∥ζ0∥ = ∥ζ1∥ and we get the first claim, or ∥ζ0∥2 + ∥ζ1∥2 = 1, in this second case we
divide in two subcases:

• Let us assume that ⟨ζ0, ζ1⟩ = 0, then multiplying the first equation of (20) by ζ0 and the
second equation by ζ1, we get that ∥ζ0∥2 = ∥ζ1∥2 = 1, which is a contradiction since we
are in the case where ∥ζ0∥2 + ∥ζ1∥2 = 1.
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• Therefore ⟨ζ0, ζ1⟩ ≠ 0, we multiply the first equation of (20) by ζ1 and second by ζ0, after
dividing by 2⟨ζ0, ζ1⟩ we get that

−A+A∥ζ0∥2 + C⟨ζ0, ζ1⟩ = 0

−A+A∥ζ1∥2 + C⟨ζ0, ζ1⟩ = 0.

Substracting both equations we get that ∥ζ0∥ = ∥ζ1∥.

So we get that necessarily ∥ζ0∥ = ∥ζ1∥ = r > 0. Then the equation (20) becomes

A(r2 − 1)ζ0 + C⟨ζ0, ζ1⟩ζ1 = 0,

A(r2 − 1)ζ1 + C⟨ζ0, ζ1⟩ζ0 = 0.
(21)

(ζ0,±ζ0) are strict saddle points. In the case where ζ0 = ±ζ1, by (21) we get that when ζ0 = ζ1,
then

A(r20 − 1)ζ0 + Cr20ζ0 = 0,

and ∥ζ0∥ = r0, with r20 = A
A+C = L+3

2(L+1) . Besides when ζ0 = −ζ1, then

A(r21 − 1)ζ0 + Cr21ζ0 = 0,

and ∥ζ0∥ = r1, with r21 = A
A−C = L+3

4 . Replacing this point on the Hessian matrix
∇2R<<(ζ0,±ζ0),

∇2R<<(ζ0, ζ0) =

(
2A(r20 − 1)I2 + 2(2A+ C)ζ0ζ

⊤
0 2C(r20I2 + ζ0ζ

⊤
0 )

2C(r20I2 + ζ0ζ
⊤
0 ) 2A(r20 − 1)I2 + 2(2A+ C)ζ0ζ

⊤
0

)
,

∇2R<<(ζ0,−ζ0) =
(
2A(r21 − 1)I2 + 2(2A+ C)ζ0ζ

⊤
0 −2C(r21I2 + ζ0ζ

⊤
0 )

−2C(r21I2 + ζ0ζ
⊤
0 ) 2A(r21 − 1)I2 + 2(2A+ C)ζ0ζ

⊤
0

)
.

We can write the Hessians in block form with 2× 2 diagonal blocks

M0 = 2A(r2 − 1)I2 + 2(2A+ C) ζ0ζ
⊤
0

and off-diagonal blocks
M1 = 2C(r2I2 + ζ0ζ

⊤
0 ).

Considering vectors of the form (x,±x), x ∈ R2, this reduces the eigenvalue problem to the 2× 2
matrices M0 ±M1. Substituting r20 = A/(A+ C) or r21 = A/(A− C) shows that each matrix has
one positive eigenvalue along ζ0 (equal to 4A) and one negative eigenvalue orthogonal to ζ0 (equal to
− 4AC
A±C ), so both Hessians are indefinite.

Characterization of global minima. If ζ0 ̸= ±ζ1 and ∥ζ0∥ = ∥ζ1∥ = r > 0, then both vectors are
linearly independent, thus the first equation of (21) is only possible when r2 = 1 and ⟨ζ0, ζ1⟩ = 0, in
which case we have to analyze the points (ζ0, ζ1) such that ⟨ζ0, ζ1⟩ = 0 and ∥ζ0∥2 = ∥ζ1∥2 = 1, we
replace these points on the Hessian matrix and this gives us

∇2R<<(ζ0, ζ1) =

(
4Aζ0ζ

⊤
0 + 2Cζ1ζ

⊤
1 2Cζ0ζ

⊤
1

2Cζ1ζ
⊤
0 4Aζ1ζ

⊤
1 + 2Cζ0ζ

⊤
0

)
.

A direct computation of the eigenvalues with eigenvectors (ζ1, ζ0) and (ζ1,−ζ0) gives us that all
the eigenvalues are positive in this case, since R<< is coercive, these points are in fact global
minima.

Remark B.2. Note that the specific characterization of the global minima of R< was valid only
for λ = λ⋆0 = L+1

L+3 . However, when restricting the analysis to the manifold M̃ and considering
λ ∈]0, L+1

L+3 [, the global minima lie outside the domain [−1, 1]2. As a result, due to the structure
of the update rule in (PGD), the extreme points (±1,±1) of [−1, 1]2 become fixed points of the
algorithm and serve as global minimizers of R<.
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B.3 Discussion on regularization

In order to solve the clustering problem in the degenerate case, we train the attention-based predictor
H lin,µ0,µ1 now by minimizing the regularized risk

min
µ0,µ1∈Sd−1

Rρ(µ0, µ1) with Rρ(µ0, µ1)
def
= R(µ0, µ1) + ρr(µ0, µ1), (P̃ρ)

where r(µ0, µ1) = E[⟨µ0, X1⟩2⟨µ1, X1⟩2], and ρ > 0 denotes the strength of the regularization.

It is direct to check that there exists r< : R4 → R, such that r(µ0, µ1) = r<(κ0, κ1, η0, η1) according
to the notation defined in (13), and r<(κ0, κ1, η0, η1) = 1

2 (κ
2
0η

2
0 + κ21η

2
1). We define the following

optimization problem

min
κ0,κ1,η0,η1∈[−1,1]

R<(κ0, κ1, η0, η1) + ρr<(κ0, κ1, η0, η1), (P̃<ρ )

where R< is defined in Proposition A.1. Since R< and r< are coercive, we apply Attouch (1996,
Theorem 2.1) to conclude that if uρ ∈ [−1, 1]4 is a solution of (P̃<ρ ), then every limit point û of uρ,
when ρ→ 0, satisfies that:{

r<(û) ≤ r<(v), for every v ∈ argminR<,

û ∈ argminR<.

Due to the geometry of r< and the characterization of argminR< we got in Proposition 15, we
obtain that if û = (κ̂0, κ̂1, η̂0, η̂1), then{

κ̂20 = 1, κ̂21 = 1, η̂20 = 0, η̂21 = 0, or
η̂20 = 1, η̂21 = 1, κ̂20 = 0, κ̂21 = 0.

(22)

Then the optimal solution for the regularized problem when ρ → 0 achieves a saturation effect,
corresponding to global minimizers that recover the centroids. However, due to the non-convex
nature of the problem, it is not guaranteed a priori that PGD on (P̃<ρ ) will converge to the desired
solution. A possible direction of analysis is to study the dynamics of PGD in the limit where ρ→ 0.
We know from Proposition B.1 that the only global minimizers of the unregularized problem lie on a
manifold, so we expect that PGD converges to this manifold, before evolving on the manifold due to
the regularization term, to converge to the minimizers given by (22). Technically, this dynamics could
be studied by using two-timescale tools, e.g. similar to Marion and Berthier (2023) and references
therein. We leave this analysis for future work.

C Proofs of Section 3 (Gaussian mixture model)

C.1 Proof of Proposition 3.1 (expression of the risk in the non-degenerate case).

Recall the notation ek(µ)
def
= λX⊤

1 µµ
⊤Xk, for 1 ≤ k ≤ L, which allows us to write

R(µ0, µ1) = E

[∥∥∥X1 −
2

L

L∑
k=1

(ek(µ0) + ek(µ1))Xk

∥∥∥2
2

]
.

Under the Gaussian mixture model, we are going to show that the risk

R(µ0, µ1) = E
[
∥X1 − (Hµ0 +Hµ1)(X)1∥22

]
admits a closed-form representation in terms of elementary functions. It holds that

R(µ0, µ1) = E

[∥∥∥X1 −
2

L

L∑
k=1

(ek(µ0) + ek(µ1))Xk

∥∥∥2
2

]

= E
[
∥X1∥2

]
− 4

L

L∑
k=1

E
[
⟨X1, (ek(µ0) + ek(µ1))Xk⟩

]
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+
4

L2
E

[∥∥∥ L∑
k=1

(ek(µ0) + ek(µ1))Xk

∥∥∥2] .
= (1 + dσ2)− 4

L

L∑
k=1

E
[
⟨X1, (ek(µ0) + ek(µ1))Xk⟩

]
+

4

L2

L∑
k=1

E[∥(ek(µ0) + ek(µ1))Xk∥2]

+
8

L2

∑
1≤k<j≤L

E
[
(ek(µ0) + ek(µ1))(ej(µ0) + ej(µ1))⟨Xk, Xj⟩

]
= (1 + dσ2)− 4

L
E[(e1(µ0) + e1(µ1))∥X1∥2]︸ ︷︷ ︸

def
=(I0)

+
4

L2
E
[
∥(e1(µ0) + e1(µ1))X1∥2

]
︸ ︷︷ ︸

def
=(II0)

+
8

L2

L∑
k=2

E
[
(e1(µ0) + e1(µ1))(ek(µ0) + ek(µ1))⟨X1, Xk⟩

]
︸ ︷︷ ︸

def
=(III0)

− 4

L

L∑
k=2

E
[
⟨X1, (ek(µ0) + ek(µ1))Xk⟩

]
︸ ︷︷ ︸

def
=(I)

+
4

L2

L∑
k=2

E
[
∥(ek(µ0) + ek(µ1))Xk∥2

]
︸ ︷︷ ︸

def
=(II)

+
8

L2

∑
1<k<j≤L

E
[
(ek(µ0) + ek(µ1))(ej(µ0) + ej(µ1))⟨Xk, Xj⟩

]
︸ ︷︷ ︸

def
=(III)

= (1 + dσ2)− (I0) + (II0) + (III0)− (I) + (II) + (III).

We now proceed to compute each of the six terms. To compute (I0), we can use Lemma E.2, since
E[(⟨X1, µ0⟩2 + ⟨X1, µ1⟩2)∥X1∥2]

=
1

2

(
E[⟨X1, µ0⟩2∥X1∥2|Z1 = 0] + E[(⟨X1, µ0⟩2∥X1∥2|Z1 = 1]

)
+

1

2

(
E[⟨X1, µ1⟩2∥X1∥2|Z1 = 0] + E[⟨X1, µ1⟩2∥X1∥2|Z1 = 1]

)
=

1

2

[
(κ20 + η20 + κ21 + η21)(1 + σ2(d+ 4)) + 2σ2(1 + σ2(d+ 2))(∥µ0∥2 + ∥µ1∥2)

]
Then, (I0) = 2λ

L

[
(κ20 + η20 + κ21 + η21)(1 + σ2(d+ 4)) + 2σ2(1 + σ2(d+ 2))(∥µ0∥2 + ∥µ1∥2)

]
.

To compute (II0), by defining p0(µ0, µ1, µ
⋆) as in Lemma E.3, we get

E[(⟨X1, µ0⟩2 + ⟨X1, µ1⟩2)2∥X1∥2]

=
1

2
E[(⟨X1, µ0⟩4 + 2⟨X1, µ0⟩2⟨X1, µ1⟩2 + ⟨X1, µ1⟩4)∥X1∥2|Z1 = 0]

+
1

2
E[(⟨X1, µ0⟩4 + 2⟨X1, µ0⟩2⟨X1, µ1⟩2 + ⟨X1, µ1⟩4)∥X1∥2|Z1 = 1]

=
1

2
(p0(µ0, µ0, µ

⋆
0) + 2p0(µ0, µ1, µ

⋆
0) + p0(µ1, µ1, µ

⋆
0))

+
1

2
(p0(µ0, µ0, µ

⋆
1) + 2p0(µ0, µ1, µ

⋆
1) + p0(µ1, µ1, µ

⋆
1)).

Then,

(II0) =
4λ2

L2
E[(⟨X1, µ0⟩2 + ⟨X1, µ1⟩2)2∥X1∥2]
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=
2λ2

L2
(p0(µ0, µ0, µ

⋆
0 + 2p0(µ0, µ1, µ

⋆
0) + p0(µ1, µ1, µ

⋆
0))

+
2λ2

L2
(p0(µ0, µ0, µ

⋆
1) + 2p0(µ0, µ1, µ

⋆
1) + p0(µ1, µ1, µ

⋆
1)) .

