

000 001 002 003 004 005 GMM-TS: GATING ARCHITECTURE FOR MULTI- 006 MODAL TIME SERIES FORECASTING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Forecasting future trends in complex domains often requires leveraging diverse data sources beyond traditional numerical time series. However, integrating heterogeneous data types into a unified forecasting framework remains an underexplored challenge. Existing multi-modal time series forecasting approaches often employ static and simplistic fusion mechanisms or yield non-interpretable representations with a limited modularity. We propose GMM-TS, a learnable gating architecture, inspired by mixture-of-experts, which dynamically integrates predictions from multiple uni-modal experts, each specialized in a distinct modality (e.g., text or numerical signals). Our method computes per-time-step expert weights using a Transformer Encoder. This enables fine-grained, interpretable fusion of multiple experts (two or more) and supports both joint and offline training modes. Extensive evaluations show that GMM-TS consistently outperforms state-of-the-art baselines across nine domains, multiple forecast horizons, and various expert configurations. We also include, for the first time, to the best of our knowledge, the option to integrate more than two experts. Our framework is efficient, extensible, and inherently interpretable. Code will be released upon acceptance.

1 INTRODUCTION

Forecasting future trends from time series data is a fundamental challenge across domains such as finance, healthcare, climate modeling, and transportation (e.g., Choi et al. (2022); Castán-Lascorz et al. (2022)). Traditional models—ranging from ARIMA and exponential smoothing to deep learning methods—primarily operate on numerical inputs and assume that past observations are sufficient to predict the future (Lim & Zohren, 2021). Yet, in many real-world scenarios, critical contextual information resides in other modalities: textual reports (Liu et al., 2024a), event logs (Hong et al., 2024), or visual summaries (Daswani et al., 2024) often contain signals that precede or explain changes in time series trends. This motivates the development of forecasting systems that can effectively leverage multi-modal inputs.

Recent work has begun to explore multi-modal time series forecasting (TSF). TimeMMD (Liu et al., 2024a) introduced a multi-domain benchmark and a plug-and-play architecture for combining numerical and textual signals which relies on a fixed, manually tuned weight during inference. GPT4MTS (Jia et al., 2024) takes a different approach, proposing a soft-prompting strategy that jointly encodes numerical and textual input within a GPT-2 decoder. While these approaches highlight the potential of multi-modal inputs, they suffer from key limitations. First, their fusion mechanisms are either fixed (e.g., static weights) or implicit (e.g., prompting within LLMs), offering no clear way to adapt to the input or interpret how modalities contribute to the prediction. Second, they lack modularity: they do not support flexible configuration of forecasting models, making it difficult to swap, mix, or scale expert architectures. Finally, they are restricted to binary fusion, preventing the integration of more than two experts or modalities. These shortcomings limit their practical utility in diverse, evolving real-world forecasting settings.

Recent surveys (Liang et al., 2024) identify a core limitation of current multi-modal TSF methods: the absence of a clear, learnable mechanism for effectively fusing heterogeneous data sources in an interpretable and adaptive manner. We address this challenge with **GMM-TS**, a modular gating architecture that enables dynamic and interpretable fusion of multiple uni-modal TSF models (“experts”). At each forecast step, the model predicts expert-specific weights conditioned on a com-

054 bination of expert latents, a learnable gating token, and the raw input. This design allows GMM-TS
 055 to adaptively prioritize the most relevant experts over time while enhancing their joint performance.
 056

057 GMM-TS is uniquely flexible, supporting fusion over arbitrary sets of experts (e.g., triplets, quartets)
 058 spanning different modalities, and accommodates both end-to-end joint training and offline expert
 059 pre-training for efficient reuse across tasks and domains. Our approach is motivated by Mixture-
 060 of-Experts (MoE) principles (Jacobs et al., 1991), where uni-modal inputs are used to assign single
 061 weights to architecturally identical experts. However, unlike conventional MoE architectures, which
 062 are not directly suited for multi-modal TSF, GMM-TS introduces a novel gating mechanism tailored
 063 to heterogeneous inputs and expert types, learning from both raw inputs and intermediate expert
 064 representations.

065 We evaluate GMM-TS on the TimeMMD benchmark across nine domains, four forecast horizons,
 066 and multiple expert combinations. Our method outperforms strong baselines, including TimeMMD
 067 and GPT4MTS, across all tested settings. Experiments demonstrate the benefit of our fusion strategy,
 068 including superior performance when aggregating more than two experts. Ablation studies validate
 069 the robustness of the gating mechanism, comparing alternative aggregation strategies (e.g., latent and
 070 hierarchical fusion) and varying the gating dimension. Finally, the gating network produces explicit
 071 per-expert weight distributions per time step, offering fine-grained interpretability for downstream
 072 analysis or decision support.

073 In summary, our main contributions are:

- 074 • We propose **GMM-TS**, a **Transformer-based gating architecture for multi-modal time series**
 075 **forecasting** that learns to dynamically weigh predictions from any number of uni-modal experts.
- 076 • We show that GMM-TS **outperforms state-of-the-art multi-modal and uni-modal baselines**
 077 across domains, horizons, and expert configurations, including settings with three or more ex-
 078 perts.
- 079 • We demonstrate the **interpretability and flexibility** of our approach, offering explicit per-expert
 080 attribution and support for both joint and offline training strategies.

082 2 RELATED WORK

084 **Uni-modal time series forecasting.** Time series forecasting (TSF) has been extensively studied
 085 in the uni-modal setting, where models rely solely on numerical inputs. Classical statistical meth-
 086 ods such as ARIMA (Nelson, 1998) and exponential smoothing have been widely used, but recent
 087 progress has been driven by deep learning architectures such as MLPs (Yi et al., 2024; Chen et al.,
 088 2023), temporal CNNs (Wu et al., 2023), and Transformer-based models (Nie et al., 2022b; Kitaev
 089 et al., 2020; Zhou et al., 2021; Wu et al., 2021b; Zhou et al., 2022c). These methods assume that
 090 future behavior can be inferred solely from past numerical values, which limits their effectiveness
 091 in complex, event-driven domains.

092 **Multi-modal time series forecasting.** To address these limitations, recent work has explored in-
 093 incorporating additional modalities. Among peer-reviewed efforts, TimeMMD (Liu et al., 2024a) and
 094 GPT4MTS (Jia et al., 2024) remain the only systems, to the best of our knowledge, that combine
 095 numerical and textual signals for time series forecasting. Notably Liu et al. (2024b) highlighted ex-
 096ogenous multi-modal TSF as an *emerging research direction*, with limited existing work - a gap our
 097 paper directly addresses. TimeMMD provides a benchmark and a plug-and-play architecture with
 098 a modular expert selection. However, its fusion mechanism is static (fixed weight) and not input-
 099 adaptive and it is limited to using only two experts: one numerical and one textual. GPT4MTS
 100 adapts a GPT2 decoder with soft prompts to jointly encode text and numeric features, offering an
 101 end-to-end architecture but lacking modularity and interpretability.

102 We distinguish the challenge of fusing *exogenous modalities*, such as numerical time series and
 103 text descriptions of events, from the fusion of a time series with representations derived from it.
 104 The former is the focus of our work and of works like GPT4MTS and TimeMMD, while the latter
 105 represents a different class of fusion problems. An example for non-exogenous multi-modal TSF
 106 is Time-VLM (Zhong et al., 2025), a recently introduced tri-modal fusion approach using vision-
 107 language models to process time series plots derived from numerical time series. We note that
 Time-VLM employs shallow concatenation for fusion and does not support dynamic, per-time-step

108 weighting, or modular expert setup (replacing and adding experts), in contrast to our proposed gating
 109 mechanism. For a detailed comparison with prior methods, see Table 6 in Appendix A.
 110

111 **Mixture-of-Experts and gating.** Our method builds on Mixture-of-Experts (MoE) concepts (Ja-
 112 cobs et al., 1991), where a gating network assigns input-specific weights to expert predictions. While
 113 early MoE models used homogeneous expert sets, more recent variants such as MERA (Zhou et al.,
 114 2025) use retrieval-augmented gating to model diversified behaviors in numerical stock prediction.
 115 However, MERA is limited to uni-modal inputs and lacks per-expert interpretability. Our proposed
 116 architecture generalizes these ideas to the multi-modal setting by supporting heterogeneous experts,
 117 combining raw input tokens and expert latents via Transformer-based attention, and producing ex-
 118 plicit, interpretable weights for each expert and forecast step.
 119

120 3 METHOD

121 We present **GMM-TS**, a Transformer-based gating architecture for multi-modal time series fore-
 122 casting. Here, “gating” refers to the adaptive weighting mechanism inspired by Mixture-of-Experts
 123 (MoE) models Jacobs et al. (1991); Shazeer & et al. (2017). GMM-TS combines predictions from
 124 individual expert models, where each expert specializes in processing either numerical time series
 125 data (TSF-N) or textual data (TSF-T). As shown in Fig. 1, our model learns to assign per-time-step
 126 weights to each expert’s prediction based on both the raw numerical input (i.e., values observed
 127 before the forecast horizon) and the latent representations learned by the experts. The uni-modal
 128 experts and the gating network are jointly trained in an end-to-end fashion.
 129

130 This joint optimization enables the experts to specialize in ways that are informed by the gating dy-
 131 namics, in contrast to prior multi-modal TSF methods which rely on staged training or static fusion
 132 rules. We further explore alternative fusion strategies and training configurations in Section 4.3, and
 133 analyze their impact through ablation studies in Section 4.4.
 134

135 3.1 UNI-MODAL TSF EXPERTS

136 We formulate the time series forecasting (TSF) task as predicting a sequence of future values $Y \in$
 137 $\mathbb{R}^{p \times d_Y}$ after a reference time point t^* , based on observations collected prior to t^* . Here, p denotes
 138 the forecast horizon (i.e., number of future time steps), and d_Y is the dimensionality of the target
 139 variable at each step. Following the widely adopted channel independence assumption Nie et al.
 140 (2022b), we set $d_Y = 1$ and treat each target variable independently, such that $Y \in \mathbb{R}^p$.
 141

142 Input observations may come from a variety of modalities, including numerical, textual, or visual
 143 signals. In this work, we focus on numerical and textual inputs, but our framework generalizes to
 144 other modalities. We refer to experts trained on numerical time series as *TSF-N experts*, and those
 145 trained on textual time series as *TSF-T experts*.
 146

147 **TSF-N experts.** A TSF-N expert processes a multivariate numerical time series $X_n \in \mathbb{R}^{l_n \times d_n}$,
 148 where l_n is the lookback window (number of past time steps), and d_n is the number of variables. A
 149 typical TSF-N model operates in two stages (illustrated in Fig. 1, top left):
 150

$$h_n = B_n(X_n), \quad Y = f_n(h_n) \quad (1)$$

151 where B_n is a neural backbone that encodes the input into a latent representation h_n , and f_n is a fully
 152 connected head that outputs the forecast. Common choices for B_n include temporal convolutional
 153 networks, MLPs, and attention-based models such as Transformers Wang et al. (2024); Nie et al.
 154 (2022b); Wu et al. (2021b). TSF-N experts are trained end-to-end using supervised loss on the
 155 prediction error.
 156

157 **TSF-T experts.** Text-based forecasting models, or TSF-T experts, operate on sequences of textual
 158 inputs that describe temporal dynamics. Let $X_t = [x_t^1, \dots, x_t^{l_t}]$ denote a sequence of text obser-
 159 vations collected prior to forecast time t^* , where l_t is the textual lookback window. Following the
 160 formulation introduced in the TimeMMD framework Liu et al. (2024a), we use a frozen large lan-
 161 guage model (LLM) LM that is prompted to summarize the textual history and produce a forecast
 162 embedding. Specifically, the LLM processes the prompt to generate a representation h_t^{LM} , which

162 is then projected into a task-specific latent space by an MLP B_t , and decoded by a fully connected
 163 layer f_t :

$$h_t^{LM} = LM(X_t), \quad h_t = B_t(h_t^{LM}), \quad Y = f_t(h_t) \quad (2)$$

166 Only B_t and f_t are trained; the LLM LM remains frozen. This design enables efficient adaptation
 167 to forecasting tasks through lightweight training, while leveraging rich pretrained representations
 168 via prompting. The TSF-T expert architecture is illustrated in Fig. 1 (bottom left).

169 3.2 MULTI-MODAL TSF VIA GATED FUSION OF UNI-MODAL EXPERT PREDICTIONS

171 3.2.1 MODEL ARCHITECTURE

173 Our architecture is composed of uni-modal experts and a Transformer-based gating network, as
 174 illustrated in Fig. 1. Let $E_n = \{e_n^i\}_{i=1}^{k_n}$ and $E_t = \{e_t^i\}_{i=1}^{k_t}$ denote sets of TSF-N and TSF-T experts,
 175 respectively (shown in blue and orange in Fig. 1). Let $E = E_n \cup E_t$ be the complete set of uni-
 176 modal experts. Our goal is to learn a dynamic, input-dependent fusion strategy that combines expert
 177 predictions to maximize forecasting accuracy.

178 Given a pair of inputs (X_n, X_t) a numerical and textual time series—we extract latent represen-
 179 tations from each expert in E_n and E_t , yielding two sets of embeddings: $H_n = \{h_n^i\}_{i=1}^{k_n}$ and
 180 $H_t = \{h_t^i\}_{i=1}^{k_t}$. Since the latent representations from each expert may differ in dimension, we
 181 project them into a shared latent space of dimension d_m using expert-specific fully connected layers
 182 f_e , for each $e \in E$. These projected embeddings, shown in dark green in Fig. 1, form the unified
 183 set:

$$H_m = \{h_m^i\}_{i=1}^{|E|}, \quad h_m^i \in \mathbb{R}^{d_m}$$

185 We concatenate the projected vectors into a matrix $H_s \in \mathbb{R}^{d_m \times |E|}$, where each column corresponds
 186 to one expert. To this matrix, we prepend two additional inputs:

- 190 • An *input token* $x \in \mathbb{R}^{d_m}$, representing the raw numerical input X_n , processed via patching,
 191 temporal and positional encoding, average pooling, and projection (visualized in pink in Fig. 1);
- 192 • A learnable *gating token* $g \in \mathbb{R}^{d_m}$, which controls the expert weighting process (shown in light
 193 green in Fig. 1).

195 The full sequence fed to the gating module is $S = [g, x, H_s]^\top \in \mathbb{R}^{(|E|+2) \times d_m}$, where the transpose
 196 ensures token-major format. We apply a Transformer Encoder to S , which uses multi-head self-
 197 attention to model interactions between experts, input signals, and the gating context. Let $g_o \in \mathbb{R}^{d_m}$
 198 denote the output at the position corresponding to the gating token.

199 We pass g_o through an MLP head followed by a Softmax to obtain a weight matrix $W \in \mathbb{R}^{p \times |E|}$,
 200 where each row $W[t]$ represents the expert weight distribution at forecast step t . Let $Y_E \in \mathbb{R}^{p \times |E|}$
 201 denote the predictions from all experts. The final forecast is computed as a weighted sum across
 202 experts at each time step:

$$Y[t] = \sum_{j=0}^{|E|-1} W[t, j] \cdot Y_E[t, j], \quad \text{for } t = 0, \dots, p-1 \quad (3)$$

208 with $Y_E \in \mathbb{R}^{p \times |E|}$, the predictions made by the uni-modal experts in E .

