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ABSTRACT

Forecasting future trends in complex domains often requires leveraging diverse
data sources beyond traditional numerical time series. However, integrating het-
erogeneous data types into a unified forecasting framework remains an underex-
plored challenge. Existing multi-modal time series forecasting approaches often
employ static and simplistic fusion mechanisms or yield non-interpretable repre-
sentations with a limited modularity. We propose GMM-TS, a learnable gating
architecture, inspired by mixture-of-experts, which dynamically integrates pre-
dictions from multiple uni-modal experts, each specialized in a distinct modal-
ity (e.g., text or numerical signals). Our method computes per-time-step expert
weights using a Transformer Encoder. This enables fine-grained, interpretable fu-
sion of multiple experts (two or more) and supports both joint and offline training
modes. Extensive evaluations show that GMM-TS consistently outperforms state-
of-the-art baselines across nine domains, multiple forecast horizons, and various
expert configurations. We also include, for the first time, to the best of our knowl-
edge, the option to integrate more than two experts. Our framework is efficient,
extensible, and inherently interpretable. Code will be released upon acceptance.

1 INTRODUCTION

Forecasting future trends from time series data is a fundamental challenge across domains such as
finance, healthcare, climate modeling, and transportation (e.g., (Choi et al.| (2022); |Castan-Lascorz
et al.|(2022)). Traditional models—ranging from ARIMA and exponential smoothing to deep learn-
ing methods—primarily operate on numerical inputs and assume that past observations are sufficient
to predict the future (Lim & Zohren, 2021). Yet, in many real-world scenarios, critical contextual
information resides in other modalities: textual reports (Liu et al.,|2024a), event logs (Hong et al.,
2024), or visual summaries (Daswani et al., 2024) often contain signals that precede or explain
changes in time series trends. This motivates the development of forecasting systems that can effec-
tively leverage multi-modal inputs.

Recent work has begun to explore multi-modal time series forecasting (TSF). TimeMMD (Liu
et al., 2024a)) introduced a multi-domain benchmark and a plug-and-play architecture for combin-
ing numerical and textual signals which relies on a fixed, manually tuned weight during inference.
GPT4MTS (Jia et al., [2024) takes a different approach, proposing a soft-prompting strategy that
jointly encodes numerical and textual input within a GPT-2 decoder. While these approaches high-
light the potential of multi-modal inputs, they suffer from key limitations. First, their fusion mech-
anisms are either fixed (e.g., static weights) or implicit (e.g., prompting within LLMs), offering no
clear way to adapt to the input or interpret how modalities contribute to the prediction. Second, they
lack modularity: they do not support flexible configuration of forecasting models, making it difficult
to swap, mix, or scale expert architectures. Finally, they are restricted to binary fusion, preventing
the integration of more than two experts or modalities. These shortcomings limit their practical
utility in diverse, evolving real-world forecasting settings.

Recent surveys (Liang et al.| 2024)) identify a core limitation of current multi-modal TSF methods:
the absence of a clear, learnable mechanism for effectively fusing heterogeneous data sources in
an interpretable and adaptive manner. We address this challenge with GMM-TS, a modular gat-
ing architecture that enables dynamic and interpretable fusion of multiple uni-modal TSF models
(“experts”). At each forecast step, the model predicts expert-specific weights conditioned on a com-
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bination of expert latents, a learnable gating token, and the raw input. This design allows GMM-TS
to adaptively prioritize the most relevant experts over time while enhancing their joint performance.

GMM-TS is uniquely flexible, supporting fusion over arbitrary sets of experts (e.g., triplets, quartets)
spanning different modalities, and accommodates both end-to-end joint training and offline expert
pre-training for efficient reuse across tasks and domains. Our approach is motivated by Mixture-
of-Experts (MoE) principles (Jacobs et al[1991), where uni-modal inputs are used to assign single
weights to architecturally identical experts. However, unlike conventional MoE architectures, which
are not directly suited for multi-modal TSE, GMM-TS introduces a novel gating mechanism tailored
to heterogeneous inputs and expert types, learning from both raw inputs and intermediate expert
representations.

We evaluate GMM-TS on the TimeMMD benchmark across nine domains, four forecast horizons,
and multiple expert combinations. Our method outperforms strong baselines, including TimeMMD
and GPT4MTS, across all tested settings. Experiments demonstrate the benefit of our fusion strategy,
including superior performance when aggregating more than two experts. Ablation studies validate
the robustness of the gating mechanism, comparing alternative aggregation strategies (e.g., latent and
hierarchical fusion) and varying the gating dimension. Finally, the gating network produces explicit
per-expert weight distributions per time step, offering fine-grained interpretability for downstream
analysis or decision support.

In summary, our main contributions are:

* We propose GMM-TS, a Transformer-based gating architecture for multi-modal time series
forecasting that learns to dynamically weigh predictions from any number of uni-modal experts.

* We show that GMM-TS outperforms state-of-the-art multi-modal and uni-modal baselines
across domains, horizons, and expert configurations, including settings with three or more ex-
perts.

* We demonstrate the interpretability and flexibility of our approach, offering explicit per-expert
attribution and support for both joint and offline training strategies.

2 RELATED WORK

Uni-modal time series forecasting. Time series forecasting (TSF) has been extensively studied
in the uni-modal setting, where models rely solely on numerical inputs. Classical statistical meth-
ods such as ARIMA (Nelson| [1998)) and exponential smoothing have been widely used, but recent
progress has been driven by deep learning architectures such as MLPs (Y1 et al.} 2024; |Chen et al.}
2023)), temporal CNNs (Wu et al., 2023), and Transformer-based models (Nie et al., |2022b; |Kitaev
et al.| 2020; [Zhou et al., 2021} [Wu et al.| 2021b; [Zhou et al., [2022c). These methods assume that
future behavior can be inferred solely from past numerical values, which limits their effectiveness
in complex, event-driven domains.

Multi-modal time series forecasting. To address these limitations, recent work has explored in-
corporating additional modalities. Among peer-reviewed efforts, TimeMMD (Liu et al., 2024a) and
GPT4MTS (Jia et al, 2024) remain the only systems, to the best of our knowledge, that combine
numerical and textual signals for time series forecasting. Notably [Liu et al.|(2024b)) highlighted ex-
ogenous multi-modal TSF as an emerging research direction, with limited existing work - a gap our
paper directly addresses. TimeMMD provides a benchmark and a plug-and-play architecture with
a modular expert selection. However, its fusion mechanism is static (fixed weight) and not input-
adaptive and it is limited to using only two experts: one numerical and one textual. GPT4MTS
adapts a GPT2 decoder with soft prompts to jointly encode text and numeric features, offering an
end-to-end architecture but lacking modularity and interpretability.

We distinguish the challenge of fusing exogenous modalities, such as numerical time series and
text descriptions of events, from the fusion of a time series with representations derived from it.
The former is the focus of our work and of works like GPT4MTS and TimeMMD, while the latter
represents a different class of fusion problems. An example for non-exogenous multi-modal TSF
is Time-VLM (Zhong et al., 2025)), a recently introduced tri-modal fusion approach using vision-
language models to process time series plots derived from numerical time series. We note that
Time-VLM employs shallow concatenation for fusion and does not support dynamic, per-time-step
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weighting, or modular expert setup (replacing and adding experts), in contrast to our proposed gating
mechanism. For a detailed comparison with prior methods, see Table[6]in Appendix

Mixture-of-Experts and gating. Our method builds on Mixture-of-Experts (MoE) concepts (Ja-
cobs et al.,|1991), where a gating network assigns input-specific weights to expert predictions. While
early MoE models used homogeneous expert sets, more recent variants such as MERA (Zhou et al.
2025)) use retrieval-augmented gating to model diversified behaviors in numerical stock prediction.
However, MERA is limited to uni-modal inputs and lacks per-expert interpretability. Our proposed
architecture generalizes these ideas to the multi-modal setting by supporting heterogeneous experts,
combining raw input tokens and expert latents via Transformer-based attention, and producing ex-
plicit, interpretable weights for each expert and forecast step.

3 METHOD

We present GMM-TS, a Transformer-based gating architecture for multi-modal time series fore-
casting. Here, “gating” refers to the adaptive weighting mechanism inspired by Mixture-of-Experts
(MoE) models Jacobs et al|(1991); |Shazeer & et al.| (2017). GMM-TS combines predictions from
individual expert models, where each expert specializes in processing either numerical time series
data (TSF-N) or textual data (TSF-T). As shown in Fig.[I] our model learns to assign per-time-step
weights to each expert’s prediction based on both the raw numerical input (i.e., values observed
before the forecast horizon) and the latent representations learned by the experts. The uni-modal
experts and the gating network are jointly trained in an end-to-end fashion.

This joint optimization enables the experts to specialize in ways that are informed by the gating dy-
namics, in contrast to prior multi-modal TSF methods which rely on staged training or static fusion
rules. We further explore alternative fusion strategies and training configurations in Section[4.3] and
analyze their impact through ablation studies in Section [4.4]

3.1 UNI-MODAL TSF EXPERTS

We formulate the time series forecasting (TSF) task as predicting a sequence of future values Y €
RP*4v after a reference time point ¢t*, based on observations collected prior to t*. Here, p denotes
the forecast horizon (i.e., number of future time steps), and dy is the dimensionality of the target
variable at each step. Following the widely adopted channel independence assumption Nie et al.
(2022b)), we set dy = 1 and treat each target variable independently, such that Y € RP.

Input observations may come from a variety of modalities, including numerical, textual, or visual
signals. In this work, we focus on numerical and textual inputs, but our framework generalizes to
other modalities. We refer to experts trained on numerical time series as TSF-N experts, and those
trained on textual time series as TSF-T experts.

TSF-N experts. A TSF-N expert processes a multivariate numerical time series X,, € RlnXdn,

where [, is the lookback window (number of past time steps), and d,, is the number of variables. A
typical TSF-N model operates in two stages (illustrated in Fig.[1] top left):

hn = BTL(XTL)7 Y = fn(hn) (1)

where B,, is a neural backbone that encodes the input into a latent representation h,,, and f,, is a fully
connected head that outputs the forecast. Common choices for B,, include temporal convolutional
networks, MLPs, and attention-based models such as Transformers [Wang et al.| (2024); [Nie et al.
(2022b)); [Wu et al.| (2021b). TSF-N experts are trained end-to-end using supervised loss on the
prediction error.

TSF-T experts. Text-based forecasting models, or TSF-T experts, operate on sequences of textual

inputs that describe temporal dynamics. Let X; = [z}, ... ,xff} denote a sequence of text obser-

vations collected prior to forecast time ¢*, where [; is the textual lookback window. Following the
formulation introduced in the TimeMMD framework Liu et al.[|(2024a)), we use a frozen large lan-
guage model (LLM) LM that is prompted to summarize the textual history and produce a forecast
embedding. Specifically, the LLM processes the prompt to generate a representation h-*, which
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is then projected into a task-specific latent space by an MLP B,, and decoded by a fully connected
layer f;:

M = LM(Xy),  hy=By(hf™), Y = fi(hy) 2)
Only B; and f; are trained; the LLM LM remains frozen. This design enables efficient adaptation

to forecasting tasks through lightweight training, while leveraging rich pretrained representations
via prompting. The TSF-T expert architecture is illustrated in Fig. [T] (bottom left).

3.2 MULTI-MODAL TSF VIA GATED FUSION OF UNI-MODAL EXPERT PREDICTIONS

3.2.1 MODEL ARCHITECTURE

Our architecture is composed of uni-modal experts and a Transformer-based gating network, as
illustrated in Fig.|1} Let E,, = {¢,}¥, and E, = {e}** | denote sets of TSE-N and TSF-T experts,
respectively (shown in blue and orange in Fig.[I). Let E = E,, U E; be the complete set of uni-
modal experts. Our goal is to learn a dynamic, input-dependent fusion strategy that combines expert
predictions to maximize forecasting accuracy.

Given a pair of inputs (X,,, X;) a numerical and textual time series—we extract latent represen-
tations from each expert in E,, and E;, yielding two sets of embeddings: H, = {Ri}F and
H, = {hi}f;l. Since the latent representations from each expert may differ in dimension, we
project them into a shared latent space of dimension d,,, using expert-specific fully connected layers
fe, for each e € E. These projected embeddings, shown in dark green in Fig.[l} form the unified
set:

H, = {hi, )12, hi, eRim

We concatenate the projected vectors into a matrix H, € R%*I”! where each column corresponds
to one expert. To this matrix, we prepend two additional inputs:

 An input token x € R%, representing the raw numerical input X,,, processed via patching,
temporal and positional encoding, average pooling, and projection (visualized in pink in Fig.[I));

* A learnable gating token g € R%, which controls the expert weighting process (shown in light
green in Fig. [I).

The full sequence fed to the gating module is S = [g, z, H,]" € RUEI+2)xdm \where the transpose
ensures token-major format. We apply a Transformer Encoder to .S, which uses multi-head self-
attention to model interactions between experts, input signals, and the gating context. Let g, € R
denote the output at the position corresponding to the gating token.

We pass g, through an MLP head followed by a Softmax to obtain a weight matrix W € RP*IZI,
where each row W [t] represents the expert weight distribution at forecast step t. Let Y € RP*IFI
denote the predictions from all experts. The final forecast is computed as a weighted sum across
experts at each time step:
|B|-1
Yit]= Y W[tj]-Yelt.j], fort=0,...,p—1 3)

j=0
with Yz € RP*IZ!, the predictions made by the uni-modal experts in E.