To compute (III0), by defining p1(µ0, µ1, µ
⋆
Z1
, µ⋆Z2

) as in Lemma E.4, we get

E[(⟨X1, µ0⟩2 + ⟨X1, µ1⟩2)(⟨X1, µ0⟩⟨X2, µ0⟩+ ⟨X1, µ1⟩⟨X2, µ1⟩)⟨X1, X2⟩]

=
1

4

∑
(z1,z2)∈{0,1}2

Υ1(z1, z2),

where

Υ1(z1, z2) = E[(⟨X1, µ0⟩2 + ⟨X1, µ1⟩2)(⟨X1, µ0⟩⟨X2, µ0⟩+ ⟨X1, µ1⟩⟨X2, µ1⟩)
· ⟨X1, X2⟩|Z1 = z1, Z2 = z2].

And then
1

4

∑
(z1,z2)∈{0,1}2

Υ1(z1, z2)

=
1

4
(p1(µ0, µ0, µ

⋆
0, µ

⋆
0) + p1(µ0, µ1, µ

⋆
0, µ

⋆
0) + p1(µ1, µ0, µ

⋆
0, µ

⋆
0) + p1(µ1, µ1, µ

⋆
0, µ

⋆
0))

+
1

4
(p1(µ0, µ0, µ

⋆
1, µ

⋆
0) + p1(µ0, µ1, µ

⋆
1, µ

⋆
0) + p1(µ1, µ0, µ

⋆
1, µ

⋆
0) + p1(µ1, µ1, µ

⋆
1, µ

⋆
0))

+
1

4
(p1(µ0, µ0, µ

⋆
0, µ

⋆
1) + p1(µ0, µ1, µ

⋆
0, µ

⋆
1) + p1(µ1, µ0, µ

⋆
0, µ

⋆
1) + p1(µ1, µ1, µ

⋆
0, µ

⋆
1))

+
1

4
(p1(µ0, µ0, µ

⋆
1, µ

⋆
1) + p1(µ0, µ1, µ

⋆
1, µ

⋆
1) + p1(µ1, µ0, µ

⋆
1, µ

⋆
1) + p1(µ1, µ1, µ

⋆
1, µ

⋆
1)).

Consequently,

(III0) = 8λ2
(L− 1)

L2
E[(⟨X1, µ0⟩2 + ⟨X1, µ1⟩2)(⟨X1, µ0⟩⟨X2, µ0⟩+ ⟨X1, µ1⟩⟨X2, µ1⟩)⟨X1, X2⟩]

= 2λ2
(L− 1)

L2

∑
(z1,z2)∈{0,1}2

Υ1(z1, z2).

To compute (I), we can use Lemma E.5 to obtain:

E[(⟨X1, µ0⟩⟨X2, µ0⟩+ ⟨X1, µ1⟩⟨X2, µ1⟩)⟨X1, X2⟩]

=
1

4
E[(⟨X1, µ0⟩⟨X2, µ0⟩+ ⟨X1, µ1⟩⟨X2, µ1⟩)⟨X1, X2⟩|Z1 = 0, Z2 = 0]

+
1

4
E[(⟨X1, µ0⟩⟨X2, µ0⟩+ ⟨X1, µ1⟩⟨X2, µ1⟩)⟨X1, X2⟩|Z1 = 0, Z2 = 1]

+
1

4
E[(⟨X1, µ0⟩⟨X2, µ0⟩+ ⟨X1, µ1⟩⟨X2, µ1⟩)⟨X1, X2⟩|Z1 = 1, Z2 = 0]

+
1

4
E[(⟨X1, µ0⟩⟨X2, µ0⟩+ ⟨X1, µ1⟩⟨X2, µ1⟩)⟨X1, X2⟩|Z1 = 1, Z2 = 1]

=
1 + 4σ2

4
(κ20 + η20 + κ21 + η21) + σ4(∥µ0∥2 + ∥µ1∥2).

Thus, (I) = λL−1
L [(κ20 + η20 + κ21 + η21)(1 + 4σ2) + 4σ4(∥µ0∥2 + ∥µ1∥2)] .

To compute (II), by defining p2(µ0, µ1, µ
⋆
Z1
, µ⋆Z2

) as in Lemma E.6, we obtain:

E[(⟨X1, µ0⟩⟨X2, µ0⟩+ ⟨X1, µ1⟩⟨X2, µ1⟩)2∥X2∥2]

=
1

4

∑
(z1,z2)∈{0,1}2

Υ2(z1, z2),
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where

Υ2(z1, z2) = E[(⟨X1, µ0⟩⟨X2, µ0⟩+ ⟨X1, µ1⟩⟨X2, µ1⟩)2∥X2∥2|Z1 = z1, Z2 = z2].

And then

1

4

∑
(z1,z2)∈{0,1}2

Υ2(z1, z2)

=
1

4
(p2(µ0, µ0, µ

⋆
0, µ

⋆
0) + 2p2(µ0, µ1, µ

⋆
0, µ

⋆
0) + p2(µ1, µ1, µ

⋆
0, µ

⋆
0))

+
1

4
(p2(µ0, µ0, µ

⋆
0, µ

⋆
1) + 2p2(µ0, µ1, µ

⋆
0, µ

⋆
1) + p2(µ1, µ1, µ

⋆
0, µ

⋆
1))

+
1

4
(p2(µ0, µ0, µ

⋆
1, µ

⋆
0) + 2p2(µ0, µ1, µ

⋆
1, µ

⋆
0) + p2(µ1, µ1, µ

⋆
1, µ

⋆
0))

+
1

4
(p2(µ0, µ0, µ

⋆
1, µ

⋆
1) + 2p2(µ0, µ1, µ

⋆
1, µ

⋆
1) + p2(µ1, µ1, µ

⋆
1, µ

⋆
1)).

So we obtain,

(II) =
4λ2(L− 1)

L2
E[(⟨X1, µ0⟩⟨X2, µ0⟩+ ⟨X1, µ1⟩⟨X2, µ1⟩)2∥X2∥2]

=
λ2(L− 1)

L2

∑
(z1,z2)∈{0,1}2

Υ2(z1, z2).

Finally, to compute (III), by defining p3(µ0, µ1, µ
⋆
Z1
, µ⋆Z2

, µ⋆Z3
) as in Lemma E.7, we get

E[(⟨X1, µ0⟩⟨X2, µ0⟩+ ⟨X1, µ1⟩⟨X2, µ1⟩)(⟨X1, µ0⟩⟨X3, µ0⟩+ ⟨X1, µ1⟩⟨X3, µ1⟩)⟨X2, X3⟩]

=
1

8

∑
(z1,z2,z3)∈{0,1}3

Υ3(z1, z2, z3),

where

Υ3(z1, z2, z3) = E
[
(⟨X1, µ0⟩⟨X2, µ0⟩+ ⟨X1, µ1⟩⟨X2, µ1⟩)
· (⟨X1, µ0⟩⟨X3, µ0⟩+ ⟨X1, µ1⟩⟨X3, µ1⟩)
· ⟨X2, X3⟩

∣∣Z1 = z1, Z2 = z2, Z3 = z3
]
.

Observing that ∑
(z1,z2,z3)∈{0,1}3

Υ3(z1, z2, z3) =
∑

(a,b,c,d,e)∈{0,1}5

p3(µa, µb, µ
⋆
c , µ

⋆
d, µ

⋆
e),

we get

(III) =
8λ2(L− 1)(L− 2)

2L2
· 1
8

∑
(z1,z2,z3)∈{0,1}3

Υ3(z1, z2, z3)

=
λ2(L− 1)(L− 2)

2L2

∑
(a,b,c,d,e)∈{0,1}5

p3(µa, µb, µ
⋆
c , µ

⋆
d, µ

⋆
e).

Finally, putting everything together, recalling the notation introduced in (7), and inspecting the
formulas given by Lemmas from E.2 to E.7 allows to conclude.

C.2 Proof of Lemma 3.2 (expression of the risk on the manifold, non-degenerate case)

We provide in Lemma C.1 a more precise version of Lemma 3.2, with explicit constants.
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Lemma C.1. Define c1(n) = 1 + nσ2 and c2(n) = 1 + σ2(d + n), then the risk R<(κ0, κ1)
restricted to M has the form

R<(κ0, κ1) = A(κ40 + κ41) +B(κ20 + κ21) + Cκ20κ
2
1 +D,

where

A =
2λ2

L2
c2(8) +

2λ2(L− 1)

L2
c1(5) +

λ2(L− 1)

L2
c2(4) +

λ2(L− 1)(L− 2)

2L2
c1(4).

B = −2λ

L
c2(4) +

16λ2σ2

L2
c2(6) +

8λ2σ2(L− 1)

L2
c1(6)−

λ(L− 1)

L
c1(4)

+
4λ2σ2(L− 1)

L2
c2(3) +

λ2σ2(L− 1)(L− 2)

L2
c1(6).

C =
4λ2σ2(L− 1)

L2
.

D = c1(d)−
8λσ2

L
c2(2) +

32λ2σ4

L2
c2(4) +

64λ2σ6(L− 1)

L2

− 8λσ4(L− 1)

L
+

8λ2σ4(L− 1)

L2
c2(2) +

8λ2σ6(L− 1)(L− 2)

L2
.

Proof of Lemma C.1. Using the decomposition obtained in the proof of Proposition 3.1, after simple
algebraic manipulation we get that on this manifold:

• (I0) =
2λ
L [(κ20 + κ21)(1 + σ2(d+ 4)) + 4σ2(1 + σ2(d+ 2))].

• (II0) =
2λ2

L2 [(κ
4
0+κ

4
1)(1+σ

2(d+8))+8σ2(κ20+κ
2
1)(1+σ

2(d+6))+16σ4(1+σ2(d+4))].

• (III0) = 2λ2 (L−1)
L2 [(κ40 + κ41)(1 + 5σ2) + 4σ2(κ20 + κ21)(1 + 6σ2) + 2σ2κ20κ

2
1 + 32σ6].

• (I) = λL−1
L [(κ20 + κ21)(1 + 4σ2) + 8σ4].

• (II) = λ2 (L−1)
L2 [(κ40 + κ41)(1 + σ2(d + 4)) + 4σ2(κ20 + κ21)(1 + σ2(d + 3)) + 8σ4(1 +

σ2(d+ 2))].

• (III) = λ2 (L−1)(L−2)
2L2 [(κ40 + κ41)(1 + 4σ2) + 2σ2(κ20 + κ21)(1 + 6σ2) + 16σ6].

We conclude by noting that the risk restricted to this manifold is

R<(κ0, κ1) = (1 + dσ2)− (I0) + (II0) + (III0)− (I) + (II) + (III),

and properly factorizing the terms.

C.3 Proof of Proposition 3.3 (global minima of the risk, non-degenerate case).

In what follows we provide an extended version of Proposition 3.3 with explicit constant, together
with its proof.
Proposition C.2. Let us define

c3(σ, L)
def
= 16σ2c2(6) + 8σ2(L− 1)c1(6) + 4σ2(L− 1)c2(3) + σ2(L− 1)(L− 2)c1(6) + 4c2(8)

+ 4(L− 1)c1(5) + 2(L− 1)c2(4) + (L− 1)(L− 2)c1(4) + 4σ2(L− 1),

and consider R<(κ0, κ1) with the following λ:

λ⋆(σ, L) =
2Lc2(4) + L(L− 1)c1(4)

c3(σ, L)
.

Then the points (±1,±1) are global minimum of R<(κ0, κ1).

Remark C.3. In the case where σ = 0, we get λ⋆(0, L) = λ⋆0 = L+1
L+3 .
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Proof. Imposing first order conditions on R<(κ0, κ1) from Lemma C.1, we obtain an explicit form
of its critical points. From this expression, we note that the global minimum are the points (±1,±1)
if and only if 4A+ 2B + 2C = 0. The function λ 7→ 2A(λ) +B(λ) +C(λ) is a quadratic which is
negative for 0 ≤ λ < λ⋆(σ, L), and vanishes at λ = λ⋆(σ, L).

C.4 Proof of Theorem 3.4

The proof of this result is built upon a series of intermediate results that progressively lead to the
desired conclusion.

Lemma C.4. At a point (κ0, κ1, η0, η1, ξ) such that η0 = η1 = ξ = 0, we have ∂η0R< = ∂η1R< =
∂ξR< = 0.

