
GEOWATCH FOR DETECTING HEAVY CONSTRUCTION IN HETEROGENEOUS TIME
SERIES OF SATELLITE IMAGES

Jon Crall, Connor Greenwell, David Joy, Matthew Leotta Aashish Chaudhary, Anthony Hoogs

Kitware, Inc.

ABSTRACT

Learning from multiple sensors is challenging due to
spatio-temporal misalignment and differences in resolution
and captured spectra. To that end, we introduce GeoWATCH,
a flexible framework for training models on long sequences of
satellite images sourced from multiple sensor platforms, which
is designed to handle image classification, activity recogni-
tion, object detection, or object tracking tasks. Our system
includes a novel partial weight loading mechanism based on
sub-graph isomorphism which allows for continually training
and modifying a network over many training cycles. This has
allowed us to train a lineage of models over a long period of
time, which we have observed has improved performance as
we adjust configurations while maintaining a core backbone.

Index Terms— Remote Sensing, Multi-Sensor, Segmenta-
tion, Partial Weight Loading, Instillation, Continual Learning

1. INTRODUCTION

The deployment of remote sensing models in realistic settings
features a number of challenges: sensor noise, full or partial
occlusion from shadows and clouds, and data sparsity due to
the fixed revisit rates of many sensor platforms. Taken together,
these challenges complicate long term Earth monitoring from
a single sensor platform as high quality images are received
less frequently. A common strategy to increase the number
of viable images is to incorporate readings from additional
sensor platforms. To overcome spatial, resolution, and spectral
misalignment between multiple sensor platforms, harmonized
products such as HLS [1] have been introduced. However,
this limits training and inference to a fixed set of sensors. In
this paper we introduce GeoWATCH, a software package for
remote sensing computer vision tasks which is designed to
handle multiple sensors, long time frames, be robust to missing
and noisy data, and more.

While GeoWATCH is designed to be a general use platform,
it was initially built to solve the IARPA SMART large-scale
heavy construction detection task. The goal of the SMART pro-
gram is to detect, characterize, and monitor anthropogenic or
natural processes using a multiple sources of satellite imagery
collected over time. The motivating use-case is the detection
of heavy construction over a broad area of space and time.

Fig. 1: GeoWATCH Detection Example.
Example prediction for a heavy construction site in the valida-
tion dataset. Rows 1 and 2 display true and predicted polygons.
Row 3 presents the image data. Rows 4 and 5 feature the 2m
GSD phase and saliency heatmaps. Row 6 displays the 10m
GSD saliency heatmap. Row 7 compares true and predicted
timelines. Category colors include red for “No Activity”, yel-
low for “Site Preparation”, green for “Active Construction”,
and blue for “Post Construction.”

Specifically, we construct a data cube of Landsat, Sentinel-2,
and WorldView imagery covering several large spatial regions
over a period of almost eight years. The goal is to predict a
polygon on construction sites along with a start and end date.

Using GeoWATCH our algorithms are designed to make
a prediction at every pixel in space time (i.e. the output
heatmaps are the same resolution as the input images) of 2
heads: “saliency” which indicate if any construction is happen-
ing, and “class”, if it is one of 2 phases: “Site Preparation” or
“Active Construction”. We then extract polygons from these
heatmaps and assign a start and end date. We operate in two
stages: (1) broad area search for candidate sites at 10m GSD
and (2) activity characterization and validation of candidate
sites a 2m GSD. An example of a site detected with our system
is shown in Figure 1.

Our contributions are: 1) An extension of MS-COCO [2]
called KWCoco, designed to be more suitable for geospatial
data, and which provides the ability to sample large multispec-
tral images at a virtual resolution using a novel “Video View”.



2) A new open source framework for training and predicting
with AI models on geospatial data with support for continual
learning regularization [3], which we call GeoWATCH. 3) A
method for transferring part of a network to another network
with similar structure by finding a maximum subtree embed-
ding / isomorphism [4], termed “Partial Weight Loading”. We
present preliminary observations of a phenomena that we call
“instillation”, where our models trained with one set of input
features retain performance even after that input is removed.
and 4) We have publicly released our code1 via GitLab and
model weights via IPFS[5].