3.2.2 TRAINING AND INFERENCE

We jointly train the uni-modal experts and the gating network in an end-to-end manner using the
mean squared error (MSE) loss:

N

1 )
MSE = — > (i — i) (4)

=1
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Figure 1: Overview of the GMM-TS architecture. TSF-N (numerical) and TSF-T (textual) experts (blue and
orange, respectively) produce latent representations, which are projected into a shared latent space (dark green).
A Transformer-based gating network fuses these latents, along with an input token (pink) summarizing the raw
numerical input (time steps prior to the forecast horizon) and a learnable gating token (light green), to produce
dynamic expert weights per forecast time step. The final prediction is a weighted sum over all expert outputs.

where N is the number of training examples, y; is the ground-truth target, and y; is the predicted
value for the i-th instance. For TSF-T experts, we freeze the pretrained LLM backbone and train
only the downstream MLP projection and prediction layers.

During inference, given a new input pair (X,,, X;), we compute both latent representations and
forecast outputs from all experts. These are passed to the gating network, which produces expert
weights and aggregates the outputs into a final fused forecast as described in Section[3.2.1]

4 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of GMM-TS. Our experimental protocol
and implementation details are described in Section @1}

Key findings: our comparative analysis (Section[d.2)) shows that GMM-TS consistently outperforms
state-of-the-art uni-modal and multi-modal baselines across a variety of domains. We also highlight
its unique advantages (Section [d.3)), including its ability to fuse more than two experts, support for
efficient offline pretraining, and inherent interpretability through expert weighting (further discussed

in Appendix [D.3).

Ablations: we conduct ablations (Section[#.4) to validate key architectural choices: the aggregation
method and adaptive approach of our gating module and the dimensionality of the shared latent
space. These experiments collectively confirm GMM-TS’s robust design and versatility.

4.1 EXPERIMENTAL SETUP

We follow the experimental protocol established in prior TSF work [Wu et al| (2021b); [Zhou
et al] (2022¢); [Liu et al (2023)), and adopt the benchmark design and preprocessing pipeline from
TimeMMD [Liu et al.|(2024a). Experiments are conducted across all nine domains in the TimeMMD
benchmark, each containing aligned numerical and textual time series. The goal is to forecast future
numerical values using multimodal historical inputs.

Forecasting setup. Forecast horizons are chosen following standard TSF settings|Wu et al.|(2021a);
[Zhou et al.| (2022b); Nie et al.| (2022a). For daily datasets, we use horizons {48, 96, 192, 336}
with a lookback window of 96 and label length of 48. For weekly datasets, the horizons are {12,
24, 36, 48}, with lookback 36 and label length 18. For monthly datasets, we use {6, 8, 10, 12},
with lookback 8 and label length 4. Unless stated otherwise, we report results averaged across these
horizons.
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Each dataset consists of aligned numerical and textual time series. The textual signals vary in struc-
ture and semantics across domains: for instance, domains such as Security, Traffic, and
Energy include structured log-style reports or alerts, while others like Economy, Social Good,
and Public Health contain more descriptive event narratives or policy summaries. For detailed
dataset statistics (rows, features per modality), see Appendix [B]

Expert models. We evaluate five numerical forecasting models as TSF-N experts: Transformer-
based: Reformer Kitaev et al.| (2020), Informer |[Zhou et al.| (2021), PatchTST Nie et al.| (2022b));
MLP-based: DLinear [Zeng et al.| (2023)); and architecture-agnostic: FiLLM [Zhou et al.| (2022a).
These were selected to reflect a diversity of modeling strategies—ranging from lightweight MLPs
to expressive attention-based architectures—providing complementary inductive biases and perfor-
mance characteristics. For textual inputs, we use three pretrained LLMs—GPT-3.5, GPT-2 Small,
and LLaMA-2—as TSF-T experts, chosen for their varied scale and encoder capacity. All LLM
backbones are frozen during training, with only a task-specific MLP head fine-tuned, as described
in Section [3| Prompt design follows the TimeMMD protocol to ensure consistency.

Implementation details. We optimize all models using Adam with early stopping for a maximum
of 10 training epochs. The shared latent dimension of the gating module is set to d,,, = 256. We
apply early stopping on the validation loss, and empirically observe that all models converge within
10 epochs across all datasets. We provide additional details in Appendix [C]

4.2 COMPARATIVE ANALYSIS OF MULTI-MODAL TIME SERIES FORECASTING METHODS

Baseline comparative analysis We evaluate our framework across all 15 combinations of TSF-N
and TSF-T expert pairs (5 numerical x 3 textual models), tested across 4 forecasting horizons on
each of the 9 TimeMMD domains, resulting in 540 experiments. The main multimodal baselines
are TimeMMD |Liu et al.[(2024a) and GPT4MTS Jia et al.| (2024)). TimeMMD is structurally closer
to our method, combining frozen LLMs with forecasting backbones via a fusion mechanism. In
contrast, GPTAMTS employs a monolithic LLM and does not allow configuration of component
models. For completeness, we evaluate GPT4MTS on the same datasets and horizons. We also in-
clude the standalone performance of each unimodal model to contextualize their contributions when
used in multimodal combinations. Table [I| compares the mean squared error (MSE) of GMM-TS,
GPT4MTS, TimeMMD, and a unimodal baseline, averaged across all forecast horizons. To ensure
a fair comparison with GPT4MTS, we use the same numerical and textual backbones (PatchTST
and GPT2) across all systems. GMM-TS achieves the best or comparable performance across all
domains, outperforming both baselines in 8 out of 9 domains.

Table 1: Domain-wise forecasting error for different methods. Values are aggregated domain-level averages
over all forecast horizons and relevant expert combinations. The lowest value per domain is highlighted in bold.
Detailed results per-domain, per-horizon, per-expert are provided in Tables [8}{16] for multi-modal (pairwise)
experiments and in Tables[T7)[T8]for uni-modal experiments (Appendix[D.T]and [D.2)

Domain Unimodal GPT4MTS TimeMMD GMM-TS
Agriculture 0.10 0.23 0.11 0.09
Climate 1.32 1.27 1.15 1.02
Economy 0.02 0.02 0.04 0.02
Energy 0.28 0.28 0.29 0.27
Environment 0.52 0.59 0.47 0.41
Public Health 1.61 1.96 1.46 1.17
Security 116.43 74.91 112.90 110.30
Social Good 1.14 1.13 0.99 0.95
Traffic 0.21 0.22 0.20 0.19

Comparative analysis across expert pairs. To further evaluate our gating mechanism, we con-
duct a detailed comparison with TimeMMD—the only baseline that supports configurable expert
pairings. GPT4MTS is excluded from this analysis, as it does not support expert replacement.
For each domain, forecast horizon, and expert pair, we compute the MSE for both GMM-TS and
TimeMMD and define the performance gap as A = MSEgyMy.Ts — MSE TimeMMD-

Table 2] shows, for each domain, the number of expert-horizon combinations (out of 60) in which
each method achieves a lower MSE. GMM-TS outperforms TimeMMD in the vast majority of set-



Under review as a conference paper at ICLR 2026

tings. Table [3] further summarizes the distribution of A values across all expert pairs, reporting
the mean and standard deviation, and percentage of pairs where GMM-TS performs better. GMM-
TS achieves lower MSE in all nine domains with notable gains (> 5% and up to 50%) for seven
domains. These results highlight the effectiveness of our architecture in dynamically leveraging
complementary signals from heterogeneous experts as well as the robustness and generality of our
gating mechanism across domains and expert pairings.

Table 2: Comparison of TimeMMD and our method (GMM-TS) across 540 experiments spanning 9 domains.
Each domain includes 60 expert pair evaluations (5 TSF-N x 3 TSF-T) across 4 forecasting horizons. The table
reports, for each domain, how many times each method achieves a lower MSE (a "win’). The higher count per
domain is highlighted in bold.

Domain TimeMMD "Wins GMM-TS *Wins’ (Ours)

Agriculture 9 51
Climate 4 56
Economy 5 55
Energy 10 50
Environment 8 52
Public Health 4 56
Security 11 49
Social Good 25 35
Traffic 2 58

Table 3: Domain-wise comparison of GMM-TS and TimeMMD across expert pairs. Negative values of A
Mean indicate a reduction in forecasting error by GMM-TS (i.e., improvement over TimeMMD). % Better
reports the percentage of improvement.

Domain A Mean (}) Std. Dev. % Better (1)
Agriculture -0.02 0.00 18.18%
Climate -0.08 0.02 11.3%
Economy -0.02 0.00 50.0%
Energy -0.02 0.00 6.9%
Environment -0.06 -0.02 12.77%
Public Health -0.29 -0.18 19.86%
Security -2.60 -0.08 2.3%
Social Good -0.04 -0.02 4.04%
Traffic -0.01 -0.01 5.0%

4.3 ADDITIONAL BENEFITS OF GMM-TS

Beyond expert pairs. While prior work on multi-modal TSF |Liu et al|(2024a)); Jia et al. (2024)
focuses on fusing a single TSF-N and TSF-T expert, GMM-TS supports flexible fusion over arbi-
trary sets of uni-modal experts. To demonstrate this capability, we evaluate triplet combinations of
TSF-N and TSF-T models and compare their performance to the constituent expert pairs. Specifi-
cally, we compare the pairs {GPT3.5, DLinear}, {GPT3.5, Informer}, and {GPT3.5, PatchTST} to
triplets such as {GPT3.5, DLinear, Informer}, and so on. Table reports the average MSE across
each configuration. In most domains, triplet combinations outperform their pairwise baselines, high-
lighting the advantage of fusing complementary signals from multiple modalities. Extended results,
including expert quartets, are provided in Appendix

Joint training versus offline pre-training. GMM-TS can be adapted for offline pretraining of in-
dividual modality experts. Unlike the joint training approach (Section [3.2.2)), this offline strategy
separates expert learning from gating network training. Each expert is trained independently, and
then their fixed outputs are combined by the gating module in a separate training phase. This mod-
ular approach offers flexibility and efficiency, allowing experts to be reused across different tasks
without retraining. Figure[2illustrates the additional training time for pairs as the number of experts
per modality increases for TimeMMD and GMM-TS (both joint and offline). The curves for GMM-
TS (offline/joint) are also annotated with the average percentage reduction in Mean Squared Error
(MSE) across all domains, expert pairs, and prediction horizons. GMM-TS with offline pretraining
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Table 4: Forecasting MSE achieved by our method (GMM-TS) when using expert pairs versus expert triplets.
For each domain, we report the average MSE across all evaluated pair and triplet configurations. Lower values
indicate better performance.

Domain Pairs MSE  Triplets MSE

Agriculture 0.19 0.16
Climate 1.00 1.02
Economy 0.20 0.08
Energy 0.34 0.30

Public Health 1.27 1.21
Security 115.06 112.81

Social Good 0.94 0.90
Traffic 0.19 0.18

scales better with more experts and achieves comparable performance to TimeMMD. Joint training
yields state-of-the-art MSE and requires less optimization time than TimeMMD.

Interpretable multi-modal time series forecasting The expert weight matrix (W) in GMM-TS
provides inherent interpretability by showing the contribution of each expert at each forecast time
step, revealing how the model combines information from different modalities. Fig. [3| illustrate
two representative examples from the Climate (Fig.[3]- right) and Social Good (Fig.[3]- left)
domains, respectively. In each figure, we plot the individual predictions of two experts (PatchTST
in blue and GPT3.5 in orange), the fused output of GMM-TS (in green), and the ground truth (in
black). We annotate each expert prediction with its corresponding gating weight (w), predicted by
the Transformer-based gating network.

In the Social Good example (Fig. [3] right), GMM-TS assigns consistently higher weights to
PatchTST, which closely tracks the ground truth. GPT3.5 receives lower weights throughout, par-
ticularly where its predictions diverge. This illustrates how the model prioritizes the more accurate
modality at each time step. In the Climate example (Fig. 3] right), the gating network initially
favors GPT3.5, whose early predictions are better aligned with the target. However, as the textual
expert’s accuracy degrades later in the sequence, the model shifts weight toward PatchTST, improv-
ing the overall forecast. These examples demonstrate how GMM-TS adapts its fusion strategy based
on the changing accuracy of each expert over time, prioritizing the more reliable modalities. This
provides an interpretable way to see the relative contribution of each expert.

Table 5: Ablation results for aggregation strategy (left) and gating dimension (right). Left: average MSE
across three TSF-N expert combinations— {DLinear, Informer, Reformer}, {Informer, PatchTST, Reformer},
and {DLinear, Informer, PatchTST, Reformer}— under Direct, Hierarchical, and Latent aggregation. Right:
average MSE for five expert pairs (GPT3.5 + one TSF-N model from {DLinear, FILM, Informer, PatchTST,
Reformer}) across gating dimensions d,,, € {32, 64, 128,256, 512}. Lower is better.

Domain ‘ Agg. Strategy Gating Dimension

| Direct Hierarchical Latent | 32 64 128 256 512
Economy 0.17 0.21 1.23 0.19 0.18 0.20 0.18 0.20
Energy 0.31 0.31 0.30 0.39 0.36 0.36 0.36 0.36
Public Health 1.24 1.21 1.29 1.30 1.28 1.27 1.27 1.27
Security 115.62 116.68 127.79 | 113.81 11459 114.61 11558 115.25
Social Good 0.85 0.87 0.85 1.00 0.98 0.96 0.96 0.96
Traffic 0.17 0.17 0.18 0.19 0.19 0.19 0.19 0.19

4.4 ABLATIONS

We investigate the effect of two key architectural components of GMM-TS: the strategy used to
aggregate expert outputs, and the dimensionality of the shared latent space in the gating module.

Aggregation strategy. Our default approach, Direct Aggregation, combines expert predictions in
the target space using a learned weight matrix applied per time step. We compare this to two alter-
natives (described in detail in Appendix [E): (1) Hierarchical Aggregation, which first aggregates
predictions within each modality before fusing them across modalities; and (2) Latent Aggrega-
tion, which aggregates the experts’ latent representations and applies a projection head to produce
the forecast.
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Figure 2: Overall training times for training expert pairs for TimeMMD and GMM-TS. We show
the additional training time required when adding more experts per modality.
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Figure 3: Visualization of expert contributions for the Climate (left) and Social Good (right) domains.
The plots show predictions from PatchTST (blue) and GPT3.5 (orange), their per-time-step weights (w), the
fused prediction (green), and the ground truth (black).

