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ABSTRACT

We identify and overcome two key obstacles in extending the success of BERT-style
pre-training, or masked image modeling, to convolutional networks (convnets):
(i) convolution operation cannot handle irregular, randomly masked input images;
(ii) the single-scale nature of BERT pre-training is inconsistent with convnet’s
hierarchical structure. For (i), we treat unmasked pixels as sparse voxels of 3D
point clouds and use sparse convolution to encode. This is the first use of sparse
convolution for 2D masked modeling. For (ii), we develop a hierarchical decoder to
reconstruct images from multi-scale encoded features. Our method, called Sparse
masKed modeling (SparK), is general: it can be used directly on any convolutional
model without backbone modifications. We validate it on both classical (ResNet)
and modern (ConvNeXt) models: on three downstream tasks, it surpasses both
state-of-the-art contrastive learning and transformer-based masked modeling by
similarly large margins (around +1.0%). The improvements on object detection
and instance segmentation are more significant (up to +3.5%), validating the strong
transferability of features learned. We also find SparK’s favorable scaling behavior
by observing more gains on larger networks. All of these findings support the
promising future of generative pre-training on convnets. Both codes and pre-trained
models have been released at https://github.com/keyu-tian/SparkK.

1 INTRODUCTION

The pretrain-finetune paradigm in natural language processing (NLP), as exemplified by BERT and
GPT (Devlin et al., 2018; Clark et al., 2020; Radford et al., 2019; Brown et al., 2020), is remarkably
effective and thus long envied by our vision community. It is the emerging masked image modeling
(Bao et al., 2021; He et al., 2021; Xie et al., 2021; Chen et al., 2022) initially extends the success
of BERT from language transformers to vision transformers (ViTs). A bold move that increases the
mask ratio to a staggering level (60~75%) is largely credited with this success (He et al., 2021; Xie
etal., 2021). As a result, the field of visual self-supervised learning on ViTs (Dosovitskiy et al., 2020;
Liu et al., 2021) has now shifted from contrastive learning (Grill et al., 2020; Chen et al., 2021; Caron
et al., 2021) to BERT-style masked modeling or a fusion of the two (Zhou et al., 2021).

Despite this progress, extending the success of BERT pre-training from transformers to convolutional
networks (convnets) remains a desirable but unrealized goal. Early pioneering work (Pathak et al.,
2016) predated BERT but performed much worse than supervised pre-training. Although there have
been efforts over the past year to port BERT to convnets, they ultimately compromise by proposing a
non-convolutional model (Gao et al., 2022) or non-masked modeling (Fang et al., 2022). One might
therefore wonder: what exactly is impeding the application of BERT to convnets?

We try to conclude that in essence, the difficulty is rooted in the fundamental differences in data
processing between language and vision (Bateman, 2014; Cheng et al., 2022). While typical NLP
models like recurrent networks or transformers process text as a variable-length sequence of words
(well-defined semantic units), convnets have to recognize objects of different sizes from raw pixels
(“units” at different scales). This large disparity rises two challenges: (i) Removing the information
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Figure 1: Different masking strategies with pixel intensity histograms plotted before (in gray) and after (blue)
masking. (b) is a straightforward idea to apply masked modeling to convnets, which results in a distribution shift.
(a) illustrates MAE (He et al., 2021) that has no such side effect thanks to the transformer’s ability to process
variable-length input. We propose (c) to adapt convnets to irregular masked input without a distribution shift.

of masked “words” is difficult for convnets. In ViTs, an input image is divided into non-overlapping
patches. Simply dropping masked patches or replacing them with mask tokens can remove the
information. This ease relies on transformer being able to handle irregular (variable-length) and non-
overlapping patches, thus cannot be achieved on convnets as they not only operate on regular grids,
but also perform sliding window with overlapping. One may zero-out all masked pixels and feed this
“mosaic” into a convnet, but this would lead to a significant distribution shift (in figure 1) and other
issues (discussed further in section 3.1 and figure 3), thus cannot be an ideal solution. (ii) Single-scale
algorithms are inadequate for learning multi-scale (hierarchical) features. Multi-scale structures
have been a gold standard in computer vision, which allows visual processing systems like SIFT
descriptors (Lowe, 1999; Bay et al., 2006) and pyramid networks (He et al., 2015; Lin et al., 2017) to
handle variations in object scale. In contrast, the masked modeling approach from NLP operates in a
single-scale manner. Applying it directly on convnets will miss the advantage of model hierarchy.

In this work, we clear the hurdles above and make BERT suitable for convnet by proposing Sparse
masKed modeling with hierarchy (SparK). We first randomly mask an image in a patch-wise manner.
Observing the sparse nature of point clouds coincides with these unmasked patches, we treat them
as a flatten point cloud and use sparse convolution for encoding. This enables convnets to handle
irregular masked images. For decoding and reconstruction, the sparse features are filled with mask
embeddings and fed into a multi-scale decoder, leveraging the hierarchical structure of convnets.