2. RELATED WORK

Our GeoWATCH framework is related to other libraries. Torch-
GEO [6] - Defines specific dataloaders for individual standard-
ized datasets, whereas our system opts to define a data inter-
change standard and use the same dataloader on all problems.
MMSegmentation [7] - is a powerful semantic segmentation
library, but cannot handle large images. RasterVision [8] - Is
another open source geospatial deep learning library with sim-
ilar capabilities, but to the best of our knowledge it does not
have the ability to produce native resolution batches on time
sequences from multiple sensors.

We also explore new techniques related to existing algo-
rithms. Loss-of-plasticity [3] is the observation that networks
gradually degenerate while training with SGD, and that selec-
tively re-initializing neurons can mitigate this. In our work we
accomplish this re-initialization with partial-weight-loading,
wherein the weights of a partially loaded network are reinitial-
ized. Distillation [9, 10] is a technique to transfer knowledge
from one model to another. This is done by training a student
network to match predictions of a teacher network. In this
work we observe a new way to transfer knowledge, which we
call “instillation”. This involves a partial weight transfer of a
larger network to a smaller network followed by fine-tuning.

3. DATA INTERCHANGE

The main data interchange in our system for vision tasks is a
KWCoco file, which is an extension of the well-known MS-
COCO format [2] that better handles a datacube of geospatial
data. Specifically, COCO images are extended to allow for
multi-spectral imagery stored across multiple assets, which
could exist at different resolutions. Each COCO image can be
registered as a frame in a video. Affine transformations are
stored to warp between assets at different resolutions.

To prepare a region for training or prediction, our system
runs STAC [11] query and the results are indexed in a KWCoco
file, which abstracts away geospatial information and allows
computer vision algorithms to reference the data based on a

1https://gitlab.kitware.com/computer-vision/geow
atch

Fig. 2: STAC-to-KWCoco. Given a region of interest, our
system runs a STAC query and registers paths to the original
images in a KWCoco file. The images are stored natively on
disk and we can request heterogeneous subregions of space-
time at arbitrary resampled (or native) resolutions.

virtual pixel space where all images area aligned. We call this
virtual resolution a video view. This process is illustrated in
Figure 2.

Once raw GeoTIFFs are available on disk, and indexed by
a KWCoco file, we can efficiently access them via the delayed
image package [12]. This tool utilizes the COG format [13]
to allow efficient access subregions of the cropped images
(which might still be quite large — e.g. 4K × 4K pixels is
common), or coarser resolutions via overviews. It allows the
developer to build a tree of image operations (e.g. resampling /
concatenation) and it is able to optimize this tree by fusing lin-
ear operations (e.g. affine transforms) and replace downscales
by 2 with an overview operation.

4. TRAINING AND INFERENCE

Given a dataset in KWCoco format, a network is trained by
specifying an input window and resolution, a time kernel, sen-
sor/channel specification that will be used to construct batches.
At creation time, the dataset estimates dataset statistics like
mean/std and class frequency and cached. The network also
establishes trainable classes, mean/std, and class frequency
by receiving them from the dataset. For regularization we
have implemented a restricted variant of the generate-and-test
algorithm for continual learning [3] as well as the full shrink-
and-perturb [14] algorithm. Our networks states are saved as
checkpoints, and packaged with torch.package, which
allows us to bundle the weights with the network topology and
other metadata like train-time parameters. All training details
are logged in the the package metadata. For network details
see previously published work [15].

At test time, we construct a regular grid of sample targets,
and produce an output for each input location. These outputs

https://gitlab.kitware.com/computer-vision/geowatch
https://gitlab.kitware.com/computer-vision/geowatch


Input DataCube Output heatmaps are 
a new raster channel 
in the DataCube.