Table 5] (left) reports the average MSE across six domains for three multi-expert configurations.
Direct aggregation consistently performed the best, achieving the lowest error in four out of six
domains. Hierarchical aggregation performed similarly, suggesting that the primary benefit comes
from fusing modalities rather than the specific fusion method. Latent aggregation proved less robust,
with degraded performance in several domains, underscoring the value of directly combining expert
predictions in the output space. Additional configurations are evaluated in Appendix [F

Gating dimension. We also evaluate the effect of varying the gating dimension d,,,, which deter-
mines the shared latent space size in which expert representations are projected and fused. Ta-
ble [3] (right) shows average MSE values across five expert pairs—formed by combining GPT-
3.5 with each of DLinear, FiLM, Informer, PatchTST, and Reformer—under different settings of
dm € {32,64,128,256,512}. The results are stable across settings, indicating that GMM-TS is
robust to the choice of gating dimension. Additional results are reported in Appendix [{|

Adaptive versus static gating. To evaluate the value of dynamic gating, we compared our adaptive
gating network to a static, fixed-weight baseline, where a gating weight matrix is learned during
training but fixed across all inputs at inference time.. As shown in Table (Appendix [F), the
adaptive model significantly outperformed the static one across all domains, with a degradation
of over 12x in the Economy domain without adaptive gating. These results highlight that input-
conditioned gating is crucial for strong performance in diverse time series forecasting scenarios.

5 CONCLUSION

We introduced GMM-TS, a novel gating-based architecture for exogenous multi-modal time series
forecasting that adaptively fuses predictions from multiple experts. To the best of our knowledge,
it is the first approach to extend multi-modal TSF beyond expert pairs, enabling the integration of
multiple specialists across modalities. GMM-TS consistently outperforms state-of-the-art baselines
across diverse domains and expert configurations, and its gating mechanism provides built-in per-
timestep interpretability by showing each expert’s contribution.

Limitations and Future Work While we focused on numerical and textual inputs, GMM-TS can
be extended to other modalities like visual time series data. Future work will explore these exten-
sions, as well as other time series tasks like classification and anomaly detection. We also plan to
investigate efficient adaptation techniques such as Low-Rank Adaptation (LoRA).
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APPENDIX

We provide additional results and information to complement our main text:

* Section [A]details and compares related work.

* Section [B]provides additional details on the datasets used.
* Section [C]gives additional implementation details.

* Section D] provided extended results:

— Section provides per-domain, per-horizon, per expert-pair comparison between
GMM-TS and TimeMMd

- Section|[D.2reports per-domain, per-horizon, per-expert unimodal results
- Section [D.3] provides extended results and discussion on additional benefits of our
proposed method:
# Section [D.3.] provides extended results for the experiments with more than two
experts for multi-modal TSF.
# Section[D.3.2)provides extended results for evaluating the offline pre-training strat-
egy.
x Section[D.3.3]discusses additional benefits not covered in the main text.
* Section [E] provides the formulation of the Hierarchical and Latent aggregation methods.
* Section [F provides extended and additional ablation results.

* Section [G]discussed the broader impacts of our work.

A EXTENDED RELATED WORK AND COMPARISON

Extended Discussion. In this section, we expand on prior work in both uni-modal and multi-modal
time series forecasting, including recent MoE-based architectures.

e TimeMMD [Liu et al.| (2024a): Introduced the first large-scale multi-modal TSF bench-
mark. Its architecture supports modular expert inputs but fuses predictions via a fixed,
global weight—resulting in a lack of dynamic, input-aware fusion.

o GPT4MTS (Jia et al.,|2024): Trains a decoder-only GPT2 with soft prompts for modality-
specific conditioning. Fusion is implicit in the prompt encoding, and the architecture lacks
modularity.

* Google-TSF (Daswani et al., |2024): Adapts VLMs to combine plots with structured data
for forecasting. Fusion is performed within a monolithic foundation model, lacking inter-
pretability or explicit per-modality contributions.

* Time-VLM (Zhong et al.|[2025): Uses tri-modal inputs (visualized plots, language context,
and numerical sequences), but relies on vision-language models with concatenation-based
fusion. This method does not offer expert modularity or explicit attribution.

* MERA (Zhou et al) [2025): Proposes a retrieval-augmented MoE framework for stock
forecasting. While modular and scalable, MERA is limited to numerical inputs and does
not support dynamic multi-modal interaction.

Table [6| compares GMM-TS with prior work. This comparison highlights that GMM-TS is the first
method to combine dynamic, interpretable, and modular fusion in a multi-expert, multi-modal TSF
setting.

To the best of our knowledge, GMM-TS is the first architecture for multi-modal TSF that enables
adaptive, interpretable, and modular fusion over an arbitrary number of heterogeneous experts. It
departs from prior methods by going beyond two-modality assumptions, offering plug-and-play
flexibility, and supporting both joint and offline training regimes.
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Table 6: Comparison of our method (GMM-TS) to prior work across key properties.

Model Modality Fusion Type Dynamic  Interpretable = Modular  # Experts
TimeMMD (Liu et al.,|2024a) Text + Num Prediction (fixed weight) X X v 2
GPT4MTS (J1a et al.}|2024) Text + Num Prompted representation v X X 2
Google-TSF (Daswani et al.|[2024) Vision + Num Foundation model v X X 2
Time-VLM (Zhong et al.||2025) Vision + Text + Num Concatenated inputs v X X 3
MERA (Zhou et al.}|2025) Num Expert + retrieval v X v > 2
GMM-TS (Ours) Text + Num (+ more) Prediction (learned weights) v v v >2

B DATASET DETAILS

We conduct extensive evaluation experiments across a wide range of domains available from the
TimeMMD benchmark. The domains included in this benchmark cover a range of real-world fore-
casting scenarios:

» Agriculture: Agricultural production and supply chain time series.
* Climate: Temperature, rainfall, and atmospheric readings with textual context.
* Economy: Financial and economic indicators tied to news reports.
* Energy: Power consumption and energy production data.
e Environment: Environmental monitoring data with text from reports.
* Public: Public health metrics (e.g., infection rates, hospitalizations).
* Security: Geopolitical/security event data with incident summaries.
* Social Good: Time series from social impact domains (e.g., education, inequality).
 Traffic: Vehicle usage and congestion statistics with urban planning documents.
Table [7] further summarizes the size and modality composition of each dataset in the TimeMMD

benchmark (Liu et al., 2024a). Each domain consists of aligned textual and numerical time series
across daily, weekly, or monthly frequencies.

Table 7: Dataset statistics used in our experiments. Each domain includes aligned numerical and
textual features, with a single forecasting target (table reproduced from |Liu et al.| (2024b)))

Domain # Timestamps  Dimensions
Agriculture 496 1
Climate 496 5
Economy 423 3
Energy 1479 9
Environment 11102 4
Public Health 1389 11
Security 297 1
Social Good 900 1
Traffic 531 1

C IMPLEMENTATION DETAILS

Our multimodal time series forecasting system employs a comprehensive optimization strategy
where all models are optimized using the Adam optimizer with early stopping configured for a
maximum of 10 training epochs. The system utilizes multiple Adam optimizers with differentiated
learning rates: time series models use a learning rate of 0.0001, MLP components use le-2, pro-
jection layers use le-3, and the gating module uses le-3. Early stopping is implemented with a
patience of 5 epochs, monitoring validation loss across all model components including time series
models, MLP layers, and the gating module. The shared latent dimension of the gating module 256
by default, though ablation studies systematically test values of 32, 64, 128, and 512 to evaluate the
impact of gating dimension on performance.
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The gating module architecture consists of an input embedding layer with time features, expert pro-
jection layers that map expert outputs to a shared dimension, a 2-layer transformer encoder with 8
attention heads, gating networks implemented as MLP layers for computing attention weights, and
a final output projection layer. Training is conducted with a batch size of 32, MSE loss function,
and optional mixed precision training, while the gating mechanism supports both ”latent” and pre-
diction” input types for expert integration. The transformer encoder employs GELU activation, 0.1
dropout rate, and a feed-forward dimension of 2048, providing a robust framework for multimodal
time series forecasting with systematic evaluation of different architectural configurations.

D EXTENDED QUALITY RESULTS

D.1 PAIRWISE COMPARISON WITH TIMEMMD BY DOMAIN

We present the detailed per-horizon, per-expert pairwise results that underlie the aggregated
domain-level averages reported in Table [T]in the main text. In other words, Table [I]is a compact
summary of the average performance across all forecast horizons (12, 24, 36, 48) and expert combi-
nations for each domain, while the results shown here provide the full breakdown for transparency
and reproducibility.

For each setting, we experiment with various combinations of numerical (TSF-N) and textual (TSF-
T) experts, including both strong backbone models and LLM-based textual predictors. For each
combination, we report the mean squared error (MSE) for GMM-TS (our proposed method) and for
TimeMMD, using the same expert configuration. The lower MSE value in each row is highlighted
in bold.

Our method consistently outperforms TimeMMD in terms of forecasting accuracy, as measured by
MSE. Notably, this superiority holds for every domain, underscoring the robustness and generality
of our gating-based fusion approach. These results demonstrate that our system not only offers
improved performance but also scales reliably across different forecasting scenarios.

D.2 UNI-MODAL EXPERIMENTS

Tables [17| and [18| present the detailed per-horizon, per-expert unimodal forecasting results for the
Energy and Public Health domains, respectively, using weekly-resolution data. These results
complement the aggregated domain-level averages reported in Table([I]in the main text, where results
are averaged across multiple horizons and expert combinations. Here, each row corresponds to a
specific horizon and a specific TSF-N or TSF-T expert, providing full transparency and enabling
reproduction of the aggregated results.

For each setting, we report multiple evaluation metrics — Mean Absolute Error (MAE), MSE,
Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Squared
Percentage Error (MSPE) — across various prediction lengths ("Horizon’) and expert models. Both
Transformer-based and MLP-based TSF-N models, as well as large language model-based TSF-T
experts, are evaluated.

Each individual TSF-N or TSF-T expert consistently underperforms compared to our fused model
that integrates the same expert with a complementary modality. This highlights the advantage of
multi-modal fusion: combining numerical and textual representations yields improved forecasting
accuracy across all domains and settings.

D.3 ADDITIONAL BENEFITS: EXTENDED RESULTS AND DISCUSSION

Our proposed architecture introduces not only improvements in forecasting accuracy, but also mean-
ingful benefits in terms of model transparency, usability, and extensibility. Below, we discuss several
key aspects of the system beyond raw performance and the benefits already demonstrated in the main
text.
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D.3.1 GOING BEYOND EXPERT PAIRS FOR MULTI-MODAL TSF: ADDITIONAL RESULTS

We provide additional results for TSF with more than two TSF-N experts. Table |19|compares the
average MSE across pairs and respective triplets and quartets of experts. Table [20] provides an
extended version of Table d]in the main text, comparing the forecasting accuracy (in terms of MSE)
of pairs to the respective triplet, for each triplet. Triplets and quartets surpass expert pairs on average,
demonstrating the advantage of our method, in supporting multi-expert (more than two) setting.

D.3.2 OFFLINE EXPERT PRE-TRAINING: ADDITIONAL RESULTS

Table[2T|compares GMM-TS (offline and joint training) with TimeMMD across all domains. GMM-
TS with offline pre-training remains competitive but presents a substantial reduction in runtime (as
shown in the main text). GMM-TS with joint training, consistently outperforms Time-MMD while
presenting competitive train time (as shown in the main text).

D.3.3 DISCUSSION ON ADDITIONAL BENEFITS

Debugging and failure analysis. The explicit separation between expert predictions and the gat-
ing module allows for effective error analysis. When performance degrades, it is possible to isolate
whether the issue stems from a specific expert or from the fusion logic. This decomposition pro-
vides a structured debugging pathway, facilitating targeted improvements (e.g., re-training only the
underperforming expert).

Rationale inspection and human-in-the-loop validation. By making the gating decisions trans-
parent and traceable, the model allows users to inspect the rationale behind its predictions—e.g.,
whether it relied on textual evidence, numerical trends, or both. This is especially useful in high-
stakes domains (e.g., healthcare, infrastructure monitoring), where human oversight is critical. Fur-
thermore, by comparing the fused forecast against individual expert outputs, domain experts can
evaluate when the model is being conservative, overconfident, or appropriately balanced.

Guidance for few-shot expert fine-tuning. In scenarios where certain experts perform poorly
(e.g., domain shift, low-resource domains), our architecture provides actionable feedback: if the
gating module consistently down-weights a particular expert, it can serve as a signal to fine-tune that
expert using a small number of task-specific examples. This opens the door to a principled, few-shot
training loop, where human intervention is guided by model behavior rather than guesswork.

Modularity and extensibility. Finally, our design is inherently modular. New experts—whether
trained on different modalities, domains, or tasks—can be plugged into the system (when using
offline pretraining this further means existing experts do not need to be re-trained). The gating
module adapts to newly introduced signals by updating the expert weights accordingly. This makes
our approach especially well-suited to evolving multi-modal pipelines in real-world applications.

E HIERARCHICAL AND LATENT AGGREGATIONS

We provide the formulation of the Hierarchical and Latent aggregation methods below:

» Hierarchical aggregation: In this variant, we first derive two distinct weight matrices,
W, € RP X|En| and W, € RP XIEt| from the original weight matrix W. This derivation
involves applying the Softmax function to the indices of the experts that belong to the
numeric modality (F,,) and the textual modality (F;)), respectively. Subsequently, we use
these modality-specific weight matrices W,, and W; in our Direct Aggregation method
(Eq. [3) to predict the future time series based on each modality individually, resulting in
Y., (numeric-based forecast) and Y; (textual-based forecast). To combine these uni-modal
predictions, we predict a weight vector w € RP, where each element corresponds to a time
step in the forecast horizon. This weight vector is generated by applying an additional MLP
head to to g,. The final forecast Y is then computed as a weighted average of the uni-modal
predictions:

Y=(01-w) Yi+w-Y, 5)
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» Latent aggregation: In this variant, instead of directly aggregating the experts’ predic-
tions, we aggregate the projected latent representations of their predictions. Similar to our
primary aggregation method (Section [3.2.T)), we combine these latent features (given by
H.,) into a fused latent vector A using the weight matrix W € R *|E| with d% = d,,,:

|E|-1
h=[Y" Hli,jlWli, jllizo...d, -1 (6)
7=0

Subsequently, we employ an additional fully connected layer to regress Y from the fused
latent vector h.