210 3.2.2 TRAINING AND INFERENCE

212 We jointly train the uni-modal experts and the gating network in an end-to-end manner using the
 213 mean squared error (MSE) loss:

$$214 \text{MSE} = \frac{1}{N} \sum_{i=1}^N (y_i - \hat{y}_i)^2 \quad (4)$$

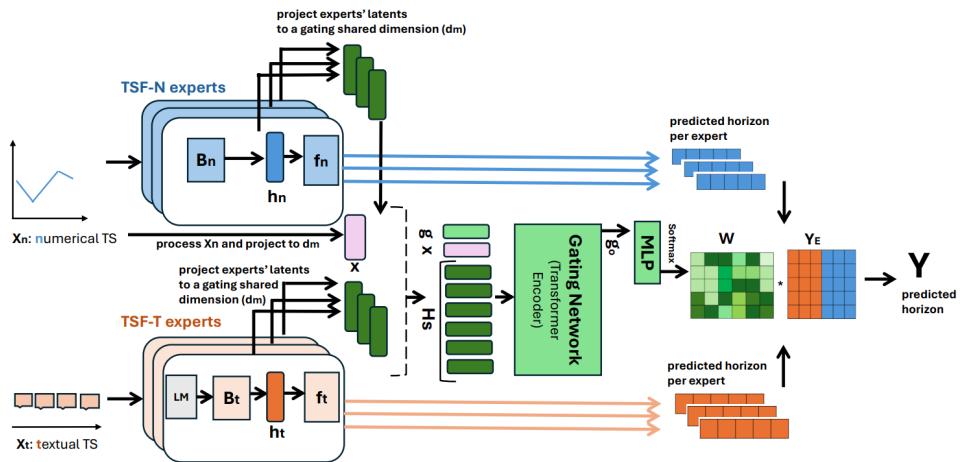


Figure 1: Overview of the GMM-TS architecture. TSF-N (numerical) and TSF-T (textual) experts (blue and orange, respectively) produce latent representations, which are projected into a shared latent space (dark green). A Transformer-based gating network fuses these latents, along with an input token (pink) summarizing the raw numerical input (time steps prior to the forecast horizon) and a learnable gating token (light green), to produce dynamic expert weights per forecast time step. The final prediction is a weighted sum over all expert outputs.

where N is the number of training examples, y_i is the ground-truth target, and \hat{y}_i is the predicted value for the i -th instance. For TSF-T experts, we freeze the pretrained LLM backbone and train only the downstream MLP projection and prediction layers.

During inference, given a new input pair (X_n, X_t) , we compute both latent representations and forecast outputs from all experts. These are passed to the gating network, which produces expert weights and aggregates the outputs into a final fused forecast as described in Section 3.2.1.

4 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of **GMM-TS**. Our experimental protocol and implementation details are described in Section 4.1.

Key findings: our comparative analysis (Section 4.2) shows that GMM-TS consistently outperforms state-of-the-art uni-modal and multi-modal baselines across a variety of domains. We also highlight its unique advantages (Section 4.3), including its ability to fuse more than two experts, support for efficient offline pretraining, and inherent interpretability through expert weighting (further discussed in Appendix D.3).

Ablations: we conduct ablations (Section 4.4) to validate key architectural choices: the aggregation method and adaptive approach of our gating module and the dimensionality of the shared latent space. These experiments collectively confirm GMM-TS’s robust design and versatility.

4.1 EXPERIMENTAL SETUP

We follow the experimental protocol established in prior TSF work Wu et al. (2021b); Zhou et al. (2022c); Liu et al. (2023), and adopt the benchmark design and preprocessing pipeline from TimeMMD Liu et al. (2024a). Experiments are conducted across all nine domains in the TimeMMD benchmark, each containing aligned numerical and textual time series. The goal is to forecast future numerical values using multimodal historical inputs.

Forecasting setup. Forecast horizons are chosen following standard TSF settings Wu et al. (2021a); Zhou et al. (2022b); Nie et al. (2022a). For **daily datasets**, we use horizons $\{48, 96, 192, 336\}$ with a lookback window of 96 and label length of 48. For **weekly datasets**, the horizons are $\{12, 24, 36, 48\}$, with lookback 36 and label length 18. For **monthly datasets**, we use $\{6, 8, 10, 12\}$, with lookback 8 and label length 4. Unless stated otherwise, we report results averaged across these horizons.

270 Each dataset consists of aligned numerical and textual time series. The textual signals vary in structure
 271 and semantics across domains: for instance, domains such as **Security**, **Traffic**, and
 272 **Energy** include structured log-style reports or alerts, while others like **Economy**, **Social Good**,
 273 and **Public Health** contain more descriptive event narratives or policy summaries. For detailed
 274 dataset statistics (rows, features per modality), see Appendix B.

275 **Expert models.** We evaluate five numerical forecasting models as TSF-N experts: **Transformer-based**:
 276 Reformer Kitaev et al. (2020), Informer Zhou et al. (2021), PatchTST Nie et al. (2022b);
 277 **MLP-based**: DLinear Zeng et al. (2023); and **architecture-agnostic**: FiLM Zhou et al. (2022a).
 278 These were selected to reflect a diversity of modeling strategies—ranging from lightweight MLPs
 279 to expressive attention-based architectures—providing complementary inductive biases and performance
 280 characteristics. For textual inputs, we use three pretrained LLMs—GPT-3.5, GPT-2 Small,
 281 and LLaMA-2—as TSF-T experts, chosen for their varied scale and encoder capacity. All LLM
 282 backbones are frozen during training, with only a task-specific MLP head fine-tuned, as described
 283 in Section 3. Prompt design follows the TimeMMD protocol to ensure consistency.

284 **Implementation details.** We optimize all models using Adam with early stopping for a maximum
 285 of 10 training epochs. The shared latent dimension of the gating module is set to $d_m = 256$. We
 286 apply early stopping on the validation loss, and empirically observe that all models converge within
 287 10 epochs across all datasets. We provide additional details in Appendix C.

289 4.2 COMPARATIVE ANALYSIS OF MULTI-MODAL TIME SERIES FORECASTING METHODS

290 **Baseline comparative analysis** We evaluate our framework across all 15 combinations of TSF-N
 291 and TSF-T expert pairs (5 numerical \times 3 textual models), tested across 4 forecasting horizons on
 292 each of the 9 TimeMMD domains, resulting in 540 experiments. The main multimodal baselines
 293 are **TimeMMD** Liu et al. (2024a) and **GPT4MTS** Jia et al. (2024). TimeMMD is structurally closer
 294 to our method, combining frozen LLMs with forecasting backbones via a fusion mechanism. In
 295 contrast, GPT4MTS employs a monolithic LLM and does not allow configuration of component
 296 models. For completeness, we evaluate GPT4MTS on the same datasets and horizons. We also include
 297 the standalone performance of each unimodal model to contextualize their contributions when
 298 used in multimodal combinations. Table 1 compares the mean squared error (MSE) of GMM-TS,
 299 GPT4MTS, TimeMMD, and a unimodal baseline, averaged across all forecast horizons. To ensure
 300 a fair comparison with GPT4MTS, we use the same numerical and textual backbones (PatchTST
 301 and GPT2) across all systems. GMM-TS achieves the best or comparable performance across all
 302 domains, outperforming both baselines in 8 out of 9 domains.

303 Table 1: Domain-wise forecasting error for different methods. Values are *aggregated domain-level averages*
 304 over all forecast horizons and relevant expert combinations. The lowest value per domain is highlighted in bold.
 305 Detailed results per-domain, per-horizon, per-expert are provided in Tables 8-16 for multi-modal (pairwise)
 306 experiments and in Tables 17-18 for uni-modal experiments (Appendix D.1 and D.2)

307 Domain	308 Unimodal	309 GPT4MTS	310 TimeMMD	311 GMM-TS
Agriculture	0.10	0.23	0.11	0.09
Climate	1.32	1.27	1.15	1.02
Economy	0.02	0.02	0.04	0.02
Energy	0.28	0.28	0.29	0.27
Environment	0.52	0.59	0.47	0.41
Public Health	1.61	1.96	1.46	1.17
Security	116.43	74.91	112.90	110.30
Social Good	1.14	1.13	0.99	0.95
Traffic	0.21	0.22	0.20	0.19

317 **Comparative analysis across expert pairs.** To further evaluate our gating mechanism, we conduct
 318 a detailed comparison with TimeMMD—the only baseline that supports configurable expert
 319 pairings. GPT4MTS is excluded from this analysis, as it does not support expert replacement.
 320 For each domain, forecast horizon, and expert pair, we compute the MSE for both GMM-TS and
 321 TimeMMD and define the performance gap as $\Delta = \text{MSE}_{\text{GMM-TS}} - \text{MSE}_{\text{TimeMMD}}$.
 322

323 Table 2 shows, for each domain, the number of expert-horizon combinations (out of 60) in which
 each method achieves a lower MSE. GMM-TS outperforms TimeMMD in the vast majority of set-

tings. Table 3 further summarizes the distribution of Δ values across all expert pairs, reporting the mean and standard deviation, and percentage of pairs where GMM-TS performs better. GMM-TS achieves lower MSE in all nine domains with notable gains ($\geq 5\%$ and up to 50%) for seven domains. These results highlight the effectiveness of our architecture in dynamically leveraging complementary signals from heterogeneous experts as well as the robustness and generality of our gating mechanism across domains and expert pairings.

Table 2: Comparison of TimeMMD and our method (GMM-TS) across 540 experiments spanning 9 domains. Each domain includes 60 expert pair evaluations (5 TSF-N \times 3 TSF-T) across 4 forecasting horizons. The table reports, for each domain, how many times each method achieves a lower MSE (a 'win'). The higher count per domain is highlighted in bold.

Domain	TimeMMD 'Wins'	GMM-TS 'Wins' (Ours)
Agriculture	9	51
Climate	4	56
Economy	5	55
Energy	10	50
Environment	8	52
Public Health	4	56
Security	11	49
Social Good	25	35
Traffic	2	58

Table 3: Domain-wise comparison of GMM-TS and TimeMMD across expert pairs. Negative values of Δ Mean indicate a reduction in forecasting error by GMM-TS (i.e., improvement over TimeMMD). % Better reports the percentage of improvement.

Domain	Δ Mean (\downarrow)	Std. Dev.	% Better (\uparrow)
Agriculture	-0.02	0.00	18.18%
Climate	-0.08	0.02	11.3%
Economy	-0.02	0.00	50.0%
Energy	-0.02	0.00	6.9%
Environment	-0.06	-0.02	12.77%
Public Health	-0.29	-0.18	19.86%
Security	-2.60	-0.08	2.3%
Social Good	-0.04	-0.02	4.04%
Traffic	-0.01	-0.01	5.0%

4.3 ADDITIONAL BENEFITS OF GMM-TS

Beyond expert pairs. While prior work on multi-modal TSF Liu et al. (2024a); Jia et al. (2024) focuses on fusing a single TSF-N and TSF-T expert, GMM-TS supports flexible fusion over arbitrary sets of uni-modal experts. To demonstrate this capability, we evaluate triplet combinations of TSF-N and TSF-T models and compare their performance to the constituent expert pairs. Specifically, we compare the pairs $\{\text{GPT3.5, DLinear}\}$, $\{\text{GPT3.5, Informer}\}$, and $\{\text{GPT3.5, PatchTST}\}$ to triplets such as $\{\text{GPT3.5, DLinear, Informer}\}$, and so on. Table 4 reports the average MSE across each configuration. In most domains, triplet combinations outperform their pairwise baselines, highlighting the advantage of fusing complementary signals from multiple modalities. Extended results, including expert quartets, are provided in Appendix D.3.1.

Joint training versus offline pre-training. GMM-TS can be adapted for offline pretraining of individual modality experts. Unlike the joint training approach (Section 3.2.2), this offline strategy separates expert learning from gating network training. Each expert is trained independently, and then their fixed outputs are combined by the gating module in a separate training phase. This modular approach offers flexibility and efficiency, allowing experts to be reused across different tasks without retraining. Figure 2 illustrates the additional training time for pairs as the number of experts per modality increases for TimeMMD and GMM-TS (both joint and offline). The curves for GMM-TS (offline/joint) are also annotated with the average percentage reduction in Mean Squared Error (MSE) across all domains, expert pairs, and prediction horizons. GMM-TS with offline pretraining

378
 379 **Table 4:** Forecasting MSE achieved by our method (GMM-TS) when using expert pairs versus expert triplets.
 380 For each domain, we report the average MSE across all evaluated pair and triplet configurations. Lower values
 381 indicate better performance.

Domain	Pairs MSE	Triplets MSE
Agriculture	0.19	0.16
Climate	1.00	1.02
Economy	0.20	0.08
Energy	0.34	0.30
Public Health	1.27	1.21
Security	115.06	112.81
Social Good	0.94	0.90
Traffic	0.19	0.18

390
 391 scales better with more experts and achieves comparable performance to TimeMMD. Joint training
 392 yields state-of-the-art MSE and requires less optimization time than TimeMMD.
 393

394 **Interpretable multi-modal time series forecasting** The expert weight matrix (W) in GMM-TS
 395 provides *inherent interpretability* by showing the contribution of each expert at each forecast time
 396 step, revealing how the model combines information from different modalities. Fig. 3 illustrate
 397 two representative examples from the Climate (Fig. 3 - right) and Social Good (Fig. 3 - left)
 398 domains, respectively. In each figure, we plot the individual predictions of two experts (PatchTST
 399 in blue and GPT3.5 in orange), the fused output of GMM-TS (in green), and the ground truth (in
 400 black). We annotate each expert prediction with its corresponding gating weight (w), predicted by
 401 the Transformer-based gating network.

402 In the Social Good example (Fig. 3, right), GMM-TS assigns consistently higher weights to
 403 PatchTST, which closely tracks the ground truth. GPT3.5 receives lower weights throughout,
 404 particularly where its predictions diverge. This illustrates how the model prioritizes the more accurate
 405 modality at each time step. In the Climate example (Fig. 3, right), the gating network initially
 406 favors GPT3.5, whose early predictions are better aligned with the target. However, as the textual
 407 expert’s accuracy degrades later in the sequence, the model shifts weight toward PatchTST, improv-
 408 ing the overall forecast. These examples demonstrate how GMM-TS adapts its fusion strategy based
 409 on the changing accuracy of each expert over time, prioritizing the more reliable modalities. This
 410 provides an interpretable way to see the relative contribution of each expert.

411 **Table 5:** Ablation results for aggregation strategy (left) and gating dimension (right). Left: average MSE
 412 across three TSF-N expert combinations—{DLinear, Informer, Reformer}, {Informer, PatchTST, Reformer},
 413 and {DLinear, Informer, PatchTST, Reformer}—under Direct, Hierarchical, and Latent aggregation. Right:
 414 average MSE for five expert pairs (GPT3.5 + one TSF-N model from {DLinear, FiLM, Informer, PatchTST,
 415 Reformer}) across gating dimensions $d_m \in \{32, 64, 128, 256, 512\}$. Lower is better.

Domain	Agg. Strategy			Gating Dimension				
	Direct	Hierarchical	Latent	32	64	128	256	512
Economy	0.17	0.21	1.23	0.19	0.18	0.20	0.18	0.20
Energy	0.31	0.31	0.30	0.39	0.36	0.36	0.36	0.36
Public Health	1.24	1.21	1.29	1.30	1.28	1.27	1.27	1.27
Security	115.62	116.68	127.79	113.81	114.59	114.61	115.58	115.25
Social Good	0.85	0.87	0.85	1.00	0.98	0.96	0.96	0.96
Traffic	0.17	0.17	0.18	0.19	0.19	0.19	0.19	0.19

423 4.4 ABLATIONS

424 We investigate the effect of two key architectural components of GMM-TS: the strategy used to
 425 aggregate expert outputs, and the dimensionality of the shared latent space in the gating module.

426 **Aggregation strategy.** Our default approach, **Direct Aggregation**, combines expert predictions in
 427 the target space using a learned weight matrix applied per time step. We compare this to two alter-
 428 natives (described in detail in Appendix E): (1) **Hierarchical Aggregation**, which first aggregates
 429 predictions within each modality before fusing them across modalities; and (2) **Latent Aggrega-
 430 tion**, which aggregates the experts’ latent representations and applies a projection head to produce
 431 the forecast.

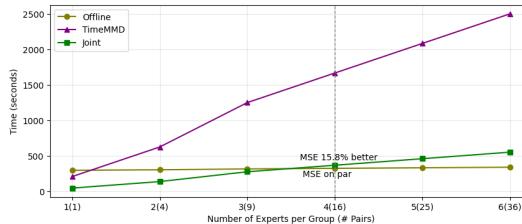


Figure 2: Overall training times for training expert pairs for TimeMMD and GMM-TS. We show the additional training time required when adding more experts per modality.