Proof. According to Proposition 3.1, we can directly obtain that

R<(κ0, κ1, η0, η1, ξ) = R<(κ0, κ1,−η0,−η1,−ξ).

Taking the partial derivative in η0, we get

∂η0R<(κ0, κ1, η0, η1, ξ) = −∂η0R<(κ0, κ1,−η0,−η1,−ξ).

At a point such that η0 = η1 = ξ = 0, this gives ∂η0R<(κ0, κ1, 0, 0, 0) = −∂η0R<(κ0, κ1, 0, 0, 0),
therefore ∂η0R<(κ0, κ1, 0, 0, 0) = 0, the proof for ∂η1R<, ∂ξR< is analogous.

Lemma C.5. The manifold M is invariant under (PGD) dynamics, this is if (µk0 , µ
k
1) ∈ M, then

(µk+1
0 , µk+1

1 ) ∈ M.

Proof. We apply the chain rule and Lemma C.4 to get:

∇µ0R = ∂κ0R<µ⋆0 + ∂η1R<µ⋆1 + ∂ξR<µ1 = ∂κ0R<µ⋆0, (23)

∇µ1R = ∂κ1R<µ⋆1 + ∂η0R<µ⋆0 + ∂ξR<µ0 = ∂κ1R<µ⋆1. (24)

We then follow the same ideas as in Marion et al. (2024, Lemma 4), where our Lemma C.4 takes the
role of Marion et al. (2024, Lemma 14).

More concretely, let us consider c0 = ∥µk0 − γ(Id − µk0(µ
k
0)

⊤)∇µ0
R(µk0 , µ

k
1)∥2, and

c1 = ∥µk1 − γ(Id − µk1(µ
k
1)

⊤)∇µ1
R(µk0 , µ

k
1)∥2, then recalling (PGD) updates, we have that if

(µk0 , µ
k
1) ∈ M, then

(µ⋆1)
⊤µk+1

0 =
(µ⋆1)

⊤µk0 − γ(µ⋆1)
⊤(Id − µk0(µ

k
0)

⊤)∂κ0
R<(κk0 , κ

k
1)µ

⋆
0

c0
= 0,

(µ⋆0)
⊤µk+1

1 =
(µ⋆0)

⊤µk1 − γ(µ⋆0)
⊤(Id − µk1(µ

k
1)

⊤)∂κ1
R<(κk0 , κ

k
1)µ

⋆
1

c1
= 0,

And

(µk+1
1 )⊤µk+1

0

=
(µk1)

⊤µk0
c0c1

− γ(∂κ1
R<(κk0 , κ

k
1))((Id − µk1(µ

k
1)

⊤)µ⋆1)
⊤µk0 − γ(∂κ0

R<(κk0 , κ
k
1))((Id − µk0(µ

k
0)

⊤)µ⋆0)
⊤µk1

c0c1

+
γ2(∂κ0R<(κk0 , κ

k
1))(∂κ1R<(κk0 , κ

k
1))((Id − µk0(µ

k
0)

⊤)µ⋆0)
⊤(Id − µk1(µ

k
1)

⊤)µ⋆1
c0c1

= 0,

where the last term is zero since

((Id − µk0(µ
k
0)

⊤)µ⋆0)
⊤(Id − µk1(µ

k
1)

⊤)µ⋆1 = 0.

Then (µk+1
0 , µk+1

1 ) ∈ M.
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Lemma C.6. When initialized on the manifold M, the iterations generated by (PGD) can be
reformulated as follows:

(κk+1
0 , κk+1

1 ) = φ(κk0 , κ
k
1), (25)

where φ : [−1, 1]2 → [−1, 1]2 is given by

φ(κ0, κ1) =

(
κ0 − γ(∂κ0R<(κ0, κ1))(1− κ20)√
1 + γ2(∂κ0

R<(κ0, κ1))2(1− κ20)
,
κ1 − γ(∂κ1R<(κ0, κ1))(1− κ21)√
1 + γ2(∂κ1

R<(κ0, κ1))2(1− κ21)

)
,

and R<(κ0, κ1)
def
= R<(κ0, κ1, 0, 0, 0) as in Lemma C.1.

Proof. By definition of the iterates and (23),(24), we have

κk+1
0 = (µk+1

0 )⊤µ⋆0 =
κk0 − γ∂κ0R<(κ0, κ1)((µ

⋆
0)

⊤(Id − µk0(µ
k
0)

⊤)µ⋆0)√
1 + γ2(∂κ0

R<(κ0, κ1))2∥(Id − µk0(µ
k
0)

⊤)µ⋆0∥22

=
κk0 − γ∂κ0R<(κ0, κ1)(1− (κk0)

2)√
1 + γ2∂κ0

R<(κ0, κ1)(1− (κk0)
2)
,

κk+1
1 = (µk+1

1 )⊤µ⋆1 =
κk1 − γ∂κ1R<(κ0, κ1)((µ

⋆
1)

⊤(Id − µk1(µ
k
1)

⊤)µ⋆1)√
1 + γ2(∂κ1

R<(κ0, κ1))2∥(Id − µk1(µ
k
1)

⊤)µ⋆1∥22

=
κk1 − γ∂κ1R<(κ0, κ1)(1− (κk1)

2)√
1 + γ2∂κ1

R<(κ0, κ1)(1− (κk1)
2)
.

In the following propositions, we consider R< : [−1, 1]2 → R+ defined as in Lemma C.1 with
λ ∈]0, λ∗(σ, L)], where λ∗(σ, L) is defined in Proposition C.2.
Proposition C.7. Let (µ0

0, µ
0
1) ∈ M, consider (25) with initial conditions κ00 = ⟨µ0

0, µ
⋆
0⟩, κ01 =

⟨µ0
1, µ

⋆
1⟩. Then there exists γ̄ > 0 such that for every 0 < γ < γ̄, the risk R< is decreasing along the

iterates of (25). Besides, the distance between successive iterates tends to zero, and, if (κ⋆0, κ
⋆
1) is an

accumulation point of the sequence of iterates (κk0 , κ
k
1)k∈N, then

(1− (κ⋆0)
2)∂κ0

R<(κ⋆0, κ
⋆
1) = 0, (1− (κ⋆1)

2)∂κ1
R<(κ⋆0, κ

⋆
1) = 0. (26)

Proof. The proof is identical to that of Marion et al. (2024, Proposition 8) and is therefore omitted.

Proposition C.8. The points (κ0, κ1) ∈ [−1, 1]2 satisfying (26) belong to the set

C
def
= {(±1,±1), (0,±1), (±1, 0), (0, 0)}.

Proof. We recall that by Lemma C.1, the risk R< restricted to the manifold M, has the following
form

R<(κ0, κ1) = A(κ40 + κ41) +B(κ20 + κ21) + Cκ20κ
2
1 +D.

Then

∂κ0
R<(κ0, κ1) = 4Aκ30 + 2Bκ0 + 2Cκ0κ

2
1,

∂κ1
R<(κ0, κ1) = 4Aκ31 + 2Bκ1 + 2Cκ1κ

2
0.

And we can rewrite equations (26) as

κ0(1− κ20)[2Aκ
2
0 +B + Cκ21] = 0,

κ1(1− κ21)[2Aκ
2
1 +B + Cκ20] = 0,

Since each equation is a product of 3 terms, the general solution to this system occurs when at least in
each equation is zero. By considering only the first two terms in each equation, we obtain the solution
set {(±1,±1), (0,±1), (±1, 0), (0, 0)}. Now we consider the case when 2Aκ20+B+Cκ21 = 0, this
implies that:
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• If κ1 = 0, then κ20 = − B
2A .

• If κ21 = 1, then κ20 = −B+C
2A .

• If 2Aκ21 +B +Cκ20= 0, then 2Aκ20 +Cκ21 = 2Aκ20 +Cκ21, thus (2A−C)(κ20 − κ21) = 0.
By inspection, C < 2A, hence we get κ20 = κ21 and κ20 = − B

2A+C .

We note the following relation

−B + C

2A
< − B

2A+ C
< − B

2A
.

Further remark by inspecting the proof of Proposition C.2 that for λ ∈]0, λ∗(σ, L)], we have

1 ≤ −B + C

2A
.

Thus the only possible solution when 2Aκ20 +B+Cκ21 = 0 is κ21 = 1 and κ20 = −B+C
2A = 1 Putting

everything together, the solution set is precisely

{(±1,±1), (0,±1), (±1, 0), (0, 0)}.

Proposition C.9. The fixed points of the dynamic can be classified as follows:

1. The points (κ0, κ1) = (±1,±1) are global minima of R< on [−1, 1]2.

2. The points (κ0, κ1) = (0,±1) and (±1, 0) are strict saddle points of R< on [−1, 1]2.

3. The point (κ0, κ1) = (0, 0) is a global maxima of R< on [−1, 1]2.

Proof. Since R< is smooth, its extrema on the square [−1, 1]2 occur either at critical points, where
the gradient vanishes, or on the boundary. For the chosen range λ ∈]0, λ⋆(σ, L)[, the only interior
critical point is (0, 0), which corresponds to a local maximum. Indeed, the Hessian of R< at (0, 0) is

∇2R<(0, 0) =

(
2B 0
0 2B

)
.

We easily check that both eigenvalues are 2B, which is negative since B < 0, therefore concluding
that (0, 0) is a maximum. The rest of the extrema of R< must lie on the boundary of the square, we
observe that

R<(±1,±1) < R<(x, y), (x, y) ∈ ∂([−1, 1]2) \ {(±1,±1)}.
Thus concluding that (±1,±1) are minimizers. Finally, we observe that

R<(κ,±1) < R<(0,±1) < R<(0, η), κ, η ∈]− 1, 1[.

Analogously, we see that

R<(±1, κ) < R<(±1, 0) < R<(η, 0), κ, η ∈]− 1, 1[.

This shows that (0,±1) and (±1, 0) are strict saddle points, concluding with the proof. We note that
when λ = λ⋆(σ, L), Proposition C.2 implies that the critical points coincide with the minimizers
already identified.

Proposition C.10. Consider the context of Proposition C.7, then there exists γ̄ > 0 such that for any
stepsize 0 < γ < γ̄, the iterates (κk0 , κ

k
1)k∈N generated by (25) converge to an element of C .

Proof. By Proposition C.7, the distance between successive iterates (κk0 , κ
k
1)k∈N, then the set of

accumulation points of the sequence is connected (Lange, 2013, Proposition 12.4.1). Since we have a
finite number of accumulation points by Proposition C.8, the sequence has a unique accumulation
point. Besides, the sequence belongs to the compact set [−1, 1]2, then it converges and its limit is
one of the nine fixed points.
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Proposition C.11. Consider the context of Proposition C.7, then there exists γ̄ > 0 such that for
any stepsize 0 < γ < γ̄, the set of initializations such that the iterates (κk0 , κ

k
1)k∈N generated by

(25) converge to (0,±1), (±1, 0) or (0, 0) has Lebesgue measure zero (with respect to the Lebesgue
measure on the manifold M).

Proof. The point (0, 0) is a maxima of the risk R< on [−1, 1]2 and the value of the risk decreases
along the iterates of (PGD) by Proposition C.7. We follow the ideas presented in the proof of Marion
et al. (2024, Proposition 12), we can conclude that φ is differentiable on [−1, 1]2, and that its Jacobian
is not degenerate, besides φ is a local diffeomorphism around (0,±1) and (±1, 0), whose Jacobian
matrix in each point has one eigenvalue in [0, 1[ and one eigenvalue in ]1,∞[. The result follows
from the Center-Stable Manifold Theorem (Shub, 1987, Theorem III.7), we refer to Marion et al.
(2024, Proposition 13) for a detailed and analogous proof.

D Proofs of Section 4

D.1 Proof of Proposition 4.1

We provide hereafter the proof of Proposition 4.1, which proof follows.

Proposition D.1. Consider (Xℓ)1≤ℓ≤L i.i.d. drawn from (Pσ). Consider also Zℓ ∈ {0, 1} the latent
variable of Xℓ, i.e. Xℓ|Zℓ ∼ N (µ⋆Zℓ

, σ2Id), and

T lin,µ⋆
0 ,µ

⋆
1 (X)1 =

2

L

L∑
k=1

(ek(µ
⋆
0) + ek(µ

⋆
1))Xk,

where ek(µ)
def
= λ⟨X1, µ⟩⟨Xk, µ⟩. Then

E[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1 = c] = µ⋆c

λ

L
[(L+ 1) + 2(L+ 3)σ2], c = {0, 1}.

