
Published as a conference paper at ICLR 2024

INDUCTIVE TRANSFORMERS: HOW LANGUAGE MOD-
ELS FORM CONCEPTS, AND HOW TO MAKE THEM
EVEN BETTER AT IT

Ben Vigoda∗ , Thomas Rochais

ABSTRACT

We derive transformers from more a more foundational underlying inductive bias.
This new understanding enables us to design transformers with tighter conceptual
organization, greater conceptual control, and higher levels of conceptual abstrac-
tion. We explain the approach and give an illustrative example simulation.

We show that training data can be replaced or augmented by making modest
design modifications to the transformer’s activation functions and connectivity.
We show how to generate synthetic training data that can be used to train inductive
bias into a transformer before or in concert with natural language training data.

1 INTRODUCTION AND PRIOR ART

Our goal is to create language models that learn better organized concepts, more controllable con-
cepts (Wang et al., 2023; Meng et al., 2023; Hernandez et al., 2023), and more abstract concepts.
This could in turn help unlock a range of enhanced abilities including better causal reasoning, itera-
tive experimentation, longer range planning, longer chains of reasoning, curiosity, and introspection.

Causal reasoning requires the ability to intervene between connected concepts in a model (Pearl,
1995). Iterative experimental design and interpreting results requires the ability to structure latent
concepts to create hypotheses and explain observed data (Lu & Zhang, 2022). Long-range plans and
chains of reasoning require the ability to compose sequences of latent concepts (Lake et al., 2017;
Oh et al., 2017; Shinn et al., 2023). Curiosity consists of noticing which data is explained well by
existing concepts and which data requires further conceptual structures to explain away (Mazzaglia
et al., 2022; Chen et al., 2022; Pearl, 1988; Peterson et al., 2019). More speculatively, introspection
of ones own reasoning may benefit from concepts that are well-organized and uncertainty that is
well characterized.

How can we achieve AI models with deeper conceptual abstractions and greater conceptual clar-
ity? Frontier models may continue to push the envelope with greater quantities of training data and
parameters, while also requiring commensurate increases in training compute costs (Amodei & Her-
nandez, 2018). Human learners, however, are able to learn deep abstractions and great conceptual
clarity with at least four orders of magnitude less training data compared to current state-of-the-art
models (Frank, 2023).

Reinforcement learning with small but high-quality data sets and improved loss functions continue
to be an important path forward (Knight, 2023; Thomaz et al., 2006). This is analogous to tutoring
children, but children without significant tutoring are still able to learn very effectively (Gopnik
et al., 1999).

Much current effort involves expanding to additional data modalities (e.g. video) (Sun et al., 2019).
Extraordinary humans like Helen Keller, however, achieve the highest levels of abstraction and
conceptual organization without any visual or auditory inputs (Herrmann, 1999).

Inductive bias is a key under-exploited approach for improving models (Goyal & Bengio, 2022), and
many have pointed out the importance of introducing inductive bias into models (Mittal et al., 2022;
Goyal & Bengio, 2020; Lamb et al., 2021; Gruber, 2013). Well-designed inductive bias enhances the

∗Direct correspondence to ben@benvigoda.com.

1

Published as a conference paper at ICLR 2024

predictive power of a model by shaping the model to be a more likely fit for high-quality data, and a
poorer fit for low-quality data (MacKay, 2003). Examples in language models would be a preference
for computer code that is syntactically correct or for mathematical proofs that are logically valid.
Examples in human learning are exemplified by the individuals such as John von Neumann who
exhibited a strong predisposition for learning and manipulating mathematical concepts.1

Inductive bias adds constraints that a model could eventually learn with enough time, compute,
and high-quality data (Welling, 2019). The additional constraints, however, reduce the degrees of
freedom that need to be explored while learning, and by extension during inference.

In fact, the right inductive bias can be used as a substitute for orders of magnitude more high-quality
training data. For example, “a controller optimization system equipped with differentiable simu-
lators converges one to four orders of magnitude faster than those using model-free reinforcement
learning algorithms” (Belbute-Peres et al., 2018), and on Emotion and AG News benchmark tasks,
models pretrained on entailment data outperformed models five hundred times larger (Ge et al.,
2023).

(Sartran et al., 2022) modify the existing TransformerXL (Dai et al., 2019) to create “grammar
transformers” which tag parts of speech within sentences and then dynamically mask the attention
matrices based on these tags. They do not focus beyond the limits of each sentence, and only
address their inductive bias to the attention mechanism, not to the entire model. That said, on
several benchmarks they demonstrate equivalent performance to models five hundred times larger
than their own. This provides compelling evidence for the effectiveness of inductive bias at scale.

The opposite of inductive bias is to remove constraints from the model and simply use more training
data. For example, (Liu et al., 2021) replaced attention layers with more generic fully connected
perceptron layers, but recovered equivalent performance by increasing the size of the training set.

Transformer models are often summarized as a conditional distribution of the next token given previ-
ous tokens, p(ti+1|ti, . . . ti−N) where N is the context window length. This sometimes gets reinter-
preted in the popular imagination as implying that the transformer is simply learning to parrot back
sequences of words that it has seen before, i.e. it is “fancy auto-complete” (Marcus et al., 2023). As
we will see, there is more structure in these models than implied by this articulation (Veres, 2022).

That said, today’s “vanilla” transformers seem to organize internal concepts somewhat loosely and
unreliably unless extreme quantities of data and reinforcement are applied (compared to human
learning). A great deal of research has been dedicated to understanding how information is en-
coded within deep learning networks. For example, convolutional networks trained on images
have been shown to encode increasing abstraction in increasing layers of the network. This can
be demonstrated by stimulating neurons at different layers and observing the images that the trained
network outputs (Bau et al., 2020). Looking for similar patterns in transformers has been less con-
clusive (Clark et al., 2019). “BERTology has clearly come a long way, but it is fair to say we
still have more questions than answers about how BERT works” (Rogers et al., 2020). Current ap-
proaches have been primarily limited to token semantics, sentence syntax, co-reference and parts
of speech Clark et al. (2019) as well as post-facto investigation of small circuits that emerge from
training toy models (Elhage et al., 2021).

Designing inductive bias for better and broader conceptual organization requires a modeling
prior (Frankle & Carbin, 2019). Goyal and Bengio propose principles for additional inductive
bias (Goyal & Bengio, 2022). Paraphrasing their list, (1) knowledge is factorized in terms of abstract
variables and functions, (2) high-level variables play a causal role and learn representations of latent
entities/attributes, (3) changes in distribution are due to causal intervention and are localized, (4)
short causal chains of concepts at higher concept levels organize groups of lower level concepts in
order to span very complex explanations or plans, and (5) top-down contextual information is dy-
namically combined with bottom-up sensory signals at every level of the hierarchy of computations

1Peter Lax wrote, “... had he lived a normal span of years, he would certainly have been a recipient of a
Nobel Prize in economics. And if there were Nobel Prizes in computer science and mathematics, he would have
been honored by these too...” (Neumann & Redei, 2005). By age six, he could divide two eight-digit numbers
in his head (Schneider, 2015; Henderson, 2007). The Nobel Laureate Hans Bethe said, “I have sometimes
wondered whether a brain like von Neumann’s does not indicate a species superior to that of man” (Macrae,
1992; Blair Jr, 1957).

2

Published as a conference paper at ICLR 2024

relating low-level and high-level representations. Our family of inductive transformers aspires to
strongly adhere to these desiderata.

We start with the question, “What is the generative statistical model such that recursive marginal-
ization of the model is in tight equivalence with the calculations performed by inference in a vanilla
transformer?” We show that understanding transformers from this perspective can provide a foun-
dation for the design of new inductive bias, yielding inductive transformers.

2 THE INDUCTIVE TRANSFORMER MODEL

To focus on designing inductive bias into the model, we want to write down the model structure
first without worrying about inference or data. Once we define the model, we will define inference
employing marginalization, as well as implement learning with back-propagation. By focusing first
on the model in isolation, the inductive bias in the model is more evident.

We expect a large language model to estimate uncertainty about underlying discrete variables. Why?
Language understanding and generation systems must solve an inverse problem. I transform my
concepts into speech when I communicate to you. If you would like to guess what concepts I was
thinking, so that you can consider and reply appropriately, you must (approximately) invert my
speech back into concepts. This is the foundation of digital and symbolic communications systems
going back to Shannon (Shannon, 1948). The mapping from concepts to speech is many-to-many, so
you have an inherently under-determined problem to solve, which by its nature requires representing
the uncertainty of competing interpretations of the data.

Perhaps the simplest building block that you could employ to model my thought process would be:
(1) I generate a single token from a categorical distribution πT over tokens, and (2) I choose a πT

from which I will generate my next token, by sampling from a distribution πZ over πT ’s. Then I
repeat this simple “production” over and over again. In other words, you model my mind as being
made of an incredibly rudimentary grammatical production, but with an enormous number of such
productions, trained and wired together in intricate ways. We are not saying that language mod-
els are simply sampling from a generative grammar. On the contrary, during inference activations
represent uncertainty with continuous values. As well, productions are tiled together at enormous
scale, with each trained to have its own weights. Our detailed choices in the basic building block
(ie. “production”) are how we design the inductive bias. Let’s investigate in more detail.

Categorical -
BernoulliπBernoulli -

Categorical

Closed -
Open

Universe

∧
Categorical -

BernoulliπBernoulli -
Categorical

Closed -
Open

Universe

Encoder marginalizes from tokens to latent concepts

Decoder marginalizes from latent concepts to tokens

uBernoulli

∧

Z

Z

......