SparK is a general method that does not limit the specific encoder to be pre-trained. We test it with
two representative convnet famlies: classical ResNets (He et al., 2016) and modern ConvNeXts (Liu
et al., 2022). All models benefit from SparK, with more gains on larger models that demonstrates its
favorable scaling ability. On standard downstream tasks (classification, object detection and instance
segmentation), convnet-based SparK outperforms both (i) state-of-the-art contrastive learning and (ii)
transformer-based masked modeling by similarly large margins (around +1.0%). The improvements
over COCO baselines are more significant than those on ImageNet (up to +3.5%), indicating the
representations learned by SparK are highly transferable. To summarize, SparK provides:

¢ The first pre-training method in the style of BERT that can be directly applied to any convnets
without backbone modifications, overcoming their inability to handle irregular masked inputs.

* The insights into the design of generative pre-training for convnets, e.g., the first use of sparse
convolution for masked image modeling and a hierarchical design for BERT-style pre-training.

* A leap in convnet’s performance across downstream tasks with gains of up to 3.5 points, showing
the promise of extending the success of transformer’s pretrain-finetune paradigm to convnets.

The recent surge of interest in vision transformers (Liu et al., 2021; He et al., 2021) has shifted the
focus away from convnets in the computer vision community. However, convnets embody the core
principles of many classical vision processing systems, such as scale- and translation-equivariance,
locality, weight-sharing, and hardware-friendliness (Lowe, 1999; Csurka et al., 2004). These networks
continue to be indispensable in addressing a variety of challenging and structural real-world tasks
beyond classification (Jaderberg et al., 2015; Liu et al., 2017; 2022). We hope SparK’s inspiring
performance will prompt us to revisit convnets as generic backbones for computer vision community,
and motivate more future arts in exploiting their potential through generative pre-training.
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2 RELATED WORK

2.1 HIERARCHICAL VISUAL PROCESSING SYSTEMS

Hierarchical structure is acknowledged as a gold standard for visual representation systems. Many
fundamental handcrafted feature descriptors (Lowe, 1999; Bay et al., 2006; Rublee et al., 2011) extract
multi-scale visual representations via scale-space extremum on feature pyramid (say, octave). The
crux behind this hierarchical design is to extract scale-invariant (or equivariant) features, thus, allows
the system to cope with varying object sizes (scales). Widely used in visual tasks (Felzenszwalb
et al., 2008; Yang et al., 2009), these descriptors also motivate the design principles of convolutional
networks (He et al., 2016; Tan & Le, 2019; Liu et al., 2022). Some recent arts also elaborately design
hierarchical modules that allow the information aggregation at different granularities to better tackle
detection and segmentation tasks using convnets (Long et al., 2015; Liu et al., 2016; Lin et al., 2017).

2.2 RECENT PROGRESS ON VISUAL SELF-SUPERVISED LEARNING

Recently, the contrastive learning formulates self-supervise learning as an instance classification
task (Van den Oord et al., 2018; He et al., 2020; Chen et al., 2020a). Efforts have been made (Grill
et al., 2020; Caron et al., 2020; Chen & He, 2021) to overcome the core issue of mode collapse. More
advanced methods are developed since then (Tian et al., 2020; Zbontar et al., 2021; Li et al., 2023;
Chen et al., 2021), and this line of work had dominated the area of visual unsupervised learning until
masked generative pre-training along with the vision transformer architecture came into view.

Masked image modeling, inspired by the recent success of masked language modeling in natural
language processing (NLP) (Devlin et al., 2018; Liu et al., 2019), has attracted growing interest for
visual pre-training. The pioneering work (Bao et al., 2021) pre-trains vision transformers by learning
to predict token indices of masked patches. He et al. (2021) takes advantage of transformer’s ability
to handle variable-length inputs and implements an efficient and scalable method. Both He et al.
(2021) and Xie et al. (2021) regress raw RGBs to simplify the pre-training, while Wei et al. (2022)
and Li et al. (2022) selects HOG (Dalal & Triggs, 2005) or frequencies as targets due to their rich
semantics or structures. Gao et al. (2022) designs a transformer with a heavier patchifier to perform
masked modeling. Zhang et al. (2022) have verified this idea in 3D computer vision. So far, enormous
studies have successfully verified the efficacy of these algorithms on vision transformers (Zhou et al.,
2021; Chen et al., 2022). However, on the other hand, their methodology is almost the same as that
in NLP (Devlin et al., 2018; Liu et al., 2019), and is therefore difficult to be used for hierarchical
convolutional models — on convnets, contrastive learning still remains state-of-the-art.