E[T lin,µ⋆
0 ,µ

⋆
1 (X)1] =

µ⋆0 + µ⋆1
2

λ

L
[(L+ 1) + 2(L+ 3)σ2].

Moreover, when λ = L
(L+1)+2(L+3)σ2 , then the encoding is unbiased, this is

E[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1 = c] = µ⋆c , c = {0, 1}.

Proof. We decompose the following term as follows,

L∑
k=1

⟨X1, µ
⋆
0⟩⟨Xk, µ

⋆
0⟩Xk = ⟨X1, µ

⋆
0⟩2X1 +

L∑
k=2

⟨X1, µ
⋆
0⟩⟨Xk, µ

⋆
0⟩Xk

Due to the independence of the variables,

E[T lin,µ⋆
0 ,µ

⋆
1 (X)1] =

2λ

L
(E[(⟨X1, µ

⋆
0⟩2 + ⟨X1, µ

⋆
1⟩2)X1]

+ (L− 1)E[(⟨X1, µ
⋆
0⟩⟨X2, µ

⋆
0⟩+ ⟨X1, µ

⋆
1⟩⟨X2, µ

⋆
1)X2]).

On the one hand we have

X1|Z1 = µ⋆Z1
+ ε, ε ∼ N (0, σ2Id),

⟨X1, µ
⋆
0⟩2|Z1 = ⟨µ⋆Z1

, µ⋆0⟩2 + 2⟨µ⋆Z1
, µ⋆0⟩⟨ε, µ⋆0⟩+ ⟨ε, µ⋆0⟩2,

⟨X1, µ
⋆
0⟩2X1|Z1 = ⟨µ⋆Z1

, µ⋆0⟩2µ⋆Z1
+ ⟨µ⋆Z1

, µ⋆0⟩2ε+ 2⟨µ⋆Z1
, µ⋆0⟩⟨ε, µ⋆0⟩µ⋆Z1

+ 2⟨µ⋆Z1
, µ⋆0⟩⟨ε, µ⋆0⟩ε+ ⟨ε, µ⋆0⟩2µ⋆Z1

+ ⟨ε, µ⋆0⟩2ε,
E
[
⟨X1, µ

⋆
0⟩2X1 | Z1

]
= ⟨µ⋆Z1

, µ⋆0⟩2µ⋆Z1
+ E[⟨µ⋆Z1

, µ⋆0⟩2ε]︸ ︷︷ ︸
0

+E[2⟨µ⋆Z1
, µ⋆0⟩⟨ε, µ⋆0⟩µ⋆Z1

]︸ ︷︷ ︸
0
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+ E[2⟨µ⋆Z1
, µ⋆0⟩⟨ε, µ⋆0⟩ε]︸ ︷︷ ︸

2σ2⟨µ⋆
Z1
,µ⋆

0⟩µ⋆
0

+E[⟨ε, µ⋆0⟩2µ⋆Z1
]︸ ︷︷ ︸

σ2µ⋆
Z1

+E[⟨ε, µ⋆0⟩2ε]︸ ︷︷ ︸
0

,

= ⟨µ⋆Z1
, µ⋆0⟩2µ⋆Z1

+ σ2
(
µ⋆Z1

+ 2⟨µ⋆Z1
, µ⋆0⟩µ⋆0

)
.

On the other hand,

Xi|Zi = µ⋆Zi
+ εi, εi ∼ N (0, σ2Id), ε1 ⊥⊥ ε2,

E[⟨X1, µ
⋆
0⟩⟨X2, µ

⋆
0⟩X2 | Z1, Z2] = E[⟨X1, µ

⋆
0⟩ | Z1]E[⟨X2, µ

⋆
0⟩X2 | Z2]

= ⟨µ⋆Z1
, µ⋆0⟩E[(⟨µ⋆Z2

, µ⋆0⟩+ ⟨ε2, µ⋆0⟩)(µ⋆Z2
+ ε2)]

= ⟨µ⋆Z1
, µ⋆0⟩

(
⟨µ⋆Z2

, µ⋆0⟩µ⋆Z2
+ ⟨µ⋆Z2

, µ⋆0⟩E[ε2]︸ ︷︷ ︸
0

+E[⟨ε2, µ⋆0⟩µ⋆Z2
]︸ ︷︷ ︸

0

+σ2µ⋆0

)
= ⟨µ⋆Z1

, µ⋆0⟩
(
⟨µ⋆Z2

, µ⋆0⟩µ⋆Z2
+ σ2µ⋆0

)
.

Therefore,

E[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1, Z2] =

2λ

L
[(⟨µ⋆Z1

, µ⋆0⟩2 + ⟨µ⋆Z1
, µ⋆1⟩2)µ⋆Z1

+ 2σ2µ⋆Z1

+ 2σ2(⟨µ⋆Z1
, µ⋆0⟩µ⋆0 + ⟨µ⋆Z1

, µ⋆1⟩µ⋆1)
+ (L− 1)(⟨µ⋆Z1

, µ⋆0⟩⟨µ⋆Z2
, µ⋆0⟩+ ⟨µ⋆Z1

, µ⋆1⟩⟨µ⋆Z2
, µ⋆1⟩)µ⋆Z2

+ (L− 1)σ2(⟨µ⋆Z1
, µ⋆0⟩µ⋆0 + ⟨µ⋆Z1

, µ⋆1⟩µ⋆1)].

And then,

E[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1]

=
2λ

L
[(⟨µ⋆Z1

, µ⋆0⟩2 + ⟨µ⋆Z1
, µ⋆1⟩2)µ⋆Z1

+ 2σ2µ⋆Z1
+ 2σ2(⟨µ⋆Z1

, µ⋆0⟩µ⋆0 + ⟨µ⋆Z1
, µ⋆1⟩µ⋆1)

+ (L− 1)

(
1

2
+ σ2

)
(⟨µ⋆Z1

, µ⋆0⟩µ⋆0 + ⟨µ⋆Z1
, µ⋆1⟩µ⋆1)].

Which let us conclude that for c ∈ {0, 1},

E[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1 = c] =

µ⋆cλ

L
((L+ 1) + 2(L+ 3)σ2),

E[T lin,µ⋆
0 ,µ

⋆
1 (X)1] =

(µ⋆0 + µ⋆1)λ

2L
((L+ 1) + 2(L+ 3)σ2).

Proposition D.2. Consider (Xℓ)1≤ℓ≤L i.i.d. drawn from (Pσ). Consider also Zℓ ∈ {0, 1} the latent
variable of Xℓ, i.e. Xℓ|Zℓ ∼ N (µ⋆Zℓ

, σ2Id), and

T lin,µ⋆
0 ,µ

⋆
1 (X)1 =

2

L

L∑
k=1

(ek(µ
⋆
0) + ek(µ

⋆
1))Xk,

where ek(µ)
def
= λ⟨X1, µ⟩⟨Xk, µ⟩. Then for c ∈ {0, 1},

E[∥T lin,µ⋆
0 ,µ

⋆
1 (X)1∥2|Z1 = c]

=
4λ2

L2
[1 + σ2(d+ 16) + 8σ4(d+ 7) + 8σ6(d+ 4)]

+ 2λ2
(L− 1)

L2
[3 + σ2(d+ 28) + 4σ4(d+ 16) + 4σ6(d+ 10)]

+ λ2
(L− 1)(L− 2)

L2
[1 + 6σ2 + 12σ4 + 8σ6].
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And

Var[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1 = c]

=
4λ2

L2
[1 + σ2(d+ 16) + 8σ4(d+ 7) + 8σ6(d+ 4)]

+ 2λ2
(L− 1)

L2
[3 + σ2(d+ 28) + 4σ4(d+ 16) + 4σ6(d+ 10)]

+ λ2
(L− 1)(L− 2)

L2
[1 + 6σ2 + 12σ4 + 8σ6]

− λ2

L2
[(L+ 1) + 2(L+ 3)σ2]2.

When λ = L
(L+1)+2(L+3)σ2 , the encoding is unbiased, with variance

Var[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1 = c]

=
4

[(L+ 1) + 2(L+ 3)σ2]2
[1 + σ2(d+ 16) + 8σ4(d+ 7) + 8σ6(d+ 4)]

+
2(L− 1)

[(L+ 1) + 2(L+ 3)σ2]2
[3 + σ2(d+ 28) + 4σ4(d+ 16) + 4σ6(d+ 10)]

+
(L− 1)(L− 2)

[(L+ 1) + 2(L+ 3)σ2]2
[1 + 6σ2 + 12σ4 + 8σ6]− 1.

Besides, when L→ ∞ we get that,

Var[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1 = c] ∼ 2σ2, λ ∼ 1

1 + 2σ2
.

In general, if λ is not fixed and L→ ∞, we get

Var[T lin,µ⋆
0 ,µ

⋆
1 (X)1|Z1 = c] ∼ 2λ2σ2(1 + 2σ2)2.

Remark D.3. We recall that
Var[X1 | Z1 = c] = σ2d.

Notably, by selecting λ to ensure an unbiased encoding, the variance becomes independent of the
dimension d and equals 2σ2. This shows a variance reduction effect whenever the dimension d is
bigger than 2. More generally, λ can be chosen independently of d such that

2λ2(1 + 2σ2)2 ≪ d.

In this regime, the encoding also asymptotically reduces the variance of X1, conditioned on its cluster
assignment, as the number of components L→ ∞.

Proof. We note that the needed computations were already stated in the proof of Proposition 3.1, we
follow as in the proof of Lemma C.1, without loss of generality, we assume Z1 = 0, then we get that
for µ0, µ1 ∈ M:

E[∥T lin,µ0,µ1(X)1∥2|Z1 = 0]

=
4λ2

L2
[κ40(1 + σ2(d+ 8)) + 8σ2κ20(1 + σ2(d+ 6)) + 8σ4(1 + σ2(d+ 4))]

+ 4λ2
L− 1

L2
[κ40(1 + 5σ2) + 4σ2κ20(1 + 6σ2) + σ2κ20κ

2
1 + 16σ6]

+ 2λ2
(L− 1)

L2
[κ40(1 + σ2(d+ 4)) + 4σ2κ20(1 + σ2(d+ 3)) + 4σ4(1 + σ2(d+ 2))]

+ λ2
(L− 1)(L− 2)

L2
[κ40(1 + 4σ2) + 2σ2κ20(1 + 6σ2) + 8σ6].

Recalling that κ0 = ⟨µ0, µ
⋆
0⟩, κ1 = ⟨µ1, µ

⋆
1⟩, in order to compute E[∥T lin,µ∗

0 ,µ
∗
1 (X)1∥2|Z1 = 0], we

just need to replace κ0 and κ1 by 1 in the previous expression, as follows

E[∥T lin,µ⋆
0 ,µ

⋆
1 (X)1∥2|Z1 = 0]
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=
4λ2

L2
[1 + σ2(d+ 8) + 8σ2(1 + σ2(d+ 6)) + 8σ4(1 + σ2(d+ 4))]

+ 4λ2
(L− 1)

L2
[1 + 5σ2 + 4σ2(1 + 6σ2) + σ2 + 16σ6]

+ 2λ2
(L− 1)

L2
[1 + σ2(d+ 4) + 4σ2(1 + σ2(d+ 3)) + 4σ4(1 + σ2(d+ 2))]

+ λ2
(L− 1)(L− 2)

L2
[1 + 4σ2 + 2σ2(1 + 6σ2) + 8σ6]

=
4λ2

L2
[1 + σ2(d+ 16) + 8σ4(d+ 7) + 8σ6(d+ 4)]

+ 2λ2
(L− 1)

L2
[3 + σ2(d+ 28) + 4σ4(d+ 16) + 4σ6(d+ 10)]

+ λ2
(L− 1)(L− 2)

L2
[1 + 6σ2 + 12σ4 + 8σ6].

The expression of the variance comes from subtracting to this term the square of the conditional
expectation given in Proposition 4.1. The asymptotic expressions are then straightforward to derive.