πT
Categorical -

Bernoulli

πT
Categorical -

Bernoulli

...

vCategorical yCategorical

yBernoulli

yBernoulli

xBernoulli

xBernoulli

z'Bernoulli

z'Bernoulli

z Bernoulli

z Bernoulli

x
C

ategorical
x

C
ategorical

t 1

t T

...

t 1

t T

Figure 1: A single layer of the inductive transformer production represented as a factor graph.

To understand the underlying production for a vanilla transformer, we step through a sequence of
sampling operations representing a single path through one decoder layer. The ∧ on the right side
of figure 1, is an “AND” activation function, detailed in appendices 46,B.6, and D. When activated

3

Published as a conference paper at ICLR 2024

by z′, it must activate both of its child variables x AND y. x then activates πT which is a categorical
choice over tokens t ∈ T . When activated by the ∧, πT “rolls a die” to choose a token. Because it
generates a “terminal symbol”, πT corresponds to the residual (or “skip”) connections in the vanilla
transformer which connect internal layers to a position in the data (more on this in appendix A.1).
The ∧ also activates the child variable y which activates πZ . When activated by the ∧, πZ chooses
an ∧ in the layer below. We will discuss the closed-open universe and categorical-Bernoulli factors
later, and in full detail in appendices B.1 and B.4.

In summary, this simplified production generates one token and chooses to activate one of the pro-
ductions in the layer below. A path through multiple layers of strongly connected productions can
generate a coherent distribution over possible token sequences. We will refer to this kind of strongly
connected sub-network as a “concept”.

There are many directions for variation and expansion of inductive bias in the transformer: (1) The
definitions of πT and πZ can be expanded as shown in appendix C.1 when we incorporate (relative)
position to implement an attention mechanism which closely resembles the XL-Transformer Dai
et al. (2019). (2) Because it makes a categorical choice over tokens, this production generates em-
bedding vectors that represent one token per dimension, but this will be expanded to represent vanilla
sparse semantic distributions in appendix E. (3) The production could allow for each πZ to (jointly)
choose two or more productions and/or each πT to choose two or more tokens. (4) An inductive bias
for context-free grammar could be designed in order to prefer syntactically correct computer code.
Perhaps a production could also be designed to favor the generation of formally correct statements
and/or steps in an axiomatic system such as Zermelo–Fraenkel set theory (Hrbacek & Jech, 2017).
(5) Other biases could be introduced by making use, for instance, of the ontological architectures ex-
plored in Gruber (1993; 1995). For space and clarity, we initially content ourselves with presenting
our methodology for designing inductive bias with the simplified example in figure 1. Remarkably,
once we derive inference in a model made of a large number of these productions tiled together, the
vanilla transformer essentially pops out of the derivation. This provides clear opportunities to both
tighten and expand inductive bias in transformers by modifying the production and repeating the
derivation.

Although our simple production resembles probabilistic generative grammars which have generally
been used to model the generation of a sentence, given the penchant in biological evolution for
the preservation and reuse of existing evolved structures, we see no reason to presume that this
production would stop being used at the punctuation mark. The production seems to naturally fit
what humans call outline form for books, composition forms in music such as the sonata (Lerdahl
& Jackendoff, 1983), and the hierarchical categories and attributes expressed in symbolic systems
such as the Dewey decimal system and relational databases where a particular πT can be viewed as
modeling a relation between a subject πT above and an object πT below.

In table 1, we compare the vanilla transformer (Vaswani et al., 2017) to the inductive transformer
layer by layer.

4

Published as a conference paper at ICLR 2024

Layer
Type

Vanilla Transformer Inductive Transformer

Self-
attention

yi =
∑

j ωi,jvj , where
ωi,j = Softmax(qikTj)

We do not modify the attention layer, we de-
rive it as marginalizing a statistical produc-
tion. See appendix C.1

Add
& norm

Sum the residual connections
and the outputs from the
attention layer below.

Marginalization of the “∧” sums the the to-
ken activations output from πT with the at-
tention activations from πZ . See appendix D

Residual
connec-
tions

Connections between the
input data and internal layers

Generative production where every non-
terminal must generate at least one terminal.
See appendix A.1

Encoder-
decoder
connec-
tions

Output of the final encoder
layer is provided to every
decoder layer

When we detail forward and backward
marginalization in the model, we will see
that each layer of the encoder should pro-
vide marginals to the corresponding decoder
layer. See appendix A.2

Feed-
forward

Columnar MLPs possibly
learning to approximate the
corresponding activation
functions in the inductive
transformer

Marginalize the posterior log probability of
the categorical-Bernoulli, open-closed uni-
verse, and Bernoulli-categorical factors. See
section B.1

Table 1: Comparison of Vanilla and Inductive Transformer Layers

As we discuss in table 1 above and detail in appendix C.1, we strive for a close correspondence
between the equations for the vanilla attention mechanism and the equations we derive by marginal-
izing our attention production.

Similarly, the correspondence between the ∧ factor and the add & norm layers in the vanilla trans-
former is strongly suggested by the fact that these layers are where the residual connections get
combined with the activations from the layer below. Furthermore there is a close mathematical
correspondence between the implementation of the ∧ in the log probability domain and the add &
normalization operation (see further details in appendix C.1).

Much is therefore the same. Where do the inductive and vanilla transformers differ? There is one
difference in how the encoder of the inductive transformer should connect to the decoder, where
vanilla transformers likely must learn to convey this same information through the residual stack.
See appendix A for more details.

More substantially, let us look at the feed-forward layer. In the vanilla transformer, the feed-forward
layer applies the same operation (essentially a multi-layer perceptron) to each embedding vector
coming into it. The vector at each position is processed through its own perceptron independent of
the vectors at other positions, but the same weights are employed at every position – these indepen-
dent operations are identical to one another. Similarly, when we derive the inductive transformer, we
find by process of elimination that the closed-open-universe factor and the Bernoulli-to-categorical
factor (with its subsequent layer norm) must be somehow performed by the feed-forward layer in
the vanilla transformer in order for there to be a tight correspondence between the two approaches.
Miraculously, when we implement inference as marginalization on a model comprised of layers of
productions, the same independence of columns as well as the subsequent layer add & norm falls
out of the inductive transformer derivation. In essence we recover the exact same conditional inde-
pendencies in the factor graph for the inductive transformer as are present in the vanilla transformer,
and they fall out not as the result of tinkering, but as the result of theory where our guiding force was
simply to marginalize the production while also optimizing the O() to avoid exponentially complex
computations!

This is highly suggestive of a strong correspondence. There is an important difference between
the approaches, however. In the inductive transformer we are precisely defining the functions for

5

Published as a conference paper at ICLR 2024

our “feed-forward” layer to implement B. In the vanilla transformer these same functions must
be learned from data. This suggests that perhaps we ought to pretrain the feed-forward layers of
vanilla transformers with synthetic data designed to teach them how to be an open-closed-universe-
Bernoulli-to-categorical factor. Conversely, as we relax this layer of the inductive transformer back
to being a layer of tied multi-layer perceptrons (MLPs), we recover the vanilla transformer.

3 INFERENCE IN THE INDUCTIVE TRANSFORMER

In this section, we will start to see that we can understand inference in a transformer not just as
predicting the next token given previous tokens, but as inferring “forward” into a latent space of
concepts and then “backwards” through concepts to predict tokens in the token window. The induc-
tive transfomer is a more focused version of the vanilla transformer, and will therefore generalize
similarly. The time and space complexity is identical.

Determining the latent concepts given the input data is, in general, an under-determined inverse
problem. When the probability distribution of a model can be represented by a directed acyclic
graph, however, forward-backward marginalization of the model to compute concept likelihoods is
exact and computationally efficient Yedidia et al. (2003).

Although our highly connected multilayer neural network may appear to be a cyclic graph, in fact
the model represented by concatenation of our productions is a tree. It is only the transformation
from an open-universe model to a closed-universe model, discussed in detail in appendix B.1 that
makes the model appear to have loops.

The conditional distribution for the inductive transformer decoder in figure 1 is,
p(z|u)p(u|vCategorical)p(vCategorical|yCategorical)p(yCategorical|y)p(t|xCategorical)

p(xCategorical|x)p(x, y|z′)p(z′). (1)

where πT = p(t|xCategorical) and πZ = p(vCategorical|yCategorical).

We call p(xCategorical|xBer) and p(yCategorical|yBer) “Bernoulli-to-Categorical” factors. We represent
Bernoulli variables with the subscript “Ber” or with no subscript. We use the subscript “Categorical”
to denote Categorical distributions which collect multiple Bernoulli variables into a single joint
variable across a layer of activations. This turns out to be important in order to avoid exponential
computational complexity in certain layers. See appendices B.2 and B.4 for more details.

As we input a prompt, rightward marginalization in figure 1 computes activations at each layer of
the encoder. Conditioned on the concepts activated in the encoder, leftward marginalization through
the factor graph infers the decoder activations. During leftward marginalization, tokens are sampled
from the probabilities (activations) in the πT ’s.