F ABLATIONS: ADDITIONAL RESULTS

We provide extended ablation results, including additional ablation experiments.

Tables 22] and Table [24] provide the extended version of Tabld3]in the main text, comparing differ-
ent aggregation methods and gating dimensions. Table 23| further compares the Direct and Latent
aggregations across expert pairs.

F.1 ABLATION STUDY: ADAPTIVE VERSUS STATIC WEIGHTS

To isolate the contribution of dynamic gating, we compare our adaptive transformer-based gating
network with a static learned-weight baseline. In this ablation, the transformer module is replaced
with a fixed weight matrix (per horizon and expert index), learned during training but fixed across
all inputs at inference time. This setting removes adaptivity, forcing the model to rely on global
average weights.

Setup We evaluate across all benchmark domains using the same expert pool as in the main ex-
periments (TSF-N: {DLinear, Informer, Reformer, PatchTST}, TSF-T: GPT-3.5).

Experiment Motivation The goal of this ablation is to quantify the contribution of our dy-
namic gating mechanism. We ask: What happens if, instead of using a transformer to compute
input-dependent aggregation weights, we learn fixed weights during training and use them un-
changed at inference?

Methodology Regular (Dynamic) Method:

 Uses a transformer encoder to dynamically compute gating weights at each step.
* Weights are conditioned on the current input context and expert latent representations.

» Adaptively shifts emphasis among experts at inference time.
Ablation (Fixed) Method:

* Replaces the transformer gating module with a learned static weight matrix W.
o W g Rnum-expertsxprediction-horizon jg ontimized during training and fixed thereafter.

* Same number of parameters in the fusion stage, but no dependence on input context during
inference.

Summary by Expert and Domain To better understand the sensitivity of different configurations
to the removal of dynamic gating, we average results by TSF-N expert (across all domains) and by
domain (across all experts).

Key Insights

* Dynamic gating is essential: Across all 143 configurations tested, removing dynamic
gating increases MSE by an average of 328.3%.

16



Under review as a conference paper at ICLR 2026

* By Expert: DLinear is the most robust TSF-N expert (55.9% avg. degradation), while
Informer is the most sensitive (68.7% avg. degradation). PatchTST and Reformer are
moderately sensitive ( 66—-68%).

* By Domain: Economy is catastrophically sensitive (1,272.8% degradation on average),
Energy is moderately impacted (114.6%), Traffic has substantial degradation (92.7%), So-
cialGood is relatively resilient (31.1%), and Security shows minimal impact (8.6%).

¢ Notable cases:

— Best case: Security + DLinear shows a slight improvement when gating is removed
(-0.2%).

— Worst case: Economy + Informer suffers a catastrophic degradation (3120.5%).
 Interpretation:

— Domains with high variability and strong cross-modal dependencies (e.g., Economy)
rely heavily on adaptive expert weighting.

— Stable experts (e.g., DLinear) in low-variability domains (e.g., Security) are less re-
liant on dynamic gating and may even be marginally unaffected.

— Experts with more complex temporal modeling (e.g., Informer) appear to depend more
on gating adaptivity to leverage cross-expert complementarity.

Conclusion Dynamic gating is a critical component of the architecture. In some domains, replac-
ing it with fixed weights reduces performance by over an order of magnitude. Even in domains with
smaller gains, dynamic gating remains at least competitive and often substantially better.

Full Results Tablg27H31| provide the complete per-domain, per-configuration results. Regular
MSE refers to the dynamic gating variant; Ablation MSE refers to the fixed-weight variant. Boldface
indicates the lower MSE in each row.

F.2 ABLATION STUDY: NUMBER OF TRANSFORMER LAYERS IN THE GATING MODULE

Motivation The gating module in GMM-TS uses a Transformer encoder to compute input-
dependent weights over experts. While our main experiments use a lightweight 2-layer encoder
for computational efficiency, the optimal depth for this component is not obvious. We therefore per-
form an ablation varying the number of encoder layers to examine how depth impacts performance.

Why only Informer and PatchTST? To keep the analysis focused and interpretable, we report
results for two representative TSF-N experts: (1) Informer, a strong Transformer-based forecast-
ing model, and (2) PatchTST, a state-of-the-art patch-based Transformer forecaster. These were
selected because they represent high-performing but architecturally distinct approaches, and they
show different sensitivity patterns to gating depth. The TSF-T expert is fixed to GPT-3.5 for all
experiments.

Methodology We evaluate the gating module with 1, 2, 4, 6, and 8 encoder layers across all
benchmark domains. Some combinations were not run due to compute constraints, but the evalu-
ation design is consistent for every domain. All other components and hyperparameters are fixed,
including:

* Gating dimension d,,, = 64

* Fixed aggregation type: direct

* Forecast horizons: multiple values per domain, but here we report selected key horizons

For each configuration, we report MSE and mark the lowest value in each row in bold.

Per-domain results Tables[32}H32] present the results for each domain. For Public Health domain,
we only report the results for pred_len=12 and pred_len=24, as these cover the most relevant fore-
casting scenarios in our benchmark.
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Average MSE across layers. To complement the per-configuration results in Tables 34 we
compute the average MSE for each number of Transformer encoder layers in the gating module,
averaged across both Informer and PatchTST experts for each domain (Table [38). Insights:

* There is no universal optimal number of layers—performance varies by domain.
* In Economy and Security, 2 layers achieve the lowest average error.

* In Energy and Traffic, deeper gating (6-8 layers) yields small improvements over shal-
lower models.

* SocialGood benefits from moderately deep gating (4-8 layers), but differences are modest.

* Across all domains, 2—4 layers offer a strong trade-off between accuracy and computational
efficiency.

Conclusion While increasing the number of Transformer layers in the gating module can improve
performance in some scenarios, the effect is domain- and model-dependent. A 2—4 layer config-
uration provides a robust, lightweight default that works well across both Informer and PatchTST
without incurring excessive computational cost.

G BROADER IMPACTS

Multi-modal TSF, which integrates various data modalities like time series, text, images, and audio
for prediction, can positively impact a wide range of domains, such as finance, healthcare, security,
agriculture and more. Fusing signals from multiple modalities can yield more robust and accurate
predictions, as also demonstrated by our work. Beyond improved accuracy, our work also provides
intuitive interpretation, supporting informed decision making. As with any machine learning tech-
nology, the use of method and models should be done in a principled manner and for advancing the
greater good.

18
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Table 8: Pairwise MSE comparison for the Agriculture domain.

Horizon TSF-N Expert TSF-T Expert GMM-TS (MSE) TimeMMD (MSE) Delta

6 DLinear GPT3.5 0.0798 0.0737 0.01
6 DLinear GPT2 0.0729 0.0738 -0
6 DLinear LLAMA2 0.0736 0.0742 -0
6 FiLM GPT3.5 0.0610 0.0896 -0.03
6 FiLM GPT2 0.0617 0.0895 -0.03
6 FiLM LLAMA2 0.0633 0.0926 -0.03
6  Informer GPT3.5 0.3314 0.3378 -0.01
6  Informer GPT2 0.3120 0.3013 0.01
6  Informer LLAMA2 0.2660 0.2493 0.02
6  PatchTST GPT3.5 0.0593 0.0775 -0.02
6  PatchTST GPT2 0.0604 0.0845 -0.02
6  PatchTST LLAMA2 0.0584 0.0733 -0.01
6  Reformer GPT3.5 0.1801 0.2743 -0.09
6  Reformer GPT2 0.3302 0.2268 0.1
6  Reformer LLAMA2 0.2108 0.1917 0.02
8 DLinear GPT3.5 0.1079 0.1871 -0.08
8 DLinear GPT2 0.1114 0.1878 -0.08
8 DLinear LLAMA2 0.1044 0.1824 -0.08
8 FiLM GPT3.5 0.0792 0.1061 -0.03
8 FiLM GPT2 0.0796 0.1067 -0.03
8 FiLM LLAMA2 0.0837 0.1089 -0.03
8  Informer GPT3.5 0.2043 0.3530 -0.15
8 Informer GPT2 0.2201 0.3396 -0.12
8  Informer LLAMA2 0.3107 0.2797 0.03
8 PatchTST GPT3.5 0.0761 0.0969 -0.02
8  PatchTST GPT2 0.0764 0.0936 -0.02
8  PatchTST LLAMA2 0.0778 0.0968 -0.02
8  Reformer GPT3.5 0.2759 0.4320 -0.16
8 Reformer GPT2 0.2515 0.2377 0.01
8 Reformer LLAMA2 0.1511 0.2542 -0.1
10 DLinear GPT3.5 0.1258 0.1473 -0.02
10  DLinear GPT2 0.1275 0.1471 -0.02
10 DLinear LLAMA2 0.1145 0.1428 -0.03
10 FLM GPT3.5 0.1031 0.1352 -0.03
10 FiLM GPT2 0.1033 0.1269 -0.02
10 FLM LLAMA2 0.1086 0.1261 -0.02
10  Informer GPT3.5 0.3765 0.4100 -0.03
10 Informer GPT2 0.3492 0.4090 -0.06
10  Informer LLAMA2 0.2950 0.4360 -0.14
10 PatchTST GPT3.5 0.0957 0.1159 -0.02
10  PatchTST GPT2 0.0947 0.1251 -0.03
10 PatchTST LLAMA2 0.0951 0.1084 -0.01
10 Reformer GPT3.5 0.1761 0.3834 -0.21
10 Reformer GPT2 0.2536 0.3265 -0.07
10 Reformer LLAMA2 0.4337 0.4116 0.02
12 DLinear GPT3.5 0.1413 0.1626 -0.02
12 DLinear GPT2 0.1442 0.1626 -0.02
12 DLinear LLAMA2 0.1415 0.1543 -0.01
12  FiLM GPT3.5 0.1240 0.1488 -0.02
12 FLM GPT2 0.1262 0.1494 -0.02
12 FLM LLAMA2 0.1238 0.1515 -0.03
12 Informer GPT3.5 0.5398 0.5558 -0.02
12 Informer GPT2 0.5124 0.5286 -0.02
12 Informer LLAMA2 0.3751 0.6909 -0.32
12 PatchTST GPT3.5 0.1222 0.1380 -0.02
12 PatchTST GPT2 0.1227 0.1429 -0.02
12 PatchTST LLAMA2 0.1254 0.1420 -0.02
12 Reformer GPT3.5 0.2449 0.4353 -0.19
12 Reformer GPT2 0.2729 0.5461 -0.27
12 Reformer LLAMA2 0.4597 0.4058 0.05
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Table 9: Pairwise MSE comparison for the C1 imate domain.

Horizon TSF-N Expert TSF-T Expert GMM-TS (MSE) TimeMMD (MSE) Delta

6 DLinear GPT3.5 0.9548 1.1090 -0.15
6 DLinear GPT2 1.0232 1.1090 -0.09
6 DLinear LLAMA2 1.0461 1.1132 -0.07
6 FiLM GPT3.5 1.0510 1.1845 -0.13
6 FiLM GPT2 1.0474 1.1839 -0.14
6 FiLM LLAMA2 1.0255 1.1833 -0.16
6  Informer GPT3.5 0.9460 1.0851 -0.14
6  Informer GPT2 0.9509 1.0549 -0.1
6  Informer LLAMA2 0.9510 1.0562 -0.11
6  PatchTST GPT3.5 0.9907 1.1205 -0.13
6  PatchTST GPT2 1.0261 1.1467 -0.12
6  PatchTST LLAMA2 1.0697 1.1652 -0.1
6  Reformer GPT3.5 1.0126 1.2702 -0.26
6  Reformer GPT2 1.0614 1.1178 -0.06
6  Reformer LLAMA2 1.0796 1.0697 0.01
8 DLinear GPT3.5 0.9714 1.1505 -0.18
8 DLinear GPT2 0.9458 1.1509 -0.21
8 DLinear LLAMA2 0.9682 1.1394 -0.17
8 FiLM GPT3.5 1.0319 1.1496 -0.12
8 FiLM GPT2 1.0389 1.1483 -0.11
8 FiLM LLAMA2 1.0065 1.1546 -0.15
8  Informer GPT3.5 1.0439 1.0508 -0.01
8 Informer GPT2 1.0271 1.0675 -0.04
8  Informer LLAMA2 1.0528 1.0680 -0.02
8 PatchTST GPT3.5 1.0390 1.1206 -0.08
8  PatchTST GPT2 1.0222 1.1361 -0.11
8  PatchTST LLAMA2 1.0215 1.1341 -0.11
8  Reformer GPT3.5 1.0411 0.9818 0.06
8 Reformer GPT2 1.0881 1.0038 0.08
8 Reformer LLAMA2 1.0673 1.0739 -0.01
10 DLinear GPT3.5 1.0050 1.1200 -0.12
10  DLinear GPT2 1.0058 1.1212 -0.12
10 DLinear LLAMA2 0.9708 1.1126 -0.14
10 FLM GPT3.5 0.9961 1.1458 -0.15
10 FiLM GPT2 0.9962 1.1479 -0.15
10 FLM LLAMA2 1.0300 1.1525 -0.12
10  Informer GPT3.5 1.0157 1.1208 -0.11
10  Informer GPT2 0.9768 1.1127 -0.14
10  Informer LLAMA2 1.0322 1.1316 -0.1
10 PatchTST GPT3.5 1.0172 1.1678 -0.15
10  PatchTST GPT2 1.0403 1.2201 -0.18
10 PatchTST LLAMA2 1.0490 1.1373 -0.09
10 Reformer GPT3.5 0.9511 1.0186 -0.07
10 Reformer GPT2 0.9440 1.0205 -0.08
10 Reformer LLAMA2 1.1014 1.0674 0.03
12 DLinear GPT3.5 0.9862 1.1171 -0.13
12 DLinear GPT2 0.9955 1.1197 -0.12
12 DLinear LLAMA2 0.9917 1.1229 -0.13
12  FiLM GPT3.5 0.9864 1.1514 -0.16
12 FLM GPT2 1.0023 1.1516 -0.15
12 FLM LLAMA2 1.0154 1.1605 -0.15
12 Informer GPT3.5 1.0128 1.1608 -0.15
12 Informer GPT2 1.0246 1.1412 -0.12
12 Informer LLAMA2 0.9887 1.0386 -0.05
12 PatchTST GPT3.5 1.0182 1.1958 -0.18
12 PatchTST GPT2 1.0416 1.1296 -0.09
12 PatchTST LLAMA2 1.0364 1.1528 -0.12
12 Reformer GPT3.5 0.9570 1.0451 -0.09
12 Reformer GPT2 0.9899 1.0533 -0.06
12 Reformer LLAMA2 0.9611 1.0479 -0.09
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Table 10: Pairwise MSE comparison for the Economy domain.