2.3 SPARSE CONVOLUTION FOR VISUAL REPRESENTATION

Convolution is widely used in 2D computer vision (Dalal & Triggs, 2005; He et al., 2016), which
typically performs sliding window on regular grids (pixels). When facing with 3D point clouds,
this operator quickly becomes unaffordable due to the cubic increasing number of grids (voxels).
Considering point clouds are highly sparse and irregular, one can skip all empty voxels for speed.
This motivates the sparse convolution (sparseconv) (Liu et al., 2015), which is heavily used in
modern convnets for 3D visual tasks (Zhou & Tuzel, 2018; Sindagi et al., 2019). Minkowski Engine
(Choy et al., 2019) is one of the most common sparseconv frameworks. Some prior arts (Verelst &
Tuytelaars, 2020) also tried to introduce sparseconv for faster 2D visual understanding. And in this
work, we have observed the similarity between 3D point clouds and 2D masked images in BERT-style
pre-training. We thus use sparseconv, for the first time, with the purpose of “facilitating the adaptation
of convnet to BERT masked modeling”, rather than of “speeding up the computation of convolution”.

3 APPROACH

Mlustrated in figure 2, our SparK framework aims to pre-train a convolutional network encoder via
hierarchical masked image modeling — masking a portion of image and learning to recover it. We are
going to detail SparK by introducing a sparse masking strategy (section 3.1), a hierarchical encoder-
decoder architecture (section 3.2), and the optimization target of SparK pre-training (section 3.3).
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Figure 2: Sparse masked modeling with hierarchy. To adapt convolution to irregular masked input, visible
patches are gathered into a sparse image and encoded by sparse convolution. To pre-train a hierarchical encoder,
we employ a UNet-style architecture to decode multi-scale sparse feature maps, where all empty positions are
filled with mask embedding. This “densifying” is necessary to reconstruct a dense image. Only the regression
loss on masked patches will be optimized. After pre-training, only the encoder is used for downstream tasks.

3.1 SPARSELY GATHERING UNMASKED PATCHES

We start by the patch-wise masking strategy widely used in masked image modeling. An image is
divided into several non-overlapping square patches, each of which will then be masked independently
with a given probability called mask ratio. The key to a masked image modeling algorithm is how to
eliminate the pixel information from these masked patches.

Previous transformer-based masked modeling can easily eliminate the information by directly
removing masked patches or replacing them with a mask token. This ease relies on the fact that vision
transformers are born to handle irregular (variable-length) input and operate on non-overlapping
image patches. Since convnets cannot do this, new approaches have to be sought. A straightforward
idea is to set all masked pixels to zero and feed this image to a convnet. This, however, has three
evident shortcomings: (i) the computation on masked regions is redundant; (ii) it would disturb the
data distribution of pixel values, as illustrated in figure [; (iii) the patterns on mask maps will vanish
after applying several convolutions to this zero-out masked image. We examine problem (iii) in
figure 3, where we also give our solution. Note that this problem is particularly acute when using
modern deep convnets due to the large number of successive convolutional blocks.

To overcome the problems, we propose to sparsely gather all unmasked patches into a sparse
image, and then use sparse convolutions' to encode it. This strategy: (i) ensures no information is
leaked; (ii) can be applied directly to any convnet without backbone modifications; (iii) is efficient
as sparse convolution computes only at visible places; (iv) solves the aforementioned issues of “pixel
distribution shift” and “mask pattern vanishing”. As shown in figure 3, sparse convolution will skip
all masked positions on sparse feature maps, and only computes at unmasked points. This helps to
prevent the shape of the mask pattern from changing with convolution, thus ensures a consistent
masking effect and ratio throughout all convolution layers. Another fact is that when fine-tuning, all
sparse convolutional layers can be naturally reduced to ordinary dense ones. This is true because
dense images are actually the special cases of sparse images that have no “holes”.

3.2 HIERARCHICAL ENCODING AND DECODING

By “hierarchical” encoding, we mean the encoder will generate a set of feature maps with different
resolutions, namely different scales. Taking a ResNet-style model for example, it typically contains 4
stages each with a series of convolutional blocks and a downsampling module. The feature resolution

is downsampled by a factor of 2 after every stage. For an image sh%)ed as H x W, a ResNet-50
: . H., W H. . W H ,, W
produces feature maps at 4 scales with resolutions of T X T% X516 X 16 and 35 X 35 Let

S1, 52, 53, and Sy be these sparse features, respectively. They will be used to decode.

'By “sparse convolution”, we mean the submanifold sparse convolution that computes only when the kernel
center covers a non-empty element. Please refer to Graham & van der Maaten (2017) for more details.
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Figure 3: Using sparse convolution to address “mask pattern vanishing” issue. Three mask examples are
shown. As in left, when computing ordinary “dense” convolution centered at a zero (masked) position, the result
would be non-zero if the filter covers any non-zero (unmasked) points. Repeating this convolution will erode
masked regions (zero positions) and dilate the unmasked ones, leading to the vanishing problem. We use sparse
convolution to overcome this undesired property by skipping all masked positions and keeping the mask pattern.