Now we derive the equations for marginalizing the inductive transformer. A transformer architecture
may contain an encoder and/or a decoder. We start with the decoder. Inference in a layer of the de-
coder marginalizes the conditional distribution in equation 1. To massively reduce the computational
complexity of the marginalization, we push each summation as far to the right as we can,

p(z) =
∑
u

p(z|u)
∑

vcategorical

p(u|vCategorical)
∑

ycategorical

p(vCategorical|yCategorical)

·
∑
y

p(yCategorical|y)
∑

xcategorical

p(t|xCategorical)
∑
x

p(xCategorical|x)
∑
z′

p(x, y|z′)p(z′). (2)

Some of the conditional distributions in this equation are,

p(x, y|z′) = δ(z′Ber − ∧(xBer, yBer)), (3)

p(vCategorical|yCategorical) = Wv,y, (4)

p(tCategorical|xCategorical) = Wt,x. (5)

6

Published as a conference paper at ICLR 2024

where W ’s are learned weight matrices. The encoder marginalizes in the opposite direction of the
decoder, with conditional distributions that impose the same joint constraints on adjacent variables.
Detailed and pedagogical equations for each summation are provided in appendix B.

4 ILLUSTRATIVE EXAMPLE

Before concluding, let’s zoom into a tiny component of a larger inductive transformer to see the real-
world operation in detail. Our focus is on demonstrating the operation of the underlying circuits in
the inductive transformer.

4.1 MODEL WEIGHTS AND ACTIVATIONS

big: 1.0 +/- 1%
cat: 0.0 +/- 1%

dog: 0.0 +/- 1%
small: 0.0 +/- 1%

pad: 0.0 +/- 1%

small: 1.0 +/- 1%
cat: 0.0 +/- 1%

dog: 0.0 +/- 1%
big: 0.0 +/- 1%

pad: 0.0 +/- 1%

dog: 1.0 +/- 1%
cat: 0.0 +/- 1%

small: 0.0 +/- 1%
big: 0.0 +/- 1%

pad: 0.0 +/- 1%

cat: 1.0 +/- 1%
dog: 0.0 +/- 1%

small: 0.0 +/- 1%
big: 0.0 +/- 1%

pad: 0.0 +/- 1%

Learned attention weights
Learned word

(token) weights

Encoder Decoder

Prompt
Position 0

Prompt
Position 1

Generation
Position 0

Generation
Position 1

small: 1.0 +/- 1%
cat: 0.0 +/- 1%

dog: 0.0 +/- 1%
big: 0.0 +/- 1%

pad: 0.0 +/- 1%

big: 1.0 +/- 1%
cat: 0.0 +/- 1%

dog: 0.0 +/- 1%
small: 0.0 +/- 1%

pad: 0.0 +/- 1%

dog: 1.0 +/- 1%
cat: 0.0 +/- 1%

small: 0.0 +/- 1%
big: 0.0 +/- 1%

pad: 0.0 +/- 1%

cat: 1.0 +/- 1%
dog: 0.0 +/- 1%

small: 0.0 +/- 1%
big: 0.0 +/- 1%

pad: 0.0 +/- 1%

0.0 +/- 1%
1.0 +/- 1%

1.0 +/- 1%
0.0 +/- 1% 0.01 +/- 2%

0.99 +/- 1%
0.98 +/- 1%

0.01 +/- 3%

Figure 2: Learned Weights in the Inductive Transformer. The learning is highly reproducible. In a
hundred different learning runs, the variance of each learned weight is generally less than 1%. The
attention πZ weights are in white with black background while the token πT weights are black on
white, next to their corresponding vocabulary words.

We successfully train the inductive transformer even as the data set size scales to zero. This lets us
zoom in on a two-layer section of the model with layer width of two. We use a maximally sparse
embedding representation described in more detail in appendix E. This highly minimized instance
of the inductive transformer generates a single token per production and therefore a single token
per layer. In other words, P tokens in the data window needs to be explained away by P layers in
this version of the inductive transformer. If we desire a model architecture that can compress more
tokens into fewer layers, we adjust the production so that a single layer is able to generate more than
a single token.

The model was implemented in PyTorch and trained with back-propagation using the Adam opti-
mizer (Paszke et al., 2019; Kingma & Ba, 2017) on a single NVidia V100 GPU (although a small
CPU would have been entirely adequate). The training data were the sentences ‘big cat.’ and ‘small
dog.’. In figure 2 we see each learned weight with its variance across a hundred training runs.

7

Published as a conference paper at ICLR 2024

4.2 PROMPTING AND GENERATION

How does prompting and generation happen in the inductive transformer? When we prompt the
model with the word “big”, the system generates the phrase “big cat”. When we prompt the model
with the word “small” it generates the phrase “small dog”. Given its hierarchical categorical nature,
there is a sense in which the encoder conceptualizes “small” and “big” as kinds or modifiers of
“dogs” and “cats”.

Prompt Generation Percentage
of Generations

“big” “big cat” 100%

“big” “big dog” 0%

Prompt Generation Percentage
of Generations

“small” “small dog” 100%

“small” “small cat” 0%

4.3 IDENTIFIABILITY

The inductive transformer strongly organizes the concepts it learns; It organizes its concepts (1) the
same way as the model that generated its training data, and (2) the same way every time. This novel
training repeatability is a consequence of the strong inductive bias.

In our context, “identifiability” means the ability for a learning model to receive instructional data
from a teacher model, and repeatably learn to mirror the teacher model’s structure. To determine if
our model is identifiable in this sense, we follow these steps:

1. Create a forward model with weights set to particular values.
2. Generate tokens (generated data) from this forward model.
3. Copy the forward model to create an inverse model with randomly initialized weights.
4. Use the generated data from the forward model to train the inverse model.
5. Compare the (learned) weights in the inverse model to the weights in the forward model. If

the weights in the inverse model converge to the same values as the corresponding weights
in the forward model, then we say that the model is identifiable.

We see in figure 2 that when repeatedly trained on the same data, the inductive transformer repeat-
ably learns to position the same concepts in the same places within the model. This is repeatable with
only a small nudge in one corner of the model to break symmetry. On larger data sets, longer range
correlations in the data ensure this symmetry breaking. This suggests the possibility of designing
large language models that repeatably learn what we want to teach them.

The identifiability in the inductive transformer is also reminiscent of the fact that for a wide range
of concepts, different humans from diverse backgrounds learn to localize particular concepts at the
same positions in their brains (Huth et al., 2016; Li et al., 2023; Geva et al., 2021; Merlin & Toneva,
2022).

4.4 CONTROLLABILITY

Now we demonstrate that we can delete concepts in the inductive transformer, so that the model will
no longer generate text from those concepts. Suppose the section of the model shown in figure 2
was trained with the three sentences “big cat”, “big dog”, and “small dog”, so that while everything
else stays the same, the πZ in the ‘big’ production learns weights [0.5, 0.5] and when prompted with
the word “big”, the model generates outputs:

Prompt Generation Percentage
of Generations

“small” “small dog” 100%

“small” “small cat” 0%

Prompt Generation Percentage
of Generations

“big” “big cat” 50%

“big” “big dog” 50%

Table 2: After training, the model accurately reflects the training data.

8

Published as a conference paper at ICLR 2024

If we lesion the connection between the “big” production and the “dog” production, then the model
can only say “big cat” and “small dog”, and will no longer say “big dog”:

Prompt Generation Percentage
of Generations

“small” “small dog” 100%

“small” “small cat” 0%

Prompt Generation Percentage
of Generations

“big” “big cat” 100%

“big” “big dog” 0%

Table 3: Prompted generations from the model where we broke the connection between “big” and
“dog”.

This demonstrates that the inductive transformer can learn causal relationships between connected
sub-networks of productions. We define a “concept” as a sub-network that can generate many dif-
ferent but synonymous token sequences (e.g. “tiny canine”). Given the very close mathematical
similarity between inductive and vanilla transformers, it seems very likely that vanilla transformers
also form these kinds of concept sub-networks. Although concepts may not be highly localized
or organized in the vanilla transformer, they could increasingly be so if we add further inductive
bias. Furthermore this suggests that the “emergent” capabilities of large language models as they
scale (Wei et al., 2022) may be the result of adding additional “layers” of concepts that provide
higher levels of abstraction.

Model controllability has practical implications. It could, for example, make it safer and simpler
to share learned weights between models. With concept controllability, after training models on
new data and/or reinforcements, people or organizations who exchange weight updates could verify
and control the concepts that are being shared. Controllability could also make it possible to edit
concepts directly in a model rather than spending far greater effort to review and edit training data.
In fact, by linking particular conceptual pathways in the model with particular sections of text,
inductive transformers could also be used to help scrub data and to identify intellectual property.
Concept controllability could also be utilized to help enhance AI alignment.

5 DISCUSSION

This paper offers the following contributions: (1) We provide the first demonstration of causal inter-
vention in a transformer model. For example, we show how to delete specific concepts by deleting
specific sub-networks. (2) We design a transformer that successfully learns even as the data set size
scales to zero. (3) We design a transformer such that the concepts it learns are localized within
identifiable sub-networks. (4) We show that the feed-forward layers of a vanilla transformer learn
underlying functions that can instead be derived analytically. (5) We derive from first principles
why the multi-layer perceptrons in the feed-forward layer of the vanilla transformer are factored
the way they are. (6) We show that the connectivity from the encoder to the decoder in the vanilla
transformer is not correct and how to fix it.2 (8) We derive the testable prediction that training data
with a particular inductive bias can help unlock a range of important new abilities for large language
models, including curiosity. One could generate synthetic data from, for example, the model we
described here, and use this synthetic data within the overall mix of training data for a foundation
model (Akyürek et al., 2020). (9) We show that this inductive bias training data can be replaced or
augmented by directly designing the inductive bias into the activation functions and connectivity of
the model. (9) We mathematically define concepts, and explain why scaling up models yields greater
conceptual abstraction. We suggest that deeper abstractions manifest as “emergent” capabilities.