Horizon TSF-N Expert TSF-T Expert GMM-TS (MSE) TimeMMD (MSE) Delta

6 DLinear GPT3.5 0.0461 0.0286 0.02
6 DLinear GPT2 0.0480 0.0286 0.02
6 DLinear LLAMA2 0.0316 0.0288 0
6 FiLM GPT3.5 0.0236 0.0507 -0.03
6 FiLM GPT2 0.0241 0.0507 -0.03
6 FiLM LLAMA2 0.0260 0.0496 -0.02
6  Informer GPT3.5 0.3752 0.8354 -0.46
6  Informer GPT2 0.3071 0.7657 -0.46
6  Informer LLAMA2 0.5332 0.7260 -0.19
6  PatchTST GPT3.5 0.0175 0.0370 -0.02
6  PatchTST GPT2 0.0219 0.0399 -0.02
6  PatchTST LLAMA2 0.0173 0.0430 -0.03
6  Reformer GPT3.5 0.3330 0.7056 -0.37
6  Reformer GPT2 0.1908 0.6518 -0.46
6  Reformer LLAMA2 0.2272 0.3340 -0.11
8 DLinear GPT3.5 0.0293 0.0850 -0.06
8 DLinear GPT2 0.0199 0.0855 -0.07
8 DLinear LLAMA2 0.0203 0.0793 -0.06
8 FiLM GPT3.5 0.0199 0.0511 -0.03
8 FiLM GPT2 0.0245 0.0517 -0.03
8 FiLM LLAMA2 0.0270 0.0512 -0.02
8  Informer GPT3.5 0.5743 0.8589 -0.28
8 Informer GPT2 0.5804 0.8200 -0.24
8  Informer LLAMA2 0.5187 1.1498 -0.63
8 PatchTST GPT3.5 0.0168 0.0364 -0.02
8  PatchTST GPT2 0.0158 0.0380 -0.02
8  PatchTST LLAMA2 0.0260 0.0372 -0.01
8  Reformer GPT3.5 0.3827 0.5075 -0.12
8 Reformer GPT2 0.4512 0.4153 0.04
8 Reformer LLAMA2 0.2017 0.3871 -0.19
10 DLinear GPT3.5 0.0334 0.0391 -0.01
10  DLinear GPT2 0.0317 0.0391 -0.01
10 DLinear LLAMA2 0.0258 0.0369 -0.01
10 FLM GPT3.5 0.0339 0.0511 -0.02
10 FiLM GPT2 0.0337 0.0510 -0.02
10 FLM LLAMA2 0.0201 0.0523 -0.03
10  Informer GPT3.5 0.7035 0.9927 -0.29
10 Informer GPT2 0.6983 0.9676 -0.27
10  Informer LLAMA2 0.5560 0.9261 -0.37
10 PatchTST GPT3.5 0.0162 0.0384 -0.02
10  PatchTST GPT2 0.0228 0.0386 -0.02
10 PatchTST LLAMA2 0.0187 0.0382 -0.02
10 Reformer GPT3.5 0.2334 0.2881 -0.05
10  Reformer GPT2 0.1975 0.1632 0.03
10 Reformer LLAMA2 0.4508 0.8762 -0.43
12 DLinear GPT3.5 0.0202 0.0294 -0.01
12 DLinear GPT2 0.0213 0.0295 -0.01
12 DLinear LLAMA2 0.0233 0.0282 -0
12  FiLM GPT3.5 0.0175 0.0507 -0.03
12 FLM GPT2 0.0175 0.0507 -0.03
12 FLM LLAMA2 0.0222 0.0509 -0.03
12 Informer GPT3.5 0.5856 1.0744 -0.49
12 Informer GPT2 0.5823 1.0777 -0.5
12 Informer LLAMA2 0.5828 0.9330 -0.35
12 PatchTST GPT3.5 0.0286 0.0357 -0.01
12 PatchTST GPT2 0.0289 0.0361 -0.01
12 PatchTST LLAMA2 0.0244 0.0380 -0.01
12 Reformer GPT3.5 0.1852 0.2172 -0.03
12 Reformer GPT2 0.1729 0.3333 -0.16
12 Reformer LLAMA2 0.3527 0.8047 -0.45
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Table 11: Pairwise MSE comparison for the Energy domain.

Horizon TSF-N Expert TSF-T Expert GMM-TS (MSE) TimeMMD (MSE) Delta

12 DLinear GPT3.5 0.2291 0.2492 -0.02
12 DLinear GPT2 0.2298 0.2491 -0.02
12 DLinear LLAMA2 0.2371 0.2514 -0.01
12 FLM GPT3.5 0.2121 0.2451 -0.03
12 FLM GPT2 0.2126 0.2451 -0.03
12 FLM LLAMA2 0.2185 0.2449 -0.03
12 Informer GPT3.5 0.2860 0.1679 0.12
12 Informer GPT2 0.3118 0.1701 0.14
12 Informer LLAMA2 0.2181 0.2118 0.01
12 PatchTST GPT3.5 0.1076 0.1267 -0.02
12 PatchTST GPT2 0.1076 0.1268 -0.02
12 PatchTST LLAMA2 0.1125 0.1313 -0.02
12 Reformer GPT3.5 0.1962 0.3193 -0.12
12 Reformer GPT2 0.3125 0.3466 -0.03
12 Reformer LLAMA2 0.3191 0.3341 -0.02
24 DLinear GPT3.5 0.3038 0.3507 -0.05
24 DLinear GPT2 0.3054 0.3477 -0.04
24 DLinear LLAMA2 0.3108 0.3481 -0.04
24  FiLM GPT3.5 0.2872 0.3282 -0.04
24  FiLM GPT2 0.2881 0.3326 -0.04
24  FiLM LLAMA2 0.3071 0.3404 -0.03
24 Informer GPT3.5 0.3591 0.3068 0.05
24 Informer GPT2 0.3370 0.2972 0.04
24 Informer LLAMA2 0.2934 0.3149 -0.02
24 PatchTST GPT3.5 0.2299 0.2424 -0.01
24 PatchTST GPT2 0.2297 0.2424 -0.01
24 PatchTST LLAMA2 0.2366 0.2337 0
24 Reformer GPT3.5 0.4544 0.4536 0
24 Reformer GPT2 0.4454 0.4552 -0.01
24 Reformer LLAMA2 0.4729 0.4873 -0.01
36 DLinear GPT3.5 0.3767 0.4049 -0.03
36 DLinear GPT2 0.3729 0.4046 -0.03
36 DLinear LLAMA2 0.3873 0.4186 -0.03
36 FiLM GPT3.5 0.3911 0.4439 -0.05
36 FiLM GPT2 0.4004 0.4436 -0.04
36 FiLM LLAMA2 0.3882 0.4498 -0.06
36 Informer GPT3.5 0.4189 0.4740 -0.06
36  Informer GPT2 0.4659 0.4765 -0.01
36 Informer LLAMA2 0.3991 0.4227 -0.02
36  PatchTST GPT3.5 0.3364 0.3490 -0.01
36  PatchTST GPT2 0.3357 0.3489 -0.01
36  PatchTST LLAMA2 0.3326 0.3237 0.01
36 Reformer GPT3.5 0.4998 0.5570 -0.06
36 Reformer GPT2 0.5200 0.5558 -0.04
36 Reformer LLAMA2 0.4315 0.5670 -0.14
48  DLinear GPT3.5 0.4931 0.5236 -0.03
48  DLinear GPT2 0.4927 0.5236 -0.03
48  DLinear LLAMA2 0.4854 0.5267 -0.04
48 FiLM GPT3.5 0.5007 0.5816 -0.08
48 FiLM GPT2 0.4985 0.5800 -0.08
48 FiLM LLAMA2 0.5038 0.5925 -0.09
48  Informer GPT3.5 0.5858 0.5364 0.05
48  Informer GPT2 0.4660 0.5319 -0.07
48  Informer LLAMA2 0.5547 0.5430 0.01
48  PatchTST GPT3.5 0.4026 0.4388 -0.04
48  PatchTST GPT2 0.4032 0.4401 -0.04
48  PatchTST LLAMA2 0.4265 0.4370 -0.01
48  Reformer GPT3.5 0.5577 0.5950 -0.04
48  Reformer GPT2 0.5454 0.5571 -0.01
48  Reformer LLAMA2 0.5363 0.5888 -0.05
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Table 12: Pairwise MSE comparison for the Environment domain.

Horizon TSF-N Expert TSF-T Expert GMM-TS (MSE) TimeMMD (MSE) Delta
48  DLinear BERT 0.41 0.46 -0.04
48  DLinear GPT2 0.41 0.46 -0.05
48  DLinear LLAMA2 0.41 0.46 -0.04
48  FiLM BERT 0.41 0.46 -0.05
48 FiLM GPT2 0.41 0.46 -0.04
48 FiLM LLAMA2 0.41 0.46 -0.05
48  Informer BERT 0.45 0.49 -0.04
48  Informer GPT2 0.45 0.48 -0.03
48  Informer LLAMA2 0.46 0.45 0.01
48  PatchTST BERT 0.41 0.44 -0.04
48  PatchTST GPT2 0.41 0.44 -0.04
48  PatchTST LLAMA2 0.41 0.44 -0.04
48  Reformer BERT 0.44 0.44 -0.01
48  Reformer GPT2 0.44 0.46 -0.02
48  Reformer LLAMA2 0.42 0.42 -0.0
96 DLinear BERT 0.42 0.51 -0.08
96 DLinear GPT2 0.42 0.51 -0.09
96 DLinear LLAMA2 0.42 0.51 -0.09
96 FiLM BERT 0.42 0.49 -0.08
96 FiLM GPT2 0.41 0.49 -0.08
96 FiLM LLAMA2 0.42 0.49 -0.08
96 Informer BERT 0.46 0.47 -0.01
96  Informer GPT2 0.49 0.47 0.02
96 Informer LLAMA2 0.47 0.48 -0.01
96 PatchTST BERT 0.41 0.47 -0.06
96  PatchTST GPT2 0.41 0.47 -0.06
96 PatchTST LLAMA2 0.41 0.47 -0.05
96 Reformer BERT 0.45 0.44 0.01
96 Reformer GPT2 0.45 0.47 -0.02
96 Reformer LLAMA2 0.44 0.46 -0.02

192  DLinear BERT 0.42 0.57 -0.14
192 DLinear GPT2 0.43 0.56 -0.14
192  DLinear LLAMA2 0.42 0.56 -0.14
192 FiLM BERT 0.41 0.52 -0.11
192 FiLM GPT2 0.41 0.52 -0.11
192  FiLM LLAMA2 0.42 0.51 -0.09
192  Informer BERT 0.51 0.5 0.01
192  Informer GPT2 0.46 0.48 -0.02
192  Informer LLAMA2 0.49 0.47 0.01
192 PatchTST BERT 0.41 0.5 -0.09
192 PatchTST GPT2 0.41 0.51 -0.1
192 PatchTST LLAMA2 0.41 0.48 -0.07
192  Reformer BERT 0.44 0.47 -0.03
192  Reformer GPT2 0.43 0.46 -0.03
192  Reformer LLAMA2 0.45 0.46 -0.01
336 DLinear BERT 0.42 0.5 -0.09
336  DLinear GPT2 0.42 0.5 -0.09
336 DLinear LLAMA2 0.43 0.5 -0.07
336 FiLM BERT 0.42 0.49 -0.07
336 FiLM GPT2 0.42 0.49 -0.07
336 FiLM LLAMA2 0.42 0.49 -0.07
336  Informer BERT 0.48 0.47 0.02
336  Informer GPT2 0.48 0.47 0.01
336 Informer LLAMA2 0.49 0.47 0.02
336  PatchTST BERT 0.41 0.47 -0.05
336  PatchTST GPT2 0.41 0.47 -0.06
336  PatchTST LLAMA2 0.42 0.47 -0.05
336 Reformer BERT 0.44 0.46 -0.02
336 Reformer GPT2 0.44 0.46 -0.02
336 Reformer LLAMA2 0.43 0.44 -0.0
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Table 13: Pairwise MSE comparison for the Public Health domain.