Transformer

batch weights

batch heatmap prediction

sampled inputs extra weights for 
boundary smoothing

accumulate

Output space is aligned 
with the input space up 
to a scale factor. 

nan-handling

Fig. 3: Prediction Pipeline. Given an enumeration of spacetime sample grids, the input is prepared and passed to a model,
which predicts a corresponding set of heatmaps. With the input is an associated set of weights for each pixel, which is zero if the
pixel is NaN or low quality as indicated by the QA mask. The heatmap predictions are accumulated into a pre-allocated buffer
for for each frame in the larger video. Boundary smoothing weights are used to down-weight edges of each predicted window.
When combined with overlapping windows, this results in a smooth final heatmap corresponding to each larger frame in the
original video.

are stitched together in pre-allocated memory corresponding to
the spacetime extent of the input dataset. The stitcher maintains
an accumulation array, allowing overlapping windows to make
multiple predictions for the same location in space time. The
final pixel value at a location is the weighted average of all
inputs accumulated there. Each prediction window augments
the weights provided by the dataset (which indicates NaN
locations) with an additional filter that down-weights spatial
edges and smooths boundary artifacts produced by overlapping
windows. The prediction process is illustrated in Figure 3.

The result of this prediction process is either a new 1 chan-
nel saliency map, or a new per-class heatmap. The outputs are
quantized to int16 and written to disk as geo-registered COGs
and registered as new bands in the output KWCoco file.

5. PARTIAL WEIGHT INITIALIZATION

Our training pipeline has a unique initialization process. The
network is either initialized from scratch by default or, if speci-
fied, weights are transferred using partial-weight-initialization
[16]. The establishment of a partial matching between similar
networks involves finding a maximum subgraph isomorphism
[4], as shown in a simplified version in Figure 4.

Our networks possess extensive training history, with each
network having a lineage of initialization events. This lin-
eage comprises a chain of training events facilitated by partial
weight loading, representing the model’s training history and
initialization states. We have leveraged this tool to evolve our
architectures by adjusting depth, re-configuring input stems for
different modalities, and modifying and re-initializing network
heads for various objectives. Notably, training on semantically
rich input features, such as activations of a pretrained MAE,
enhances model performance. Interestingly, even after remov-
ing this feature and continuing training with RGB inputs, the

Fig. 4: Partial Weight Loading. A partial matching between
similar networks is established by finding a maximum com-
mon subtree embedding [4]. Unmatched destination weights
are reinitialized. In this example the input stem MSI data is
dropped, the backbone is extended from 8 layers to 24 layers
and partially initialized, a new class head is initialized, and the
existing saliency head and RGB stem are exactly copied.

model retains its improved performance — a phenomenon we
term “instillation.”

6. DETECTING HEAVY CONSTRUCTION EVENTS

The motivating application of our system is the detection and
classification of heavy construction events for the IARPA
SMART challenge. Using the techniques described in this
paper we continuously trained models that improved over time
as shown in Figure 5. Our system works in two phases: broad-
area-search (BAS) and activity characterization (AC). In BAS
we search for candidate regions using data sampled at 10m
GSD. In AC we zoom into candidate detections at 2m GSD,



Fig. 5: Instillation Improved Scoring Over Time. Over
an 18-month period, our F1 scores for the IARPA SMART
BAS task (↑ is better) improved on both the training regions
(dashed-blue) and the sequestered test regions (solid-green).
Each model is finetuned under different training conditions
from its most recent ancestor, initializing each step using our
partial weight loading approach. The scores are reported to us
from an external evaluation of our system.

refine spacetime boundaries, and classify the phase of con-
struction.
Broad Area Search For BAS our best network was trained
with a combination of red, green, blue, and near-infrared bands
from Landsat, Sentinel, and Worldview as well as a 36-band
derived feature using the COLD algorithm [17]. We found that
an important step was time-averaging (using the median) our
input KWCoco files such that all images per-sensor per-year
were averaged together to produce 1 image per sensor per year.
An important note is that COLD features are only produced
once per-year for Landsat 8 and Sentinel 2 data. Instead of
averaging these features together we simply assign them to the
nearest average image in time.