2Personal communication with researchers at DeepMind confirms that they have recently evolved towards
the connectivity predicted by our inductive transformer

9

Published as a conference paper at ICLR 2024

REFERENCES

Ekin Akyürek, Afra Feyza Akyürek, and Jacob Andreas. Learning to recombine and resample data
for compositional generalization. arXiv preprint arXiv:2010.03706, 2020.

Dario Amodei and Danny Hernandez. Ai and compute, 2018. URL https://openai.com/
research/ai-and-compute.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba.
Understanding the role of individual units in a deep neural network. Proceedings of the Na-
tional Academy of Sciences, 117(48):30071–30078, 2020. doi: 10.1073/pnas.1907375117. URL
https://www.pnas.org/doi/abs/10.1073/pnas.1907375117.

Filipe de A. Belbute-Peres, Kevin A. Smith, Kelsey R. Allen, Joshua B. Tenenbaum, and J. Zico
Kolter. End-to-end differentiable physics for learning and control. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18, pp. 7178–7189,
Red Hook, NY, USA, 2018. Curran Associates Inc.

Clay Blair Jr. Passing of a great mind. Life, 25:96, 1957.

Eric Chen, Zhang-Wei Hong, Joni Pajarinen, and Pulkit Agrawal. Redeeming intrinsic rewards via
constrained optimization. Advances in Neural Information Processing Systems, 35:4996–5008,
2022.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT
look at? an analysis of BERT’s attention. In Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 276–286, Florence, Italy,
August 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-4828. URL
https://aclanthology.org/W19-4828.

Allan dos Santos Costa, Ilan Mitnikov, Mario Geiger, Manvitha Ponnapati, Tess Smidt, and Joseph
Jacobson. Ophiuchus: Scalable modeling of protein structures through hierarchical coarse-
graining so (3)-equivariant autoencoders. arXiv preprint arXiv:2310.02508, 2023.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context, 2019.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Michael C Frank. Bridging the data gap between children and large language models. Trends in
Cognitive Sciences, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks, 2019.

Jiaxin Ge, Hongyin Luo, Yoon Kim, and James Glass. Entailment as robust self-learner. In Pro-
ceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 13803–13817, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.772. URL https://aclanthology.org/
2023.acl-long.772.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
https://aclanthology.org/2021.emnlp-main.446.

Alison Gopnik, Andrew N Meltzoff, and Patricia K Kuhl. The scientist in the crib: Minds, brains,
and how children learn. William Morrow & Co, 1999.

10

https://openai.com/research/ai-and-compute
https://openai.com/research/ai-and-compute
https://www.pnas.org/doi/abs/10.1073/pnas.1907375117
https://aclanthology.org/W19-4828
https://aclanthology.org/2023.acl-long.772
https://aclanthology.org/2023.acl-long.772
https://aclanthology.org/2021.emnlp-main.446

Published as a conference paper at ICLR 2024

Alexander N Gorban and Ivan Yu Tyukin. Blessing of dimensionality: mathematical foundations of
the statistical physics of data. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 376(2118):20170237, 2018.

Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level cognition.
CoRR, abs/2011.15091, 2020. URL https://arxiv.org/abs/2011.15091.

Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level cognition.
Proceedings of the Royal Society A, 478(2266):20210068, 2022.

Thomas R Gruber. A translation approach to portable ontology specifications. Knowledge acquisi-
tion, 5(2):199–220, 1993.

Thomas R Gruber. Toward principles for the design of ontologies used for knowledge sharing?
International journal of human-computer studies, 43(5-6):907–928, 1995.

Thomas R Gruber. Nature, nurture, and knowledge acquisition. International journal of human-
computer studies, 71(2):191–194, 2013.

Harry Henderson. Mathematics: Powerful Patterns Into Nature and Society. New York: Chelsea
House, 2007.

Evan Hernandez, Belinda Z. Li, and Jacob Andreas. Inspecting and editing knowledge representa-
tions in language models, 2023.

Dorothy Herrmann. Helen Keller: a life. University of Chicago Press, 1999.

Karel Hrbacek and Thomas Jech. Introduction to set theory, revised and expanded. Crc Press, 2017.

Alexander G. Huth, Wendy A. de Heer, Thomas L. Griffiths, Frédéric E. Theunissen, and Jack L.
Gallant. Natural speech reveals the semantic maps that tile human cerebral cortex. Nat., 532
(7600):453–458, 2016. doi: 10.1038/nature17637. URL https://doi.org/10.1038/
nature17637.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Will Knight. Openai’s ceo says the age of giant ai models is already over. Wired, April 17th, 2023.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40:e253, 2017.

Alex Lamb, Di He, Anirudh Goyal, Guolin Ke, Chien-Feng Liao, Mirco Ravanelli, and Yoshua
Bengio. Transformers with competitive ensembles of independent mechanisms. CoRR,
abs/2103.00336, 2021. URL https://arxiv.org/abs/2103.00336.

Fred Lerdahl and Ray Jackendoff. A generative theory of tonal music. The MIT Press, Cambridge.
MA, 1983. ISBN 0262120941.

Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of neural nets.
CoRR, abs/1712.09913, 2017. URL http://arxiv.org/abs/1712.09913.

Jiaang Li, Antonia Karamolegkou, Yova Kementchedjhieva, Mostafa Abdou, Sune Lehmann, and
Anders Søgaard. Large language models converge on brain-like word representations, 2023.

Hanxiao Liu, Zihang Dai, David R. So, and Quoc V. Le. Pay attention to mlps, 2021.

Jieyu Lu and Yingkai Zhang. Unified deep learning model for multitask reaction predictions with
explanation. Journal of Chemical Information and Modeling, 62(6):1376–1387, 2022.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

Norman Macrae. John von Neumann: The Scientific Genius Who Pioneered the Modern Computer,
Game Theory, Nuclear Deterrence, and Much More. Pantheon Press, 1992.

11

https://arxiv.org/abs/2011.15091
https://doi.org/10.1038/nature17637
https://doi.org/10.1038/nature17637
https://arxiv.org/abs/2103.00336
http://arxiv.org/abs/1712.09913

Published as a conference paper at ICLR 2024

Ali Malik, Mike Wu, Vrinda Vasavada, Jinpeng Song, Madison Coots, John Mitchell, Noah Good-
man, and Chris Piech. Generative grading: Near human-level accuracy for automated feedback
on richly structured problems, 2021.

Gary Marcus, Evelina Leivada, and Elliot Murphy. A sentence is worth a thousand pictures: Can
large language models understand human language?, 2023.

Pietro Mazzaglia, Ozan Catal, Tim Verbelen, and Bart Dhoedt. Curiosity-driven exploration via
latent bayesian surprise. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pp. 7752–7760, 2022.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer, 2023.

Gabriele Merlin and Mariya Toneva. Language models and brain alignment: beyond word-level
semantics and prediction, 2022.

Sarthak Mittal, Yoshua Bengio, and Guillaume Lajoie. Is a modular architecture enough?, 2022.

Kevin P Murphy. Dynamic bayesian networks: Representation, inference and learning. PhD thesis,
University of California, Berkeley, 2002.

John Von Neumann and Miklos Redei. John von Neumann selected letters. American Mathematical
Society, Providence, R.I.,, 2005.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. In International Conference on Machine Learning, pp.
2661–2670. PMLR, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan
kaufmann, 1988.

Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.

Erik J Peterson, Timothy D Verstynen, Xuan Yan, Niccolo Calcini, Payam Safavi, Asli Ak, Koen
Kole, Fleur Zeldenrust, Tansu Celikel, Yuanchan Fan, et al. Embracing curiosity eliminates the
exploration-exploitation dilemma. 2019.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about
how bert works, 2020.

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro, Miloš Stanojević, Phil Blunsom, and Chris
Dyer. Transformer grammars: Augmenting transformer language models with syntactic inductive
biases at scale. Transactions of the Association for Computational Linguistics, 10:1423–1439,
2022.

Gersting & Brinkman Schneider. Invitation to Computer Science. Boston: Cengage Learning, 2015.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27
(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid. Videobert: A
joint model for video and language representation learning. CoRR, abs/1904.01766, 2019. URL
http://arxiv.org/abs/1904.01766.

12

http://arxiv.org/abs/1904.01766

Published as a conference paper at ICLR 2024

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
CoRR, abs/2009.06732, 2020. URL https://arxiv.org/abs/2009.06732.

Andrea Lockerd Thomaz, Cynthia Breazeal, et al. Reinforcement learning with human teachers: Ev-
idence of feedback and guidance with implications for learning performance. In Aaai, volume 6,
pp. 1000–1005. Boston, MA, 2006.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Csaba Veres. Large language models are not models of natural language: they are corpus models,
2022.

Benjamin Vigoda. Analog logic: Continuous-time analog circuits for statistical signal processing.
Online] Sep, 2003.

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao, Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan
Cheng, Kangwei Liu, Guozhou Zheng, and Huajun Chen. Easyedit: An easy-to-use knowledge
editing framework for large language models, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022.

Max Welling. Do we still need models or just more data and compute. University of Amsterdam,
April, 20, 2019.

Henk Wymeersch. Iterative receiver design. (No Title), 2007.