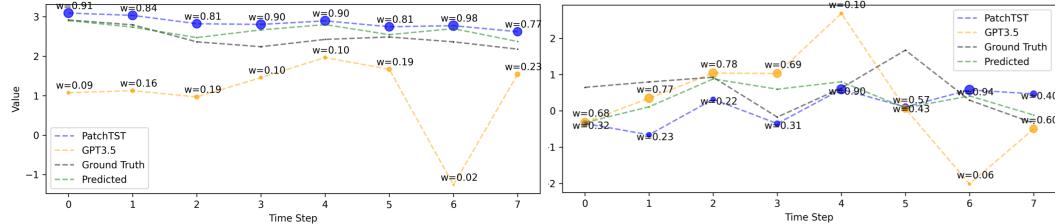


Figure 3: Visualization of expert contributions for the Climate (left) and Social Good (right) domains. The plots show predictions from PatchTST (blue) and GPT3.5 (orange), their per-time-step weights (w), the fused prediction (green), and the ground truth (black).

Table 5 (left) reports the average MSE across six domains for three multi-expert configurations. Direct aggregation consistently performed the best, achieving the lowest error in four out of six domains. Hierarchical aggregation performed similarly, suggesting that the primary benefit comes from fusing modalities rather than the specific fusion method. Latent aggregation proved less robust, with degraded performance in several domains, underscoring the value of directly combining expert predictions in the output space. Additional configurations are evaluated in Appendix F.

Gating dimension. We also evaluate the effect of varying the gating dimension d_m , which determines the shared latent space size in which expert representations are projected and fused. Table 5 (right) shows average MSE values across five expert pairs—formed by combining GPT-3.5 with each of DLinear, FiLM, Informer, PatchTST, and Reformer—under different settings of $d_m \in \{32, 64, 128, 256, 512\}$. The results are stable across settings, indicating that GMM-TS is robust to the choice of gating dimension. Additional results are reported in Appendix F.

Adaptive versus static gating. To evaluate the value of dynamic gating, we compared our adaptive gating network to a static, fixed-weight baseline, where a gating weight matrix is learned during training but fixed across all inputs at inference time.. As shown in Table 26 (Appendix F), the adaptive model significantly outperformed the static one across all domains, with a degradation of over 12x in the Economy domain without adaptive gating. These results highlight that input-conditioned gating is crucial for strong performance in diverse time series forecasting scenarios.

5 CONCLUSION

We introduced GMM-TS, a novel gating-based architecture for exogenous multi-modal time series forecasting that adaptively fuses predictions from multiple experts. To the best of our knowledge, it is the first approach to extend multi-modal TSF beyond expert pairs, enabling the integration of multiple specialists across modalities. GMM-TS consistently outperforms state-of-the-art baselines across diverse domains and expert configurations, and its gating mechanism provides built-in per-timestep interpretability by showing each expert’s contribution.

Limitations and Future Work While we focused on numerical and textual inputs, GMM-TS can be extended to other modalities like visual time series data. Future work will explore these extensions, as well as other time series tasks like classification and anomaly detection. We also plan to investigate efficient adaptation techniques such as Low-Rank Adaptation (LoRA).

486 REFERENCES
487

488 MA Castán-Lascorz, Patricia Jiménez-Herrera, Alicia Troncoso, and Gualberto Asencio-Cortés. A
489 new hybrid method for predicting univariate and multivariate time series based on pattern fore-
490 casting. *Information Sciences*, 586:611–627, 2022.

491 Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp
492 architecture for time series forecasting. *arXiv preprint arXiv:2303.06053*, 2023.

493 Taesung Choi, Dongkun Lee, Yuchae Jung, and Ho-Jin Choi. Multivariate time-series anomaly
494 detection using seqvae-cnn hybrid model. In *2022 International Conference on Information Net-
495 working (ICOIN)*, pp. 250–253. IEEE, 2022.

496 Mayank Daswani, Mathias MJ Bellaiche, Marc Wilson, Desislav Ivanov, Mikhail Papkov, Eva
497 Schnider, Jing Tang, Kay Lamerigts, Gabriela Botea, Michael A Sanchez, et al. Plots unlock
498 time-series understanding in multimodal models. *arXiv preprint arXiv:2410.02637*, 2024.

499 Freddie Hong, Iason Sarantopoulos, Elliott Hogg, David Richardson, Yizhong
500 Zhang, Hugh Williams, David Sweeney, Andromachi Chatzileftheriou, and
501 Ant Rowstron. Self-maintaining [networked] systems: The rise of datacen-
502 ter robotics! In *2024 Hot Topics in Networks*. ACM, November 2024.
503 URL [https://www.microsoft.com/en-us/research/publication/
504 self-maintaining-networked-systems-the-rise-of-datacenter-robotics/](https://www.microsoft.com/en-us/research/publication/self-maintaining-networked-systems-the-rise-of-datacenter-robotics/).

505 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
506 local experts. *Neural computation*, 3(1):79–87, 1991.

507 Furong Jia, Kevin Wang, Yixiang Zheng, Defu Cao, and Yan Liu. Gpt4mts: Prompt-based large
508 language model for multimodal time-series forecasting. In *Proceedings of the AAAI Conference
509 on Artificial Intelligence*, volume 38, pp. 23343–23351, 2024.

510 Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. *arXiv
511 preprint arXiv:2001.04451*, 2020.

512 Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, and
513 Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. In *Proceedings
514 of the 30th ACM SIGKDD conference on knowledge discovery and data mining*, pp. 6555–6565,
2024.

515 Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. *Philosophical
516 Transactions of the Royal Society A*, 379(2194):20200209, 2021.

517 Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Prabhakar Kamarthi,
518 Aditya Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, et al. Time-mmd:
519 Multi-domain multimodal dataset for time series analysis. *Advances in Neural Information Pro-
520 cessing Systems*, 37:77888–77933, 2024a.

521 Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Prabhakar Kamarthi,
522 Aditya Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, et al. Time-mmd:
523 Multi-domain multimodal dataset for time series analysis. *Advances in Neural Information Pro-
524 cessing Systems*, 37:77888–77933, 2024b.

525 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
526 itransformer: Inverted transformers are effective for time series forecasting. In *The Twelfth Inter-
527 national Conference on Learning Representations*, 2023.

528 Brian K Nelson. Time series analysis using autoregressive integrated moving average (arima) mod-
529 els. *Academic emergency medicine*, 5(7):739–744, 1998.

530 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
531 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022a.

532 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
533 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022b.

540 Noam Shazeer and et al. Outrageously large neural networks: The sparsely-gated mixture-of-experts
 541 layer. In *ICLR*, 2017.

542

543 Jun Wang, Wenjie Du, Wei Cao, Keli Zhang, Wenjia Wang, Yuxuan Liang, and Qingsong Wen. Deep
 544 learning for multivariate time series imputation: A survey. *arXiv preprint arXiv:2402.04059*,
 545 2024.

546 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 547 formers with auto-correlation for long-term series forecasting. *Advances in neural information*
 548 *processing systems*, 34:22419–22430, 2021a.

549

550 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 551 formers with auto-correlation for long-term series forecasting. *Advances in neural information*
 552 *processing systems*, 34:22419–22430, 2021b.

553 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 554 Temporal 2d-variation modeling for general time series analysis. In *International Conference on*
 555 *Learning Representations*, 2023.

556 Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Long-
 557 bing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series
 558 forecasting. *Advances in Neural Information Processing Systems*, 36, 2024.

559

560 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 561 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 562 11121–11128, 2023.

563 Shiyang Zhong, Wenqian Ruan, Mengyuan Jin, Qi Zhang, et al. Time-vlm: Exploring multimodal
 564 vision-language models for augmented time series forecasting. *arXiv preprint arXiv:2502.04395*,
 565 2025.

566

567 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 568 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
 569 *of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

570 Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film:
 571 Frequency improved legendre memory model for long-term time series forecasting. *Advances in*
 572 *neural information processing systems*, 35:12677–12690, 2022a.

573

574 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
 575 enhanced decomposed transformer for long-term series forecasting. In *International conference*
 576 *on machine learning*, pp. 27268–27286. PMLR, 2022b.

577 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
 578 enhanced decomposed transformer for long-term series forecasting. In *International conference*
 579 *on machine learning*, pp. 27268–27286. PMLR, 2022c.

580 Yuxuan Zhou et al. Mera: Mixture of experts with retrieval-augmented representation for modeling
 581 diversified stock patterns. In *Companion Proceedings of the ACM Web Conference 2025*, 2025.

582

583

584

585

586

587

588

589

590

591

592

593

594 APPENDIX
595596 We provide additional results and information to complement our main text:
597

- 598 • Section A details and compares related work.
599
- 600 • Section B provides additional details on the datasets used.
601
- 602 • Section C gives additional implementation details.
603
- 604 • Section D provided extended results:
 - 605 – Section D.1 provides per-domain, per-horizon, per expert-pair comparison between
GMM-TS and TimeMMd
 - 606 – Section D.2 reports per-domain, per-horizon, per-expert unimodal results
 - 607 – Section D.3 provides extended results and discussion on additional benefits of our
proposed method:
 - 608 * Section D.3.1 provides extended results for the experiments with more than two
experts for multi-modal TSF.
 - 609 * Section D.3.2 provides extended results for evaluating the offline pre-training strat-
egy.
 - 610 * Section D.3.3 discusses additional benefits not covered in the main text.
- 611 • Section E provides the formulation of the Hierarchical and Latent aggregation methods.
612
- 613 • Section F provides extended and additional ablation results.
614
- 615 • Section G discussed the broader impacts of our work.
616

617 A EXTENDED RELATED WORK AND COMPARISON
618619
620 **Extended Discussion.** In this section, we expand on prior work in both uni-modal and multi-modal
621 time series forecasting, including recent MoE-based architectures.
622

- 623 • **TimeMMD** Liu et al. (2024a): Introduced the first large-scale multi-modal TSF bench-
624 mark. Its architecture supports modular expert inputs but fuses predictions via a fixed,
625 global weight—resulting in a lack of dynamic, input-aware fusion.
- 626 • **GPT4MTS** (Jia et al., 2024): Trains a decoder-only GPT2 with soft prompts for modality-
627 specific conditioning. Fusion is implicit in the prompt encoding, and the architecture lacks
628 modularity.
- 629 • **Google-TSF** (Daswani et al., 2024): Adapts VLMs to combine plots with structured data
630 for forecasting. Fusion is performed within a monolithic foundation model, lacking inter-
631 pretability or explicit per-modality contributions.
- 632 • **Time-VLM** (Zhong et al., 2025): Uses tri-modal inputs (visualized plots, language context,
633 and numerical sequences), but relies on vision-language models with concatenation-based
634 fusion. This method does not offer expert modularity or explicit attribution.
- 635 • **MERA** (Zhou et al., 2025): Proposes a retrieval-augmented MoE framework for stock
636 forecasting. While modular and scalable, MERA is limited to numerical inputs and does
637 not support dynamic multi-modal interaction.

638 Table 6 compares GMM-TS with prior work. This comparison highlights that GMM-TS is the first
639 method to combine dynamic, interpretable, and modular fusion in a multi-expert, multi-modal TSF
640 setting.
641642 To the best of our knowledge, GMM-TS is the first architecture for multi-modal TSF that enables
643 adaptive, interpretable, and modular fusion over an arbitrary number of heterogeneous experts. It
644 departs from prior methods by going beyond two-modality assumptions, offering plug-and-play
645 flexibility, and supporting both joint and offline training regimes.
646

648

649

Table 6: Comparison of our method (GMM-TS) to prior work across key properties.

650

651

Model	Modality	Fusion Type	Dynamic	Interpretable	Modular	# Experts
TimeMMD (Liu et al., 2024a)	Text + Num	Prediction (fixed weight)	✗	✗	✓	2
GPT4MTS (Jia et al., 2024)	Text + Num	Prompted representation	✓	✗	✗	2
Google-TSF (Daswani et al., 2024)	Vision + Num	Foundation model	✓	✗	✗	2
Time-VLM (Zhong et al., 2025)	Vision + Text + Num	Concatenated inputs	✓	✗	✗	3
MERA (Zhou et al., 2025)	Num	Expert + retrieval	✓	✗	✓	> 2
GMM-TS (Ours)	Text + Num (+ more)	Prediction (learned weights)	✓	✓	✓	≥ 2

652

653

B DATASET DETAILS

654

655

We conduct extensive evaluation experiments across a wide range of domains available from the TimeMMD benchmark. The domains included in this benchmark cover a range of real-world forecasting scenarios:

656

657

- **Agriculture:** Agricultural production and supply chain time series.
- **Climate:** Temperature, rainfall, and atmospheric readings with textual context.
- **Economy:** Financial and economic indicators tied to news reports.
- **Energy:** Power consumption and energy production data.
- **Environment:** Environmental monitoring data with text from reports.
- **Public:** Public health metrics (e.g., infection rates, hospitalizations).
- **Security:** Geopolitical/security event data with incident summaries.
- **Social Good:** Time series from social impact domains (e.g., education, inequality).
- **Traffic:** Vehicle usage and congestion statistics with urban planning documents.

658

659

Table 7 further summarizes the size and modality composition of each dataset in the TimeMMD benchmark (Liu et al., 2024a). Each domain consists of aligned textual and numerical time series across daily, weekly, or monthly frequencies.

660

661

Table 7: Dataset statistics used in our experiments. Each domain includes aligned numerical and textual features, with a single forecasting target (table reproduced from Liu et al. (2024b))

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

Domain	# Timestamps	Dimensions
Agriculture	496	1
Climate	496	5
Economy	423	3
Energy	1479	9
Environment	11102	4
Public Health	1389	11
Security	297	1
Social Good	900	1
Traffic	531	1

679

680

C IMPLEMENTATION DETAILS

681

682

683

684

685

686

687

688

689

690

691

692

693

Our multimodal time series forecasting system employs a comprehensive optimization strategy where all models are optimized using the Adam optimizer with early stopping configured for a maximum of 10 training epochs. The system utilizes multiple Adam optimizers with differentiated learning rates: time series models use a learning rate of 0.0001, MLP components use 1e-2, projection layers use 1e-3, and the gating module uses 1e-3. Early stopping is implemented with a patience of 5 epochs, monitoring validation loss across all model components including time series models, MLP layers, and the gating module. The shared latent dimension of the gating module 256 by default, though ablation studies systematically test values of 32, 64, 128, and 512 to evaluate the impact of gating dimension on performance.

702 The gating module architecture consists of an input embedding layer with time features, expert pro-
 703 jection layers that map expert outputs to a shared dimension, a 2-layer transformer encoder with 8
 704 attention heads, gating networks implemented as MLP layers for computing attention weights, and
 705 a final output projection layer. Training is conducted with a batch size of 32, MSE loss function,
 706 and optional mixed precision training, while the gating mechanism supports both "latent" and "pre-
 707 diction" input types for expert integration. The transformer encoder employs GELU activation, 0.1
 708 dropout rate, and a feed-forward dimension of 2048, providing a robust framework for multimodal
 709 time series forecasting with systematic evaluation of different architectural configurations.

712 D EXTENDED QUALITY RESULTS

714 D.1 PAIRWISE COMPARISON WITH TIMEMMD BY DOMAIN

716 We present the *detailed per-horizon, per-expert pairwise results* that underlie the *aggregated*
 717 *domain-level averages* reported in Table 1 in the main text. In other words, Table 1 is a compact
 718 summary of the average performance across all forecast horizons (12, 24, 36, 48) and expert combi-
 719 nations for each domain, while the results shown here provide the full breakdown for transparency
 720 and reproducibility.

721 For each setting, we experiment with various combinations of numerical (TSF-N) and textual (TSF-
 722 T) experts, including both strong backbone models and LLM-based textual predictors. For each
 723 combination, we report the mean squared error (MSE) for GMM-TS (our proposed method) and for
 724 TimeMMD, using the same expert configuration. The lower MSE value in each row is highlighted
 725 in bold.

726 Our method consistently outperforms TimeMMD in terms of forecasting accuracy, as measured by
 727 MSE. Notably, this superiority holds for every domain, underscoring the robustness and generality
 728 of our gating-based fusion approach. These results demonstrate that our system not only offers
 729 improved performance but also scales reliably across different forecasting scenarios.