Given the trained BAS saliency model and a dataset, we
predict saliency heatmaps for each frame. We then extract
the polygons from these heatmaps, which will become our
initial predicted site boundaries. First, we find the maximum
saliency response over all time. We use a threshold (0.375) to
binarize this max-image, and produce polygons. These are our
BAS spatial bounds. Any polygon outside an area threshold
of under 7200m2 or above 8km2 is removed. We then assign
temporal extents by looking again at the heatmaps. For each
1 year window (which may contain multiple predictions for
different sensors) we average predictions together. For each of
these frames, average saliency response under the polygon and
assign it as the “score” for that spacetime observation. Any
observation with a score under 0.3 (chosen via grid search)
is removed, which defines the start / end time for the site
proposal.
Activity Characterization Given a set of site proposals,
we cluster them into a set of smaller regions-of-interest. We
build a KWCoco dataset by pulling Sentinel 2 and Worldview
data with a maximum resolution of 2m GSD, downsampling
all high-resolution sources. We pull all available Worldview
imagery, but we consume only least cloudy Sentinel 2 image
per month.

Predicting class heatmaps works almost exactly as in BAS.
For each video we define a target grid, push each input through
the network and we output a new dataset with both 4-channel
class heatmaps and high resolution saliency heatmaps.

To extract high-resolution polygons, we employ a track-
ing process for each site cluster. We load predicted heatmaps
for each cluster, multiply the “Active Construction” and “ac-
salient” channels, and construct a volume. Pixels inside each
BAS polygon are considered, and all other pixels are zeroed.
The tensor is binarized based on a threshold (e.g., 0.3), and con-
nected components are found. The maximum response in each
component serves as seed points for a watershed algorithm,
filling the BAS polygon area with smaller polygons. Small
polygons are removed. The maximum AC-salient score is used
as a singular filter for each site. A site is rejected if its singular
score is below 0.3, and if the maximum per-class score is not
above 0.3, the observation is labeled as “No Activity.” The
start date for a site is determined by the first “Site Preparation”
observation, and the end date is determined by the last “Active
Construction” observation. Any site without “Site Preparation”
or “Active Construction” predictions is rejected.

7. DISCUSSION

We have introduced GeoWATCH, a software framework for
training and predicting AI models on heterogeneous raster time
sequences. The system handles tasks like image classification,
activity recognition, object detection, or object tracking based
on MS-COCO-compatible input data encoding. We demon-
strated its effectiveness in detecting heavy construction events
in diverse satellite image sequences. Our training system fea-
tures a novel partial weight loading mechanism, utilizing sub-
graph isomorphism, enabling continuous network training and
modification over extended periods. This facilitates the cre-
ation of a lineage of models, showing improved performance
over time by adjusting configurations while maintaining a core
backbone. Notably, training models with many features and
initializing new networks with fewer input features retains
performance, suggesting an “instillation” of knowledge from
previous models into new ones. Future research will explore
experimental verification of these observations.

Acknowledgement This research is based upon work supported
in part by the Office of the Director of National Intelligence (ODNI),
6 Intelligence Advanced Research Projects Activity (IARPA), via
2021-2011000005. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily rep-
resenting the official policies, either expressed or implied, of ODNI,
IARPA, or the U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.



8. REFERENCES

[1] Martin Claverie, Junchang Ju, Jeffrey G Masek, Jen-
nifer L Dungan, Eric F Vermote, Jean-Claude Roger,
Sergii V Skakun, and Christopher Justice, “The harmo-
nized landsat and sentinel-2 surface reflectance data set,”
Remote sensing of environment, vol. 219, pp. 145–161,
2018.