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding Belief Propagation and
Its Generalizations, pp. 239–269. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003. ISBN 1558608117.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontañón,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers for
longer sequences. CoRR, abs/2007.14062, 2020. URL https://arxiv.org/abs/2007.
14062.

13

https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2007.14062

Published as a conference paper at ICLR 2024

A CONNECTIVITY IN THE INDUCTIVE TRANSFORMER

A.1 RESIDUAL CONNECTIONS IN VANILLA TRANSFORMER → REDUCED PRODUCTIONS IN
THE INDUCTIVE TRANSFORMER

Transformer architectures (and other deep learning architectures) utilize residual (ie. skip) connec-
tions. Residual connections have been empirically demonstrated to smooth the fitness landscape
helping back-propagation converge:

“We find that network architecture has a dramatic effect on the loss landscape.
Shallow networks have smooth landscapes populated by wide, convex regions.
However, as networks become deeper, landscapes spontaneously become ‘chaotic’
and highly non-convex, leading to poor training behavior... Skip connections
cause a dramatic ‘convexification’ of the loss landscape” (Li et al., 2017).

When learning the productions for an arbitrary generative grammar, we need to prevent the learning
algorithm from inserting an arbitrary number of non-terminal nodes in the chain of generations.
“Requiring some text to be generated at each [production] step is enough for inference to remain
tractable.” (Malik et al., 2021)

These observations may be closely related. Adding direct connections from the data to every la-
tent activation function in the network removes an enormous number of degenerate states from the
solution space.

The fact that the add & normalize is the layer in the vanilla transformer that has residual connections
to the data tells us that this is the layer that corresponds to the ∧ in our generative production. In
appendix D we expand on this correspondence.

A.2 CONNECTING THE ENCODER TO THE DECODER

When performing marginalization of a probability distribution represented by a directed acyclic
graph, it has long been known that marginalization (probabilistic message passing) converges after
a single forward pass and backward pass through the graph (Pearl, 1988; MacKay, 2003).

The forward pass in our generative model corresponds to the encoder, and the backward pass to the
decoder. Carefully tracing the forward and backward marginalizations (as we do in appendix B on
activation functions below), shows us that the inductive transformer could potentially benefit from a
slightly different connectivity between the encoder and decoder compared to a vanilla transformer.
Vanilla transformers likely learn to work around this limitation in the connectivity by propagating
the same information through the residual stack.

Vanilla Encoder- Decoder Connectivity

La
ye

r N

La
ye

r 0

L:
ay

er
 1 ... Layer N

Layer 0

Layer 1...

Encoder Decoder

Inductive Encoder- Decoder Connectivity

La
ye

r N

La
ye

r 0

L:
ay

er
 1 ... Layer N

Layer 0

Layer 1...

Encoder Decoder

forward messages from encoder

Figure 3: How the Connectivity from Encoder to Decoder Differs in the Inductive Transformer.

14

Published as a conference paper at ICLR 2024

B ACTIVATION FUNCTIONS

Categorical -
BernoulliπBernoulli -

Categorical

Closed -
Open

Universe

∧
Categorical -

BernoulliπBernoulli -
Categorical

Closed -
Open

Universe

Encoder marginalizes from tokens to latent concepts

Decoder marginalizes from latent concepts to tokens

uBernoulli

∧

Z

Z

......

πT
Categorical -

Bernoulli

πT
Categorical -

Bernoulli

...

vCategorical yCategorical

yBernoulli

yBernoulli

xBernoulli

xBernoulli

z'Bernoulli

z'Bernoulli

z Bernoulli

z Bernoulli

x
C

ategorical
x

C
ategorical

t 1

t T

...
t 1

t T

Figure 4: Factor Graph For Inductive Transformer

The sequence of marginalization operations previously mentioned in section 2 correspond to layers
in the inductive transformer. See figure 4 for a detailed review of a single layer. The encoder layers
from the input towards the decoder are,

1. Closed-Open Universe

2. Bernoulli-Categorical

3. Attention π and Token π

4. Categorical-Bernoulli

5. ∧

6. Repeat.

The decoder layers from the encoder towards the output are,

1. ∧

2. Bernoulli-Categorical

3. Attention π and Token π

4. Categorical-Bernoulli

5. Open-Closed Universe

6. Repeat.

We detail each layer below.

15

Published as a conference paper at ICLR 2024

B.1 OPEN CLOSED UNIVERSE: REPRESENTING AN OPEN UNIVERSE NON-PARAMETRIC
MODEL IN A CLOSED UNIVERSE NEURAL NETWORK WITH FIXED LAYER WIDTH

a. b. c. d.

z'

z1 z2

Figure 5: One grey box in this figure corresponds to the grey box in figure 1 (a.) Open Universe
Model: Every child node has a single parent node. Parents make categorical choices over existing
children. A child that is activated has only one parent activating it. (b.) Open Universe Model: If
two parent nodes would like to activate the same child, we must make a copy of that child. The
two yellow rectangles represent the same concept. The open universe model must duplicate it in
order to allow two parents to utilize it. (c.) Closed Universe Model: Duplicate concepts are merged
into a single node. A child, therefore, can have more than one parent node. Since we do not
have a potentially infinite layer width, this allows for re-use of limited closed universe resources,
and allows for use of scalable closed-universe solvers such as back-propagation. To do the math
correctly when a single child is simultaneously selected by more than one parent, we must use a
conditional distribution where if one or more parents selects the child, then the child is activated.
(d.) Closed Universe Model: We can make every layer the same width in order to allow for more
routes through the model to explain away the data. This is equivalent to an open universe grammar
with N children under the root, and then only N different types of grandchild node, and so forth.

child parent0 parent1 p(parent0|child, parent1)

1 1 0 1/4

1 0 1 1/4

1 1 1 1/4

0 0 0 1/4

1 0 0 0

0 1 0 0

0 0 1 0

0 1 1 0

Table 4: This table represents the states of an Open-Closed-Universe factor with two parents and one
child. In the decoder, we will need the conditional probability of the child given all of the parents,
p(child|parent0, parent1). In the encoder, we will need the conditional probability of one of the
parents, given the child and the other parent, p(parent0|child, parent1) and p(parent1|child, parent0).
All of these conditional distributions can be derived from this table. In an open-universe model, there
would be two copies of the child, so that each parent has its own unique children, and therefore each
child would have only one parent. When we combine multiple children into a single node with
multiple parents, then that combined child should be active if one or more of its parents are active.
This is what we do when we represent an open universe within a closed universe model. We represent
allowed states with a probability of 1/4. Disallowed states have a probability of 0. probability = 1
states have the child = 1 when any of its parents are a 1 or have the child = 0 when all parents are
zeros. Disallowed states (rows) violate those rules and involve one or more parents being a 1 while
the child = 0 or the child being a 1 when both parents are 0.

16

Published as a conference paper at ICLR 2024

An open universe model does not have a fixed layer width. It can sample new branches and nodes
into existence when they are needed in order to explain away the data with greater likelihood. In
a “closed universe” the network has fixed width and depth. When we use back-propagation as the
solver in such models, it optimizes the weights between existing nodes but it does not create new
nodes nor new edges. Therefore a parent node cannot gain new children, we can only increase the
weight between the parent and preexisting child nodes. In principle, we might think that there is no
real difference between creating a new node and connecting to an existing node that has not yet been
utilized. But in practice, the form of the activation function of the child node must be adjusted to
allow for having multiple parents.

It is easiest to first consider the decoder open-closed-universe-connector where we marginalize for
the child given the parents. We assume all distributions are Bernoulli,

p(child) =
∑

parent0

∑
parent1

p(child|parent0, parent1)p(parent0)p(parent1), (6)

where

p(child|parent0, parent1) =

1 when
∑

i parenti ≥ 1

0 when
∑

i parenti = 0.

(7)

We often refer to the result on the left-hand side of this equation as a “message”. A message is the
output being computed by a marginalization operation. An outgoing message in the decoder, we
multiply the conditional probability derived from this table by incoming messages p(parent0) and
p(parent1). The message is therefore,

p(child = 0) = p(parent0 = 0)p(parent1 = 0)

p(child = 1) = p(parent0 = 1)p(parent1 = 1)

+ p(parent0 = 0)p(parent1 = 1)

+ p(parent0 = 1)p(parent1 = 0). (8)

Finally, we will normalize the outgoing message so that p(child = 1) + p(child = 0) = 1.

For the encoder closed-to-open universe factor we instead marginalize for a parent, given the child
and other parents:

p(parent0) =
∑
child

∑
parent1

p(parent0|child, parent1)p(child)p(parent1) (9)

and,
p(parent1) =

∑
child

∑
parent0

p(parent1|child, parent0)p(child)p(parent0) (10)

Table 4 also defines the distribution p(parent0|child, parent1) yielding,

p(parent0 = 1) = p(child = 1)p(parent1 = 0)

+ p(child = 1)p(parent1 = 1)

p(parent0 = 0) = p(child = 1)p(parent1 = 1)

+ p(child = 0)p(parent1 = 0). (11)

Note that we do inference in the encoder first, before we do inference in the decoder. This means
encoder inference proceeds without information from decoder inference. And that means that on the

17

Published as a conference paper at ICLR 2024

right hand side of equation 11, p(parent1 = 1) and p(parent1 = 0) will both be 0.5. And that means
we will always have,

p(parent0 = 1) = p(child = 1)

p(parent0 = 0) = 0.5. (12)

In other words, for the encoder, the closed-to-open universe gate acts like a pass-through:

p(parenti = 1) = p(child = 1) (13)

B.2 BERNOULLI-CATEGORICAL

As we saw above, when we treat certain variables in our model as a joint Categorical rather than
as a collection of independent Bernoulli variables, we reduce the computational complexity from
exponential to polynomial. In other parts of our model, however, we will find that we require
the independent Bernoulli variables. We are therefore compelled to transform between the two
representations.