Horizon  TSF-N Expert TSF-T Expert GMM-TS (MSE) TimeMMD (MSE) Delta

12 DLinear GPT3.5 1.2781 1.5718 -0.29
12 DLinear GPT2 1.2755 1.5728 -0.3
12 DLinear LLAMA?2 1.2542 1.5686 -0.31
12 FLM GPT3.5 1.2450 1.8902 -0.65
12 FiLM GPT2 1.2444 1.8904 -0.65
12 FLM LLAMA2 1.1605 1.8962 -0.74
12 Informer GPT3.5 1.0626 1.1597 -0.1
12 Informer GPT2 1.0385 1.0100 0.03
12 Informer LLAMA2 1.2496 1.0132 0.24
12 PatchTST GPT3.5 0.8285 0.8862 -0.06
12 PatchTST GPT2 0.8272 0.8858 -0.06
12 PatchTST LLAMA2 0.8282 0.9198 -0.09
12 Reformer GPT3.5 1.0117 1.3198 -0.31
12 Reformer GPT2 1.0746 1.3032 -0.23
12 Reformer LLAMA2 1.1247 1.0541 0.07
24 DLinear GPT3.5 1.3307 1.6379 -0.31
24 DLinear GPT2 1.3350 1.6379 -0.3
24 DLinear LLAMA2 1.3273 1.6327 -0.31
24  FiLM GPT3.5 1.3346 1.7341 -0.4
24  FiLM GPT2 1.2983 1.7336 -0.44
24  FiLM LLAMA2 1.3443 1.7694 -0.43
24 Informer GPT3.5 1.3144 1.4278 -0.11
24 Informer GPT2 1.1808 1.4354 -0.25
24 Informer LLAMA2 1.3456 1.2494 0.1
24 PatchTST GPT3.5 1.1401 1.4274 -0.29
24 PatchTST GPT2 1.1373 1.4267 -0.29
24 PatchTST LLAMA2 1.1287 1.3324 -0.2
24  Reformer GPT3.5 1.2683 1.2749 -0.01
24 Reformer GPT2 1.2664 1.2732 -0.01
24 Reformer LLAMA2 1.1444 1.3164 -0.17
36 DLinear GPT3.5 1.3606 1.6339 -0.27
36 DLinear GPT2 1.3916 1.6337 -0.24
36 DLinear LLAMA2 1.3667 1.6314 -0.26
36 FiLM GPT3.5 1.3396 1.6919 -0.35
36 FiLM GPT2 1.3396 1.6918 -0.35
36 FiLM LLAMA2 1.3486 1.6797 -0.33
36 Informer GPT3.5 1.2517 1.4964 -0.24
36 Informer GPT3.5 1.2517 1.5301 -0.28
36 Informer GPT2 1.3061 1.5267 -0.22
36 Informer LLAMA2 1.3360 1.4404 -0.1
36  PatchTST GPT3.5 1.3303 1.6323 -0.3
36  PatchTST GPT2 1.3105 1.6329 -0.32
36  PatchTST LLAMA2 1.3181 1.6132 -0.3
36 Reformer GPT3.5 1.2727 1.3266 -0.05
36 Reformer GPT2 1.2604 1.3325 -0.07
36 Reformer LLAMA2 1.2960 1.4491 -0.15
48  DLinear GPT3.5 1.4695 1.7188 -0.25
48 DLinear GPT2 1.4659 1.7188 -0.25
48  DLinear LLAMA2 1.4410 1.6834 -0.24
48 FiLM GPT3.5 1.3941 1.7494 -0.36
48 FiLM GPT2 1.3882 1.7467 -0.36
48 FiLM LLAMA2 1.4095 1.7578 -0.35
48  Informer GPT3.5 1.4794 1.6853 -0.21
48  Informer GPT2 1.3917 1.6759 -0.28
48  Informer LLAMA2 1.3763 1.6073 -0.23
48  PatchTST GPT3.5 1.3858 1.8986 -0.51
48  PatchTST GPT2 1.4246 1.8978 -0.47
48  PatchTST LLAMA2 1.3948 1.7737 -0.38
48  Reformer GPT3.5 1.3376 1.4628 -0.13
48  Reformer GPT2 1.4128 1.4535 -0.04
48  Reformer LLAMA2 1.3712 1.4464 -0.08
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Table 14: Pairwise MSE comparison for the Security domain.

Horizon TSF-N Expert TSF-T Expert GMM-TS (MSE) TimeMMD (MSE) Delta
6  DLinear GPT3.5 102.9184 103.2177 -0.3
6 DLinear GPT2 102.9638 103.2089 -0.25
6  DLinear LLAMA2 102.9615 103.1953 -0.23
6 FiLM GPT3.5 110.6303 114.7459 -4.12
6 FiLM GPT2 111.4065 114.7540 -3.35
6 FiLM LLAMA2 109.1073 114.8041 -5.7
6  Informer GPT3.5 126.4486 124.9059 1.54
6  Informer GPT2 126.1993 124.8889 1.31
6  Informer LLAMA2 125.3303 126.0265 -0.7
6  PatchTST GPT3.5 106.6492 109.1538 -2.5
6  PatchTST GPT2 106.7367 109.1556 -2.42
6  PatchTST LLAMA2 105.8426 108.0277 -2.19
6  Reformer GPT3.5 122.7506 127.8057 -5.06
6  Reformer GPT2 121.9643 122.6299 -0.67
6  Reformer LLAMA2 125.3047 119.4994 5.81
8 DLinear GPT3.5 105.6411 107.7553 -2.11
8 DLinear GPT2 105.7126 107.7545 -2.04
8 DLinear LLAMA2 105.4353 107.7964 -2.36
8 FiLM GPT3.5 108.8374 109.4419 -0.6
8 FiLM GPT2 108.7304 109.4354 -0.7
8 FiLM LLAMA2 107.8102 109.0228 -1.21
8 Informer GPT3.5 126.7646 127.2815 -0.52
8 Informer GPT2 126.9326 127.3436 -0.41
8 Informer LLAMA?2 126.4637 127.0559 -0.59
8 PatchTST GPT3.5 114.0695 111.6167 2.45
8  PatchTST GPT2 114.7777 112.1871 2.59
8  PatchTST LLAMA2 109.8454 110.8373 -0.99
8 Reformer GPT3.5 124.6640 127.3454 -2.68
8 Reformer GPT2 123.2080 127.3009 -4.09
8 Reformer LLAMA2 121.0255 121.4871 -0.46

10 DLinear GPT3.5 107.3247 109.7904 -2.47
10 DLinear GPT2 107.2617 109.7907 -2.53
10 DLinear LLAMA2 108.1359 109.7591 -1.62
10 FiLM GPT3.5 110.3583 110.9249 -0.57
10 FiLM GPT2 110.0805 110.9051 -0.82
10 FiLM LLAMA2 108.3393 111.3900 -3.05
10  Informer GPT3.5 131.2260 126.6200 4.61
10  Informer GPT2 130.8043 126.6540 4.15
10  Informer LLAMA2 128.0662 128.8640 -0.8
10  PatchTST GPT3.5 109.9814 116.0471 -6.07
10 PatchTST GPT2 110.0050 114.9653 -4.96
10  PatchTST LLAMA2 113.6006 113.0154 0.59
10 Reformer GPT3.5 121.1815 127.1552 -5.97
10  Reformer GPT2 121.0420 127.0808 -6.04
10 Reformer LLAMA2 116.2173 122.5238 -6.31
12 DLinear GPT3.5 108.6712 111.2703 -2.6
12 DLinear GPT2 108.7270 111.2681 -2.54
12 DLinear LLAMA2 108.9626 111.2568 -2.29
12  FiLM GPT3.5 111.0610 113.1494 -2.09
12  FiLM GPT2 109.7006 113.0860 -3.39
12  FiLM LLAMA2 109.2312 112.4943 -3.26
12 Informer GPT3.5 130.5862 128.3961 2.19
12 Informer GPT2 130.5437 128.4168 2.13
12 Informer LLAMA2 127.3390 130.8707 -3.53
12 PatchTST GPT3.5 110.4975 114.7932 -4.3
12 PatchTST GPT2 110.4948 113.6508 -3.16
12 PatchTST LLAMA2 110.2060 113.9373 -3.73
12 Reformer GPT3.5 121.3439 126.9580 -5.61
12 Reformer GPT2 121.0127 126.8623 -5.85
12 Reformer LLAMA2 120.6723 117.7383 2.93
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Table 15: Pairwise MSE comparison for the SocialGood domain.

Horizon TSF-N Expert TSF-T Expert GMM-TS (MSE) TimeMMD (MSE) Delta
6 DLinear GPT3.5 0.9188 0.9682 -0.05
6 DLinear GPT2 0.9189 0.9658 -0.05
6 DLinear LLAMA2 0.9611 0.9703 -0.01
6 FiLM GPT3.5 0.9318 0.9556 -0.02
6 FiLM GPT2 0.9291 0.9555 -0.03
6 FiLM LLAMA2 0.9412 0.9486 -0.01
6  Informer GPT3.5 0.7583 0.8545 -0.1
6  Informer GPT2 0.7311 0.8285 -0.1
6  Informer LLAMA2 0.8140 0.7681 0.05
6  PatchTST GPT3.5 0.8587 0.8287 0.03
6  PatchTST GPT2 0.8798 1.1037 -0.22
6  PatchTST LLAMA2 0.8735 0.8339 0.04
6  Reformer GPT3.5 0.7826 0.7794 0
6  Reformer GPT2 0.8059 0.8615 -0.06
6  Reformer LLAMA2 0.8043 0.8382 -0.03
8 DLinear GPT3.5 0.9686 0.9388 0.03
8 DLinear GPT2 0.9647 0.9395 0.03
8 DLinear LLAMA2 0.9601 0.9757 -0.02
8 FiLM GPT3.5 1.0110 1.0093 0
8 FiLM GPT2 1.0132 0.9938 0.02
8 FiLM LLAMA2 1.0027 1.0300 -0.03
8  Informer GPT3.5 0.8292 0.7453 0.08
8 Informer GPT2 0.7627 0.7566 0.01
8  Informer LLAMA2 0.7555 0.8990 -0.14
8 PatchTST GPT3.5 0.8886 1.0846 -0.2
8  PatchTST GPT2 0.8931 1.0081 -0.11
8  PatchTST LLAMA2 0.9775 1.0432 -0.07
8  Reformer GPT3.5 0.9104 0.9535 -0.04
8 Reformer GPT2 0.8959 0.8554 0.04
8  Reformer LLAMA2 0.8754 0.9465 -0.07

10 DLinear GPT3.5 1.0571 1.0147 0.04
10  DLinear GPT2 1.0505 1.0148 0.04
10 DLinear LLAMA2 1.0886 1.0370 0.05
10 FLM GPT3.5 1.0748 1.1038 -0.03
10 FiLM GPT2 1.0806 1.0957 -0.02
10 FLM LLAMA2 1.0931 1.0828 0.01
10  Informer GPT3.5 0.9705 0.9118 0.06
10 Informer GPT2 0.9005 0.8786 0.02
10  Informer LLAMA2 0.8110 0.8508 -0.04
10 PatchTST GPT3.5 0.9914 0.9903 0
10 PatchTST GPT2 0.9828 1.0183 -0.04
10 PatchTST LLAMA2 1.0614 0.9683 0.09
10  Reformer GPT3.5 0.9864 0.9460 0.04
10  Reformer GPT2 0.9452 1.0200 -0.07
10 Reformer LLAMA2 1.0611 0.9825 0.08
12 DLinear GPT3.5 1.1033 1.1517 -0.05
12 DLinear GPT2 1.1008 1.1519 -0.05
12 DLinear LLAMA2 1.0989 1.1468 -0.05
12  FiLM GPT3.5 1.1181 1.1695 -0.05
12 FLM GPT2 1.1124 1.1652 -0.05
12 FLM LLAMA2 1.1505 1.1594 -0.01
12 Informer GPT3.5 0.8410 0.9560 -0.12
12 Informer GPT2 0.8402 0.9557 -0.12
12 Informer LLAMA2 0.9147 0.9635 -0.05
12 PatchTST GPT3.5 1.0621 1.0419 0.02
12 PatchTST GPT2 1.0478 1.0714 -0.02
12 PatchTST LLAMA2 1.0463 1.1580 -0.11
12 Reformer GPT3.5 1.1757 1.1040 0.07
12 Reformer GPT2 1.1832 1.0935 0.09
12 Reformer LLAMA2 1.0301 0.9680 0.06
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Table 16: Pairwise MSE comparison for the Traffic domain.