Overall, the decoder follows the design of UNet (Ronneberger et al., 2015). We use a relatively
light decoder that contains three successive blocks {Bs, Bo, B1 } with upsampling layers. Before
reconstructing a dense image, it is necessary to fill in all the empty positions on sparse feature maps.
This is called “densifying”. Taking the smallest sparse feature .S, as example, all empty positions
(inactive sites) on Sy are filled with a mask embedding [M4] to get a dense feature Sj. A projection
layer ¢4 is applied then, in case encoder and decoder have different network widths:

Dy = ¢4(S}). (1)

So Dy is the input of decoder’s first block Bs. It has the same resolution of Sy with 3% X 3% Similarly,

we can get D3, Do, and D; (with shapes of % X %, % X %, % X %) via:
D; = Bi(Di1) + ¢i(S;)  (Vie {3,2,1}). 2

Note that four different mask embeddings [My.;] and projection layers ¢4.; are required: they
belong to different scales, and may have different network widths. The final output of decoder is D; .

3.3 OPTIMIZATION TARGET AND TRANSFERRING TO DOWNSTREAM

To reconstruct an image from D;, a head module h is needed, which should include two more
upsampling layers to reach the original resolution of input H x W. As for the reconstruction target,
we choose per-patch normalized pixels as targets with an L2-loss, and calculate errors only on masked
positions. These designs have been proven to facilitate models to learn more informative features in
He et al. (2021), and are also verified by the ablation study later in section 4.5.

After pre-training, we discard the decoder and only use the encoder for downstream tasks. When
fine-tuning, the pre-trained sparse encoder can be directly generalized to dense images without any
tuning, due to the fact that dense input is a special case of the sparse, where every position is active.

4 EMPIRICAL RESULTS

4.1 IMPLEMENTATION DETAILS

Components. SparK can use any convolutional network as the encoder, without any special design
of the backbone architecture. We implement SparK with two of the most representative convnet
families: classical ResNets (He et al., 2016) and modern ConvNeXts (Liu et al., 2022). One can easily
test SparK on other convolutional architectures as well. As for the mask embeddings [My-1], we
implement them as random-initialized learnable feature vectors. For decoding, we use a lightweight
UNet decoder. See Appendix A for its detailed structure. Positional embeddings are not used since
convnet already encodes the spatial information. We also test this in the ablation study (section 4.5).
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Simple implementation of pre-training. For simplicity the same hyperparameters are used for
all architectures (ResNets, ConvNeXts) and model sizes, even though tuning each may improve our
fine-tuning performance at face value. All models are pre-trained with 1.28 million unlabeled images
from ImageNet-1K (Deng et al., 2009) training set for 1600 epochs. Only the minimal augmentation
is required (random cropping and horizontal flipping). We use the same mask patch size (32) and
ratio (60%) as in SimMIM (Xie et al., 2021). We train with a LAMB optimizer (You et al., 2019), a
batch size of 4096, and a cosine-annealing learning rate with peak value = 0.0002 x batchsize/256.

Fine-tuning. We use the official implementations of ResNet (Wightman et al., 2021), MoCoV2
(Chen et al., 2020b), and ConvNeXt (Liu et al., 2022) to fine-tune. See Appendix C and D for recipes.

4.2 IMAGENET EVALUATION

Performance comparison with self-supervised transformers. We first validate SparK on ImageNet
with the pure convolutional model ConvNeXt (Liu et al., 2022). Smaller models {ViT, Swin,
ConvNeXt}-S and the bigger ones { ViT, Swin, ConvNeXt}-B are compared separately. By comparing
the results vertically in table 1, one can find the convolutional models, with SparK pre-training,
overwhelmingly outperform transformer-based pre-training methods by large margins (40.7~2.7),
though SparK neither employs external models (DALL-E dVAE (Ramesh et al., 2021)), nor profits
from advanced (MIM+CL) pre-training. This is somewhat surprising since transformers are well-
known data-hungry models with much less inductive bias than convnets, and therefore are considered
to benefit more from large-scale self-supervised training. The result here conveys a new message:
convnets may have much more potential than expected, and their capability in visual representation
may not be inferior to that of transformers. The key may depend on how to use powerful pre-training
algorithms (e.g., SparK or masked modeling) to turn this potential into capability.

Efficiency. Similar to MAE (He et al., 2021), SparK has the advantage of encoding efficiency,
especially compared to contrastive learning that encodes two or more images in a forward pass. For
instance, DINO and iBOT by default (Caron et al., 2021; Zhou et al., 2021) use multi-crop with 2
global crops of 224 x 224 and 10 locals of 96 x 96, leading to 2 + 10 (96/224)? ~ 3.8 times the cost
of single image encoding. In contrast, SparK requires only 40% of the theoretical overhead thanks to
the sparsity of masked input: 60% of patches are masked, and sparse convolution only processes the
rest. In practice, we found a sparse ResNet-50 can save ~23% memory footprint (26.4 GB vs. 34.5
GB for single batch size of 128). This allows us to train it on a 32GB Tesla V100, which otherwise is
impossible for non-sparse pre-training. The efficiency also helps SparK scale up more easily.