732 D.2 UNI-MODAL EXPERIMENTS

734 Tables 17 and 18 present the *detailed per-horizon, per-expert unimodal* forecasting results for the
 735 Energy and Public Health domains, respectively, using weekly-resolution data. These results
 736 complement the *aggregated domain-level averages* reported in Table 1 in the main text, where results
 737 are averaged across multiple horizons and expert combinations. Here, each row corresponds to a
 738 specific horizon and a specific TSF-N or TSF-T expert, providing full transparency and enabling
 739 reproduction of the aggregated results.

740 For each setting, we report multiple evaluation metrics — Mean Absolute Error (MAE), MSE,
 741 Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Squared
 742 Percentage Error (MSPE) — across various prediction lengths ('Horizon') and expert models. Both
 743 Transformer-based and MLP-based TSF-N models, as well as large language model-based TSF-T
 744 experts, are evaluated.

745 Each individual TSF-N or TSF-T expert consistently underperforms compared to our fused model
 746 that integrates the same expert with a complementary modality. This highlights the advantage of
 747 multi-modal fusion: combining numerical and textual representations yields improved forecasting
 748 accuracy across all domains and settings.

751 D.3 ADDITIONAL BENEFITS: EXTENDED RESULTS AND DISCUSSION

753 Our proposed architecture introduces not only improvements in forecasting accuracy, but also mean-
 754 ingful benefits in terms of model transparency, usability, and extensibility. Below, we discuss several
 755 key aspects of the system beyond raw performance and the benefits already demonstrated in the main
 text.

756 D.3.1 GOING BEYOND EXPERT PAIRS FOR MULTI-MODAL TSF: ADDITIONAL RESULTS
757

758 We provide additional results for TSF with more than two TSF-N experts. Table 19 compares the
759 average MSE across pairs and respective triplets and quartets of experts. Table 20 provides an
760 extended version of Table 4 in the main text, comparing the forecasting accuracy (in terms of MSE)
761 of pairs to the respective triplet, for each triplet. Triplets and quartets surpass expert pairs on average,
762 demonstrating the advantage of our method, in supporting multi-expert (more than two) setting.

763 D.3.2 OFFLINE EXPERT PRE-TRAINING: ADDITIONAL RESULTS
764

765 Table 21 compares GMM-TS (offline and joint training) with TimeMMD across all domains. GMM-
766 TS with offline pre-training remains competitive but presents a substantial reduction in runtime (as
767 shown in the main text). GMM-TS with joint training, consistently outperforms Time-MMD while
768 presenting competitive train time (as shown in the main text).

770 D.3.3 DISCUSSION ON ADDITIONAL BENEFITS
771

772 **Debugging and failure analysis.** The explicit separation between expert predictions and the gating
773 module allows for effective error analysis. When performance degrades, it is possible to isolate
774 whether the issue stems from a specific expert or from the fusion logic. This decomposition pro-
775 vides a structured debugging pathway, facilitating targeted improvements (e.g., re-training only the
776 underperforming expert).

777 **Rationale inspection and human-in-the-loop validation.** By making the gating decisions trans-
778 parent and traceable, the model allows users to inspect the *rationale* behind its predictions—e.g.,
779 whether it relied on textual evidence, numerical trends, or both. This is especially useful in high-
780 stakes domains (e.g., healthcare, infrastructure monitoring), where human oversight is critical. Fur-
781 thermore, by comparing the fused forecast against individual expert outputs, domain experts can
782 evaluate when the model is being conservative, overconfident, or appropriately balanced.

783 **Guidance for few-shot expert fine-tuning.** In scenarios where certain experts perform poorly
784 (e.g., domain shift, low-resource domains), our architecture provides actionable feedback: if the
785 gating module consistently down-weights a particular expert, it can serve as a signal to fine-tune that
786 expert using a small number of task-specific examples. This opens the door to a principled, few-shot
787 training loop, where human intervention is guided by model behavior rather than guesswork.

788 **Modularity and extensibility.** Finally, our design is inherently modular. New experts—whether
789 trained on different modalities, domains, or tasks—can be plugged into the system (when using
790 offline pretraining this further means existing experts do not need to be re-trained). The gating
791 module adapts to newly introduced signals by updating the expert weights accordingly. This makes
792 our approach especially well-suited to evolving multi-modal pipelines in real-world applications.

795 E HIERARCHICAL AND LATENT AGGREGATIONS
796

797 We provide the formulation of the Hierarchical and Latent aggregation methods below:

798

- **Hierarchical aggregation:** In this variant, we first derive two distinct weight matrices,
800 $W_n \in \mathbb{R}^{p \times |E_n|}$ and $W_t \in \mathbb{R}^{p \times |E_t|}$ from the original weight matrix W . This derivation
801 involves applying the Softmax function to the indices of the experts that belong to the
802 numeric modality (E_n) and the textual modality (E_t), respectively. Subsequently, we use
803 these modality-specific weight matrices W_n and W_t in our Direct Aggregation method
804 (Eq. 3) to predict the future time series based on each modality individually, resulting in
805 Y_n (numeric-based forecast) and Y_t (textual-based forecast). To combine these uni-modal
806 predictions, we predict a weight vector $w \in \mathbb{R}^p$, where each element corresponds to a time
807 step in the forecast horizon. This weight vector is generated by applying an additional MLP
808 head to g_o . The final forecast Y is then computed as a weighted average of the uni-modal
809 predictions:

$$Y = (1 - w) \cdot Y_t + w \cdot Y_n \quad (5)$$

810
 811 • **Latent aggregation:** In this variant, instead of directly aggregating the experts’ predictions,
 812 we aggregate the projected *latent* representations of their predictions. Similar to our
 813 primary aggregation method (Section 3.2.1), we combine these latent features (given by
 814 H_s) into a fused latent vector h using the weight matrix $W \in \mathbb{R}^{d^* \times |E|}$ with $d^* = d_m$:

815
$$h = \left[\sum_{j=0}^{|E|-1} H_s[i, j] W[i, j] \right]_{i=0 \dots d_m-1} \quad (6)$$

 816
 817

818 Subsequently, we employ an additional fully connected layer to regress Y from the fused
 819 latent vector h .

821 F ABLATIONS: ADDITIONAL RESULTS

823 We provide extended ablation results, including additional ablation experiments.

825 Tables 22 and Table 24 provide the extended version of Table 5 in the main text, comparing different
 826 aggregation methods and gating dimensions. Table 23 further compares the Direct and Latent
 827 aggregations across expert pairs.

829 F.1 ABLATION STUDY: ADAPTIVE VERSUS STATIC WEIGHTS

830 To isolate the contribution of dynamic gating, we compare our adaptive transformer-based gating
 831 network with a static learned-weight baseline. In this ablation, the transformer module is replaced
 832 with a fixed weight matrix (per horizon and expert index), learned during training but fixed across
 833 all inputs at inference time. This setting removes adaptivity, forcing the model to rely on global
 834 average weights.

836 **Setup** We evaluate across all benchmark domains using the same expert pool as in the main experiments (TSF-N: {DLinear, Informer, Reformer, PatchTST}, TSF-T: GPT-3.5).

839 **Experiment Motivation** The goal of this ablation is to quantify the contribution of our dynamic
 840 gating mechanism. We ask: *What happens if, instead of using a transformer to compute*
 841

844 Methodology Regular (Dynamic) Method:

845 • Uses a transformer encoder to dynamically compute gating weights at each step.
 846 • Weights are conditioned on the current input context and expert latent representations.
 847 • Adaptively shifts emphasis among experts at inference time.

850 Ablation (Fixed) Method:

851 • Replaces the transformer gating module with a learned static weight matrix W .
 852 • $W \in \mathbb{R}^{\text{num_experts} \times \text{prediction_horizon}}$ is optimized during training and fixed thereafter.
 853 • Same number of parameters in the fusion stage, but no dependence on input context during
 854 inference.

857 **Summary by Expert and Domain** To better understand the sensitivity of different configurations
 858 to the removal of dynamic gating, we average results by TSF-N expert (across all domains) and by
 859 domain (across all experts).

861 Key Insights

863 • **Dynamic gating is essential:** Across all 143 configurations tested, removing dynamic
 864 gating increases MSE by an average of **328.3%**.

- **By Expert:** DLinear is the most robust TSF-N expert (55.9% avg. degradation), while Informer is the most sensitive (68.7% avg. degradation). PatchTST and Reformer are moderately sensitive (66–68%).
- **By Domain:** Economy is catastrophically sensitive (**1,272.8%** degradation on average), Energy is moderately impacted (114.6%), Traffic has substantial degradation (92.7%), SocialGood is relatively resilient (31.1%), and Security shows minimal impact (8.6%).
- **Notable cases:**
 - *Best case:* Security + DLinear shows a slight improvement when gating is removed (**-0.2%**).
 - *Worst case:* Economy + Informer suffers a catastrophic degradation (**3120.5%**).
- **Interpretation:**
 - Domains with high variability and strong cross-modal dependencies (e.g., Economy) rely heavily on adaptive expert weighting.
 - Stable experts (e.g., DLinear) in low-variability domains (e.g., Security) are less reliant on dynamic gating and may even be marginally unaffected.
 - Experts with more complex temporal modeling (e.g., Informer) appear to depend more on gating adaptivity to leverage cross-expert complementarity.

Conclusion Dynamic gating is a critical component of the architecture. In some domains, replacing it with fixed weights reduces performance by over an order of magnitude. Even in domains with smaller gains, dynamic gating remains at least competitive and often substantially better.

Full Results Table 27–31 provide the complete per-domain, per-configuration results. Regular MSE refers to the dynamic gating variant; Ablation MSE refers to the fixed-weight variant. Boldface indicates the lower MSE in each row.

F.2 ABLATION STUDY: NUMBER OF TRANSFORMER LAYERS IN THE GATING MODULE

Motivation The gating module in GMM-TS uses a Transformer encoder to compute input-dependent weights over experts. While our main experiments use a lightweight 2-layer encoder for computational efficiency, the optimal depth for this component is not obvious. We therefore perform an ablation varying the number of encoder layers to examine how depth impacts performance.

Why only Informer and PatchTST? To keep the analysis focused and interpretable, we report results for two representative TSF-N experts: (1) **Informer**, a strong Transformer-based forecasting model, and (2) **PatchTST**, a state-of-the-art patch-based Transformer forecaster. These were selected because they represent high-performing but architecturally distinct approaches, and they show different sensitivity patterns to gating depth. The TSF-T expert is fixed to GPT-3.5 for all experiments.

Methodology We evaluate the gating module with **1, 2, 4, 6, and 8 encoder layers** across all benchmark domains. Some combinations were not run due to compute constraints, but the evaluation design is consistent for every domain. All other components and hyperparameters are fixed, including:

- Gating dimension $d_m = 64$
- Fixed aggregation type: direct
- Forecast horizons: multiple values per domain, but here we report selected key horizons

For each configuration, we report MSE and mark the lowest value in each row in **bold**.

Per-domain results Tables 32–32 present the results for each domain. For Public Health domain, we only report the results for **pred_len=12** and **pred_len=24**, as these cover the most relevant forecasting scenarios in our benchmark.

918 **Average MSE across layers.** To complement the per-configuration results in Tables 32–34, we
 919 compute the average MSE for each number of Transformer encoder layers in the gating module,
 920 averaged across both Informer and PatchTST experts for each domain (Table 38). **Insights:**
 921

- 922 • There is **no universal optimal number of layers**—performance varies by domain.
- 923 • In **Economy** and **Security**, **2 layers** achieve the lowest average error.
- 924 • In **Energy** and **Traffic**, deeper gating (6–8 layers) yields small improvements over shallower
 925 models.
- 926 • **SocialGood** benefits from moderately deep gating (4–8 layers), but differences are modest.
- 927 • Across all domains, **2–4 layers** offer a strong trade-off between accuracy and computational
 928 efficiency.

930 **Conclusion** While increasing the number of Transformer layers in the gating module can improve
 931 performance in some scenarios, the effect is domain- and model-dependent. A 2–4 layer config-
 932 uration provides a robust, lightweight default that works well across both Informer and PatchTST
 933 without incurring excessive computational cost.

935 G BROADER IMPACTS

938 Multi-modal TSF, which integrates various data modalities like time series, text, images, and audio
 939 for prediction, can positively impact a wide range of domains, such as finance, healthcare, security,
 940 agriculture and more. Fusing signals from multiple modalities can yield more robust and accurate
 941 predictions, as also demonstrated by our work. Beyond improved accuracy, our work also provides
 942 intuitive interpretation, supporting informed decision making. As with any machine learning tech-
 943 nology, the use of method and models should be done in a principled manner and for advancing the
 944 greater good.

945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972

973

974 Table 8: Pairwise MSE comparison for the Agriculture domain.

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Horizon	TSF-N Expert	TSF-T Expert	GMM-TS (MSE)	TimeMMD (MSE)	Delta
6	DLinear	GPT3.5	0.0798	0.0737	0.01
6	DLinear	GPT2	0.0729	0.0738	-0
6	DLinear	LLAMA2	0.0736	0.0742	-0
6	FiLM	GPT3.5	0.0610	0.0896	-0.03
6	FiLM	GPT2	0.0617	0.0895	-0.03
6	FiLM	LLAMA2	0.0633	0.0926	-0.03
6	Informer	GPT3.5	0.3314	0.3378	-0.01
6	Informer	GPT2	0.3120	0.3013	0.01
6	Informer	LLAMA2	0.2660	0.2493	0.02
6	PatchTST	GPT3.5	0.0593	0.0775	-0.02
6	PatchTST	GPT2	0.0604	0.0845	-0.02
6	PatchTST	LLAMA2	0.0584	0.0733	-0.01
6	Reformer	GPT3.5	0.1801	0.2743	-0.09
6	Reformer	GPT2	0.3302	0.2268	0.1
6	Reformer	LLAMA2	0.2108	0.1917	0.02
8	DLinear	GPT3.5	0.1079	0.1871	-0.08
8	DLinear	GPT2	0.1114	0.1878	-0.08
8	DLinear	LLAMA2	0.1044	0.1824	-0.08
8	FiLM	GPT3.5	0.0792	0.1061	-0.03
8	FiLM	GPT2	0.0796	0.1067	-0.03
8	FiLM	LLAMA2	0.0837	0.1089	-0.03
8	Informer	GPT3.5	0.2043	0.3530	-0.15
8	Informer	GPT2	0.2201	0.3396	-0.12
8	Informer	LLAMA2	0.3107	0.2797	0.03
8	PatchTST	GPT3.5	0.0761	0.0969	-0.02
8	PatchTST	GPT2	0.0764	0.0936	-0.02
8	PatchTST	LLAMA2	0.0778	0.0968	-0.02
8	Reformer	GPT3.5	0.2759	0.4320	-0.16
8	Reformer	GPT2	0.2515	0.2377	0.01
8	Reformer	LLAMA2	0.1511	0.2542	-0.1
10	DLinear	GPT3.5	0.1258	0.1473	-0.02
10	DLinear	GPT2	0.1275	0.1471	-0.02
10	DLinear	LLAMA2	0.1145	0.1428	-0.03
10	FiLM	GPT3.5	0.1031	0.1352	-0.03
10	FiLM	GPT2	0.1033	0.1269	-0.02
10	FiLM	LLAMA2	0.1086	0.1261	-0.02
10	Informer	GPT3.5	0.3765	0.4100	-0.03
10	Informer	GPT2	0.3492	0.4090	-0.06
10	Informer	LLAMA2	0.2950	0.4360	-0.14
10	PatchTST	GPT3.5	0.0957	0.1159	-0.02
10	PatchTST	GPT2	0.0947	0.1251	-0.03
10	PatchTST	LLAMA2	0.0951	0.1084	-0.01
10	Reformer	GPT3.5	0.1761	0.3834	-0.21
10	Reformer	GPT2	0.2536	0.3265	-0.07
10	Reformer	LLAMA2	0.4337	0.4116	0.02
12	DLinear	GPT3.5	0.1413	0.1626	-0.02
12	DLinear	GPT2	0.1442	0.1626	-0.02
12	DLinear	LLAMA2	0.1415	0.1543	-0.01
12	FiLM	GPT3.5	0.1240	0.1488	-0.02
12	FiLM	GPT2	0.1262	0.1494	-0.02
12	FiLM	LLAMA2	0.1238	0.1515	-0.03
12	Informer	GPT3.5	0.5398	0.5558	-0.02
12	Informer	GPT2	0.5124	0.5286	-0.02
12	Informer	LLAMA2	0.3751	0.6909	-0.32
12	PatchTST	GPT3.5	0.1222	0.1380	-0.02
12	PatchTST	GPT2	0.1227	0.1429	-0.02
12	PatchTST	LLAMA2	0.1254	0.1420	-0.02
12	Reformer	GPT3.5	0.2449	0.4353	-0.19
12	Reformer	GPT2	0.2729	0.5461	-0.27
12	Reformer	LLAMA2	0.4597	0.4058	0.05

1026

1027

1028

1029

Table 9: Pairwise MSE comparison for the Climate domain.