D.2 Proof of Proposition 4.2

Proof. Assume that the tokens are i.i.d., such that for any ℓ, Xℓ ∼ 1
2N (µ⋆0, σ

2Id) +
1
2N (µ⋆1, σ

2Id).
The risk of the oracle predictor T lin,µ⋆

0 ,µ
⋆
1 can be decomposed as follows

L(T lin,µ⋆
0 ,µ

⋆
1 ) = (1 + dσ2)− (I0) + (II0) + (III0)− (I) + (II) + (III), (27)

where, from the proof of Lemma C.1, by taking κ0 = κ1 = 1,

• (I0) =
4λ
L

[
(1 + σ2(d+ 4)) + 2σ2(1 + σ2(d+ 2))

]
.

• (II0) =
4λ2

L2 [1 + σ2(d+ 16) + 8σ4(d+ 7) + 8σ6(d+ 4))].

• (III0) = 4λ2 L−1
L2 [1 + 10σ2 + 24σ4 + 16σ6].

• (I) = 2λL−1
L [1 + 4σ2 + 4σ4].

• (II) = 2λ2 (L−1)
L2 [1 + σ2(d+ 8) + 4σ4(d+ 7) + 4σ6(d+ 2)].

• (III) = λ2 (L−1)(L−2)
L2 [1 + 6σ2 + 12σ4 + 8σ6].

When L tends to ∞, only the first term together with (I) and (III) contribute. Therefore, we obtain
that

L(T lin,µ⋆
0 ,µ

⋆
1 ) ∼

L→∞
(1 + dσ2)− λ[2 + 8σ2 + 8σ4] + λ2[1 + 6σ2 + 12σ4 + 8σ6].

Choosing λ = 1+4σ2+4σ4

1+6σ2+12σ4+8σ6 (its value being independent of L) minimizes the equivalent bound
obtained above. With such a choice, the equivalent becomes

L(T lin,µ⋆
0 ,µ

⋆
1 ) ∼

L→∞
(1 + dσ2)− (1 + 4σ2 + 4σ4)2

1 + 6σ2 + 12σ4 + 8σ6

∼
L→∞

(1 + dσ2)− (1 + 2σ2)4

(1 + 2σ2)3

∼
L→∞

(1 + dσ2)− 1− 2σ2

∼
L→∞

σ2(d− 2).
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Remark D.4. In the case of the degenerate case (σ = 0), similar computations lead to

L(T lin,µ⋆
0 ,µ

⋆
1 ) = 1− 4λ

L
+ 4

λ2

L2
+ 4λ2

L− 1

L2
− 2λ

L− 1

L
+ 2λ2

L− 1

L2
+ λ2

(L− 1)(L− 2)

L2

= 1− 2λ
L+ 1

L
+ λ2

(L+ 3)

L

Optimizing this quantity w.r.t. λ leads to choose λ = L+1
L+3 , plugging this value for λ gives

L(T lin,µ⋆
0 ,µ

⋆
1 ) = 1− (L+ 1)2

L(L+ 3)
.

In the degenerate case, we observe that as the sequence length tends to infinity, the risk of the
attention-based predictor with oracle parameters converges to zero, matching that of the optimal
quantizer.

E Technical results

This section gathers a series of technical results about Gaussian random variables, used to derive
expression of the risk in the rest of the document.

Lemma E.1. (Isserlis, 1918). Consider G ∼ N (0, σ2Id) and µa, µb, µc ∈ Rd, then

1. E[∥G∥2] = σ2d.

2. E[⟨µa, G⟩] = 0.

3. E(⟨µa, G⟩G) = σ2µa.

4. E[⟨µa, G⟩⟨µb, G⟩] = σ2⟨µa, µb⟩.

5. E[⟨µa, G⟩2⟨µb, G⟩2] = σ4(∥µa∥2∥µb∥2 + 2⟨µa, µb⟩2).

6. E[⟨µa, G⟩⟨µb, G⟩2⟨µc, G⟩] = σ4(∥µb∥2⟨µa, µc⟩+ 2⟨µa, µb⟩⟨µb, µc⟩).

7. E[⟨µa, G⟩⟨µb, G⟩∥G∥2] = σ4(d+ 2)⟨µa, µb⟩.

8. E[⟨µa, G⟩2⟨µb, G⟩2∥G∥2] = σ6(d+ 4)(∥µa∥2∥µb∥2 + 2⟨µa, µb⟩2).

Lemma E.2. Consider X ∼ N (µ⋆, σ2Id) where ∥µ⋆∥ = 1 and µa ∈ Rd, then

E[⟨X,µa⟩2∥X∥2] = ⟨µ⋆, µa⟩2(1 + σ2(d+ 4)) + σ2∥µa∥2(1 + σ2(d+ 2)).

Proof. We decompose X as follows,

X = µ⋆ + ε, ε ∼ N (0, σ2Id),

⟨X,µa⟩2∥X∥2 =
(
⟨µ⋆, µa⟩+ ⟨ε, µa⟩

)2(
1 + 2⟨ε, µ⋆⟩+ ∥ε∥2

)
E[⟨X,µa⟩2∥X∥2] = ⟨µ⋆, µa⟩2 + ⟨µ⋆, µa⟩2E∥ε∥2 + 4⟨µ⋆, µa⟩E[⟨ε, µa⟩⟨ε, µ⋆⟩]

+ E[⟨ε, µa⟩2] + E
[
⟨ε, µa⟩2∥ε∥2

]
,

Then, by Lemma E.1 one obtains

E[⟨X,µa⟩2∥X∥2] = ⟨µ⋆, µa⟩2(1 + σ2(d+ 4)) + σ2∥µa∥2(1 + σ2(d+ 2)).

Lemma E.3. Let X ∼ N (µ⋆, σ2Id), where ∥µ⋆∥ = 1 and µa, µb ∈ Rd, then

p0(µa, µb, µ
⋆)

def
= E(⟨X,µa⟩2⟨X,µb⟩2∥X∥2)
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can be expressed as

p0(µa, µb, µ
⋆) = ⟨µ⋆, µa⟩2⟨µ⋆, µb⟩2

+ σ2
(
⟨µ⋆, µb⟩2∥µa∥2 + 4⟨µ⋆, µa⟩⟨µ⋆, µb⟩⟨µa, µb⟩+ ⟨µ⋆, µa⟩2∥µb∥2

)
+ σ2(d+ 8)⟨µ⋆, µa⟩2⟨µ⋆, µb⟩2

+ σ4(∥µa∥2∥µb∥2 + 2⟨µa, µb⟩2 + (d+ 6)(∥µa∥2⟨µ⋆, µb⟩2 + ∥µb∥2⟨µ⋆, µa⟩2))
+ 4σ4(d+ 6)⟨µ⋆, µa⟩⟨µ⋆, µb⟩⟨µa, µb⟩+ σ6(d+ 4)(∥µa∥2∥µb∥2 + 2⟨µa, µb⟩2).

Proof. Write X = µ⋆ + ε with ε ∼ N (0, σ2Id). Then

⟨X,µa⟩2⟨X,µb⟩2∥X∥2 =
(
⟨µ⋆, µa⟩+ ⟨ε, µa⟩

)2(⟨µ⋆, µb⟩+ ⟨ε, µb⟩
)2(

1 + 2⟨ε, µ⋆⟩+ ∥ε∥2
)
.

Expand the product and drop all odd-moment terms of ε (their expectation is 0). The surviving types
of expectations are of the form of Lemma E.1, collecting all nonzero contributions after expansion
and simplifying gives the stated formula for p0(µa, µb, µ⋆).

The proofs of Lemmas E.4–E.7 follow the same approach as the proof of Lemma E.3: we rewrite
Xi | Zi as µ⋆Zi

+ εi, where (εi)i are i.i.d. random variables with εi ∼ N (0, σ2Id). We then expand
the product, discard odd-moment terms, and apply Lemma E.1 to obtain the desired results.
Lemma E.4. Let Z1 and Z2 ∈ {0, 1} be fixed. Consider two independent Rd−valued random
variables X1 and X2, such that

Xi|Zi ∼ N (µ⋆Zi
, σ2Id), for each i = {1, 2},

where the unit vectors µ⋆a, µ
⋆
b (i.e., ∥µ⋆a∥ = ∥µ⋆b∥ = 1) are orthogonal. For µa, µb, µc ∈ Rd, define

p1,0(µa, µb, µ
⋆
Z1
, µc)

def
= E[⟨X1, µa⟩2⟨X1, µb⟩⟨X1, µc⟩|Z1].

This quantity satisfies

p1,0(µa, µb, µ
⋆
Z1
, µc) = ⟨µ⋆Z1

, µa⟩2⟨µ⋆Z1
, µb⟩⟨µ⋆Z1

, µc⟩
+ σ2

[
∥µa∥2⟨µ⋆Z1

, µb⟩⟨µ⋆Z1
, µc⟩+ 2⟨µ⋆Z1

, µa⟩(⟨µ⋆Z1
, µc⟩⟨µa, µb⟩+ ⟨µ⋆Z1

, µb⟩⟨µa, µc⟩)
]

+ σ2
[
⟨µ⋆Z1

, µa⟩2⟨µb, µc⟩
]

+ σ4(∥µa∥2⟨µb, µc⟩+ 2⟨µa, µb⟩⟨µa, µc⟩).

Moreover, we define

p1(µa, µb, µ
⋆
Z1
, µ⋆Z2

)
def
= E[⟨X1, µa⟩2⟨X1, µb⟩⟨X2, µb⟩⟨X1, X2⟩|Z1, Z2],

which satisfies

p1(µa, µb, µ
⋆
Z1
, µ⋆Z2

) = ⟨µ⋆Z2
, µb⟩p1,0(µa, µb, µ⋆Z1

, µ⋆Z2
) + σ2p1,0(µa, µb, µ

⋆
Z1
, µb).

Lemma E.5. Let Z1, Z2 ∈ {0, 1} be fixed. Consider two independent Rd−valued random variables
X1 and X2, such that

Xi|Zi ∼ N (µ⋆Zi
, σ2Id), for each i = {1, 2},

where the unit vectors µ⋆a, µ
⋆
b (i.e., ∥µ⋆a∥ = ∥µ⋆b∥ = 1) are orthogonal. For µa, µb ∈ Rd, we get that

E[(⟨X1, µa⟩⟨X2, µa⟩+ ⟨X1, µb⟩⟨X2, µb⟩)⟨X1, X2⟩|Z1, Z2]

= ⟨µ⋆Z1
, µ⋆Z2

⟩(⟨µ⋆Z1
, µa⟩⟨µ⋆Z2

, µa⟩+ ⟨µ⋆Z1
, µb⟩⟨µ⋆Z2

, µb⟩)
+ σ2(⟨µa, µ⋆Z1

⟩2 + ⟨µa, µ⋆Z2
⟩2 + ⟨µb, µ⋆Z1

⟩2 + ⟨µb, µ⋆Z2
⟩2)

+ σ4(∥µa∥2 + ∥µb∥2)
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Lemma E.6. Let Z1, Z2 ∈ {0, 1} be fixed. Consider two independent Rd−valued random variables
X1 and X2, such that

Xi|Zi ∼ N (µ⋆Zi
, σ2Id), for each i = {1, 2},

where the unit vectors µ⋆a, µ
⋆
b (i.e., ∥µ⋆a∥ = ∥µ⋆b∥ = 1) are orthogonal. For µa, µb ∈ Rd, define also:

p2,0(µa, µb, µ
⋆
Z1
)

def
= E[⟨X1, µa⟩⟨X1, µb⟩|Z1]

p2,1(µa, µb, µ
⋆
Z2
)

def
= E[⟨X2, µa⟩⟨X2, µb⟩∥X2∥2|Z2].

These quantities satisfy

p2,0(µa, µb, µ
⋆
Z1
) = ⟨µ⋆Z1

, µa⟩⟨µ⋆Z1
, µb⟩+ σ2⟨µa, µb⟩,

p2,1(µa, µb, µ
⋆
Z2
) = ⟨µ⋆Z2

, µa⟩⟨µ⋆Z2
, µb⟩+ σ2((d+ 4)⟨µ⋆Z2

, µa⟩⟨µ⋆Z2
, µb⟩+ ⟨µa, µb⟩)

+ σ4(d+ 2)⟨µa, µb⟩.

Moreover, we define

p2(µa, µb, µ
⋆
Z1
, µ⋆Z2

)
def
= E[⟨X1, µa⟩⟨X2, µa⟩⟨X1, µb⟩⟨X2, µb⟩∥X2∥2|Z1, Z2],

which satisfies

p2(µa, µb, µ
⋆
Z1
, µ⋆Z2

) = p2,0(µa, µb, µ
⋆
Z1
)p2,1(µa, µb, µ

⋆
Z2
).