[2] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick, “Microsoft COCO: Common Ob-
jects in Context,” in Computer Vision – ECCV 2014,
David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne
Tuytelaars, Eds., Cham, 2014, Lecture Notes in Com-
puter Science, pp. 740–755, Springer International Pub-
lishing.

[3] Shibhansh Dohare, J. Fernando Hernandez-Garcia,
Parash Rahman, Richard S. Sutton, and A. Rupam Mah-
mood, “Loss of Plasticity in Deep Continual Learning,”
Aug. 2023, arXiv:2306.13812 [cs].

[4] Valiente Feruglio and Gabriel Alejandro, “On the max-
imum common embedded subtree problem for ordered
trees,” Mar. 2003, Accepted: 2016-11-29T09:25:22Z.

[5] Juan Benet, “IPFS - Content Addressed, Versioned, P2P
File System,” July 2014.

[6] Adam J. Stewart, Caleb Robinson, Isaac A. Corley, An-
thony Ortiz, Juan M. Lavista Ferres, and Arindam Baner-
jee, “TorchGeo: Deep Learning With Geospatial Data,”
Sept. 2022, arXiv:2111.08872 [cs].

[7] MMSegmentation Contributors, “OpenMMLab Seman-
tic Segmentation Toolbox and Benchmark,” https://
github.com/open-mmlab/mmsegmentation,
July 2020.

[8] Robert Cheetham and Azavea/Element 84, “Raster vi-
sion: An open source library and framework for deep
learning on satellite and aerial imagery (2017-2023),”
https://github.com/azavea/raster-vis
ion.

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Dis-
tilling the Knowledge in a Neural Network,” Mar. 2015,
arXiv:1503.02531 [cs, stat].

[10] Chengming Hu, Xuan Li, Dan Liu, Haolun Wu, Xi Chen,
Ju Wang, and Xue Liu, “Teacher-Student Architec-
ture for Knowledge Distillation: A Survey,” Aug. 2023,
arXiv:2308.04268 [cs].

[11] “Spatiotemporal asset catalog (stac) specification,” http
s://stacspec.org/, 2021, Accessed: 2023-12-04.

[12] Jon Crall and Delayed Image contributors, “Delayed
image,” https://gitlab.kitware.com/com
puter-vision/delayed_image, Dec. 2023.

[13] “Cloud optimized geotiff,” https://www.cogeo.
org/, Accessed: 2023-12-04.

[14] Jordan T. Ash and Ryan P. Adams, “On Warm-Starting
Neural Network Training,” Dec. 2020, arXiv:1910.08475
[cs, stat].

[15] Connor Greenwell, Jon Crall, Matthew Purri, Kristin
Dana, Nathan Jacobs, Armin Hadzic, Scott Workman,
and Matt Leotta, “WATCH: Wide-Area Terrestrial
Change Hypercube,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision
(WACV), 2024, pp. 8277–8286.

[16] Jon Crall and Torch Liberator contributors, “Torch lib-
erator,” https://gitlab.kitware.com/compu
ter-vision/torch_liberator, Dec. 2023.

[17] Zhe Zhu, Junxue Zhang, Zhiqiang Yang, Amal H. Aljad-
dani, Warren B. Cohen, Shi Qiu, and Congliang Zhou,
“Continuous monitoring of land disturbance based on
Landsat time series,” Remote Sensing of Environment,
vol. 238, pp. 111116, Mar. 2020.

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
https://github.com/azavea/raster-vision
https://github.com/azavea/raster-vision
https://stacspec.org/
https://stacspec.org/
https://gitlab.kitware.com/computer-vision/delayed_image
https://gitlab.kitware.com/computer-vision/delayed_image
https://www.cogeo.org/
https://www.cogeo.org/
https://gitlab.kitware.com/computer-vision/torch_liberator
https://gitlab.kitware.com/computer-vision/torch_liberator

	 Introduction
	 Related Work
	 Data Interchange
	 Training and Inference
	 Partial Weight Initialization
	 Detecting Heavy Construction Events
	 Discussion
	 References