Horizon	TSF-N Expert	TSF-T Expert	GMM-TS (MSE)	TimeMMD (MSE)	Delta
6	DLinear	GPT3.5	0.9548	1.1090	-0.15
6	DLinear	GPT2	1.0232	1.1090	-0.09
6	DLinear	LLAMA2	1.0461	1.1132	-0.07
6	FiLM	GPT3.5	1.0510	1.1845	-0.13
6	FiLM	GPT2	1.0474	1.1839	-0.14
6	FiLM	LLAMA2	1.0255	1.1833	-0.16
6	Informer	GPT3.5	0.9460	1.0851	-0.14
6	Informer	GPT2	0.9509	1.0549	-0.1
6	Informer	LLAMA2	0.9510	1.0562	-0.11
6	PatchTST	GPT3.5	0.9907	1.1205	-0.13
6	PatchTST	GPT2	1.0261	1.1467	-0.12
6	PatchTST	LLAMA2	1.0697	1.1652	-0.1
6	Reformer	GPT3.5	1.0126	1.2702	-0.26
6	Reformer	GPT2	1.0614	1.1178	-0.06
6	Reformer	LLAMA2	1.0796	1.0697	0.01
8	DLinear	GPT3.5	0.9714	1.1505	-0.18
8	DLinear	GPT2	0.9458	1.1509	-0.21
8	DLinear	LLAMA2	0.9682	1.1394	-0.17
8	FiLM	GPT3.5	1.0319	1.1496	-0.12
8	FiLM	GPT2	1.0389	1.1483	-0.11
8	FiLM	LLAMA2	1.0065	1.1546	-0.15
8	Informer	GPT3.5	1.0439	1.0508	-0.01
8	Informer	GPT2	1.0271	1.0675	-0.04
8	Informer	LLAMA2	1.0528	1.0680	-0.02
8	PatchTST	GPT3.5	1.0390	1.1206	-0.08
8	PatchTST	GPT2	1.0222	1.1361	-0.11
8	PatchTST	LLAMA2	1.0215	1.1341	-0.11
8	Reformer	GPT3.5	1.0411	0.9818	0.06
8	Reformer	GPT2	1.0881	1.0038	0.08
8	Reformer	LLAMA2	1.0673	1.0739	-0.01
10	DLinear	GPT3.5	1.0050	1.1200	-0.12
10	DLinear	GPT2	1.0058	1.1212	-0.12
10	DLinear	LLAMA2	0.9708	1.1126	-0.14
10	FiLM	GPT3.5	0.9961	1.1458	-0.15
10	FiLM	GPT2	0.9962	1.1479	-0.15
10	FiLM	LLAMA2	1.0300	1.1525	-0.12
10	Informer	GPT3.5	1.0157	1.1208	-0.11
10	Informer	GPT2	0.9768	1.1127	-0.14
10	Informer	LLAMA2	1.0322	1.1316	-0.1
10	PatchTST	GPT3.5	1.0172	1.1678	-0.15
10	PatchTST	GPT2	1.0403	1.2201	-0.18
10	PatchTST	LLAMA2	1.0490	1.1373	-0.09
10	Reformer	GPT3.5	0.9511	1.0186	-0.07
10	Reformer	GPT2	0.9440	1.0205	-0.08
10	Reformer	LLAMA2	1.1014	1.0674	0.03
12	DLinear	GPT3.5	0.9862	1.1171	-0.13
12	DLinear	GPT2	0.9955	1.1197	-0.12
12	DLinear	LLAMA2	0.9917	1.1229	-0.13
12	FiLM	GPT3.5	0.9864	1.1514	-0.16
12	FiLM	GPT2	1.0023	1.1516	-0.15
12	FiLM	LLAMA2	1.0154	1.1605	-0.15
12	Informer	GPT3.5	1.0128	1.1608	-0.15
12	Informer	GPT2	1.0246	1.1412	-0.12
12	Informer	LLAMA2	0.9887	1.0386	-0.05
12	PatchTST	GPT3.5	1.0182	1.1958	-0.18
12	PatchTST	GPT2	1.0416	1.1296	-0.09
12	PatchTST	LLAMA2	1.0364	1.1528	-0.12
12	Reformer	GPT3.5	0.9570	1.0451	-0.09
12	Reformer	GPT2	0.9899	1.0533	-0.06
12	Reformer	LLAMA2	0.9611	1.0479	-0.09

1080

1081

1082

1083

Table 10: Pairwise MSE comparison for the Economy domain.

Horizon	TSF-N Expert	TSF-T Expert	GMM-TS (MSE)	TimeMMD (MSE)	Delta
6	DLinear	GPT3.5	0.0461	0.0286	0.02
6	DLinear	GPT2	0.0480	0.0286	0.02
6	DLinear	LLAMA2	0.0316	0.0288	0
6	FiLM	GPT3.5	0.0236	0.0507	-0.03
6	FiLM	GPT2	0.0241	0.0507	-0.03
6	FiLM	LLAMA2	0.0260	0.0496	-0.02
6	Informer	GPT3.5	0.3752	0.8354	-0.46
6	Informer	GPT2	0.3071	0.7657	-0.46
6	Informer	LLAMA2	0.5332	0.7260	-0.19
6	PatchTST	GPT3.5	0.0175	0.0370	-0.02
6	PatchTST	GPT2	0.0219	0.0399	-0.02
6	PatchTST	LLAMA2	0.0173	0.0430	-0.03
6	Reformer	GPT3.5	0.3330	0.7056	-0.37
6	Reformer	GPT2	0.1908	0.6518	-0.46
6	Reformer	LLAMA2	0.2272	0.3340	-0.11
8	DLinear	GPT3.5	0.0293	0.0850	-0.06
8	DLinear	GPT2	0.0199	0.0855	-0.07
8	DLinear	LLAMA2	0.0203	0.0793	-0.06
8	FiLM	GPT3.5	0.0199	0.0511	-0.03
8	FiLM	GPT2	0.0245	0.0517	-0.03
8	FiLM	LLAMA2	0.0270	0.0512	-0.02
8	Informer	GPT3.5	0.5743	0.8589	-0.28
8	Informer	GPT2	0.5804	0.8200	-0.24
8	Informer	LLAMA2	0.5187	1.1498	-0.63
8	PatchTST	GPT3.5	0.0168	0.0364	-0.02
8	PatchTST	GPT2	0.0158	0.0380	-0.02
8	PatchTST	LLAMA2	0.0260	0.0372	-0.01
8	Reformer	GPT3.5	0.3827	0.5075	-0.12
8	Reformer	GPT2	0.4512	0.4153	0.04
8	Reformer	LLAMA2	0.2017	0.3871	-0.19
10	DLinear	GPT3.5	0.0334	0.0391	-0.01
10	DLinear	GPT2	0.0317	0.0391	-0.01
10	DLinear	LLAMA2	0.0258	0.0369	-0.01
10	FiLM	GPT3.5	0.0339	0.0511	-0.02
10	FiLM	GPT2	0.0337	0.0510	-0.02
10	FiLM	LLAMA2	0.0201	0.0523	-0.03
10	Informer	GPT3.5	0.7035	0.9927	-0.29
10	Informer	GPT2	0.6983	0.9676	-0.27
10	Informer	LLAMA2	0.5560	0.9261	-0.37
10	PatchTST	GPT3.5	0.0162	0.0384	-0.02
10	PatchTST	GPT2	0.0228	0.0386	-0.02
10	PatchTST	LLAMA2	0.0187	0.0382	-0.02
10	Reformer	GPT3.5	0.2334	0.2881	-0.05
10	Reformer	GPT2	0.1975	0.1632	0.03
10	Reformer	LLAMA2	0.4508	0.8762	-0.43
12	DLinear	GPT3.5	0.0202	0.0294	-0.01
12	DLinear	GPT2	0.0213	0.0295	-0.01
12	DLinear	LLAMA2	0.0233	0.0282	-0
12	FiLM	GPT3.5	0.0175	0.0507	-0.03
12	FiLM	GPT2	0.0175	0.0507	-0.03
12	FiLM	LLAMA2	0.0222	0.0509	-0.03
12	Informer	GPT3.5	0.5856	1.0744	-0.49
12	Informer	GPT2	0.5823	1.0777	-0.5
12	Informer	LLAMA2	0.5828	0.9330	-0.35
12	PatchTST	GPT3.5	0.0286	0.0357	-0.01
12	PatchTST	GPT2	0.0289	0.0361	-0.01
12	PatchTST	LLAMA2	0.0244	0.0380	-0.01
12	Reformer	GPT3.5	0.1852	0.2172	-0.03
12	Reformer	GPT2	0.1729	0.3333	-0.16
12	Reformer	LLAMA2	0.3527	0.8047	-0.45

1134

1135

1136

1137

Table 11: Pairwise MSE comparison for the Energy domain.

Horizon	TSF-N Expert	TSF-T Expert	GMM-TS (MSE)	TimeMMD (MSE)	Delta
12	DLinear	GPT3.5	0.2291	0.2492	-0.02
12	DLinear	GPT2	0.2298	0.2491	-0.02
12	DLinear	LLAMA2	0.2371	0.2514	-0.01
12	FiLM	GPT3.5	0.2121	0.2451	-0.03
12	FiLM	GPT2	0.2126	0.2451	-0.03
12	FiLM	LLAMA2	0.2185	0.2449	-0.03
12	Informer	GPT3.5	0.2860	0.1679	0.12
12	Informer	GPT2	0.3118	0.1701	0.14
12	Informer	LLAMA2	0.2181	0.2118	0.01
12	PatchTST	GPT3.5	0.1076	0.1267	-0.02
12	PatchTST	GPT2	0.1076	0.1268	-0.02
12	PatchTST	LLAMA2	0.1125	0.1313	-0.02
12	Reformer	GPT3.5	0.1962	0.3193	-0.12
12	Reformer	GPT2	0.3125	0.3466	-0.03
12	Reformer	LLAMA2	0.3191	0.3341	-0.02
24	DLinear	GPT3.5	0.3038	0.3507	-0.05
24	DLinear	GPT2	0.3054	0.3477	-0.04
24	DLinear	LLAMA2	0.3108	0.3481	-0.04
24	FiLM	GPT3.5	0.2872	0.3282	-0.04
24	FiLM	GPT2	0.2881	0.3326	-0.04
24	FiLM	LLAMA2	0.3071	0.3404	-0.03
24	Informer	GPT3.5	0.3591	0.3068	0.05
24	Informer	GPT2	0.3370	0.2972	0.04
24	Informer	LLAMA2	0.2934	0.3149	-0.02
24	PatchTST	GPT3.5	0.2299	0.2424	-0.01
24	PatchTST	GPT2	0.2297	0.2424	-0.01
24	PatchTST	LLAMA2	0.2366	0.2337	0
24	Reformer	GPT3.5	0.4544	0.4536	0
24	Reformer	GPT2	0.4454	0.4552	-0.01
24	Reformer	LLAMA2	0.4729	0.4873	-0.01
36	DLinear	GPT3.5	0.3767	0.4049	-0.03
36	DLinear	GPT2	0.3729	0.4046	-0.03
36	DLinear	LLAMA2	0.3873	0.4186	-0.03
36	FiLM	GPT3.5	0.3911	0.4439	-0.05
36	FiLM	GPT2	0.4004	0.4436	-0.04
36	FiLM	LLAMA2	0.3882	0.4498	-0.06
36	Informer	GPT3.5	0.4189	0.4740	-0.06
36	Informer	GPT2	0.4659	0.4765	-0.01
36	Informer	LLAMA2	0.3991	0.4227	-0.02
36	PatchTST	GPT3.5	0.3364	0.3490	-0.01
36	PatchTST	GPT2	0.3357	0.3489	-0.01
36	PatchTST	LLAMA2	0.3326	0.3237	0.01
36	Reformer	GPT3.5	0.4998	0.5570	-0.06
36	Reformer	GPT2	0.5200	0.5558	-0.04
36	Reformer	LLAMA2	0.4315	0.5670	-0.14
48	DLinear	GPT3.5	0.4931	0.5236	-0.03
48	DLinear	GPT2	0.4927	0.5236	-0.03
48	DLinear	LLAMA2	0.4854	0.5267	-0.04
48	FiLM	GPT3.5	0.5007	0.5816	-0.08
48	FiLM	GPT2	0.4985	0.5800	-0.08
48	FiLM	LLAMA2	0.5038	0.5925	-0.09
48	Informer	GPT3.5	0.5858	0.5364	0.05
48	Informer	GPT2	0.4660	0.5319	-0.07
48	Informer	LLAMA2	0.5547	0.5430	0.01
48	PatchTST	GPT3.5	0.4026	0.4388	-0.04
48	PatchTST	GPT2	0.4032	0.4401	-0.04
48	PatchTST	LLAMA2	0.4265	0.4370	-0.01
48	Reformer	GPT3.5	0.5577	0.5950	-0.04
48	Reformer	GPT2	0.5454	0.5571	-0.01
48	Reformer	LLAMA2	0.5363	0.5888	-0.05

1188

1189

Table 12: Pairwise MSE comparison for the Environment domain.

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Horizon	TSF-N Expert	TSF-T Expert	GMM-TS (MSE)	TimeMMD (MSE)	Delta
48	DLinear	BERT	0.41	0.46	-0.04
48	DLinear	GPT2	0.41	0.46	-0.05
48	DLinear	LLAMA2	0.41	0.46	-0.04
48	FiLM	BERT	0.41	0.46	-0.05
48	FiLM	GPT2	0.41	0.46	-0.04
48	FiLM	LLAMA2	0.41	0.46	-0.05
48	Informer	BERT	0.45	0.49	-0.04
48	Informer	GPT2	0.45	0.48	-0.03
48	Informer	LLAMA2	0.46	0.45	0.01
48	PatchTST	BERT	0.41	0.44	-0.04
48	PatchTST	GPT2	0.41	0.44	-0.04
48	PatchTST	LLAMA2	0.41	0.44	-0.04
48	Reformer	BERT	0.44	0.44	-0.01
48	Reformer	GPT2	0.44	0.46	-0.02
48	Reformer	LLAMA2	0.42	0.42	-0.0
96	DLinear	BERT	0.42	0.51	-0.08
96	DLinear	GPT2	0.42	0.51	-0.09
96	DLinear	LLAMA2	0.42	0.51	-0.09
96	FiLM	BERT	0.42	0.49	-0.08
96	FiLM	GPT2	0.41	0.49	-0.08
96	FiLM	LLAMA2	0.42	0.49	-0.08
96	Informer	BERT	0.46	0.47	-0.01
96	Informer	GPT2	0.49	0.47	0.02
96	Informer	LLAMA2	0.47	0.48	-0.01
96	PatchTST	BERT	0.41	0.47	-0.06
96	PatchTST	GPT2	0.41	0.47	-0.06
96	PatchTST	LLAMA2	0.41	0.47	-0.05
96	Reformer	BERT	0.45	0.44	0.01
96	Reformer	GPT2	0.45	0.47	-0.02
96	Reformer	LLAMA2	0.44	0.46	-0.02
192	DLinear	BERT	0.42	0.57	-0.14
192	DLinear	GPT2	0.43	0.56	-0.14
192	DLinear	LLAMA2	0.42	0.56	-0.14
192	FiLM	BERT	0.41	0.52	-0.11
192	FiLM	GPT2	0.41	0.52	-0.11
192	FiLM	LLAMA2	0.42	0.51	-0.09
192	Informer	BERT	0.51	0.5	0.01
192	Informer	GPT2	0.46	0.48	-0.02
192	Informer	LLAMA2	0.49	0.47	0.01
192	PatchTST	BERT	0.41	0.5	-0.09
192	PatchTST	GPT2	0.41	0.51	-0.1
192	PatchTST	LLAMA2	0.41	0.48	-0.07
192	Reformer	BERT	0.44	0.47	-0.03
192	Reformer	GPT2	0.43	0.46	-0.03
192	Reformer	LLAMA2	0.45	0.46	-0.01
336	DLinear	BERT	0.42	0.5	-0.09
336	DLinear	GPT2	0.42	0.5	-0.09
336	DLinear	LLAMA2	0.43	0.5	-0.07
336	FiLM	BERT	0.42	0.49	-0.07
336	FiLM	GPT2	0.42	0.49	-0.07
336	FiLM	LLAMA2	0.42	0.49	-0.07
336	Informer	BERT	0.48	0.47	0.02
336	Informer	GPT2	0.48	0.47	0.01
336	Informer	LLAMA2	0.49	0.47	0.02
336	PatchTST	BERT	0.41	0.47	-0.05
336	PatchTST	GPT2	0.41	0.47	-0.06
336	PatchTST	LLAMA2	0.42	0.47	-0.05
336	Reformer	BERT	0.44	0.46	-0.02
336	Reformer	GPT2	0.44	0.46	-0.02
336	Reformer	LLAMA2	0.43	0.44	-0.0

1242

1243

Table 13: Pairwise MSE comparison for the Public Health domain.