Consider the conditional distribution involving two Bernoulli variables and one categorical variable,
p(yCategorical = i|yjBer, y

k
Ber) where j = dog and k = cat, and i varies over the states dog and cat. This

is represented in table 5.

yCategorical ydog
Ber ycat

Ber p(yCategorical|ydog
Ber , y

cat
Ber)

dog 1 0 1/2

cat 0 1 1/2

dog 1 1 0

dog 0 0 0

Table 5: Each row in this table represents the probability of a conditional distribution for a state of
the Categorical variable given two Bernoulli variables. In this example, the state of the Categorical
can be either dog or cat. One Bernoulli is providing information about if there is a dog or not. A
second Bernoulli tells us if we see a cat or not. The conditional distribution of the Categorical given
both Bernoullis is p(yCategorical ∈ {dog, cat}|ydog

Ber ∈ {0, 1}, ycat
Ber ∈ {0, 1}). When the incoming dog-

Bernoulli is a 1 and the incoming cat-Bernoulli is a 0, and the categorical is set to its dog state, then
the conditional probability is 1/2. Similarly we have a probability=1/2 in the second row where the
cat-Bernoulli is 1, the dog-Bernoulli is 0, and the categorical is set to the cat state. However, as we
see in the third and fourth rows, when the dog-Bernoulli and the cat-Bernoulli are both ones or both
zeros, these are probability=0 states. The Bernoulli-categorical factor obeys the constraint that dog
and cat can’t both be 1, nor can they both be 0. Therefore the probabilities in the last two rows are
0.

Using the conditional distribution above, we can marginalize out the Bernoulli variables,

p(yCategorical) =
∑

yj
Ber,y

k
Ber

p(yCategorical|yjBer, y
k
Ber)p(y

j
Ber)p(y

k
Ber), (14)

(15)

yielding,

p(yCategorical = dog) = p(ydog
Ber = 1)p(ycat

Ber = 0)/norm

p(yCategorical = cat) = p(ydog
Ber = 0)p(ycat

Ber = 1)/norm, (16)

18

Published as a conference paper at ICLR 2024

where we normalize by dividing by norm = p(yCategorical = dog) + p(yCategorical = cat).

The conditional distribution is once again given by the truth table 5 and reads:

p(yCategorical = i|yjBer = 1, ykBer = 0) =

1, if i = j and i ̸= k

0, otherwise
. (17)

We illustrate in an example with three states, {dog, cat, bird},

p(dog) = pdog(1)pcat(0)pbird(0)

p(cat) = pdog(0)pcat(1)pbird(0)

p(bird) = pdog(0)pcat(0)pbird(1). (18)

Using the fact that pdog(0) = 1− pdog(1) we can rewrite p(dog) as,

p(dog) = (1− pdog(0))pcat(0)pbird(0) (19)
p(dog) = pcat(0)pbird(0)− pdog(0)pcat(0)pbird(0). (20)

We could rewrite p(cat) and p(bird) similarly. Since we will normalize the Categorical at the end,
we can divide p(dog), p(cat) and p(bird) by the same constant at any time during the derivation. We
divide by pdog(0)pcat(0)pbird(0), which yields

p(dog) =
1

pdog(0)
− 1 =

pdog(1)

pdog(0)

p(cat) =
1

pcat(0)
− 1 =

pcat(1)

pcat(0)

p(bird) =
1

pbird(0)
− 1 =

pbird(1)

pbird(0)
(21)

This distribution will need to be normalized. But we can already see from the previous section that,
because pi(0) is constant the encoder remains a simple pass-through:

p(parenti) = p(child = 1) (22)

In the decoder, we also convert from Bernoulli to Categorical as we marginalize from the ∧ to
the πz’s and πT ’s. The marginal for the Categorical variable is computed using decoder Bernoulli
variables. There is no need for information from the encoder.

B.3 ENCODER π

πT is used as a choice over tokens, πZ as a choice over concepts in the layer below, and πρ as a
choice over positions.

Let zi be a Bernoulli variable indicating whether or not the i-th ∧i in the encoder layer below is a
1. Let y be a Bernoulli that is a 1 when one and only one of these zi is a 1. Starting with the joint
distribution p(y, z1 . . . , zZ), in the encoder we would like to marginalize to find p(y),

p(y) =
∑

z1∈{0,1}

. . .
∑

zZ∈{0,1}

p(y, z1, . . . , zZ)

=
∑

z1∈{0,1}

. . .
∑

zZ∈{0,1}

p(y|z1, . . . , zZ)p(z1) . . . p(zZ) (23)

19

Published as a conference paper at ICLR 2024

ycategorical z1 z2 probability

1 1 0 1/4

1 0 1 1/4

0 1 1 1/4

0 0 0 1/4

0 0 1 0

1 1 1 0

Table 6: π is an “exactly-one” constraint such that y = 1 if and only if
∑

i zi = 1. In other words,
only a single zi can be a 1 when y is 1.

The probability values in table 6 can be expressed as

p(y = 1|zi, . . . , zZ) =

1 when
∑

i∈{1,...,Z} zi = 1

0 when
∑

i∈{1,...,Z} zi > 1 or when
∑

i∈{1,...,Z} zi = 0,

(24)

where the last step is to normalize the distribution.

For example, with only two inputs p(z1) and p(z2) we have,

p(y = 1) = p(z1 = 1)p(z2 = 0) + p(z1 = 0)p(z2 = 1)

p(y = 0) = p(z1 = 0)p(z2 = 0) + p(z1 = 1)p(z2 = 1). (25)

As we can see, when the zi are Bernoulli variables, calculating p(y) becomes O(2Z), where Z is
the number of zi’s. If, however, we treat the zi’s as states of a single categorical rather than as inde-
pendent Bernoullis, we will see that the computational complexity can be simplified significantly to
O(Z). In order to do this we must treat the entire layer of zi’s as a single joint variable, z.

p(y) =
∑
i

p(y, z) (26)

=
∑
i

p(y|z)p(z) (27)

=
∑
i

ωip(zi), (28)

where ω’s are learned weights and i indexes the ∧i’s in the layer below that are sending the output
from their marginalization to the inputs of this encoder π. This inner product calculation has com-
plexity O(Z), and we need to perform this calculation across the entire layer width Z, leading to an
overall complexity that is O(Z2) versus the Bernoulli case where the complexity was O(2Z).

The word or token πT is very similar. With token vocabulary size T and layer width of size Z
(indexed by l), we have a calculation of complexity O(Z · T),

p(xl) =
∑

τ∈(1,...,T)

ωl,τp(tτ). (29)

The token π, instead of connecting to the layer below, connects directly to the words/tokens in
the input data. In a probabilistic generative grammar this is referred to as a “terminal” node, in
contrast to a non-terminal which generates another layer of the model. In deep learning models, the
connection from a terminal node to the data is referred to as a residual or skip connection.

20

Published as a conference paper at ICLR 2024

In both cases (token and attention), we normalize over the layer before providing it to the next layer
in the network, since we treat the entire layer of y edges as a single joint distribution, p(y).

In summary, compared to the Bernoulli version that we derived first, it makes sense to use this
categorical version of π, because it simplifies the computational complexity from O(2n) to O(n2).
Furthermore, in the decoder if we used a Bernoulli version, when computing a particular p(zi) for
exact forward-backward marginalization the decoder marginalization would be required to utilize the
information from the encoder, p(zj ̸=i). With p(z) being a single joint variable, however, there are
two incident edges to a decoder π, p(x) and p(z). This means when computing the marginalization
to find p(z) in the decoder, we only need the decoder message p(x). We do not need any messages
provided by the encoder.

B.4 CATEGORICAL-BERNOULLI

Categorical Categorical
Bernoulli Bernoulli

Figure 6: Factor Graph for Categorical to Bernoullis Factor

Let us start with an example with only one Bernoulli (a dog-Bernoulli ∈ {0, 1}) and one Categorical
(with states ∈ {dog, cat}, see figure 6).

p(zdog
Ber = 1) =

∑
zCategorical∈dog, cat

p(zdog
Ber = 1, zCategorical)

=
∑

zCategorical∈dog, cat

p(zdog
Ber = 1|zCategorical)p(zCategorical)

= p(zdog
Ber = 1|zCategorical = dog)p(zCategorical = dog) (30)

+ p(zdog
Ber = 1|zCategorical = cat)p(zCategorical = cat)

= 1 · p(zCategorical = dog) + 0 · p(zCategorical = cat)

= p(zCategorical = dog) (31)

p(zdog
Ber = 0) = p(zdog

Ber = 0|zCategorical = dog)p(zCategorical = dog) (32)

+ p(zdog
Ber = 0|zCategorical = cat)p(zCategorical = cat)

= p(zCategorical = cat). (33)

The Bernoulli and the Categorical in this example are really saying the same thing. The mutually
exclusive alternative to a dog in the Categorical is a cat. The mutually exclusive alternative to a 1 for
the dog-Bernoulli is a 0. The probability of cat in the Categorical should be equal to the probability
of a 0 in the Bernoulli.