Lemma E.7. Let Z1, Z2, Z3 ∈ {0, 1} be fixed. Consider three independent Rd−valued random
variables X1, X2, X3, where

Xi|Zi ∼ N (µ⋆Zi
, σ2Id), for each i = {1, 2, 3},

such that µ⋆a, µ
⋆
b unit vectors (i.e., ∥µ⋆a∥ = ∥µ⋆b∥ = 1) are orthogonal. For µa, µb ∈ Rd, define also:

p3,0(µa, µb, µ
⋆
Z1
)

def
= E[⟨X1, µa⟩⟨X1, µb⟩|Z1],

p3,1(µa, µb, µ
⋆
Z2
, µ⋆Z3

)
def
= E[⟨X2, µa⟩⟨X3, µb⟩⟨X2, X3⟩|Z2, Z3].

These quantities satisfy

p3,0(µa, µb, µ
⋆
Z1
) = ⟨µ⋆Z1

, µa⟩⟨µ⋆Z1
, µb⟩+ σ2⟨µa, µb⟩,

p3,1(µa, µb, µ
⋆
Z2
, µ⋆Z3

) = ⟨µ⋆Z2
, µa⟩⟨µ⋆Z3

, µb⟩⟨µ⋆Z2
, µ⋆Z3

⟩
+ σ2(⟨µ⋆Z2

, µa⟩⟨µ⋆Z2
, µb⟩+ ⟨µ⋆Z3

, µa⟩⟨µ⋆Z3
, µb⟩)

+ σ4⟨µa, µb⟩.

Moreover, we define

p3(µa, µb, µ
⋆
Z1
, µ⋆Z2

, µ⋆Z3
)

def
= E[⟨X1, µa⟩⟨X2, µa⟩⟨X1, µb⟩⟨X3, µb⟩⟨X2, X3⟩|Z1, Z2, Z3],

which satisfies

p3(µa, µb, µ
⋆
Z1
, µ⋆Z2

, µ⋆Z3
) = p3,0(µa, µb, µ

⋆
Z1
)p3,1(µa, µb, µ

⋆
Z2
, µ⋆Z3

).

F Experimental details

This section provides algorithmic details, choices of parameters, and settings used for the plots
displayed in Sections A and 3.

F.1 Projected Stochastic Gradient Descent

We formally define the method Projected Stochastic Gradient Descent (PSGD), which we run for our
numerical experiments.
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PSGD iterates for linear attention heads. Given the objective function Rρ : (Sd−1)2 → R
defined in (Pρ), we define h : (Sd−1)2 × RL×d as

h(µ0, µ1,X ) =
∥∥∥X1 −

2

L

L∑
k=1

λ[X⊤
1 (µ0µ

⊤
0 + µ1µ

⊤
1 )Xk]Xk

∥∥∥2
2
+ ρ⟨µ0, X1⟩2⟨µ1, X1⟩2, (28)

where Xi is the i−th row of the matrix X . Consequently we can write
Rρ(µ0, µ1) = EX∼D[h(µ0, µ1,X)],

where D is the distribution over RL×d where each row is i.i.d. according to
1

2
N (µ⋆0, σ

2Id) +
1

2
N (µ⋆1, σ

2Id).

Then, given and an initialization (µ0
0, µ

0
1) ∈ (Sd−1)2, a stepsize γ, we define (µk0 , µ

k
1) ∈ (Sd−1)2

recursively by:

gk0 =
1

M

M∑
i=1

∇µ0h(µ
k
0 , µ

k
1 , ξ

k
i ),

gk1 =
1

M

M∑
i=1

∇µ1h(µ
k
0 , µ

k
1 , ξ

k
i ),

µk+1
0 =

µk0 − γ(Id − µk0(µ
k
0)

⊤)gk0
∥µk0 − γ(Id − µk0(µ

k
0)

⊤)gk0∥2
,

µk+1
1 =

µk1 − γ(Id − µk1(µ
k
1)

⊤)gk1
∥µk1 − γ(Id − µk1(µ

k
1)

⊤)gk1∥2
,

(PSGD)

where M is called the batch size, and for each k ∈ N, (ξki )i={1,...,M} are M independents samples
of D.

PSGD iterates for softmax attention heads. Given the objective function Rsoft,ρ0 : (Sd−1)2 ×
R2 → R defined in (Pρ0 ), for simplicity, we note that for an appropriate h0, we can write

Rsoft,ρ0(µ0, µ1, ψ, λ) = EX∼D[h0(µ0, µ1, ψ, λ,X)],
where D is the distribution over RL×d where each row is i.i.d. according to

1

2
N (µ⋆0, σ

2Id) +
1

2
N (µ⋆1, σ

2Id).

Then, given and an initialization (µ0
0, µ

0
1) ∈ (Sd−1)2, (ψ0, λ0) = (2, 3), a stepsize γ, we define

(µk0 , µ
k
1) ∈ (Sd−1)2 and (ψk, λk) ∈ R2 recursively by:

gk0 =
1

M

M∑
i=1

∇µ0
h0(µ

k
0 , µ

k
1 , ψ

k, λk, ξki ),

gk1 =
1

M

M∑
i=1

∇µ1
h0(µ

k
0 , µ

k
1 , ψ

k, λk, ξki ),

µk+1
0 =

µk0 − γ(Id − µk0(µ
k
0)

⊤)gk0
∥µk0 − γ(Id − µk0(µ

k
0)

⊤)gk0∥2
,

µk+1
1 =

µk1 − γ(Id − µk1(µ
k
1)

⊤)gk1
∥µk1 − γ(Id − µk1(µ

k
1)

⊤)gk1∥2
,

ψk+1 = ψk − γ
1

M

M∑
i=1

∇ψh0(µ
k
0 , µ

k
1 , ψ

k, λk, ξki ),

λk+1 = λk − γ
1

M

M∑
i=1

∇λh0(µ
k
0 , µ

k
1 , ψ

k, λk, ξki ),

(PSGDsoft)

where M is called the batch size, and for each k ∈ N, (ξki )i={1,...,M} are M independents samples
of D.
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Remark F.1. Gradient computations in the numerical experiments were carried out using JAX
(Bradbury et al., 2018).

F.2 Experimental details

In the following, we provide the experimental setup corresponding to Sections A and 3.

We use input sequences of length L = 30 of 5-dimensional tokens (d = 5), and define the true
centroids as µ⋆0 = (0, 0, 0, 0, 1) and µ⋆1 = (−1, 0, 0, 0, 0). We recall that the metric used to quantify
the distance to the centroids (up to a sign) is defined in (11).

Experimental details of Section A. Regarding the experiment on the manifold, i.e., Figure 5a,
we perform 104 (PSGD) iterations without regularization (ρ = 0) with a learning rate of γ = 0.01,
λ = 0.6, batch size M = 256. The experiment is repeated across 10 independent runs, each
initialized randomly on the manifold M̃.

For the rest of the experiments of this section, we adopt the same setup as before, with the exception
that each run is randomly initialized on the unit sphere. In Figure 5b, we perform 104 iterations to
observe that without adding a regularization term, we only get partial alignment of the Transformer
parameters towards the true centroids.

Then, in Figure 6a we perform 5× 103 iterations of (PSGD) to minimize the regularized risk Rρ for
15 values of the regularization strength ρ, linearly spaced in [0, 0.3]. Finally, in Figure 6b we choose
ρ = 0.1 and perform 104 (PSGD) iterations.

Experimental details of Section 3. Regarding the experiment on the manifold, i.e., Figure 1, we
run the algorithm for 104 iterations without regularization (ρ = 0), with a learning rate of γ = 0.01,
batch size M = 256, and choosing λ = 0.6 for σ = 0.3, and λ = 0.2 for σ = 1. The experiment is
repeated across 10 independent runs, each initialized randomly on the manifold M.

For the rest of the experiments of this section, we adopt the same setup as before, with the exception
that each run is randomly initialized on the unit sphere. In Figure 2a we perform 5× 103 iterations of
(PSGD) to minimize the regularized risk Rρ for 30 values of the regularization strength ρ, linearly
spaced in [0, 3]. Finally, in Figure 2b we choose ρ = 0.2 and perform 104 (PSGD) iterations.

Remark F.2. All experiments in Section A and 3 can be run on a standard laptop. Most complete
within a few minutes, with the exception of those in Figures 6a and 2a, which require approximately
20 minutes and up to an hour, respectively, due to repeated problem-solving across a grid of
regularization strengths.

G Additional numerical experiments

In what follows, we first present numerical experiments in dimension 100. We then vary the
dimension from 4 to 200. Results are shown only for the linear approach, as the softmax variant
exhibits numerical instability in higher dimensions.

G.1 Influence of the dimension

Experiments in R100. We use input sequences of length L = 30 in R100, where we define two
centroids: µ⋆0 = (0, . . . , 0︸ ︷︷ ︸

99 times

, 1) and µ⋆1 = (−1, 0, . . . , 0︸ ︷︷ ︸
99 times

). The model is trained using (PSGD) with an

online batch sampling strategy, with a batch size of 256, and a learning rate of 0.01. Due to the big
dimensionality of the problem, we modify the concept introduced as distance to the centroid up to
a sign by the concept of minimal root mean squared error, which is nothing but the distance to the
centroid (up to a sign) divided by the square root of the dimension, i.e.,

Minimal RMSE =
1√
d
min
π∈S2

min
s∈{−1,1}2

√√√√ 1∑
i=0

∥µ̂π(i) − siµ⋆i ∥2,
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Figure 7: Minimal RMSE vs Iterations, Initialization on the manifold in dimension 100.
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Figure 8: Minimal RMSE vs Iterations in dimension 100, Regularization ρ = 0.1 for σ = 0, ρ = 0.2
for σ > 0, Initialization on the unit sphere.

where S2 is the symmetric group of order 2, µ⋆0, µ
⋆
1 are the true centroids, and µ̂0, µ̂1 are the returned

parameters from (PSGD). In Figures 7, 8 we can observe the behavior of the RMSE over the
iterations for different levels of noise σ. We remark that in Figure 7 we initialize on the manifold
M, and there is no regularization term (i.e. ρ = 0), in Figure 8 we initialize randomly over the unit
sphere and we set ρ = 0.2. In both experiments we set λ = 0.6 for the case σ = 0 and σ = 0.3, and
λ = 0.2 for the case σ = 1.

In each experiment, the RMSE is of the order 10−2, which can be interpreted as, on average per
coordinate, the estimators µ̂0, µ̂1 are missing the true parameters µ⋆0, µ

⋆
1 by 10−2, suggesting a high

level of accuracy in the estimation procedure.

Making d vary. We repeat the same experiment as before, just varying the dimension of the problem,
the two centroids in Rd are defined by µ⋆0 = (0, . . . , 0︸ ︷︷ ︸

d-1 times

, 1) and µ⋆1 = (−1, 0, . . . , 0︸ ︷︷ ︸
d-1 times

). For d ranging

between 4 and 200, we show in Figures 9 and 10, on the x-axis the dimension of the problem and on
the y-axis the minimal RMSE after 5000 iterations. We remark that in Figures 9b and 9c, the y-axis
displays only a single line due to the logarithmic scale; this may appear misleading, but it simply
indicates that the next power of 10 is much larger and is not captured on the plot.

Regardless of the initialization regime, in the noiseless case (σ = 0) the minimal RMSE decreases as
the problem dimension d grows. By contrast, for any strictly positive noise level, the minimal RMSE
increases slowly with d— for σ = 0.3 it remains of order 10−3, and for σ = 1 of order 10−2. This
reflects the growing difficulty of the problem as both dimensionality and noise increase. We recall
that the minimal RMSE can be interpreted as the average discrepancy per coordinate between the
estimated parameters and the true centroids, suggesting a high level of accuracy in each experiment.
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Figure 9: Minimal RMSE vs Dimensionality, Initialization on the manifold M.
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Figure 10: Minimal RMSE vs Dimensionality, Regularization ρ = 0.1 for σ = 0, ρ = 0.2 for σ > 0,
Initialization on the unit sphere.
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Figure 11: Minimal RMSE vs Iterations in dimension 50, Random initialization on the unit sphere of
the centroids and of initial guesses, Regularization ρ = 0.2, 10 runs, 95% percentile intervals are
plotted.