Table 1: Comparing SparK and self-supervised transformers on ImageNet. All methods pre-train on
ImageNet-1K an fine-tune with the resolution of 224. Top-1 validation accuracy is reported, the best results
are in bold. “Extra model” indicates whether DALL-E’s dVAE (trained on 250 million extra data) is used in
pre-training. Entries with } are quoted from Zhou et al. (2021).  is our reproduction using the official codes.

Pre-training method PT Enc. Extra Small backbone Base backbone
task cost  model Arch. Acc. Arch. Acc.
Vision Transformer Backbone
MoCov3 (Chen et al., 2021) CL 5.0x ViT-S 81.4 ViT-B 83.2
DINO (Caron et al., 2021) CL 9.5x% ViT-S 82.0 ViT-B 82.8
BEiT (Bao et al., 2021) MIM 2.5x v ViT-S 81.4f ViT-B 83.2
CIM (Fang et al., 2022) MIM 2.5x v ViT-S 81.6 ViT-B 83.3
CAE (Chen et al., 2022) MIM 2.5% v ViT-S 81.8 ViT-B 83.6
MAE (He et al., 2021) MIM 0.6x ViT-S 81.5% ViT-B 83.6
SimMIM (Xie et al., 2021) MIM 2.5x ViT-S 81.7 ViT-B 83.8
iBOT (Zhou et al., 2021) MIM+CL  9.5x ViT-S 82.3 ViT-B 84.0
SimMIM (Xie et al., 2021) MIM  2.5x Swin-S  83.4% | Swin-B  84.0

Convolutional Backbone

SparK (ours) ‘ MIM 1x ConvX-S 84.1 | ConvX-B 84.8

*Effective epoch” takes into account the total amount of images processed in pre-training. For instance, a
typical contrastive learning encodes two images per forward pass, so the effective epoch is twice the literal value.
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Table 2: Comparing convnet-based SparK with transformer-based self-supervised learning on down-
stream tasks. On ImageNet, the same fine-tuning resolution of 224 is used. On COCO, Mask R-CNN with FPN
is equally applied. All methods follow a 3x COCO schedule (36 epochs), while MAE fine-tunes longer (50
epochs). Average precisions of detection box (AP™) and segmentation mask (AP™) on va12017 are reported.
1 is reproduced using the official codes, since Liu et al. (2022) only runs models with Cascade Mask R-CNN.

. Eff> | Cls. Det. Seg.
Pre-training method Arch. epoch | Acc. AP® AP ApTK  Apmk
MoCov3 (Chen et al., 2021) ViT-B 1600 | 83.2 479 - 42.7 —
BEIT (Bao et al., 2021) ViT-B 800 832 49.8 - 44 .4 —
Supervised (He et al., 2021) ViT-B 300 823 479 — 429 —
MAE (He et al., 2021) ViT-B 1600 | 83.6 503 — 449 —
improvements over baseline +1.3 +24 - +2.0 —
Supervised (Liu et al., 2021) Swin-B 300 83.5 48.5 53.2 43.2 46.7
SimMIM (Xie et al., 2021) Swin-B 800 84.0 504 555 44.4 479
improvements over baseline +0.5 +19 +23 +1.2 +1.2
Supervisedi (Liuetal., 2022) ConvX-B 300 83.8 47.7 52.6 43.2 46.6
Spark (ours) ConvX-B 1600 | 84.8 51.2 56.1 45.1 48.9
improvements over baseline +1.0 435 +35 +19 +2.3

4.3 TRANSFERRING TO DOWNSTREAM TASKS

Previous results on ImageNet classification have exposed the potential of SparK pre-training. In this
part we further evaluate the representation quality on fundamental downstream tasks, including object
detection and instance segmentation on COCO (Lin et al., 2014). These tasks are challenging, serving
as professional feature evaluators because they place higher demands than classification: models need
to predict not only what, but also where the objects (instances) are. Here, we consider two different
settings: comparison with self-supervised vision transformers, and then with convolutional networks.
In all COCO experiments, we do not use advanced techniques such as multi-scale testing, large-scale
jittering augmentation and soft-NMS. For more details on fine-tuning, see Appendix C and D.

Performance vs. self-supervised transformers. Table 2 compares the fine-tuning results on three
downstream tasks: classification (Cls.), object detection (Det.), and instance segmentation (Seg.).
Among all self-supervised methods, SparK is the best performer and the only one that pre-trains a
convnet. Even when compared to the strongest SImMIM (Xie et al., 2021) with swin-transformer,
SparK still yields superior results by +0.8, +0.8, +0.7 on three tasks respectively. It is particularly
worth noting that without pre-training, ConvNeXt-B and Swin-B perform similarly. This indicates
that the gains are indeed due to our SparK pre-training rather than the backbone difference.

Overall, it can also be seen that our approach exhibits the highest improvements over supervised
baselines in table 2 (up to +3.5%). All these observations are consistent with those in section 4.2 and
once again validate that the BERT-style pre-training on convolutional networks is promising.