Horizon TSF-N Expert TSF-T Expert GMM-TS (MSE) TimeMMD (MSE) Delta

6 DLinear GPT3.5 0.2109 0.2434 -0.03
6 DLinear GPT2 0.2096 0.2434 -0.03
6 DLinear LLAMA2 0.1948 0.2398 -0.04
6 FiLM GPT3.5 0.1926 0.2259 -0.03
6 FiLM GPT2 0.1871 0.2259 -0.04
6 FiLM LLAMA2 0.1948 0.2251 -0.03
6  Informer GPT3.5 0.1569 0.1765 -0.02
6  Informer GPT2 0.1562 0.1800 -0.02
6  Informer LLAMA2 0.1600 0.1947 -0.03
6  PatchTST GPT3.5 0.1638 0.1781 -0.01
6  PatchTST GPT2 0.1709 0.1746 -0
6  PatchTST LLAMA2 0.1662 0.1740 -0.01
6  Reformer GPT3.5 0.1941 0.1981 -0
6  Reformer GPT2 0.1814 0.2010 -0.02
6  Reformer LLAMA2 0.1775 0.2263 -0.05
8 DLinear GPT3.5 0.1953 0.2871 -0.09
8 DLinear GPT2 0.1785 0.2880 -0.11
8 DLinear LLAMA2 0.1790 0.2871 -0.11
8 FiLM GPT3.5 0.1845 0.2249 -0.04
8 FiLM GPT2 0.1844 0.2249 -0.04
8 FiLM LLAMA2 0.1836 0.2249 -0.04
8 Informer GPT3.5 0.1765 0.1761 0
8 Informer GPT2 0.1788 0.1752 0
8  Informer LLAMA2 0.1588 0.1847 -0.03
8 PatchTST GPT3.5 0.1758 0.1786 -0
8  PatchTST GPT2 0.1738 0.1791 -0.01
8  PatchTST LLAMA2 0.1856 0.1863 -0
8  Reformer GPT3.5 0.1952 0.2007 -0.01
8 Reformer GPT2 0.1937 0.1972 -0
8  Reformer LLAMA2 0.1815 0.2068 -0.03
10 DLinear GPT3.5 0.2019 0.2360 -0.03
10  DLinear GPT2 0.2014 0.2359 -0.03
10 DLinear LLAMA2 0.1901 0.2351 -0.04
10 FLM GPT3.5 0.1749 0.2225 -0.05
10 FiLM GPT2 0.1754 0.2224 -0.05
10 FLM LLAMA2 0.1732 0.2232 -0.05
10  Informer GPT3.5 0.1608 0.1831 -0.02
10 Informer GPT2 0.1691 0.1848 -0.02
10  Informer LLAMA2 0.1690 0.1950 -0.03
10 PatchTST GPT3.5 0.1829 0.1904 -0.01
10  PatchTST GPT2 0.1818 0.1902 -0.01
10 PatchTST LLAMA2 0.1727 0.1946 -0.02
10  Reformer GPT3.5 0.1808 0.2241 -0.04
10 Reformer GPT2 0.1842 0.2168 -0.03
10 Reformer LLAMA2 0.1784 0.2391 -0.06
12 DLinear GPT3.5 0.2274 0.2591 -0.03
12 DLinear GPT2 0.2269 0.2590 -0.03
12 DLinear LLAMA2 0.2396 0.2611 -0.02
12 FLM GPT3.5 0.2271 0.2685 -0.04
12 FLM GPT2 0.2271 0.2684 -0.04
12 FLM LLAMA2 0.2379 0.2685 -0.03
12 Informer GPT3.5 0.2049 0.2277 -0.02
12 Informer GPT2 0.2036 0.2289 -0.03
12 Informer LLAMA2 0.1978 0.2069 -0.01
12 PatchTST GPT3.5 0.2421 0.2575 -0.02
12 PatchTST GPT2 0.2387 0.2573 -0.02
12 PatchTST LLAMA2 0.2326 0.2556 -0.02
12 Reformer GPT3.5 0.2225 0.2340 -0.01
12 Reformer GPT2 0.2210 0.2281 -0.01
12 Reformer LLAMA2 0.2160 0.2703 -0.05
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Table 17: Unimodal forecasting results for the Energy domain. Detailed per-horizon, per-expert results
complement the aggregated domain-level averages reported in Table[T]

Horizon Expert Expert Type MAE MSE RMSE MAPE MSPE

12 Informer  TSF-N 0.283 0.140 0.374 1.529 33.078
12 Reformer TSF-N 0.382 0.263 0.513 1.418 22.324
12 DLinear TSFE-N 0.359 0.221 0471 1.323 15.036
12 PatchTST TSF-N 0.227 0.110 0332  0.991 20.750
12 FiLM TSF-N 0.351 0.207 0455 1.417 18.193
12 GPT3.5 TSE-T 1.047 1.642 1.281 5901  674.482
24 Informer  TSF-N 0412 0.278  0.528  2.140  107.619
24 Reformer TSF-N 0.537 0470 0.685  2.235 98.262
24  DLinear TSF-N 0484 0416 0.645 1.869 50.715
24  PatchTST TSF-N 0.386 0.276  0.525 1.361 41.275
24  FiLM TSF-N 0474 0.408  0.639 1.774 46.942
24  GPT3.5 TSE-T 1.330 2.463 1.570  7.693 1372.181

Table 18: Unimodal forecasting results for the Public Health domain. Detailed per-horizon, per-expert
results complement the aggregated domain-level averages reported in Table|[T]

Horizon  Expert Expert Type MAE MSE RMSE MAPE MSPE

12 Informer  TSF-N 0.623 0.499  0.706 1.225 4.928
12 Reformer TSF-N 0.708 0.632  0.795 1.372 6.276
12 DLinear TSF-N 0.650 0541  0.735 1.304 5.168
12 PatchTST TSF-N 0.548 0.408  0.639 1.088 3.948
12 FiLM TSF-N 0.681 0.581  0.762 1.323 5.506
12 GPT3.5 TSE-T 1.304 1.983 1.408  3.987  78.280
24  Informer  TSF-N 0.766 0.676  0.822 1.645 14.449
24  Reformer TSF-N 0.794 0.705  0.840 1.603 13.348
24 DLinear TSF-N 0.732 0.648  0.805 1.593 11.824
24 PatchTST TSF-N 0.649 0.558  0.747 1.341 9.807
24 FiLM TSF-N 0.756 0.671  0.819 1.484 10.808
24  GPT3.5 TSE-T 1.528 2.607 1.614 4980 152.014

Table 19: The MSE achieved when training our method with expert pairs, triplets and quartets. For
each domain, we report the average across pairs (Pairs MSE), triplets (Triplets MSE) and quartets
of experts.

Domain Pairs MSE  Triplets MSE  Quartets MSE

Climate 1.00 1.02 1.03
Energy 0.34 0.30 0.27
Public 1.27 1.21 1.24
Traffic 0.19 0.18 0.18
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Table 20: Using triplets of experts to approximate best performing expert pairs. Given two TSF-
N experts: el and e and a single TSF-T expert ey, we evaluate the performance of the pairs:
(el,et) and (e2, eq) and of the triplet (e}, €2, e;). We report the average MSE of the two pairs and
compare it to the MSE of the respective triplet. The MSE of triplets of experts fused with our gating

architecture, consistently surpasses the pair MSE average.

Domain | e el e2 | Avg. Pair MSE | Avg. Triplet MSE

DLinear  Informer 0.24 0.22
Agriculture | GPT3.5 DLinear PatchTST 0.10 0.09
Informer PatchTST 0.23 0.15
DLinear  Informer 0.99 1.03
Climate GPT3.5 DLinear PatchTST 1.00 1.00
Informer PatchTST 1.01 1.01
DLinear Informer 0.30 0.13
Economy GPT3.5 DLinear PatchTST 0.03 0.02
Informer PatchTST 0.29 0.11
DLinear  Informer 0.38 0.36
Energy GPT3.5 DLinear PatchTST 0.31 0.27
Informer PatchTST 0.34 0.27
DLinear  Informer 1.32 1.29
Public Health | GPT3.5 DLinear PatchTST 1.27 1.15
Informer PatchTST 1.22 1.19

DLinear  Informer 117.45 113.45

Security GPT3.5 DLinear PatchTST 108.22 108.43

Informer PatchTST 119.53 116.54
DLinear  Informer 0.93 0.83
Social Good | GPT3.5 DLinear PatchTST 0.98 0.98
Informer PatchTST 0.90 0.89
DLinear  Informer 0.19 0.17
Traffic GPT3.5 DLinear PatchTST 0.20 0.19
Informer PatchTST 0.18 0.18

Table 21: Comparison of TimeMMD and GMM-TS in the offline pre-training and joint training
regimes. We report the average MSE for each domain, across experts combinations and horizon
lengths. For each domain, the best MSE is highlighted in bold. The second-best MSE is underlined.

Domain TimeMMD GMM-TS with GMM-TS with
Offline Pretraining  Joint Training
Agriculture 0.11 0.10 0.09
Climate 1.15 1.19 1.02
Economy 0.04 0.02 0.02
Energy 0.29 0.28 0.27
Environment 0.47 0.48 0.41
Public Health 1.46 1.56 1.17
Security 112.28 112.28 110.30
Social Good 1.09 1.01 0.95
Traffic 0.21 0.20 0.19
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Table 22: MSE of Different TSF-N and TSF-T multi-expert combinations across domains, when
using the direct, latent and hierarchical aggregation methods. Abbreviations: D (DLinear), I (In-
former), P (PatchTST), R (Reformer). For each combination (row), we highlight the best performing
aggregation in bold.

Domain TSF-T TSF-N Direct Agg. Hierarchical Agg. Latent Agg.
I R P
+ + + 0.22 0.26 1.29
Economy GPT3.5 + + + 0.16 0.21 1.40
+ + + 0.12 0.16 1.00
+ + 0.35 0.36 0.31
Energy GPT3.5 + + + 0.29 0.30 0.32
+ + + 0.29 0.29 0.28
+ + 1.30 1.27 1.31
Public Health GPT3.5 + + + 1.19 1.18 1.28
+ + + 1.22 1.17 1.28
+ + 114.04 116.96 127.78
Security GPT3.5 + + + 117.32 119.01 128.10
+ + o+ 115.50 114.07 127.47
+ + 0.86 0.84 0.86
SocialGood  GPT3.5 + + o+ 0.85 0.86 0.82
+ 4+ o+ 0.85 0.90 0.85
+ + 0.18 0.18 0.18
Traffic GPT3.5 + + o+ 0.18 0.17 0.18
+ + + + 0.17 0.17 0.18
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Table 23: MSE of Different TSF-N and TSF-T experts pairs across domains, when using the direct
and latent aggregation methods.

Domain | TSF-T TSF-N | Direct Agg. Latent Agg.

DLinear 0.03 0.77

FiLM 0.02 8.26

Economy GPT3.5 Informer 0.56 1.03
PatchTST 0.02 8.02

Reformer 0.28 1.43

DLinear 0.35 0.30

FiLM 0.35 1.05

Energy GPT3.5 Informer 0.41 0.30

PatchTST 0.27 1.10

Reformer 0.43 0.27

DLinear 1.36 1.58

FiLM 1.33 1.54

Public Health | GPT3.5 Informer 1.28 1.34
PatchTST 1.17 1.52

Reformer 1.22 1.23

DLinear 106.14 123.64

FiLM 110.22 133.50

Security GPT3.5 Informer 128.76 128.96

PatchTST 110.30 132.81

Reformer 122.48 128.40

DLinear 1.01 0.90

FiLM 1.03 1.85

SocialGood | GPT3.5 Informer 0.85 0.84
PatchTST 0.95 1.84

Reformer 0.96 0.90

DLinear 0.21 0.27

FiLM 0.19 1.22

Traffic GPT3.5 Informer 0.17 0.19

PatchTST 0.19 1.06

Reformer 0.20 0.20
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Table 24: MSE of Different TSF-N and TSF-T experts pairs for representative domains, when vary-
ing on the gating dimension.

Domain TSF-T TSF-N Gating Dim.
128 256 512

DLinear 0.03 0.03 0.03

FiLM 0.03 0.02 0.02

Economy GPT3.5 Informer 0.55 0.56 0.61
PatchTST  0.02 0.02 0.02

Reformer  0.40 0.28 0.33

DLinear 0.35 0.35 0.35

FiLM 0.35 0.35 0.35

Energy GPT3.5 Informer 0.36 0.41 0.37
PatchTST  0.27 0.27 0.28

Reformer  0.46 0.43 0.45

DLinear 1.35 1.36 1.37
FiLM 1.34 1.33 1.31
Public Health GPT3.5 Informer 1.22 1.28 1.27
PatchTST 1.17 1.17 1.17
Reformer 1.26 1.22 1.22

DLinear 106.36 106.14 106.67

FiLM 108.89 110.22  109.35

Security GPT3.5 Informer 126.75 128.76 128.18
PatchTST 11040 110.30 112.06

Reformer 120.61 12248 119.97

DLinear 1.01 1.01 1.02

FiLM 1.02 1.03 1.03

SocialGood  GPT3.5 Informer 0.82 0.85 0.84
PatchTST 1.02 0.95 0.98

Reformer 0.93 0.96 0.92

DLinear 0.20 0.21 0.20

FiLM 0.20 0.19 0.20

Traffic GPT3.5 Informer 0.17 0.17 0.18
PatchTST 0.19 0.19 0.20

Reformer 0.20 0.20 0.20

TSF-N Expert  Adaptive Gating (ours) MSE  Fixed Weight Matrix MSE  Increase (%)

DLinear 10.4477 16.2892 55.9
Informer 21.9498 37.0470 68.7
PatchTST 21.3438 35.3823 65.7
Reformer 20.8385 35.0916 68.4

Table 25: Average performance degradation when removing dynamic gating, grouped by TSF-N expert. Val-
ues are averaged across all domains, horizons, and gating dimensions.