Regarding running times, the experiments run in Figures 7 and 8 take approximately two hours on a
standard laptop, while that of Figures 9 and 10 may require up to 12 hours, to cover the dimension
grid.

G.2 Relaxing the orthogonality assumption

We replicate the experiments and parameter-selection procedure from Section G.1, but this time
initializing the centroids and the initial points uniformly at random on the sphere Sd−1 in each run.
Figure 11 illustrates the algorithm’s convergence behavior over 10000 iterations in the case d = 50.
In contrast, Figure 12 shows the minimal RMSE of (PSGD) after 5000 iterations for dimensions d
ranging from 4 to 100.

We observed the expected behavior: as the dimension increases, randomly initializing centroids on the
sphere makes them more likely to be orthogonal, and thus training via the regularized theoretical risk
yields better results at higher dimensions. This effect is stronger at lower noise levels and becomes
noticeably clearer beyond 40 dimensions.

Regarding running times, the experiments run in Figure 11 take approximately one hour on a standard
laptop, while those of Figure 12 may require up to 7 hours, to cover the dimension grid.
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Figure 12: Minimal RMSE vs Dimensionality, Random initialization on the unit sphere of the
centroids and of initial guesses, Regularization ρ = 0.2, 10 runs, 95% percentile intervals are plotted.
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G.3 Euclidean Projected SGD

Based on Section F.1 and the algorithm (PSGD) presented there, we define the projected Euclidean
SGD as the following update rule, with initialization (µ0

0, µ
0
1) ∈ (Sd−1)2, and stepsize γ:

gk0 =
1

M

M∑
i=1

∇µ0h(µ
k
0 , µ

k
1 , ξ

k
i ),

gk1 =
1

M

M∑
i=1

∇µ1h(µ
k
0 , µ

k
1 , ξ

k
i ),

µk+1
0 =

µk0 − γgk0
∥µk0 − γgk0∥2

,

µk+1
1 =

µk1 − γgk1
∥µk1 − γgk1∥2

,

(PSGD− Euclidean)

where h is defined in (28).

Our empirical analysis reveals that it is a viable and simpler alternative to the theoretically grounded
Riemannian gradient. This section provides the numerical evidence supporting this choice. To
compare the performance of Euclidean SGD against the Riemannian SGD (both projected on the unit
sphere), we repeated the experiments outlined in Section 3. The results are presented in Figure 13.
This empirical equivalence confirms that the simple projection of the Euclidean gradient serves as an
effective and computationally simpler proxy for the true Riemannian gradient.
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(a) Distance to centroids vs Projected SGD iterations
for the minimization of R, initialization on the mani-
fold.
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(b) Distance to centroids vs Projected SGD iterations
for the minimization of Rρ, initialization on the unit
sphere, with regularization ρ = 0.2.

Figure 13: Performance of Projected SGD. 10 runs, 95% percentile intervals are plotted.

G.4 Extension to Gaussian mixture model with 3 components

We propose an extension of our work to the case of three orthonormal centroids. We believe that
the approach described below would further generalize to the case of K orthonormal centroids with
K < d. Specifically, we assume that the tokens are i.i.d. drawn from the mixture model

Xℓ ∼
1

3
N (µ⋆0, σ

2Id) +
1

3
N (µ⋆1, σ

2Id) +
1

3
N (µ⋆2, σ

2Id), (Pσ)

where µ⋆0, µ
⋆
1, µ

⋆
2 are orthonormal vectors. It is natural to consider an attention-based predictor

composed of three attention heads, parameterized by µ0, µ1, µ2 ∈ Rd,

T lin,µ0,µ1,µ2(X) = H lin,µ0(X) +H lin,µ1(X) +H lin,µ2(X). (29)

The associated risk is R(µ0, µ1, µ2) = E[∥X1 − T lin,µ0,µ1,µ2(X)1∥22]. There are two natural gener-
alizations of the regularization term to this case:

r(1)(µ0, µ1, µ2) =
∑

0≤i<j≤2

⟨µi, X1⟩2⟨µj , X1⟩2,
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(a) With regularization r(1).
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(b) With regularization r(2).

Figure 14: Distance to centroids vs number of iterations, with regularization strength ρ = 0.2,
initialization on the unit sphere. 10 runs, 95% percentile intervals are plotted.

r(2)(µ0, µ1, µ2) =

2∏
i=0

⟨µi, X1⟩2.

The first one promotes pairwise orthogonality while the second one promotes mutual orthogonality.

We use input sequences of length L = 30 in R6, where we define the three centroids µ⋆0 =
(1, 0, 0, 0, 0, 0), µ⋆1 = (0, 0, 0, 1, 0, 0), µ⋆2 = (0, 0, 0, 0, 0, 1). The model is trained with an online
batch sampling strategy (similar to PSGD, changing the data distribution and the regularization term),
with a batch size of 256, and a learning rate of 0.01. We take λ = 0.6 for σ = 0.3, and λ = 0.2
for σ = 1. Since any parameter could learn any centroid up to a sign, we introduce the following
distance to the centroid (up to a sign):

min
π∈S3

min
s∈{−1,1}3

√√√√ 2∑
i=0

∥µ̂π(i) − siµ⋆i ∥2,

where S3 is the symmetric group of order 3 and µ̂0, µ̂1, µ̂2 are the parameters returned by the
algorithm. We present the results in Figure 14. We observe that the regularization r(1) outperforms
r(2), since it explicitly includes all pairwise terms to enforce orthogonality. However, we note that
the number of regularization terms grows quadratically with the number of centroids.

Regarding running times, the experiments run in Figure 14 take approximately 15 minutes on a
standard laptop.

H Softmax attention layers and clustering

In this section, we assess the abilities of attention-based predictors involving a softmax activation in a
clustering context.

H.1 Problem setting

An attention-based learner with softmax activation. We recall that an attention head made of a
self-attention layer can be written as follows:

Hsoftλ(X) = softmaxλ
(
XQK⊤X⊤)XV

where the softmax of temperature λ > 0 is applied row-wise, and the matrices K,Q, V ∈ Rd×p
are usually referred to as keys, queries and values. As in Section 2, we assume that the values are
taken as identity, meaning that the attention head simply outputs combinations of the initial tokens
weighted by attention scores. Furthermore, we assume that the key and query matrices are equal to
the same row matrix µ⊤ ∈ R1×d, we obtain

Hsoftλ,µ(X) = softmaxλ
(
Xµµ⊤X⊤)X. (30)
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With such an architecture, the ℓ-th output vector is therefore given by

Hsoftλ,µ(X)ℓ =
L∑
k=1

softmaxλ
(
X⊤
ℓ µµ

⊤X⊤)
k
Xk, (31)

which corresponds to aggregating the Xk’s when Xk and Xℓ are simultaneously aligned with µ. This
head should be a good candidate to estimate a centroid of a mixture model. In the case where the
mixture involves two components, one could train two attention heads:

(µ̂0, µ̂1) ∈ argminµ0,µ1∈Sd−1Rsoft(µ0, µ1), (32)

where

Rsoft(µ0, µ1) =
1

L
E
[∥∥X− (Hsoftλ,µ0 +Hsoftλ,µ1)(X)

∥∥2
F

]
=

1

L
E

[
L∑
ℓ=1

∥∥Xℓ − (Hsoftλ,µ0 +Hsoftλ,µ1)(X)ℓ
∥∥2
2

]
.

(33)

Remark H.1 (The attention heads are biased). As the tokens (Xℓ)ℓ are independent, we have that

Rsoft(µ0, µ1) = E[∥X1 − (Hsoftλ,µ0 +Hsoftλ,µ1)(X)1∥22].

We note that Hsoft,µ(X)1 = softmaxλ(⟨X1, µ⟩v)X, where the vector v is L-dimensional with
components vℓ = ⟨Xℓ, µ⟩. In the idealized case where σ2 = 0, then each token Xℓ is sampled
according to a mixture of Dirac masses given by 1

2δµ⋆
0
+ 1

2δµ⋆
1
. Therefore, if we evaluateHsoftλ,µ(X)1

on µ = µ⋆0, we observe the following:

• Conditionally to X1 = µ⋆1, then

Hsoftλ,µ
⋆
0 (X)1 =

(
1

L
, . . . ,

1

L

)
X.

This implies that even in a completely misaligned set-up (i.e., µ = µ⋆0, X1 = µ⋆1), the
proposed attention head will return, as the transformation of the first tokenX1, the empirical
mean of the sequence tokens. This highlight the bias introduced by such an attention head,
which should be handled through the use of centering techniques.

• Conditionally to X1 = µ⋆0, then

Hsoftλ,µ
⋆
0 (X)1 = softmaxλ(v)X ≈ exp(λ)µ⋆0 + µ⋆1

exp(λ) + 1
.

This suggests that in the perfectly aligned case (i.e., µ = µ⋆0, X1 = µ⋆0), selecting a
sufficiently large softmax temperature λ will cause the model to assign negligible weight to
the misaligned components –a desirable property.

Debiasing and disentangling heads. To handle the bias introduced by the attention heads, discussed
in Remark H.1, we propose to consider centered heads instead, leading to the following modified
version of the risk

Rsoft(µ0, µ1, λ, ψ) =
1

L
E

 L∑
ℓ=1

∥∥∥∥∥Xℓ − (Hsoftλ,µ0 +Hsoftλ,µ1)(X)ℓ +
ψ

L

L∑
k=1

Xk

∥∥∥∥∥
2

2

 . (34)

Considering such a risk is equivalent to using heads where a term proportional to 1
L

∑L
k=1Xk is

substracted. This type of head is known as shaped attention (Noci et al., 2023; He and Hofmann, 2024).
For instance, initializing ψ = 2 debiases both attention heads independently, without considering
their interaction. Using heads with oracle parameters, one would expect that a single head provides
all the necessary information, making it sufficient to debias only that head (i.e. ψ = 1). In that case,
one should obtain:

Rsoft(µ⋆0, µ
⋆
1, λ

⋆, 1) ≈ minRsoft. (35)
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However, when using non-oracle parameters µ0 and µ1 within the debiased heads, the risk function
may admit global minima where the heads align with zero, one, or both centroids, which is undesirable
for the clustering purpose. Therefore, we must enforce a constraint ensuring that each head aligns
with exactly one centroid. To achieve this, we introduce the regularization term:

r0(µ0, µ1)
def
= E[(⟨µ0, X1⟩ − 1)2(⟨µ1, X1⟩ − 1)2] + ⟨µ0, µ1⟩,

leading to the following regularized optimization problem

min
µ0,µ1∈Sd−1

Rsoft,ρ0(µ0, µ1, λ, ψ)
def
= Rsoft(µ0, µ1, λ, ψ) + ρ0r0(µ0, µ1), (Pρ0 )

where ρ0 > 0.

H.2 Numerical experiments

We run Projected Stochastic Gradient Descent (see Appendix F.1) to learn the centroids µ⋆0 and µ⋆1 as
well as the weights ψ and λ.

In this experiment, we use input sequences of length L = 30 of 5-dimensional tokens (d = 5), drawn
from a 2-component Gaussian mixture of centroids µ⋆0 = (0, 0, 0, 0, 1) and µ⋆1 = (−1, 0, 0, 0, 0). The
variance of each component is either set to σ = 0.3 (low interference) or to σ = 1 (high interference).

The model based on two softmax attention heads parameterized by µ0 and µ1 is trained using
(PSGDsoft) with an online batch sampling strategy, with a batch size of 256, a learning rate of
γ = 0.01, and running for a total of 3000 iterations. Additionally, we initialize with λ set to 3 and a
centering value ψ of 2. Here we use the metric distance to the centroids, given by√

min {dist1,dist2}, (36)

where
dist1 = ∥µ̂0 − µ⋆0∥2 + ∥µ̂1 − µ⋆1∥2,
dist2 = ∥µ̂0 − µ⋆1∥2 + ∥µ̂1 − µ⋆0∥2,

and µ⋆0, µ
⋆
1 denote the true centroids, respectively, while µ̂0, µ̂1 are the parameters returned by

(PSGDsoft). We remark that this distance is finer than the one defined in 11, as it does not disregard
sign flips. The results are visualized in Figure 15a, we observe that a regularization term substantially
improves the accuracy of the recovered solutions. However, as the strength of the regularization in-
creases, it gradually overrides the original objective and impairs the alignment of the head parameters
with the true centroids —an effect that becomes more pronounced at higher noise level, an effect also
noticed in Section 3.
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(a) Distance to the centroids after 5000 PSGD itera-
tions vs regularization strength ρ for the minimization
of Rsoft,ρ0 , with an initialization on the unit sphere,
with data drawn from the non-degenerate case (Pσ).
10 runs, 95% percentile intervals are plotted
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(b) Distance to centroids vs PSGD iterations for the
minimization of Rsoft,ρ0 , with an initialization on the
unit sphere and regularization ρ0 = 0.5, with data
drawn from the non-degenerate case (Pσ). 10 runs,
95% percentile intervals are plotted.