Now let’s introduce an explicit cat-Bernoulli into the example.

21

Published as a conference paper at ICLR 2024

Categorical

Bernoulli 1

...

Bernoulli Z

Categorical
Bernoulli

Figure 7: Factor Graph for Categorical to Bernoulli Factor. The arrows indicate the direction of the
messages.

Recall that the rule for marginalization within a factor graph is that we compute an outgoing “mes-
sage” from a factor using the incoming “messages” on all other edges incident to the factor (Yedidia
et al., 2003). This is not important in the encoder when we are still doing a forward marginalization
pass and there is no useful “backward” information available from the decoder yet. In the decoder,
however, we must consider “forward” information from the encoder if we wish to do exact inference
to exactly infer all of the latent variables given all of the available data.

As we can see in figure 7, when we add a Bernoulli for cat, and compute an outgoing message for
the dog-Bernoulli, we also need an incoming message from the cat-Bernoulli.

We recall table 5, but move the columns around to fit our current situation. Each row provides
the conditional probability, p(ydog

Ber |yCategorical, y
cat
Ber), in a situation with two Bernoulli variables, one

for whether dog is True or False (1 or 0 respectively), and similarly one for cat, as well as one
Categorical with two states (“dog” and “cat”).

zdog
Ber zCategorical zcat

Ber p(ydog
Ber |yCategorical, y

cat
Ber)

1 dog 0 1/2

0 cat 1 1/2

1 dog 1 0

0 dog 0 0

Table 7:

We care about computing the marginal probability for a given Bernoulli, e.g. pdog
Ber(1),

pdog
Ber(1) =

∑
zCategorical

∑
zcat

Ber

p(zdog
Ber , z

cat
Ber, zCategorical)

=
∑

zCategorical

∑
zcat

Ber

p(zdog
Ber |z

cat
Ber, zCategorical)p(z

cat
Ber)p(zCategorical). (34)

For this calculation, we need the conditional probability p(zdog
Ber = 1| . . .),

p(zdog
Ber = 1|zCategorical = j, zcat

Ber) =

1, when zCategorical = dog, zcat
Ber = 0

0, otherwise
, (35)

where, as always, the distribution must be subsequently normalized. We can write this more gen-
erally, with i instead of “dog” and j for the state of zCategorical = j, and with Z Bernoulli variables
indexed by k,

22

Published as a conference paper at ICLR 2024

p(ziBer = 1|zCategorical = j, z1Ber, . . . , z
i−1
Ber , z

i+1
Ber , . . . , z

Z
Ber) (36)

=

1 when j = i, and zkBer = 0 ∀k ̸= i

0, otherwise
. (37)

To compute the marginal probability pdog
Ber(0), we will need the conditional probability p(zdog

Ber =
0| . . .). This conditional probability is a 1 when zcat

Ber = 1 and zCategorical = cat. In other words, we
need an allowed state with zdog

Ber = 0, which means that overall we need a joint “cat” state.

More generally, if we have more Bernoulli variables, for example a “bird” variable, then an allowed
state always has zCategorical = j and also has zjBer = 1 and all other Bernoullis zi ̸=j

Ber = 0. Therefore
the
∑

i z
i
Ber = 1. Putting this all together we write,

p(ziBer = 0|zCategorical = j, z1Ber, . . . , z
k−1
Ber , zk=j

Ber , zk+1
Ber , . . . , zZBer) (38)

=

1 when
∑

k z
k
Ber = 1 and j ̸= i

0 otherwise
. (39)

The computation for p(ziBer = 0) will contain only one product per Bernoulli. So the computations
involving incoming Bernoulli messages are not prohibitively complex. We do not need to compute
them at all, however. In the encoder we use a categorical-Bernoulli as we send forward messages
from the π to the ∧ and there is not yet any backward information to incorporate into our calculation.

In the decoder, we compute the Categorical-Bernoulli as we send marginals from the π to the open
universe. If in we choose to ignore the forward messages from the encoder, we can simplify our
computation considerably. We can set the encoder marginals to be non-informative for the decoder
Categorical-Bernoulli, p(zBer) = 0.5. Let us do a pedagogical example with a categorical and three
Bernoulli variables representing “dog”, “cat”, and “bird”.

p(zdog
Ber = 1) = p(zCategorical = dog)p(zcat

Ber = 0)p(zbird
Ber = 0), (40)

p(zdog
Ber = 0) = p(zCategorical = cat)p(zcat

Ber = 1)p(zbird
Ber = 0),

+ p(zCategorical = bird)p(zcat
Ber = 0)p(zbird

Ber = 1) (41)

Now if p(zbird
Ber = 1) = p(zbird

Ber = 0) = p(zcat
Ber = 1) = p(zcat

Ber = 0) = 0.5 then,

p(zdog
Ber = 1) = p(zCategorical = dog)(0.25), (42)

p(zdog
Ber = 0) = p(zCategorical = cat)(0.25) + p(zCategorical = bird)(0.25) (43)

More generally, after normalizing this becomes,

p(ziBer = 1) = p(zCategorical = i)

p(ziBer = 0) =
∑
j ̸=i

p(zCategorical = j) (44)

B.5 ENCODER ∧

The encoder ∧ imposes the constraint z = AND(x,y), where x, y, and z are random binary variables.
In the truth table below, each row lists a probability for a joint state on x, y, and z. The (four) allowed
states have non-zero probabilities normalized to 1/4. The disallowed states have zero probability.

23

Published as a conference paper at ICLR 2024

x y z p(z|x, y)

0 0 0 1/4

0 0 1 0

0 1 0 1/4

0 1 1 0

1 0 0 1/4

1 0 1 0

1 1 0 0

1 1 1 1/4

One way to think about these modules is to imagine that x is a stochastic stream of 0’s and 1’s,
where the 1’s occur with probability px and 0’s with probability 1 − px. Similarly, imagine y as
a stochastic stream of 0’s and 1’s, where the 1’s occur with probability py and 0’s with probability
1 − py . When we marginalize to find p(z = 1), we are answering the question, “if the stochastic
streams for x and y passed through an ordinary AND logic gate, what would be the percentage of
1’s in the output stream, z?”

We answer this question by computing the marginal probability for p(z),

p(z) =
∑
x,y

p(x, y, z)

=
∑
x,y

p(z|x, y)p(x)p(y)

=
∑
x,y

δ(z − ∧(x, y))p(x)p(y)

p(zl) =
∑
x,y

δ(z − ∧(xl, yl))p(xl)p(yl) (45)

where l indexes across a layer of the model, and p(z) will be normalized as a final step in the
calculation. Expanding the sums and products subject to the constraint, we have,

p(zl = 1) = p(xl = 1)p(yl = 1)

p(zl = 0) = p(xl = 0)p(yl = 0)

+ p(xl = 0)p(yl = 1)

+ p(xl = 1)p(yl = 0). (46)

B.6 DECODER ∧

The decoder ∧ is very similar to the encoder ∧,

py decode(1) = px encode(0)pz decode(0) + px encode(1)pz decode(1)

py decode(0) = px encode(0)pz decode(0) + px encode(1)pz decode(0) (47)

As we can see, when the decoder ∧ is computing pdecode(y), it should not only use pdecode(z), it
should also use pencode(x). Similarly, when the decoder ∧ is computing pdecode(x), marginalization
should use pencode(y). However, this would mean that to predict pdecode(x) at a given position, the
model is using information from tokens to the right in the text. Indeed, not using pencode(y) in the

24

Published as a conference paper at ICLR 2024

decoder is the equivalent of forward-only message passing in belief propagation (Vigoda, 2003;
Murphy, 2002) which predicts the next symbol in a sequence based only on previous signals. Thus,
we could choose not to use pencode(x) and pencode(y) in the decoder to train it for this task.

The next layer in the decoder is the Bernoulli-Categorical, which we have already described above.
Moving on, we describe the decoder πT .

B.7 DECODER TOKEN π

Let us consider a single πT within a layer of the model. p(x) is an output of the decoder ∧ which
becomes the input to this πT . The marginal probability of generating token t from πT is,

p(t = τ) = p(t = τ |x)p(x),
p(t = τ) = ωτ · p(x), (48)

Sampling from this distribution, we would get a single token with probability ωt, where ω’s are
learned weights.

We are treating p(t) as a Categorical with a state for each token, so we might think that we need
to normalize such that

∑
τ p(tτ) = 1. This would be incorrect. We do use normalized (learned)

weights such that,
∑

τ ωτ = 1, but we do not normalize the output of the decoder πT ’s. The reason
is that this is another situation where we must take into account the open-closed universe factor.
Each πl

t in the layer indexed by l has some probability of outputting a given token, e.g. “cat”. These
πl
t’s share children, and all of their probabilities for outputting a given token must be summed.

We can see in figure 4, that the output of the decoder πZ goes through a Categorical-to-Bernoulli
and then into an open-closed universe layer, both as described above in appendices B.1 and B.4.

What we are really doing when we do not normalize the outputs of an individual decoder πT or πZ

within a single layer, is allowing the π’s to each participate proportionally in activating their shared
children and have the normalization come out correctly as it would in an open universe.

For example, for a particular πt, when the input is p(x=1) = 80% and p(x=0)=20%, and the πt

weights are dog weight = 50% and cat weight = 50%, then the probability of outputting the word
dog, p(dog)=40%, p(cat)=40% and the (un-normalized) probability of outputting no token at all is
p(no output)=20%. When outputting no output, this πT is allowing some other πj ̸=i to generate the
token at the given location in the data.