Table 3: ResNet-50 results on downstream tasks. SparK is compared to state-of-the-art contrastive learning
algorithms. For ImageNet, the same training recipe from Wightman et al. (2021) (300-epoch fine-tuning with
224 resolution) is used. For COCO, Mask R-CNN ResNet50-FPN is equally fine-tuned for 12 or 24 epochs (1 x
or 2x), with average precision on val2017 reported. SparK is highlighted as the only generative method.

Pre-training (on ResNet-50) Pre-train Eff. Cls. 1x Schedule 2x Schedule

task epoch | (Acc) AP™ APmk  Apbb  Apmk
Supervised - — 79.8 389 354 413 373
SimSiam (Chen & He, 2021) Contrastive 800 79.1 — — — —
MoCo (He et al., 2020) Contrastive 800 - 385 351 40.8 369

MoCov2 (Chen et al., 2020b) | Contrastive 1600 79.8 404 364 417 37.6
SimCLR (Chen et al., 2020a) | Contrastive 4000 80.0 - — — —
InfoMin (Tian et al., 2020) Contrastive 800 — 40.6 367 425 384
BYOL (Grill et al., 2020) Contrastive 1600 80.0 404 372 423 383

SwAV (Caron et al., 2020) Contrastive 1200 80.1 — — 42.3 38.2
SparK (ours) Generative 1600 80.6 41.6 377 434 394
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Performance vs. self-supervised convnets. We then compare SparK to state-of-the-art convolutional
contrastive learning methods. In table 3, all contrastive methods are basically on par with supervised
pre-training. While SparK, the first generative pre-training method for hierarchical convnets, performs
significantly better than them across all downstream tasks by +0.5~1.2 points. In particular, SparK
does not rely on sophisticated augmentations which have proven to be essential for contrastive
learning (Chen et al., 2020a; Tian et al., 2020). We attribute these superior results to the fact that
generative pre-training (SparK) can inherently provide more supervisory signals than discriminative
methods: it optimizes a reconstruction loss, a form of regression loss, which is considered to be more
dense and localized than contrastive learning’s instance classification loss.

Feature transferability. An intriguing phenomenon in table 2 and 3 is that the improvements over
supervised baselines are more significant on COCO tasks than on ImageNet (43.5 for ConvNet
and +2.7 for ResNet). Notice there are several key differences between these two datasets: (i) the
image resolution of COCO is much higher than that of ImageNet; (ii) most images in ImageNet are
object-centric, while COCO images usually contain multiple disorganized objects. This domain gap
poses a challenge for transfer learning, and SparK is demonstrated able to face it. This shows SparK
can learn highly transferable features through the BERT-style generative pre-training.

4.4 SCALING UP SPARK

We gradually scale up the model size or training resolution and test SparK’s performance. Results
are reported in table 4, where we quote the accuracy of supervised baselines from Wightman et al.
(2021) (the latest ResNet baselines) and Liu et al. (2022) (ConvNeXt) as “Baseline Acc.”. As shown in
the last column in table 4, one can observe that with our SparK pre-training, all models except ResNet-
50 achieve performance on par with their non-pretrained versions of larger sizes. Such a qualitative
leap indicates SparK can push a convnet to the “next level” in terms of representation capability.
Comparing the results horizontally, SparK improves all supervised baselines by large margins of
+0.8~1.7, verifying such a self-supervised learning can make better use of model capacity than
supervised pre-training in this evaluation. Overall, the results demonstrate a favorable scaling ability
of SparK as larger models benefit more. The steady gains across classical and modern architectures
also make us believe SparK can boost many other state-of-the-art convolutional networks like VAN
(Guo et al., 2022), RepLKNet (Ding et al., 2022), and InternImage (Wang et al., 2022).

Table 4: Scaling up SparK with model size and training resolution. ImageNet top-1 accuracy is reported.
Absolute improvements over baselines are listed as A. The last column indicates whether SparK’s performance
with a smaller model (e.g., 84.1 of ConvNeXt-S) reaches the baseline of a larger one (e.g., 83.8 of ConvNeXt-B).

. #Para. FLOPs | Baseline  Spark Reach the
Architecture Reso. M) (G) Acc. Acc. A next level
Classical Architecture
ResNet-50 224 25.6 4.1 79.8 80.6 +0.8 X
ResNet-101 224 44.5 7.9 81.3 82.2 +0.9 v
ResNet-152 224 60.2 11.6 81.8 82.7 +0.9 v
ResNet-200 224 64.7 15.1 82.1 83.1 +1.0 —
Modern Architecture
ConvNeXt-Small 224 50.0 8.7 83.1 84.1 +1.0 v
ConvNeXt-Base 224 89.0 154 83.8 84.8 +1.0 v
ConvNeXt-Large 224 198 344 84.3 85.4 +1.1 -
ConvNeXt-Large 384 198 101 84.3 86.0 +1.7 —

4.5 ABLATION STUDY

In this study, we gradually ablate the components in SparK framework and check the corresponding
performance respectively. ImageNet fine-tuning results of each SparK’s variants are listed in table 5.