Figure 15: Performance of (PSGDsoft), with data drawn from the the non-degenerate case (Pσ). 10
runs, 95% percentile intervals are plotted.

In Figure 15b, we set the regularization parameter ρ0 to 0.5, and run PSGDsoft for 104 iterations.
We observe that the model yields accurate solutions under low interference (σ = 0.3); however,
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as the interference increases (σ = 1), the ability of the softmax attention heads to align with the
underlying centroids is progressively impaired. A similar loss in alignment accuracy is observed as
the dimensionality increases.

The experiments in Figure 15b run in a few minutes on a standard laptop, whereas those in Figure
15a may take up to two hours to cover the grid in the regularization hyperparameter.

I Proofs of Section 5

Proof of Proposition 5.1. For c ∈ {0, 1}, one has

E

[
2λ

L

L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∣∣∣∣∣µ⋆1, µ⋆0, Z1 = c

]

=
2λ

L
E[∥X1∥2X1 | µ⋆1, µ⋆0, Z1 = c] +

2λ(L− 1)

L
E[⟨X1, X2⟩X2 | µ⋆1, µ⋆0, Z1 = c]

=
2λ

L

(
E[∥X1∥2X1 | µ⋆1, µ⋆0, Z1 = c]︸ ︷︷ ︸

(1+(d+2)σ2)µ⋆
c

+(L− 1)E[⟨X1, X2⟩X2 | µ⋆1, µ⋆0, Z1 = c]︸ ︷︷ ︸
( 1
2+σ

2)µ⋆
c

)

=
2λ

L

[
(1 + (d+ 2)σ2) + (L− 1)

(
1

2
+ σ2

)]
µ⋆c .

Where we have computed the conditional expectations by expanding each term using Xi = µ⋆Zi
+ εi

with independent Gaussian errors εi, discarding odd-moment terms, and applying Isserlis’ theorem
(Isserlis, 1918).

We remark that choosing λ = L
2

1

1+(d+2)σ2+(L−1)( 1
2+σ

2)
we get that the encoding is unbiased.

And∥∥∥∥∥E
[
2λ

L

L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∣∣∣∣∣µ⋆1, µ⋆0, Z1 = c

]∥∥∥∥∥
2

=
4λ2

L2

[
1 + (d+ 2)σ2 + (L− 1)

(
1

2
+ σ2

)]2
.

Besides,

E

[
2λ

L

L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∣∣∣∣∣µ⋆1, µ⋆0
]
=
λ

L

[
1 + (d+ 2)σ2 + (L− 1)

(
1

2
+ σ2

)]
(µ⋆0 + µ⋆1)

Also, ∥∥∥∥∥E
[
2λ

L

L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∣∣∣∣∣µ⋆1, µ⋆0
]∥∥∥∥∥

2

=
2λ2

L2

[
1 + (d+ 2)σ2 + (L− 1)

(
1

2
+ σ2

)]2
On the other hand,

E

∥∥∥∥∥2λL
L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∥∥∥∥∥
2∣∣∣∣∣µ⋆1, µ⋆0, Z1 = c

 =
4λ2

L2
E[∥X1∥6|µ⋆1, µ⋆0, Z1 = c]

+
12λ2

L2
(L− 1)E[∥⟨X1, X2⟩X2∥2|µ⋆1, µ⋆0, Z1 = c]

+
8λ2

L2

(L− 1)(L− 2)

2
E[⟨X1, X2⟩⟨X1, X3⟩⟨X2, X3⟩|µ⋆1, µ⋆0, Z1 = c].

Recalling the expressions stated at the beginning of the proof of Proposition 5.2 for moments of
Gaussian r.v. , we conclude that

E

∥∥∥∥∥2λL
L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∥∥∥∥∥
2∣∣∣∣∣µ⋆1, µ⋆0, Z1 = c


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=
4λ2

L2
(1 + 3(d+ 4)σ2 + 3(d+ 2)(d+ 4)σ4 + d(d+ 2)(d+ 4)σ6)

+
12λ2

L2
(L− 1)

(
1

2
+

(d+ 8)

2
σ2 + 3(d+ 2)σ4 + d(d+ 2)σ6

)
+

8λ2

L2

(L− 1)(L− 2)

2

(
2

(
σ2 +

1

2

)3

+ (d− 2)σ6

)
.

And

Var

[
2λ

L

L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∣∣∣∣∣µ⋆1, µ⋆0, Z1 = c

]

= E

∥∥∥∥∥2λL
L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∥∥∥∥∥
2∣∣∣∣∣µ⋆1, µ⋆0, Z1 = c

−

∥∥∥∥∥E
[
2λ

L

L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∣∣∣∣∣µ⋆1, µ⋆0, Z1 = c

]∥∥∥∥∥
2

=
4λ2

L2
(1 + 3(d+ 4)σ2 + 3(d+ 2)(d+ 4)σ4 + d(d+ 2)(d+ 4)σ6)

+
12λ2

L2
(L− 1)

(
1

2
+

(d+ 8)

2
σ2 + 3(d+ 2)σ4 + d(d+ 2)σ6

)
+

8λ2

L2

(L− 1)(L− 2)

2

(
2

(
σ2 +

1

2

)3

+ (d− 2)σ6

)

− 4λ2

L2

[
1 + (d+ 2)σ2 + (L− 1)

(
1

2
+ σ2

)]2
.

When L→ ∞,

Var

[
2λ

L

L∑
ℓ=2

⟨X1, Xℓ⟩Xℓ

∣∣∣∣∣µ⋆1, µ⋆0, Z1 = c

]

∼ 4λ2

(
2

(
σ2 +

1

2

)3

+ (d− 2)σ6

)
− 4λ2

(
σ2 +

1

2

)2

= 2λ2σ2(1 + 4σ2 + 2dσ4).

Choosing the λ = 1
1+2σ2 , we have an unbiased encoding with variance

2σ2 1 + 4σ2 + 2dσ4

(1 + 2σ2)2

Proof of Proposition 5.2. We have

E

[∥∥∥X1 −
2λ

L

L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∥∥∥2∣∣∣∣∣µ⋆1, µ⋆0
]

= E
[
∥X1∥2

∣∣µ⋆1, µ⋆0]− 4λ

L
E[∥X1∥4|µ⋆1, µ⋆0]−

4λ

L

L∑
ℓ=2

E
[
⟨X1, Xℓ⟩2|µ⋆1, µ⋆0

]
+

4λ2

L2
E[∥X1∥6|µ⋆1, µ⋆0] +

4λ2

L2

L∑
ℓ=2

E[∥⟨X1, Xℓ⟩Xℓ∥2|µ⋆1, µ⋆0]

+
8λ2

L2

L∑
ℓ=2

E[∥X1⟨X1, Xℓ⟩∥2||µ⋆1, µ⋆0] +
8λ2

L2

∑
2≤ℓ<k≤L

E[⟨X1, Xℓ⟩⟨X1, Xk⟩⟨Xℓ, Xk⟩|µ⋆1, µ⋆0].
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Furthermore we have the following,

E[∥X1∥2|µ⋆1, µ⋆0] = 1 + σ2d,

E
[
⟨X1, X2⟩2|µ⋆1, µ⋆0

]
=

1

2
+ 2σ2 + dσ4,

E[∥⟨X1, X2⟩X2∥2|µ⋆1, µ⋆0] =
1

2
+
d+ 8

2
σ2 + 3(d+ 2)σ4 + d(d+ 2)σ6,

E[∥X1∥4|µ⋆1, µ⋆0] = 1 + 2(d+ 2)σ2 + d(d+ 2)σ4,

E[∥X1∥6|µ⋆1, µ⋆0] = 1 + 3(d+ 4)σ2 + 3(d+ 2)(d+ 4)σ4 + d(d+ 2)(d+ 4)σ6,

E[⟨X1, X2⟩⟨X1, X3⟩⟨X2, X3⟩|µ⋆1, µ⋆0] = 2

(
σ2 +

1

2

)3

+ (d− 2)σ6.

These identities follow by writing

Xi|µ⋆i = µ⋆i + εi, εi ∼ N (0, σ2Id) i.i.d.,

and expanding the expressions in terms of µ⋆i and εi. The expectations then reduce to Gaussian
moments, which can be evaluated systematically using Isserlis’ theorem (Isserlis, 1918). Since this
involves only straightforward but lengthy computations, we omit the details here.

Since no expression depends on µ⋆1, µ
⋆
0, we have

E

[∥∥∥X1 −
2λ

L

L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∥∥∥2] = E

[∥∥∥X1 −
2λ

L

L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∥∥∥2∣∣∣∣∣µ⋆1, µ⋆0
]
.

And

E

[∥∥∥X1 −
2λ

L

L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∥∥∥2]

= 1 + σ2d− 4λ

L
(1 + 2(d+ 2)σ2 + d(d+ 2)σ4)− 4λ

L
(L− 1)

(
1

2
+ 2σ2 + dσ4

)
+

4λ2

L2
(1 + 3(d+ 4)σ2 + 3(d+ 2)(d+ 4)σ4 + d(d+ 2)(d+ 4)σ6)

+
12λ2

L2
(L− 1)

(
1

2
+
d+ 8

2
σ2 + (3d+ 6)σ4 + d(d+ 2)σ6

)
+

8λ2

L2

(L− 1)(L− 2)

2

(
2

(
σ2 +

1

2

)3

+ (d− 2)σ6

)
.

When L→ ∞, we obtain

E

[∥∥∥X1 −
2λ

L

L∑
ℓ=1

⟨X1, Xℓ⟩Xℓ

∥∥∥2] =(1 + σ2d)− 2λ(1 + 4σ2 + 2dσ4)

+ 4λ2
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And we can choose λ = 1+4σ2+2dσ4

4
(
2(σ2+ 1

2 )
3
+(d−2)σ6

) to get
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[∥∥∥X1 −
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= σ2(d− 2)

1 + 2σ2

1 + 6σ2 + 12σ4 + 4dσ6

≤ σ2(d− 2).
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim is stated in the abstract, and fully studied in Section 3,
particularly Theorem 3.4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The authors are transparent about the simplified nature of the architectures
and mathematical models they study, and consistently highlight these choices as part of the
scope and limitations of their work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theoretical assumptions are explicitly stated. Complete proofs are provided
in Appendix B and C, with supporting technical results in Appendix E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The main algorithm used for our numerical experiments is defined in Section
F.1. Detailed descriptions of the experimental setups are provided in Sections A.2, 3.2,
Appendix G, and H.2. This information enables others to replicate our experiments without
the need for code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our primary contribution is theoretical, focusing on the analysis of a projected
gradient descent algorithm. The experimental results serve to illustrate these theoretical
findings. The data used are synthetic mixtures of Gaussian, and the algorithm is a standard
projected gradient descent on the unit sphere, both of which are straightforward to implement.
The code can be found in the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Detailed accounts of the experimental configurations are presented in Sections
A.2, 3.2, G, and H.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: To assess the statistical significance of our experimental results, we conducted
10 independent runs for each experiment. The outcomes are visualized using Seaborn’s
lineplot function, which displays the mean performance along with error bands representing
variability across runs.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments were conducted on a standard laptop. Specific details regarding
the computational resources, such as execution times, are provided at the end of each
numerical experimental section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and understood the code of ethics; and have committed to
conform.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: This work is primarily theoretical and employs simplified, synthetic dis-
tributions. It does not have direct societal implications beyond contributing to a deeper
understanding of certain aspects of attention-based mechanisms.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper is mainly theoretical and does not involve the release of any models
or datasets that could pose a risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our code is self-contained and does not include any source code or binary files
from external libraries. Therefore, there are no concerns regarding permissions or licensing.
We did cite open-sourced libraries used in our paper, such as JAX.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce or release any new assets. The numerical
experiments conducted serve solely to support the theoretical results and are not central to
the paper’s contribution.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not employ any large language models (LLMs) during any stage of the
research process.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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