Domain Adaptive Gating (ours) MSE  Fixed Weight Matrix MSE  Increase (%)
Economy 0.0255 0.3324 1272.8
Energy 0.3067 0.5885 114.6
Public Health 1.0539 1.2248 16.2
Security 106.9026 116.0750 8.6
SocialGood 0.8839 1.1521 31.1
Traffic 0.1724 0.3292 92.7

Table 26: Average performance degradation when removing dynamic gating, grouped by domain. Values are
averaged across all TSF-N experts, horizons, and gating dimensions.
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Pred Len Gating Dim TSF-N Expert TSF-T Expert Regular MSE  Ablation MSE  Increase (%)
12 32 DLinear GPT-3.5 0.1661 0.5063 204.9
12 32 Informer GPT-3.5 0.1661 0.4866 193.0
12 32 Reformer GPT-3.5 0.1661 0.4770 187.3
12 64 DLinear GPT-3.5 0.1418 0.5024 254.3
12 64 Informer GPT-3.5 0.1418 0.4627 226.3
12 64 Reformer GPT-3.5 0.1418 0.4813 2394
24 32 DLinear GPT-3.5 0.2816 0.5808 106.2
24 32 Informer GPT-3.5 0.2816 0.5606 99.1
24 32 Reformer GPT-3.5 0.2816 0.5343 89.7
24 64 DLinear GPT-3.5 0.2435 0.5811 138.7
24 64 Informer GPT-3.5 0.2435 0.5887 141.8
24 64 Reformer GPT-3.5 0.2435 0.5260 116.0
36 32 DLinear GPT-3.5 0.3768 0.6420 70.4
36 32 Informer GPT-3.5 0.3768 0.5576 48.0
36 32 Reformer GPT-3.5 0.3768 0.6387 69.5
36 64 DLinear GPT-3.5 0.3367 0.6427 90.9
36 64 Informer GPT-3.5 0.3367 0.5836 73.3
36 64 Reformer GPT-3.5 0.3367 0.6551 94.5
48 32 DLinear GPT-3.5 0.4642 0.7467 60.8
48 32 Informer GPT-3.5 0.4642 0.6251 347
48 32 Reformer GPT-3.5 0.4642 0.7196 55.0
48 64 DLinear GPT-3.5 0.4429 0.7277 64.3
48 64 Informer GPT-3.5 0.4429 0.5887 329
48 64 Reformer GPT-3.5 0.4429 0.7077 59.8

Table 27: Comparison of Regular (Dynamic Gating) vs. Ablation (Fixed Weights) performance for the Energy

domain. Increase (%) is relative to the lower MSE in each row.
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Pred Len Gating Dim  TSF-N Expert

TSF-T Expert Regular MSE  Ablation MSE

Increase (%)

6 32 DLinear

6 32 Informer
6 32 PatchTST
6 32 Reformer
6 64 DLinear

6 64 Informer
6 64 PatchTST
6 64 Reformer
8 32 DLinear

8 32 Informer
8 32 PatchTST
8 32 Reformer
8 64 DLinear

8 64 Informer
8 64 PatchTST
8 64 Reformer
10 32 DLinear

10 32 Informer
10 32 PatchTST
10 32 Reformer
10 64 DLinear

10 64 Informer
10 64 PatchTST
10 64 Reformer
12 32 DLinear

12 32 Informer
12 32 PatchTST
12 32 Reformer
12 64 DLinear

12 64 Informer
12 64 PatchTST
12 64 Reformer

GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5

102.9655
102.9655
102.9655
102.9655
102.9404
102.9404
102.9404
102.9404
106.5003
106.5003
106.5003
106.5003
106.3534
106.3534
106.3534
106.3534
108.5963
108.5963
108.5963
108.5963
108.8987
108.8987
108.8987
108.8987
109.1500
109.1500
109.1500
109.1500
109.8162
109.8162
109.8162
109.8162

103.8636
121.5132
111.9161
118.0281
103.9616
124.6346
109.7373
122.8363
107.1156
123.6434
111.4629
118.8497
106.9893
124.0805
115.4039
121.4953
108.4725
126.5977
111.6489
121.0557
108.7955
124.6307
112.8046
119.8280
109.5859
126.2477
111.6083
119.4546
109.6190
126.3826
111.4675
120.6683

0.9
18.0
8.7
14.6
1.0
21.1
6.6
19.3
0.6
16.1
4.7
11.6
0.6
16.7
8.5
14.2
-0.1
16.6
2.8
11.5
-0.1
14.4
3.6
10.0
0.4
15.7
23
9.4
-0.2
15.1
L5
9.9

Table 28: Comparison of Regular (Dynamic Gating) vs. Ablation (Fixed Weights) performance for the Secu-
rity domain. Increase (%) is relative to the lower MSE in each row.
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Pred Len Gating Dim  TSF-N Expert

TSF-T Expert Regular MSE  Ablation MSE

Increase (%)

6 32
6 32
6 32
6 32
6 64
6 64
6 64
6 64
8 32
8 32
8 32
8 32
8 64
8 64
8 64
8 64
10 32
10 32
10 32
10 32
10 64
10 64
10 64
10 64
12 32
12 32
12 32
12 32
12 64
12 64
12 64

DLinear
Informer
PatchTST
Reformer
DLinear
Informer
PatchTST
Reformer
DLinear
Informer
PatchTST
Reformer
DLinear
Informer
PatchTST
Reformer
DLinear
Informer
PatchTST
Reformer
DLinear
Informer
PatchTST
Reformer
DLinear
Informer
PatchTST
Reformer
DLinear
Informer
Reformer

GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5

0.8799
0.8799
0.8799
0.8799
0.7651
0.7651
0.7651
0.7651
0.8746
0.8746
0.8746
0.8746
0.7844
0.7844
0.7844
0.7844
0.9079
0.9079
0.9079
0.9079
0.9176
0.9176
0.9176
0.9176
1.0539
1.0539
1.0539
1.0539
0.8885
0.8885
0.8885

1.1646
1.0627
1.0628
1.1150
1.1622
1.0272
1.1044
1.1496
1.1247
1.0171
1.0835
1.0778
1.1433
1.0262
1.1089
1.1822
1.2049
1.0918
1.1613
1.2347
1.2457
1.1427
1.1702
1.1758
1.2804
1.2125
1.2227
1.2481
1.2716
1.1966
1.2434

324
20.8
20.8
26.7
51.9
343
44.3
50.2
28.6
16.3
239
232
45.8
30.8
41.4
50.7
32.7
20.3
279
36.0
35.8
24.5
27.5
28.1
21.5
15.0
16.0
18.4
43.1
34.7
39.9

Table 29: Comparison of Regular (Dynamic Gating) vs. Ablation (Fixed Weights) performance for the So-
cialGood domain. Increase (%) is relative to the lower MSE in each row.
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Pred Len

Gating Dim  TSF-N Expert

TSF-T Expert

Regular MSE  Ablation MSE

Increase (%)

— = =
COOCOCOO RXPXORORXXANDNDNDNAND

12

32
32
32
64
64

DLinear
Informer
Reformer

DLinear
Informer
Reformer

DLinear
Informer
Reformer

DLinear
Informer
Reformer

DLinear
Informer
Reformer

DLinear
Informer
Reformer

DLinear
Informer
Reformer

DLinear
Informer
Reformer

GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5
GPT-3.5

0.1644
0.1644
0.1644
0.1632
0.1632
0.1632
0.1632
0.1632
0.1632
0.1571
0.1571
0.1571
0.1597
0.1597
0.1597
0.1609
0.1609
0.1609
0.2133
0.2133
0.2133
0.1978
0.1978
0.1978

0.3221
0.2908
0.3205
0.3197
0.3452
0.3127
0.3040
0.2954
0.3330
0.3054
0.2955
0.3295
0.3586
0.3128
0.3658
0.3462
0.3605
0.3432
0.3457
0.3120
0.3555
0.3491
0.3464
0.3302

95.9
76.8
94.9
96.0
111.6
91.7
86.3
81.0
104.0
94.4
88.1
109.7
124.5
95.8
129.0
115.2
124.0
113.3
62.1
46.3
66.7
76.5
752
67.0

Table 30: Comparison of Regular (Dynamic Gating) vs. Ablation (Fixed Weights) performance for the Traffic

domain. Increase (%) is relative to the lower MSE in each row.
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Pred Len Gating Dim  TSF-N Expert TSF-T Expert Regular MSE  Ablation MSE  Increase (%)
6 32 DLinear GPT-3.5 0.0361 0.1671 363.0
6 32 Informer GPT-3.5 0.0361 0.4357 1107.6
6 32 PatchTST GPT-3.5 0.0361 0.2201 510.1
6 32 Reformer GPT-3.5 0.0361 0.3776 946.6
6 64 DLinear GPT-3.5 0.0234 0.1635 599.3
6 64 Informer GPT-3.5 0.0234 0.5500 2252.5
6 64 PatchTST GPT-3.5 0.0234 0.2192 837.3
6 64 Reformer GPT-3.5 0.0234 0.3794 1522.6
8 32 DLinear GPT-3.5 0.0227 0.1256 452.4
8 32 Informer GPT-3.5 0.0227 0.4609 1926.8
8 32 PatchTST GPT-3.5 0.0227 0.2291 907.6
8 32 Reformer GPT-3.5 0.0227 0.3762 1554.3
8 64 DLinear GPT-3.5 0.0194 0.1284 562.2
8 64 Informer GPT-3.5 0.0194 0.5394 2680.8
8 64 PatchTST GPT-3.5 0.0194 0.2291 1081.0
8 64 Reformer GPT-3.5 0.0194 0.4447 21924
10 32 DLinear GPT-3.5 0.0331 0.1807 446.5
10 32 Informer GPT-3.5 0.0331 0.5878 1677.9
10 32 PatchTST GPT-3.5 0.0331 0.2267 585.7
10 32 Reformer GPT-3.5 0.0331 0.3685 1014.4
10 64 DLinear GPT-3.5 0.0281 0.1814 544.9
10 64 Informer GPT-3.5 0.0281 0.6743 2297.8
10 64 PatchTST GPT-3.5 0.0281 0.2223 690.4
10 64 Reformer GPT-3.5 0.0281 0.2628 834.4
12 32 DLinear GPT-3.5 0.0215 0.1491 594.8
12 32 Informer GPT-3.5 0.0215 0.5631 2523.3
12 32 PatchTST GPT-3.5 0.0215 0.2240 943.7
12 32 Reformer GPT-3.5 0.0215 0.6273 2822.5
12 64 DLinear GPT-3.5 0.0199 0.1500 654.8
12 64 Informer GPT-3.5 0.0199 0.6402 3120.5
12 64 PatchTST GPT-3.5 0.0199 0.2332 1073.2
12 64 Reformer GPT-3.5 0.0199 0.2996 1407.4

Table 31: Comparison of Regular (Dynamic Gating) vs. Ablation (Fixed Weights) performance for the Econ-
omy domain. Increase (%) is relative to the lower MSE in each row.

Expert Parameters | 1 layer | 2 layers | 4 layers | 6 layers | 8 layers
Informer | pred_len=8 N/A 0.5063 | 0.4339 | 0.4500 | 0.4761
Informer | pred_len=10 | 0.4097 | 0.4510 | 0.4853 | 0.3493 | 0.4279
PatchTST | pred_len=8 | 0.0325 | 0.0411 | 0.0380 | 0.0220 | 0.0425
PatchTST | pred_len=10 | 0.0232 | 0.0285 | 0.0287 | 0.0376 | 0.0260

Table 32: Transformer layer ablation results for the Economy domain (Informer & PatchTST). Bold
marks the lowest MSE in each row.

Expert Parameters | 1layer | 2 layers | 4 layers | 6 layers | 8 layers
Informer | pred_len=12 | 0.3260 | 0.1907 | 0.1594 | 0.1881 | 0.2574
Informer | pred_len=24 | 0.4247 | 0.3922 | 0.4201 | 0.3983 | 0.2654
PatchTST | predlen=12 | 0.1128 | 0.1418 | 0.1174 | 0.1206 | 0.1237
PatchTST | pred_len=24 | 0.2410 | 0.2435 | 0.2659 | 0.2686 | 0.2542

Table 33: Transformer layer ablation results for the Energy domain (Informer & PatchTST). Bold
marks the lowest MSE in each row.

Expert Parameters | 1layer | 2 layers | 4 layers | 6 layers | 8 layers
Informer | pred.len=8 | 0.1882 | 0.1571 | 0.1549 | 0.1667 | 0.1569
Informer | pred_len=10 | 0.1643 | 0.1609 | 0.1851 | 0.1693 | 0.1489
PatchTST | pred_len=8 | 0.1782 | 0.1845 | 0.1847 | 0.1718 | 0.1766
PatchTST | pred_len=10 | 0.1870 | 0.1787 | 0.1724 | 0.1824 | 0.1809

Table 34: Transformer layer ablation results for the Traffic domain (Informer & PatchTST). Bold
marks the lowest MSE in each row.
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Expert Parameters | 1 layer | 2 layers | 4 layers | 6 layers | 8 layers
Informer | pred_len=8 | 0.9227 | 0.7844 | 0.8052 | 1.0007 | 0.7681
Informer | pred_len=10 | 1.0562 | 0.9176 | 0.9045 | 0.8398 | 0.8529
PatchTST | pred_len=8 | 0.9009 | 1.1113 | 0.9324 | 1.0164 | 0.9702
PatchTST | pred_len=10 | 1.0660 | 1.0337 | 1.0652 | 1.0102 | 1.0635

Table 35: Transformer layer ablation results for the SocialGood domain (Informer & PatchTST).
Bold marks the lowest MSE in each row.

Expert Parameters 1 layer 2 layers 4 layers 6 layers 8 layers
Informer | pred_len=8 | 126.2790 | 124.4728 | 125.0367 | 125.0563 | 124.1039
Informer | pred_len=10 | 128.3774 | 124.4344 | 126.1757 | 125.5975 | 123.1289
PatchTST | pred_len=8 | 108.5710 | 110.1942 | 106.7579 | 107.7070 | 109.8315
PatchTST | pred_len=10 | 110.4228 | 111.2761 | 116.8383 | 109.8659 | 110.2220

Table 36: Transformer layer ablation results for the Security domain (Informer & PatchTST). Bold
marks the lowest MSE in each row.

Expert Parameters | 1 layer | 2 layers | 4 layers | 6 layers | 8 layers
Informer | pred_len=12 | 1.0751 | 1.1408 | 0.9890 | 1.0783 | 1.0172
Informer | pred_len=24 | 1.3870 | 1.2082 | 1.3260 | 1.2612 | 1.2829
PatchTST | pred_len=12 | 0.8575 | 0.8395 | 0.8465 | 0.7999 | 0.7931
PatchTST | pred_len=24 | 1.1809 | 1.1338 | 1.1341 | 1.2042 | 1.1350

Table 37: Transformer layer ablation results for the Public Health domain (Informer & PatchTST,
pred_len = 12, 24). Bold marks the lowest MSE in each row.

Domain 1 layer 2 layers 4 layers 6 layers 8 layers
Economy 0.1551 0.1779 0.2465 0.2147 0.2431
Energy 0.2761 0.3639 0.2407 0.2439 0.2252
Public Health ~ 1.2325 1.0806 1.0742 1.0859 1.0571
Security 118.4126 114.5918 118.7021 117.0567 116.8216
SocialGood 0.9865 0.9764 0.9268 0.9668 0.9137
Traffic 0.1794 0.1897 0.1743 0.1725 0.1659

Table 38: Average MSE across all tested configurations for each number of Transformer layers in
the gating module, by domain (Informer & PatchTST only). Bold marks the lowest average per
domain.
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