Core designs. We first remove the two most important designs in SparK: sparse masking strategy
and hierarchical architecture. By replacing our sparse strategy with the zero-outing discussed in
section 3.1, we observe a noticeable performance degradation in row 3 of table 5 that almost reaches
the supervised baseline. This suggests the issues raised by zero-outing (like data distribution shift in
figure 1 and mask pattern vanish in figure 3) can lead to ineffective pre-training. We then remove the
hierarchical design (row 4), which results in a single-scale masked modeling that is commonly used
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Table 5: The ablation study on the importance of each components in SparK. Experiments are based on
ConvNeXt-Small, with ImageNet validation accuracy reported. Our default setting is in row 2. Differences are
highlighted in blue. “APE”: absolute positional embedding; “std.”: standard deviation of four experiments.

Method |  Masking Hierarchy ~APE Loss Epoch | Acc. A std.
| |

2 SparK (ours) sparse 4 X masked only 1600 | 84.1 0.0 0.07
3 zero-outing zero-outing 4 X maskedonly 1600 | 83.2 -0.9 0.06
4 w/o hierarchy sparse X X masked only 1600 | 83.6 -0.5 0.04
5 w/APE sparse 4 v maskedonly 1600 | 839 -0.2 0.10
6 w/ more loss sparse 4 X all 1600 | 833 -0.8 0.12
7 pre-train less sparse 4 X masked only 800 837 -04 0.05

for transformers (Devlin et al., 2018; Bao et al., 2021; He et al., 2021; Xie et al., 2021). It only uses
the features at the end of encoder to reconstruct. This modification is shown to impair the fine-tuning
performance as well. In sum, both sparse strategy and hierarchy design play key roles in SparK.

Other components. In addition, we find adding absolute positional embeddings (row 5) is practically
useless for learning convolutional representations. We also observe calculating loss values only on
masked patches gives higher accuracy (row 0), which is consistent with He et al. (2021). Finally and
reasonably, our SparK benefits from longer pre-training as verified in row 7.

4.6 VISUALIZATION

We visualize some reconstruction results to check how the model performs in pre-training. From
figure 4 we can see that the model is able to make different but plausible predictions on masked
regions (e.g., in the 2-nd column). In the 4-th and 6-th columns, the model can almost reconstruct the
round shape of red fruits from the very small portion of exposed edges. The clear texture in the 3-rd
column also shows the model can capture the visual signals with medium or high frequencies.
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Figure 4: Reconstruction examples by a pre-trained ConvNeXt-Base with a mask ratio of 60%. Images
are randomly selected from ImageNet validation set. Several interesting regions are highlighted.

5 CONCLUSION

The field of natural language processing (NLP) has witnessed the rise and proliferation of masked
modeling in NLP transformers. More recently, there have been efforts to extend this paradigm to
vision transformers, although its application to convnets has proven problematic. This has spurred us
to investigate the fundamental differences between language and image processing, and motivated
us to propose a solution: SparK. SparK involves treating unmasked patches as sparse voxels, and
encoding them using sparse convolution. Additionally, we employ a hierarchical decoder to fully
leverage the benefits of convnet’s hierarchy. SparK enables masked modeling to be applied effectively
to any convnet, and results in a substantial performance increase on downstream tasks. Our research
showcases the potential of BERT-style pre-training on convnets and is an initial step towards its future
implementation. We hope our findings will inspire further exploration of generative pre-training on
convnets, and facilitate the adoption of the pretrain-finetune paradigm in computer vision community.
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A DETAILS: DECODER ARCHITECTURE

SparK is a general method that does not limit the specific encoder to be pre-trained. In other words,
the definition of the encoder is all up to the user (e.g., a standard ResNet-50). In the implementation
presented in section 4.1, the only undefined component is the decoder. We thus give its PyTorch
implementation as follows. In our experiments, the same decoder of LightDecoder (768, 32)
is used equally for all encoders, including different ResNets and ConvNeXts.

import math
import torch.nn as nn

class UNetBlock2x(nn.Module):
def __init__(self, cin, cout):

super() .__init__Q

self.b = nn.Sequential(
nn.Conv2d(cin, cin, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(cin), nn.ReLU6(inplace=True),
nn.Conv2d(cin, cout, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(cout),

)

def forward(self, x):
return self.b(x)

class DecoderConv(nn.Module) :
def __init__(self, cin, cout):
super() .__init__Q
self.up = nn.ConvTranspose2d(cin, cin, kernel_size=4, stride=2, padding=1,
bias=True)

self.conv = UNetBlock2x(cin, cout)

def forward(self, x):
x = self.up(x)
return self.conv(x)

class LightDecoder(nn.Module):
def __init__(self, decoder_fea_dim, upsample_ratio):
super() .__init__QO
self.fea_dim = decoder_fea_dim

n = round(math.log2(upsample_ratio))
channels = [self.fea_dim // 2 #x i for i in range(n + 1)]
self.dec = nn.ModuleList([
DecoderConv(cin, cout) for (cin, cout) in zip(channels[:-1],
channels[1:])
D

self.proj = nn.Conv2d(channels[-1], 3, kernel_size=1, stride=1, bias=True)

def forward(self, to_dec):
x=0
for i, d in enumerate(self.dec):
if i < len(to_dec) and to_dec[i] is not None:
X = X + to_dec[i]
x = self.dec[i](x)
return self.proj(x)
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B ADDITIONAL RESULTS: LINEAR EVALUATION