Horizon	TSF-N Expert	TSF-T Expert	GMM-TS (MSE)	TimeMMD (MSE)	Delta
12	DLinear	GPT3.5	1.2781	1.5718	-0.29
12	DLinear	GPT2	1.2755	1.5728	-0.3
12	DLinear	LLAMA2	1.2542	1.5686	-0.31
12	FiLM	GPT3.5	1.2450	1.8902	-0.65
12	FiLM	GPT2	1.2444	1.8904	-0.65
12	FiLM	LLAMA2	1.1605	1.8962	-0.74
12	Informer	GPT3.5	1.0626	1.1597	-0.1
12	Informer	GPT2	1.0385	1.0100	0.03
12	Informer	LLAMA2	1.2496	1.0132	0.24
12	PatchTST	GPT3.5	0.8285	0.8862	-0.06
12	PatchTST	GPT2	0.8272	0.8858	-0.06
12	PatchTST	LLAMA2	0.8282	0.9198	-0.09
12	Reformer	GPT3.5	1.0117	1.3198	-0.31
12	Reformer	GPT2	1.0746	1.3032	-0.23
12	Reformer	LLAMA2	1.1247	1.0541	0.07
24	DLinear	GPT3.5	1.3307	1.6379	-0.31
24	DLinear	GPT2	1.3350	1.6379	-0.3
24	DLinear	LLAMA2	1.3273	1.6327	-0.31
24	FiLM	GPT3.5	1.3346	1.7341	-0.4
24	FiLM	GPT2	1.2983	1.7336	-0.44
24	FiLM	LLAMA2	1.3443	1.7694	-0.43
24	Informer	GPT3.5	1.3144	1.4278	-0.11
24	Informer	GPT2	1.1808	1.4354	-0.25
24	Informer	LLAMA2	1.3456	1.2494	0.1
24	PatchTST	GPT3.5	1.1401	1.4274	-0.29
24	PatchTST	GPT2	1.1373	1.4267	-0.29
24	PatchTST	LLAMA2	1.1287	1.3324	-0.2
24	Reformer	GPT3.5	1.2683	1.2749	-0.01
24	Reformer	GPT2	1.2664	1.2732	-0.01
24	Reformer	LLAMA2	1.1444	1.3164	-0.17
36	DLinear	GPT3.5	1.3606	1.6339	-0.27
36	DLinear	GPT2	1.3916	1.6337	-0.24
36	DLinear	LLAMA2	1.3667	1.6314	-0.26
36	FiLM	GPT3.5	1.3396	1.6919	-0.35
36	FiLM	GPT2	1.3396	1.6918	-0.35
36	FiLM	LLAMA2	1.3486	1.6797	-0.33
36	Informer	GPT3.5	1.2517	1.4964	-0.24
36	Informer	GPT3.5	1.2517	1.5301	-0.28
36	Informer	GPT2	1.3061	1.5267	-0.22
36	Informer	LLAMA2	1.3360	1.4404	-0.1
36	PatchTST	GPT3.5	1.3303	1.6323	-0.3
36	PatchTST	GPT2	1.3105	1.6329	-0.32
36	PatchTST	LLAMA2	1.3181	1.6132	-0.3
36	Reformer	GPT3.5	1.2727	1.3266	-0.05
36	Reformer	GPT2	1.2604	1.3325	-0.07
36	Reformer	LLAMA2	1.2960	1.4491	-0.15
48	DLinear	GPT3.5	1.4695	1.7188	-0.25
48	DLinear	GPT2	1.4659	1.7188	-0.25
48	DLinear	LLAMA2	1.4410	1.6834	-0.24
48	FiLM	GPT3.5	1.3941	1.7494	-0.36
48	FiLM	GPT2	1.3882	1.7467	-0.36
48	FiLM	LLAMA2	1.4095	1.7578	-0.35
48	Informer	GPT3.5	1.4794	1.6853	-0.21
48	Informer	GPT2	1.3917	1.6759	-0.28
48	Informer	LLAMA2	1.3763	1.6073	-0.23
48	PatchTST	GPT3.5	1.3858	1.8986	-0.51
48	PatchTST	GPT2	1.4246	1.8978	-0.47
48	PatchTST	LLAMA2	1.3948	1.7737	-0.38
48	Reformer	GPT3.5	1.3376	1.4628	-0.13
48	Reformer	GPT2	1.4128	1.4535	-0.04
48	Reformer	LLAMA2	1.3712	1.4464	-0.08

1296

1297

1298

1299

Table 14: Pairwise MSE comparison for the Security domain.

Horizon	TSF-N Expert	TSF-T Expert	GMM-TS (MSE)	TimeMMD (MSE)	Delta
6	DLinear	GPT3.5	102.9184	103.2177	-0.3
6	DLinear	GPT2	102.9638	103.2089	-0.25
6	DLinear	LLAMA2	102.9615	103.1953	-0.23
6	FiLM	GPT3.5	110.6303	114.7459	-4.12
6	FiLM	GPT2	111.4065	114.7540	-3.35
6	FiLM	LLAMA2	109.1073	114.8041	-5.7
6	Informer	GPT3.5	126.4486	124.9059	1.54
6	Informer	GPT2	126.1993	124.8889	1.31
6	Informer	LLAMA2	125.3303	126.0265	-0.7
6	PatchTST	GPT3.5	106.6492	109.1538	-2.5
6	PatchTST	GPT2	106.7367	109.1556	-2.42
6	PatchTST	LLAMA2	105.8426	108.0277	-2.19
6	Reformer	GPT3.5	122.7506	127.8057	-5.06
6	Reformer	GPT2	121.9643	122.6299	-0.67
6	Reformer	LLAMA2	125.3047	119.4994	5.81
8	DLinear	GPT3.5	105.6411	107.7553	-2.11
8	DLinear	GPT2	105.7126	107.7545	-2.04
8	DLinear	LLAMA2	105.4353	107.7964	-2.36
8	FiLM	GPT3.5	108.8374	109.4419	-0.6
8	FiLM	GPT2	108.7304	109.4354	-0.7
8	FiLM	LLAMA2	107.8102	109.0228	-1.21
8	Informer	GPT3.5	126.7646	127.2815	-0.52
8	Informer	GPT2	126.9326	127.3436	-0.41
8	Informer	LLAMA2	126.4637	127.0559	-0.59
8	PatchTST	GPT3.5	114.0695	111.6167	2.45
8	PatchTST	GPT2	114.7777	112.1871	2.59
8	PatchTST	LLAMA2	109.8454	110.8373	-0.99
8	Reformer	GPT3.5	124.6640	127.3454	-2.68
8	Reformer	GPT2	123.2080	127.3009	-4.09
8	Reformer	LLAMA2	121.0255	121.4871	-0.46
10	DLinear	GPT3.5	107.3247	109.7904	-2.47
10	DLinear	GPT2	107.2617	109.7907	-2.53
10	DLinear	LLAMA2	108.1359	109.7591	-1.62
10	FiLM	GPT3.5	110.3583	110.9249	-0.57
10	FiLM	GPT2	110.0805	110.9051	-0.82
10	FiLM	LLAMA2	108.3393	111.3900	-3.05
10	Informer	GPT3.5	131.2260	126.6200	4.61
10	Informer	GPT2	130.8043	126.6540	4.15
10	Informer	LLAMA2	128.0662	128.8640	-0.8
10	PatchTST	GPT3.5	109.9814	116.0471	-6.07
10	PatchTST	GPT2	110.0050	114.9653	-4.96
10	PatchTST	LLAMA2	113.6006	113.0154	0.59
10	Reformer	GPT3.5	121.1815	127.1552	-5.97
10	Reformer	GPT2	121.0420	127.0808	-6.04
10	Reformer	LLAMA2	116.2173	122.5238	-6.31
12	DLinear	GPT3.5	108.6712	111.2703	-2.6
12	DLinear	GPT2	108.7270	111.2681	-2.54
12	DLinear	LLAMA2	108.9626	111.2568	-2.29
12	FiLM	GPT3.5	111.0610	113.1494	-2.09
12	FiLM	GPT2	109.7006	113.0860	-3.39
12	FiLM	LLAMA2	109.2312	112.4943	-3.26
12	Informer	GPT3.5	130.5862	128.3961	2.19
12	Informer	GPT2	130.5437	128.4168	2.13
12	Informer	LLAMA2	127.3390	130.8707	-3.53
12	PatchTST	GPT3.5	110.4975	114.7932	-4.3
12	PatchTST	GPT2	110.4948	113.6508	-3.16
12	PatchTST	LLAMA2	110.2060	113.9373	-3.73
12	Reformer	GPT3.5	121.3439	126.9580	-5.61
12	Reformer	GPT2	121.0127	126.8623	-5.85
12	Reformer	LLAMA2	120.6723	117.7383	2.93

1350

1351

Table 15: Pairwise MSE comparison for the SocialGood domain.

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Horizon	TSF-N Expert	TSF-T Expert	GMM-TS (MSE)	TimeMMD (MSE)	Delta
6	DLinear	GPT3.5	0.9188	0.9682	-0.05
6	DLinear	GPT2	0.9189	0.9658	-0.05
6	DLinear	LLAMA2	0.9611	0.9703	-0.01
6	FiLM	GPT3.5	0.9318	0.9556	-0.02
6	FiLM	GPT2	0.9291	0.9555	-0.03
6	FiLM	LLAMA2	0.9412	0.9486	-0.01
6	Informer	GPT3.5	0.7583	0.8545	-0.1
6	Informer	GPT2	0.7311	0.8285	-0.1
6	Informer	LLAMA2	0.8140	0.7681	0.05
6	PatchTST	GPT3.5	0.8587	0.8287	0.03
6	PatchTST	GPT2	0.8798	1.1037	-0.22
6	PatchTST	LLAMA2	0.8735	0.8339	0.04
6	Reformer	GPT3.5	0.7826	0.7794	0
6	Reformer	GPT2	0.8059	0.8615	-0.06
6	Reformer	LLAMA2	0.8043	0.8382	-0.03
8	DLinear	GPT3.5	0.9686	0.9388	0.03
8	DLinear	GPT2	0.9647	0.9395	0.03
8	DLinear	LLAMA2	0.9601	0.9757	-0.02
8	FiLM	GPT3.5	1.0110	1.0093	0
8	FiLM	GPT2	1.0132	0.9938	0.02
8	FiLM	LLAMA2	1.0027	1.0300	-0.03
8	Informer	GPT3.5	0.8292	0.7453	0.08
8	Informer	GPT2	0.7627	0.7566	0.01
8	Informer	LLAMA2	0.7555	0.8990	-0.14
8	PatchTST	GPT3.5	0.8886	1.0846	-0.2
8	PatchTST	GPT2	0.8931	1.0081	-0.11
8	PatchTST	LLAMA2	0.9775	1.0432	-0.07
8	Reformer	GPT3.5	0.9104	0.9535	-0.04
8	Reformer	GPT2	0.8959	0.8554	0.04
8	Reformer	LLAMA2	0.8754	0.9465	-0.07
10	DLinear	GPT3.5	1.0571	1.0147	0.04
10	DLinear	GPT2	1.0505	1.0148	0.04
10	DLinear	LLAMA2	1.0886	1.0370	0.05
10	FiLM	GPT3.5	1.0748	1.1038	-0.03
10	FiLM	GPT2	1.0806	1.0957	-0.02
10	FiLM	LLAMA2	1.0931	1.0828	0.01
10	Informer	GPT3.5	0.9705	0.9118	0.06
10	Informer	GPT2	0.9005	0.8786	0.02
10	Informer	LLAMA2	0.8110	0.8508	-0.04
10	PatchTST	GPT3.5	0.9914	0.9903	0
10	PatchTST	GPT2	0.9828	1.0183	-0.04
10	PatchTST	LLAMA2	1.0614	0.9683	0.09
10	Reformer	GPT3.5	0.9864	0.9460	0.04
10	Reformer	GPT2	0.9452	1.0200	-0.07
10	Reformer	LLAMA2	1.0611	0.9825	0.08
12	DLinear	GPT3.5	1.1033	1.1517	-0.05
12	DLinear	GPT2	1.1008	1.1519	-0.05
12	DLinear	LLAMA2	1.0989	1.1468	-0.05
12	FiLM	GPT3.5	1.1181	1.1695	-0.05
12	FiLM	GPT2	1.1124	1.1652	-0.05
12	FiLM	LLAMA2	1.1505	1.1594	-0.01
12	Informer	GPT3.5	0.8410	0.9560	-0.12
12	Informer	GPT2	0.8402	0.9557	-0.12
12	Informer	LLAMA2	0.9147	0.9635	-0.05
12	PatchTST	GPT3.5	1.0621	1.0419	0.02
12	PatchTST	GPT2	1.0478	1.0714	-0.02
12	PatchTST	LLAMA2	1.0463	1.1580	-0.11
12	Reformer	GPT3.5	1.1757	1.1040	0.07
12	Reformer	GPT2	1.1832	1.0935	0.09
12	Reformer	LLAMA2	1.0301	0.9680	0.06

1404

1405

1406

1407

Table 16: Pairwise MSE comparison for the `Traffic` domain.

Horizon	TSF-N Expert	TSF-T Expert	GMM-TS (MSE)	TimeMMD (MSE)	Delta
6	DLinear	GPT3.5	0.2109	0.2434	-0.03
6	DLinear	GPT2	0.2096	0.2434	-0.03
6	DLinear	LLAMA2	0.1948	0.2398	-0.04
6	FiLM	GPT3.5	0.1926	0.2259	-0.03
6	FiLM	GPT2	0.1871	0.2259	-0.04
6	FiLM	LLAMA2	0.1948	0.2251	-0.03
6	Informer	GPT3.5	0.1569	0.1765	-0.02
6	Informer	GPT2	0.1562	0.1800	-0.02
6	Informer	LLAMA2	0.1600	0.1947	-0.03
6	PatchTST	GPT3.5	0.1638	0.1781	-0.01
6	PatchTST	GPT2	0.1709	0.1746	-0
6	PatchTST	LLAMA2	0.1662	0.1740	-0.01
6	Reformer	GPT3.5	0.1941	0.1981	-0
6	Reformer	GPT2	0.1814	0.2010	-0.02
6	Reformer	LLAMA2	0.1775	0.2263	-0.05
8	DLinear	GPT3.5	0.1953	0.2871	-0.09
8	DLinear	GPT2	0.1785	0.2880	-0.11
8	DLinear	LLAMA2	0.1790	0.2871	-0.11
8	FiLM	GPT3.5	0.1845	0.2249	-0.04
8	FiLM	GPT2	0.1844	0.2249	-0.04
8	FiLM	LLAMA2	0.1836	0.2249	-0.04
8	Informer	GPT3.5	0.1765	0.1761	0
8	Informer	GPT2	0.1788	0.1752	0
8	Informer	LLAMA2	0.1588	0.1847	-0.03
8	PatchTST	GPT3.5	0.1758	0.1786	-0
8	PatchTST	GPT2	0.1738	0.1791	-0.01
8	PatchTST	LLAMA2	0.1856	0.1863	-0
8	Reformer	GPT3.5	0.1952	0.2007	-0.01
8	Reformer	GPT2	0.1937	0.1972	-0
8	Reformer	LLAMA2	0.1815	0.2068	-0.03
10	DLinear	GPT3.5	0.2019	0.2360	-0.03
10	DLinear	GPT2	0.2014	0.2359	-0.03
10	DLinear	LLAMA2	0.1901	0.2351	-0.04
10	FiLM	GPT3.5	0.1749	0.2225	-0.05
10	FiLM	GPT2	0.1754	0.2224	-0.05
10	FiLM	LLAMA2	0.1732	0.2232	-0.05
10	Informer	GPT3.5	0.1608	0.1831	-0.02
10	Informer	GPT2	0.1691	0.1848	-0.02
10	Informer	LLAMA2	0.1690	0.1950	-0.03
10	PatchTST	GPT3.5	0.1829	0.1904	-0.01
10	PatchTST	GPT2	0.1818	0.1902	-0.01
10	PatchTST	LLAMA2	0.1727	0.1946	-0.02
10	Reformer	GPT3.5	0.1808	0.2241	-0.04
10	Reformer	GPT2	0.1842	0.2168	-0.03
10	Reformer	LLAMA2	0.1784	0.2391	-0.06
12	DLinear	GPT3.5	0.2274	0.2591	-0.03
12	DLinear	GPT2	0.2269	0.2590	-0.03
12	DLinear	LLAMA2	0.2396	0.2611	-0.02
12	FiLM	GPT3.5	0.2271	0.2685	-0.04
12	FiLM	GPT2	0.2271	0.2684	-0.04
12	FiLM	LLAMA2	0.2379	0.2685	-0.03
12	Informer	GPT3.5	0.2049	0.2277	-0.02
12	Informer	GPT2	0.2036	0.2289	-0.03
12	Informer	LLAMA2	0.1978	0.2069	-0.01
12	PatchTST	GPT3.5	0.2421	0.2575	-0.02
12	PatchTST	GPT2	0.2387	0.2573	-0.02
12	PatchTST	LLAMA2	0.2326	0.2556	-0.02
12	Reformer	GPT3.5	0.2225	0.2340	-0.01
12	Reformer	GPT2	0.2210	0.2281	-0.01
12	Reformer	LLAMA2	0.2160	0.2703	-0.05

1458
1459
14601461 Table 17: Unimodal forecasting results for the Energy domain. Detailed per-horizon, per-expert results
1462 complement the aggregated domain-level averages reported in Table 1.

Horizon	Expert	Expert Type	MAE	MSE	RMSE	MAPE	MSPE
12	Informer	TSF-N	0.283	0.140	0.374	1.529	33.078
12	Reformer	TSF-N	0.382	0.263	0.513	1.418	22.324
12	DLinear	TSF-N	0.359	0.221	0.471	1.323	15.036
12	PatchTST	TSF-N	0.227	0.110	0.332	0.991	20.750
12	FiLM	TSF-N	0.351	0.207	0.455	1.417	18.193
12	GPT3.5	TSF-T	1.047	1.642	1.281	5.901	674.482
24	Informer	TSF-N	0.412	0.278	0.528	2.140	107.619
24	Reformer	TSF-N	0.537	0.470	0.685	2.235	98.262
24	DLinear	TSF-N	0.484	0.416	0.645	1.869	50.715
24	PatchTST	TSF-N	0.386	0.276	0.525	1.361	41.275
24	FiLM	TSF-N	0.474	0.408	0.639	1.774	46.942
24	GPT3.5	TSF-T	1.330	2.463	1.570	7.693	1372.181

1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
14751481 Table 18: Unimodal forecasting results for the Public Health domain. Detailed per-horizon, per-expert
1482 results complement the aggregated domain-level averages reported in Table 1.

Horizon	Expert	Expert Type	MAE	MSE	RMSE	MAPE	MSPE
12	Informer	TSF-N	0.623	0.499	0.706	1.225	4.928
12	Reformer	TSF-N	0.708	0.632	0.795	1.372	6.276
12	DLinear	TSF-N	0.650	0.541	0.735	1.304	5.168
12	PatchTST	TSF-N	0.548	0.408	0.639	1.088	3.948
12	FiLM	TSF-N	0.681	0.581	0.762	1.323	5.506
12	GPT3.5	TSF-T	1.304	1.983	1.408	3.987	78.280
24	Informer	TSF-N	0.766	0.676	0.822	1.645	14.449
24	Reformer	TSF-N	0.794	0.705	0.840	1.603	13.348
24	DLinear	TSF-N	0.732	0.648	0.805	1.593	11.824
24	PatchTST	TSF-N	0.649	0.558	0.747	1.341	9.807
24	FiLM	TSF-N	0.756	0.671	0.819	1.484	10.808
24	GPT3.5	TSF-T	1.528	2.607	1.614	4.980	152.014

1496
1497
1498
1499
1500
15011502 Table 19: The MSE achieved when training our method with expert pairs, triplets and quartets. For
1503 each domain, we report the average across pairs (Pairs MSE), triplets (Triplets MSE) and quartets
1504 of experts.

Domain	Pairs MSE	Triplets MSE	Quartets MSE
Climate	1.00	1.02	1.03
Energy	0.34	0.30	0.27
Public	1.27	1.21	1.24
Traffic	0.19	0.18	0.18

1510
1511

1512
 1513
 1514
 1515 Table 20: Using triplets of experts to approximate best performing expert pairs. Given two TSF-
 1516 N experts: e_n^1 and e_n^2 and a single TSF-T expert e_t , we evaluate the performance of the pairs:
 1517 (e_n^1, e_t) and (e_n^2, e_t) and of the triplet (e_n^1, e_n^2, e_t) . We report the average MSE of the two pairs and
 1518 compare it to the MSE of the respective triplet. The MSE of triplets of experts fused with our gating
 1519 architecture, consistently surpasses the pair MSE average.
 1520

Domain	e_t	e_n^1	e_n^2	Avg. Pair MSE	Avg. Triplet MSE
Agriculture	GPT3.5	DLinear	Informer	0.24	0.22
		DLinear	PatchTST	0.10	0.09
		Informer	PatchTST	0.23	0.15
Climate	GPT3.5	DLinear	Informer	0.99	1.03
		DLinear	PatchTST	1.00	1.00
		Informer	PatchTST	1.01	1.01
Economy	GPT3.5	DLinear	Informer	0.30	0.13
		DLinear	PatchTST	0.03	0.02
		Informer	PatchTST	0.29	0.11
Energy	GPT3.5	DLinear	Informer	0.38	0.36
		DLinear	PatchTST	0.31	0.27
		Informer	PatchTST	0.34	0.27
Public Health	GPT3.5	DLinear	Informer	1.32	1.29
		DLinear	PatchTST	1.27	1.15
		Informer	PatchTST	1.22	1.19
Security	GPT3.5	DLinear	Informer	117.45	113.45
		DLinear	PatchTST	108.22	108.43
		Informer	PatchTST	119.53	116.54
Social Good	GPT3.5	DLinear	Informer	0.93	0.83
		DLinear	PatchTST	0.98	0.98
		Informer	PatchTST	0.90	0.89
Traffic	GPT3.5	DLinear	Informer	0.19	0.17
		DLinear	PatchTST	0.20	0.19
		Informer	PatchTST	0.18	0.18

1546
 1547
 1548
 1549
 1550 Table 21: Comparison of TimeMMD and GMM-TS in the offline pre-training and joint training
 1551 regimes. We report the average MSE for each domain, across experts combinations and horizon
 1552 lengths. For each domain, the best MSE is highlighted in bold. The second-best MSE is underlined.
 1553

Domain	TimeMMD	GMM-TS with	
		Offline Pretraining	Joint Training
Agriculture	0.11	<u>0.10</u>	0.09
Climate	<u>1.15</u>	1.19	1.02
Economy	0.04	0.02	0.02
Energy	0.29	<u>0.28</u>	0.27
Environment	<u>0.47</u>	0.48	0.41
Public Health	<u>1.46</u>	1.56	1.17
Security	<u>112.28</u>	<u>112.28</u>	110.30
Social Good	1.09	<u>1.01</u>	0.95
Traffic	0.21	<u>0.20</u>	0.19

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580

1581 Table 22: MSE of Different TSF-N and TSF-T multi-expert combinations across domains, when
 1582 using the direct, latent and hierarchical aggregation methods. Abbreviations: D (DLinear), I (In-
 1583 former), P (PatchTST), R (Reformer). For each combination (row), we highlight the best performing
 1584 aggregation in bold.

1585	Domain	TSF-T	TSF-N			Direct Agg.	Hierarchical Agg.	Latent Agg.
			D	I	R	P		
1586	Economy	GPT3.5	+	+	+	0.22	0.26	1.29
			+	+	+	0.16	0.21	1.40
			+	+	+	0.12	0.16	1.00
1587	Energy	GPT3.5	+	+	+	0.35	0.36	0.31
			+	+	+	0.29	0.30	0.32
			+	+	+	0.29	0.29	0.28
1588	Public Health	GPT3.5	+	+	+	1.30	1.27	1.31
			+	+	+	1.19	1.18	1.28
			+	+	+	1.22	1.17	1.28
1589	Security	GPT3.5	+	+	+	114.04	116.96	127.78
			+	+	+	117.32	119.01	128.10
			+	+	+	115.50	114.07	127.47
1590	SocialGood	GPT3.5	+	+	+	0.86	0.84	0.86
			+	+	+	0.85	0.86	0.82
			+	+	+	0.85	0.90	0.85
1591	Traffic	GPT3.5	+	+	+	0.18	0.18	0.18
			+	+	+	0.18	0.17	0.18
			+	+	+	0.17	0.17	0.18

1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630

1631 Table 23: MSE of Different TSF-N and TSF-T experts pairs across domains, when using the direct
 1632 and latent aggregation methods.

Domain	TSF-T	TSF-N	Direct Agg.	Latent Agg.
Economy	GPT3.5	DLinear	0.03	0.77
		FiLM	0.02	8.26
		Informer	0.56	1.03
		PatchTST	0.02	8.02
		Reformer	0.28	1.43
Energy	GPT3.5	DLinear	0.35	0.30
		FiLM	0.35	1.05
		Informer	0.41	0.30
		PatchTST	0.27	1.10
		Reformer	0.43	0.27
Public Health	GPT3.5	DLinear	1.36	1.58
		FiLM	1.33	1.54
		Informer	1.28	1.34
		PatchTST	1.17	1.52
		Reformer	1.22	1.23
Security	GPT3.5	DLinear	106.14	123.64
		FiLM	110.22	133.50
		Informer	128.76	128.96
		PatchTST	110.30	132.81
		Reformer	122.48	128.40
SocialGood	GPT3.5	DLinear	1.01	0.90
		FiLM	1.03	1.85
		Informer	0.85	0.84
		PatchTST	0.95	1.84
		Reformer	0.96	0.90
Traffic	GPT3.5	DLinear	0.21	0.27
		FiLM	0.19	1.22
		Informer	0.17	0.19
		PatchTST	0.19	1.06
		Reformer	0.20	0.20

1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

Table 24: MSE of Different TSF-N and TSF-T experts pairs for representative domains, when varying on the gating dimension.

Domain	TSF-T	TSF-N	Gating Dim.		
			128	256	512
Economy	GPT3.5	DLinear	0.03	0.03	0.03
		FiLM	0.03	0.02	0.02
		Informer	0.55	0.56	0.61
		PatchTST	0.02	0.02	0.02
		Reformer	0.40	0.28	0.33
Energy	GPT3.5	DLinear	0.35	0.35	0.35
		FiLM	0.35	0.35	0.35
		Informer	0.36	0.41	0.37
		PatchTST	0.27	0.27	0.28
		Reformer	0.46	0.43	0.45
Public Health	GPT3.5	DLinear	1.35	1.36	1.37
		FiLM	1.34	1.33	1.31
		Informer	1.22	1.28	1.27
		PatchTST	1.17	1.17	1.17
		Reformer	1.26	1.22	1.22
Security	GPT3.5	DLinear	106.36	106.14	106.67
		FiLM	108.89	110.22	109.35
		Informer	126.75	128.76	128.18
		PatchTST	110.40	110.30	112.06
		Reformer	120.61	122.48	119.97
SocialGood	GPT3.5	DLinear	1.01	1.01	1.02
		FiLM	1.02	1.03	1.03
		Informer	0.82	0.85	0.84
		PatchTST	1.02	0.95	0.98
		Reformer	0.93	0.96	0.92
Traffic	GPT3.5	DLinear	0.20	0.21	0.20
		FiLM	0.20	0.19	0.20
		Informer	0.17	0.17	0.18
		PatchTST	0.19	0.19	0.20
		Reformer	0.20	0.20	0.20

TSF-N Expert	Adaptive Gating (ours) MSE	Fixed Weight Matrix MSE	Increase (%)
DLinear	10.4477	16.2892	55.9
Informer	21.9498	37.0470	68.7
PatchTST	21.3438	35.3823	65.7
Reformer	20.8385	35.0916	68.4

Table 25: Average performance degradation when removing dynamic gating, grouped by TSF-N expert. Values are averaged across all domains, horizons, and gating dimensions.

Domain	Adaptive Gating (ours) MSE	Fixed Weight Matrix MSE	Increase (%)
Economy	0.0255	0.3324	1272.8
Energy	0.3067	0.5885	114.6
Public Health	1.0539	1.2248	16.2
Security	106.9026	116.0750	8.6
SocialGood	0.8839	1.1521	31.1
Traffic	0.1724	0.3292	92.7

Table 26: Average performance degradation when removing dynamic gating, grouped by domain. Values are averaged across all TSF-N experts, horizons, and gating dimensions.

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742

1743	Pred Len	Gating Dim	TSF-N Expert	TSF-T Expert	Regular MSE	Ablation MSE	Increase (%)
1744	12	32	DLinear	GPT-3.5	0.1661	0.5063	204.9
1745	12	32	Informer	GPT-3.5	0.1661	0.4866	193.0
1746	12	32	Reformer	GPT-3.5	0.1661	0.4770	187.3
1747	12	64	DLinear	GPT-3.5	0.1418	0.5024	254.3
1748	12	64	Informer	GPT-3.5	0.1418	0.4627	226.3
1749	12	64	Reformer	GPT-3.5	0.1418	0.4813	239.4
1750	24	32	DLinear	GPT-3.5	0.2816	0.5808	106.2
1751	24	32	Informer	GPT-3.5	0.2816	0.5606	99.1
1752	24	32	Reformer	GPT-3.5	0.2816	0.5343	89.7
1753	24	64	DLinear	GPT-3.5	0.2435	0.5811	138.7
1754	24	64	Informer	GPT-3.5	0.2435	0.5887	141.8
1755	24	64	Reformer	GPT-3.5	0.2435	0.5260	116.0
1756	36	32	DLinear	GPT-3.5	0.3768	0.6420	70.4
1757	36	32	Informer	GPT-3.5	0.3768	0.5576	48.0
1758	36	32	Reformer	GPT-3.5	0.3768	0.6387	69.5
1759	36	64	DLinear	GPT-3.5	0.3367	0.6427	90.9
1760	36	64	Informer	GPT-3.5	0.3367	0.5836	73.3
1761	36	64	Reformer	GPT-3.5	0.3367	0.6551	94.5
1762	48	32	DLinear	GPT-3.5	0.4642	0.7467	60.8
1763	48	32	Informer	GPT-3.5	0.4642	0.6251	34.7
1764	48	32	Reformer	GPT-3.5	0.4642	0.7196	55.0
1765	48	64	DLinear	GPT-3.5	0.4429	0.7277	64.3
1766	48	64	Informer	GPT-3.5	0.4429	0.5887	32.9
1767	48	64	Reformer	GPT-3.5	0.4429	0.7077	59.8

Table 27: Comparison of Regular (Dynamic Gating) vs. Ablation (Fixed Weights) performance for the Energy domain. Increase (%) is relative to the lower MSE in each row.