We report the small-sized models’ linear evaluation performance in table 6. In this evaluation protocol,
the pre-trained backbone model is frozen and only a linear projection head would be fine-tuned. This
protocol is all the rage in contrastive learning (Chen et al., 2020a; He et al., 2020; Chen & He, 2021;
Caron et al., 2021), which can probe the linear separability of deep representations, and has been
quite popular in computer vision due to the richness of image data augmentations compared to other
modalities (Cubuk et al., 2019; Tian et al., 2021; Cheng et al., 2022). Note that MoCoV3 (Chen et al.,
2021) is the only contrastive learning method in table 6, which aims to learn a global representation,
and is therefore more suitable than non-contrastive methods on tasks like linear evaluation. SparK
shows its decent performance compared to other non-contrastive methods.

Table 6: Linear evaluation results. Numbers of other work are directly quoted form Chen et al. (2022).

Method | BEiT CAE SparK | MoCoV3

Contrastive X X X v
Accuracy (%) | 1577 51.8 547 73.1

C DETAILS: IMAGENET FINE-TUNING

We refer to the latest open-source ResNet baseline of Wightman et al. (2021) to fine-tune ResNets.
For ConvNeXts Liu et al. (2022), we simply use their official implementation. Since the original
configurations in Wightman et al. (2021); Liu et al. (2022) are based on supervised training from
scrach, we adjust some hyperparameters for doing fine-tuning. Details are given in table 7 and table 8.

Table 7: ImageNet fine-tuning recipe for ResNets, referring to Wightman et al. (2021).

Configuration Value \ Configuration Value

Image resolution 224 Epochs 300

Test image crop  0.95 Batch size 2048
Optimizer LAMB | Learning rate 8e-3
Scheduler Consine | Weight decay 0.02
Repeated aug. v Dropout X

Rand aug. 7/0.5 Stoch. depth v

Gradient clip. X BCE loss v

Mixup alpha 0.1 Label smoothing 0.1

Cutmix alpha 1.0 EMA {0.99,0.999}

Table 8: ImageNet fine-tuning recipe for ConvNeXts, referring to Liu et al. (2022).

Configuration Value ‘ Configuration Value

Image resolution 224 Epochs 200

Test image crop  0.95 Batch size 2048
Optimizer AdamW Learning rate 3.2e-3
Scheduler Consine Weight decay 0.01
Repeated aug. v Dropout X

Rand aug. 9/0.5/incl | Stoch. depth v

Gradient clip. X BCE loss X

Mixup alpha 0.8 Label smoothing 0.1

Cutmix alpha 1.0 EMA {0.99,0.999}
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D DETAILS: COCO FINE-TUNING

On COCO, we use the official implementations of MoCoV2 (Chen et al., 2020b) and ConvNeXt (Liu
et al., 2022) to evaluate ResNets and ConvNeXts. These implementations are based on Detectron2
(Wu et al., 2019) and MMDetection (Chen et al., 2019) respectively. Following the convention, we do
not use advanced techniques like multi-scale testing, large-scale jittering augmentation, or soft-NMS,
in all our COCO experiments for fairness. Details are in table 9 and table 10.

Table 9: COCO fine-tuning configuration for ResNets, referring to the standard implementation of
MoCoV2 (Chen et al., 2020b). Mask R-CNN with FPN is used. x = A for the so-called “Ax” schedule. For
instance, a 2X fine-tuning schedule means a 24-epoch training with 0.1-epoch warm-up.

Configuration Value \ Configuration Value

Image resize (384, 600) | Normalization mean [123.7, 116.3, 103.5]
Multi-scale testing X Normalization std [58.4, 57.1, 57.4]
Large-scale jittering aug X Optimizer AdamW

Soft-NMS X Weight decay 0.0001

Epochs 12z Learning rate (LR) 2e-4

Warm-up epochs 0.05x LR layer decay 0.65

LR scheduled epochs [92, 11z] | LR scheduled ratio 0.2

Table 10: COCO configuration for ConvNeXts, referring to the standard implementation of ConvNeXt
(Liu et al., 2022). Following the convention of self-supervised learning, 3x Mask R-CNN with FPN is used.

Configuration Value ‘ Configuration Value

Image resize (1333, 800) | Normalization mean [123.7, 116.3, 103.5]
Multi-scale testing X Normalization std [58.4, 57.1, 57.4]
Large-scale jittering aug X Optimizer AdamW

Soft-NMS X Weight decay 0.05

Epochs 36 Learning rate (LR) 2e-4

Warm-up epochs 0.15 LR layer decay 0.65

LR scheduled epochs [27, 33] LR scheduled ratio 0.2
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