1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793

1794	Pred Len	Gating Dim	TSF-N Expert	TSF-T Expert	Regular MSE	Ablation MSE	Increase (%)
1795	6	32	DLinear	GPT-3.5	102.9655	103.8636	0.9
1796	6	32	Informer	GPT-3.5	102.9655	121.5132	18.0
1797	6	32	PatchTST	GPT-3.5	102.9655	111.9161	8.7
1798	6	32	Reformer	GPT-3.5	102.9655	118.0281	14.6
1799	6	64	DLinear	GPT-3.5	102.9404	103.9616	1.0
1800	6	64	Informer	GPT-3.5	102.9404	124.6346	21.1
1801	6	64	PatchTST	GPT-3.5	102.9404	109.7373	6.6
1802	8	32	DLinear	GPT-3.5	106.5003	107.1156	0.6
1803	8	32	Informer	GPT-3.5	106.5003	123.6434	16.1
1804	8	32	PatchTST	GPT-3.5	106.5003	111.4629	4.7
1805	8	32	Reformer	GPT-3.5	106.5003	118.8497	11.6
1806	8	64	DLinear	GPT-3.5	106.3534	106.9893	0.6
1807	8	64	Informer	GPT-3.5	106.3534	124.0805	16.7
1808	8	64	PatchTST	GPT-3.5	106.3534	115.4039	8.5
1809	10	32	DLinear	GPT-3.5	108.5963	108.4725	-0.1
1810	10	32	Informer	GPT-3.5	108.5963	126.5977	16.6
1811	10	32	PatchTST	GPT-3.5	108.5963	111.6489	2.8
1812	10	32	Reformer	GPT-3.5	108.5963	121.0557	11.5
1813	10	64	DLinear	GPT-3.5	108.8987	108.7955	-0.1
1814	10	64	Informer	GPT-3.5	108.8987	124.6307	14.4
1815	10	64	PatchTST	GPT-3.5	108.8987	112.8046	3.6
1816	10	64	Reformer	GPT-3.5	108.8987	119.8280	10.0
1817	12	32	DLinear	GPT-3.5	109.1500	109.5859	0.4
1818	12	32	Informer	GPT-3.5	109.1500	126.2477	15.7
1819	12	32	PatchTST	GPT-3.5	109.1500	111.6083	2.3
1820	12	32	Reformer	GPT-3.5	109.1500	119.4546	9.4
1821	12	64	DLinear	GPT-3.5	109.8162	109.6190	-0.2
1822	12	64	Informer	GPT-3.5	109.8162	126.3826	15.1
1823	12	64	PatchTST	GPT-3.5	109.8162	111.4675	1.5
1824	12	64	Reformer	GPT-3.5	109.8162	120.6683	9.9

Table 28: Comparison of Regular (Dynamic Gating) vs. Ablation (Fixed Weights) performance for the Security domain. Increase (%) is relative to the lower MSE in each row.

1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

1836	Pred Len	Gating Dim	TSF-N Expert	TSF-T Expert	Regular MSE	Ablation MSE	Increase (%)
1837	6	32	DLinear	GPT-3.5	0.8799	1.1646	32.4
1838	6	32	Informer	GPT-3.5	0.8799	1.0627	20.8
1839	6	32	PatchTST	GPT-3.5	0.8799	1.0628	20.8
1840	6	32	Reformer	GPT-3.5	0.8799	1.1150	26.7
1841	6	64	DLinear	GPT-3.5	0.7651	1.1622	51.9
1842	6	64	Informer	GPT-3.5	0.7651	1.0272	34.3
1843	6	64	PatchTST	GPT-3.5	0.7651	1.1044	44.3
1844	6	64	Reformer	GPT-3.5	0.7651	1.1496	50.2
1845	8	32	DLinear	GPT-3.5	0.8746	1.1247	28.6
1846	8	32	Informer	GPT-3.5	0.8746	1.0171	16.3
1847	8	32	PatchTST	GPT-3.5	0.8746	1.0835	23.9
1848	8	32	Reformer	GPT-3.5	0.8746	1.0778	23.2
1849	8	64	DLinear	GPT-3.5	0.7844	1.1433	45.8
1850	8	64	Informer	GPT-3.5	0.7844	1.0262	30.8
1851	8	64	PatchTST	GPT-3.5	0.7844	1.1089	41.4
1852	8	64	Reformer	GPT-3.5	0.7844	1.1822	50.7
1853	10	32	DLinear	GPT-3.5	0.9079	1.2049	32.7
1854	10	32	Informer	GPT-3.5	0.9079	1.0918	20.3
1855	10	32	PatchTST	GPT-3.5	0.9079	1.1613	27.9
1856	10	32	Reformer	GPT-3.5	0.9079	1.2347	36.0
1857	10	64	DLinear	GPT-3.5	0.9176	1.2457	35.8
1858	10	64	Informer	GPT-3.5	0.9176	1.1427	24.5
1859	10	64	PatchTST	GPT-3.5	0.9176	1.1702	27.5
1860	10	64	Reformer	GPT-3.5	0.9176	1.1758	28.1
1861	12	32	DLinear	GPT-3.5	1.0539	1.2804	21.5
1862	12	32	Informer	GPT-3.5	1.0539	1.2125	15.0
1863	12	32	PatchTST	GPT-3.5	1.0539	1.2227	16.0
1864	12	32	Reformer	GPT-3.5	1.0539	1.2481	18.4
1865	12	64	DLinear	GPT-3.5	0.8885	1.2716	43.1
1866	12	64	Informer	GPT-3.5	0.8885	1.1966	34.7
1867	12	64	PatchTST	GPT-3.5	0.8885	1.2434	39.9
1868	12	64	Reformer	GPT-3.5	0.8885		

Table 29: Comparison of Regular (Dynamic Gating) vs. Ablation (Fixed Weights) performance for the SocialGood domain. Increase (%) is relative to the lower MSE in each row.

1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1890							
1891							
1892							
1893							
1894							
1895							
1896							
1897							
1898							
1899							
1900							
1901							
1902							
1903							
1904							
1905	Pred Len	Gating Dim	TSF-N Expert	TSF-T Expert	Regular MSE	Ablation MSE	Increase (%)
1906	6	32	DLinear	GPT-3.5	0.1644	0.3221	95.9
1907	6	32	Informer	GPT-3.5	0.1644	0.2908	76.8
1908	6	32	Reformer	GPT-3.5	0.1644	0.3205	94.9
1909	6	64	DLinear	GPT-3.5	0.1632	0.3197	96.0
1910	6	64	Informer	GPT-3.5	0.1632	0.3452	111.6
1911	6	64	Reformer	GPT-3.5	0.1632	0.3127	91.7
1912	8	32	DLinear	GPT-3.5	0.1632	0.3040	86.3
1913	8	32	Informer	GPT-3.5	0.1632	0.2954	81.0
1914	8	32	Reformer	GPT-3.5	0.1632	0.3330	104.0
1915	8	64	DLinear	GPT-3.5	0.1571	0.3054	94.4
1916	8	64	Informer	GPT-3.5	0.1571	0.2955	88.1
1917	8	64	Reformer	GPT-3.5	0.1571	0.3295	109.7
1918	10	32	DLinear	GPT-3.5	0.1597	0.3586	124.5
1919	10	32	Informer	GPT-3.5	0.1597	0.3128	95.8
1920	10	32	Reformer	GPT-3.5	0.1597	0.3658	129.0
1921	10	64	DLinear	GPT-3.5	0.1609	0.3462	115.2
1922	10	64	Informer	GPT-3.5	0.1609	0.3605	124.0
1923	10	64	Reformer	GPT-3.5	0.1609	0.3432	113.3
1924	12	32	DLinear	GPT-3.5	0.2133	0.3457	62.1
1925	12	32	Informer	GPT-3.5	0.2133	0.3120	46.3
1926	12	32	Reformer	GPT-3.5	0.2133	0.3555	66.7
1927	12	64	DLinear	GPT-3.5	0.1978	0.3491	76.5
1928	12	64	Informer	GPT-3.5	0.1978	0.3464	75.2
1929	12	64	Reformer	GPT-3.5	0.1978	0.3302	67.0

Table 30: Comparison of Regular (Dynamic Gating) vs. Ablation (Fixed Weights) performance for the Traffic domain. Increase (%) is relative to the lower MSE in each row.

1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

	Pred Len	Gating Dim	TSF-N Expert	TSF-T Expert	Regular MSE	Ablation MSE	Increase (%)
1944	6	32	DLinear	GPT-3.5	0.0361	0.1671	363.0
1945	6	32	Informer	GPT-3.5	0.0361	0.4357	1107.6
1946	6	32	PatchTST	GPT-3.5	0.0361	0.2201	510.1
1947	6	32	Reformer	GPT-3.5	0.0361	0.3776	946.6
1948	6	64	DLinear	GPT-3.5	0.0234	0.1635	599.3
1949	6	64	Informer	GPT-3.5	0.0234	0.5500	2252.5
1950	6	64	PatchTST	GPT-3.5	0.0234	0.2192	837.3
1951	6	64	Reformer	GPT-3.5	0.0234	0.3794	1522.6
1952	8	32	DLinear	GPT-3.5	0.0227	0.1256	452.4
1953	8	32	Informer	GPT-3.5	0.0227	0.4609	1926.8
1954	8	32	PatchTST	GPT-3.5	0.0227	0.2291	907.6
1955	8	32	Reformer	GPT-3.5	0.0227	0.3762	1554.3
1956	8	64	DLinear	GPT-3.5	0.0194	0.1284	562.2
1957	8	64	Informer	GPT-3.5	0.0194	0.5394	2680.8
1958	8	64	PatchTST	GPT-3.5	0.0194	0.2291	1081.0
1959	8	64	Reformer	GPT-3.5	0.0194	0.4447	2192.4
1960	10	32	DLinear	GPT-3.5	0.0331	0.1807	446.5
1961	10	32	Informer	GPT-3.5	0.0331	0.5878	1677.9
1962	10	32	PatchTST	GPT-3.5	0.0331	0.2267	585.7
1963	10	32	Reformer	GPT-3.5	0.0331	0.3685	1014.4
1964	10	64	DLinear	GPT-3.5	0.0281	0.1814	544.9
1965	10	64	Informer	GPT-3.5	0.0281	0.6743	2297.8
1966	10	64	PatchTST	GPT-3.5	0.0281	0.2223	690.4
1967	10	64	Reformer	GPT-3.5	0.0281	0.2628	834.4
1968	12	32	DLinear	GPT-3.5	0.0215	0.1491	594.8
1969	12	32	Informer	GPT-3.5	0.0215	0.5631	2523.3
1970	12	32	PatchTST	GPT-3.5	0.0215	0.2240	943.7
1971	12	32	Reformer	GPT-3.5	0.0215	0.6273	2822.5
1972	12	64	DLinear	GPT-3.5	0.0199	0.1500	654.8
1973	12	64	Informer	GPT-3.5	0.0199	0.6402	3120.5
1974	12	64	PatchTST	GPT-3.5	0.0199	0.2332	1073.2
1975	12	64	Reformer	GPT-3.5	0.0199	0.2996	1407.4

Table 31: Comparison of Regular (Dynamic Gating) vs. Ablation (Fixed Weights) performance for the Economy domain. Increase (%) is relative to the lower MSE in each row.

Expert	Parameters	1 layer	2 layers	4 layers	6 layers	8 layers
Informer	pred_len=8	N/A	0.5063	0.4339	0.4500	0.4761
Informer	pred_len=10	0.4097	0.4510	0.4853	0.3493	0.4279
PatchTST	pred_len=8	0.0325	0.0411	0.0380	0.0220	0.0425
PatchTST	pred_len=10	0.0232	0.0285	0.0287	0.0376	0.0260

Table 32: Transformer layer ablation results for the Economy domain (Informer & PatchTST). Bold marks the lowest MSE in each row.

Expert	Parameters	1 layer	2 layers	4 layers	6 layers	8 layers
Informer	pred_len=12	0.3260	0.1907	0.1594	0.1881	0.2574
Informer	pred_len=24	0.4247	0.3922	0.4201	0.3983	0.2654
PatchTST	pred_len=12	0.1128	0.1418	0.1174	0.1206	0.1237
PatchTST	pred_len=24	0.2410	0.2435	0.2659	0.2686	0.2542

Table 33: Transformer layer ablation results for the Energy domain (Informer & PatchTST). Bold marks the lowest MSE in each row.

Expert	Parameters	1 layer	2 layers	4 layers	6 layers	8 layers
Informer	pred_len=8	0.1882	0.1571	0.1549	0.1667	0.1569
Informer	pred_len=10	0.1643	0.1609	0.1851	0.1693	0.1489
PatchTST	pred_len=8	0.1782	0.1845	0.1847	0.1718	0.1766
PatchTST	pred_len=10	0.1870	0.1787	0.1724	0.1824	0.1809

Table 34: Transformer layer ablation results for the Traffic domain (Informer & PatchTST). Bold marks the lowest MSE in each row.

Expert	Parameters	1 layer	2 layers	4 layers	6 layers	8 layers
Informer	pred_len=8	0.9227	0.7844	0.8052	1.0007	0.7681
Informer	pred_len=10	1.0562	0.9176	0.9045	0.8398	0.8529
PatchTST	pred_len=8	0.9009	1.1113	0.9324	1.0164	0.9702
PatchTST	pred_len=10	1.0660	1.0337	1.0652	1.0102	1.0635

Table 35: Transformer layer ablation results for the SocialGood domain (Informer & PatchTST). Bold marks the lowest MSE in each row.

Expert	Parameters	1 layer	2 layers	4 layers	6 layers	8 layers
Informer	pred_len=8	126.2790	124.4728	125.0367	125.0563	124.1039
Informer	pred_len=10	128.3774	124.4344	126.1757	125.5975	123.1289
PatchTST	pred_len=8	108.5710	110.1942	106.7579	107.7070	109.8315
PatchTST	pred_len=10	110.4228	111.2761	116.8383	109.8659	110.2220

Table 36: Transformer layer ablation results for the Security domain (Informer & PatchTST). Bold marks the lowest MSE in each row.

Expert	Parameters	1 layer	2 layers	4 layers	6 layers	8 layers
Informer	pred_len=12	1.0751	1.1408	0.9890	1.0783	1.0172
Informer	pred_len=24	1.3870	1.2082	1.3260	1.2612	1.2829
PatchTST	pred_len=12	0.8575	0.8395	0.8465	0.7999	0.7931
PatchTST	pred_len=24	1.1809	1.1338	1.1341	1.2042	1.1350

Table 37: Transformer layer ablation results for the Public Health domain (Informer & PatchTST, pred_len = 12, 24). Bold marks the lowest MSE in each row.

Domain	1 layer	2 layers	4 layers	6 layers	8 layers
Economy	0.1551	0.1779	0.2465	0.2147	0.2431
Energy	0.2761	0.3639	0.2407	0.2439	0.2252
Public Health	1.2325	1.0806	1.0742	1.0859	1.0571
Security	118.4126	114.5918	118.7021	117.0567	116.8216
SocialGood	0.9865	0.9764	0.9268	0.9668	0.9137
Traffic	0.1794	0.1897	0.1743	0.1725	0.1659

Table 38: Average MSE across all tested configurations for each number of Transformer layers in the gating module, by domain (Informer & PatchTST only). Bold marks the lowest average per domain.