C SELF-ATTENTION IN THE INDUCTIVE TRANSFORMER

C.1 VANILLA SELF-ATTENTION

Many variants of the transformer have appeared since the publication of the original “vanilla” ver-
sion, so we should not be overly pedantic as we derive the corresponding inductive transformer
attention mechanism. Our derivation will follow more closely the “relative positional encoding”
formulation of Transformer-XL model than the vanilla version (Dai et al., 2019).

Regardless, it is useful to recall that the core of self-attention in a vanilla transformer (Vaswani et al.,
2017) is,3

Yi =
∑
j

softmax

(
Qi ·KT

j√
d

)
Vj , (49)

where Q, K, and V are the query, key, and value matrices, each formed by applying matrices WQ,
WK , WV to the embedding vector input to this attention layer at each position, and where d is

3We suppress chunking which is used for parallel computing in hardware, but is a distraction when describ-
ing the model.

25

Published as a conference paper at ICLR 2024

x = a1 x = b x = c2 3

y = 01 y = 0 y = 12 3

x = b1 x = c x = d2 3

y = 01 y = 1 y = 12 3

a. Training a single layer
on a 3- token window of data

b. Training with the data shifted to the
left by one token

Figure 8: We are training a single layer on a 3-token window of data. In (a) we have the first 3-token
window of data. In (b) the data is shifted to the left by one token, so that a new token ’d’ enters the
window from the right, and a new target output ’1’ also enters from the right.

the embedding dimension. Because of the softmax operation, each row of the Qi · KT
j matrix is

a normalized set of weights for linearly combining vectors Vj . Note that the Y here is from the
notation in the original vanilla transformer paper, and is not identical to the Y in figure 4.

C.2 THE GOAL OF THE SELF-ATTENTION MECHANISM

In figure 8 we have three input variables at three positions {x1, x2, x3}, and three output variables
at three positions {y1, y2, y3} forming a standard single-layer perceptron.

When we set the input {x1 = a, x2 = b, x3 = c}, we want the output to be {y1 = 0, y2 = 0, y3 =
1}, so the network needs to learn that x2 = b implies y3 = 1, and x2 = c may imply y3 = 0. Once
we shift the data to the left by one position, however, we now need to learn the exact opposite, that
x2 = b implies y3 = 0, and x2 = c may imply y3 = 1. By training with the data shifted by one
position, we have begun to erase what we had previously learned.

The problem is that the network is trying to learn functions of tokens at absolute positions in the
data, when we really want the network to learn relationships involving the relative positions of
tokens. This is the essential function of the attention mechanism.

As the data traverses the window but remains in view, we want it to continue to reinforce the same
relationships in the model. As novel data enters the window, we want it to add new relationships in
the model. We also want this to be the case not just in a single input layer, but also in the deeper
layers of the network.

Our goal is therefore to augment or modify our production so that it is invariant to shifts in the
absolute positions of tokens, and instead considers tokens at relative positions.

Instead of describing matrix operations on embedding vectors to compute Y as we did in equa-
tion 49, we will first start from Y and describe a sequence of stochastic sampling operations to
arrive at values for vj . Think of these sampling operations as proceeding in the opposite direction
as encoder inference, towards the input text.

We will need i ∈ {1 . . . P} which is an absolute position index that indexes across all possible
positions in the size of the data window, P . We will also need −P < r < P , a relative position
index.

1. ti ∼ p(ti), sample a token from a distribution.

2. tj ∼ p(tj |ti) sample a second token from a distribution conditional on the choice of the
first token.

3. i ∼ uniform(i), sample a position for ti from a uniform distribution over positions. The
weights of this distribution are uniform, because as we shift the data across the window,
the token ti will be observed equally often at every possible absolute position, i.

4. r ∼ p(r|ti, tj), sample a relative position for tj from a conditional distribution that depends
on the two tokens involved.

26

Published as a conference paper at ICLR 2024

5. v ∼ p(v|j): p(v|j) is the prior on values in an embedding vector. For simplicity, we
start with a categorical distribution. We discuss how this can be represented as a dense
embedding vector in appendix E.

If we only want to talk in terms of absolute positions, we can introduce an absolute position index
j, such that j = i+ r.

p(tj |ti) corresponds to qi · kj in the vanilla attention matrix. It has become commonplace to include
a prior in this distribution p(tj |ti, s)p(s) in order to design sparse attention patterns that achieve
O(n log n) or O(n

√
n) complexity (Tay et al., 2020; Zaheer et al., 2020) (Costa et al., 2023). Addi-

tionally there are more recent grammatical attention patterns that achieve a sentence-level inductive
bias towards grammatical constructions (Sartran et al., 2022). Although certainly useful, these pri-
ors on the attention weights are distinct from the additional inductive bias provided by the inductive
transformer in the feed-forward layers of the transformer.

We have multiple redundant paths through this production that generate the same token at the same
position. To transform this open-universe production into a closed-universe model, we will need to
merge the probabilities of such multiple pathways, just as we have done whenever we have used an
open-closed universe factor.

An easy check shows that this production does not match the vanilla transformer. In this production,
for each possible pair (ti, tj), there is a distribution over relative positions with a weight for every
position. In other words, the number of learned weights is O(E · E · P), where E is the embedding
dimension and P is the size of the data window. By contrast, the number of learned weights in the
vanilla attention mechanism is O(E · E · 3). Why the discrepancy?

Let us look at entries in the vanilla attention matrix, qi · kTj , where qi and kj are attention vectors
from positions i and j. In the vanilla transformer, if we choose particular tokens ti and tj , and only
vary the position j, then the (i, j)-th entry in the attention matrix will decrease as position j is more
physically distant from position i in the data window.

On the other hand, If we choose particular positions i and j as well as token ti, and then only vary
the token tj , the weight will decrease as token tj is more “semantically distant” from ti.

The vanilla transformer packs both the token embedding and the position embedding into the same
embedding vector by adding a sinusoidal position vector to the semantic embedding vector. The
blessing of dimensionality says that vectors in a high dimensional space are extremely likely to be
linearly separable from one another (Gorban & Tyukin, 2018). This means that the semantic and
spatial contributions to the embedding vector can operate almost independently of one another. By
collapsing the position and semantic weights into a single representation, however, the vanilla trans-
former essentially performs approximate inference on the production, rather than exact marginaliza-
tion, thereby reducing the complexity in the form of fewer learned weights.

Although our production requires P times more weights, it more exactly articulates the deep mo-
tivation of the attention mechanism - shift invariance. By surfacing this underlying mechanism, it
becomes possible to derive alternative implementations. There are likely to be new ways to intro-
duce inductive bias into the shift invariant production that simplify the complexity of marginaliza-
tion while also enhancing the identifiability and controllability of the model, and yielding improved
scaling laws.

That said, there is nothing to prevent us from using a vanilla attention mechanism within an inductive
transformer! And it would still be an inductive transformer, because of the benefits of the inductive
bias introduced outside of the attention matrix. This can be an attractive option if the goal is to
implement an inductive transformer with minimum architectural changes.

C.3 A NOTE ABOUT CREDENCES AND PROBABILITIES

We have understood the attention mechanism in terms of steps in a generative production that sam-
ples symbolic (discrete) random variables. Marginalization (or other approximate inference) can be
used to estimate the uncertainties or credences of these variables.

Why would we expect a large language model to be estimating uncertainty about discrete variables?
The reason is that these systems are solving an inverse problem. If you want to guess what concepts

27

Published as a conference paper at ICLR 2024

I am thinking as I say something to you, so that you can model my concepts and reply appropriately,
then the operation I performed which was to transform my concepts into speech must be inverted by
you who now must (approximately) convert my speech back into concepts. Since the mapping from
concepts to speech is many-to-many, in listening to me, you have an inherently under-determined
problem to solve, which by its nature requires representing the uncertainty of competing interpreta-
tions of the data. That said, presumably I am certain about what I am thinking as I talk about it. In
other words there are some underlying, highly certain, symbolic (discrete) variables in my mind that
you need to estimate. This is the same setup as in any digital communications or storage system.
The transmitted messages are digital symbols and the receiver must perform marginalization in a
model in order to arrive at the most likely guess for what bits were transmitted (Wymeersch, 2007).

Should we expect the system to represent uncertainty as proper probabilities? It is not at all un-
common in machine learning systems for some operations to occur in the probability domain, some
in the log probability domain, and even to perform operations in a domain that might best be de-
scribed as a second order Taylor series approximation to the log probability domain. For example,
above-threshold CMOS analog implementations of neural networks and probabilistic models take
this approach, since the transfer function of these transistors is I ∝ V 2 (Vigoda, 2003). Further-
more, since taking a log is monotonic, and since during training we care mostly about gradients,
the choice of domain generally does not materially impact the expressiveness of the model. In the
vanilla transformer architecture, there are places like the output softmax that treat uncertainties as
log probabilities to be exponentiated. There are other places, like the attention matrix, that seem to
treat activations as probabilities that can be multiplied. The enormous generality of the multilayer
perceptrons allows for transformations between representations, as well as varying representations
at different locations in the network.

D ∧ IN THE LOG PROBABILITY DOMAIN

After the feed-forward layer, the vanilla transformer has an add & norm layer that adds in the resid-
ual connections and normalizes the output of the layer. Our layer of ∧ activation functions in figure 1
performs the analogous operation in the inductive encoder. Recall, from equation 46 that the prob-
ability p(z = 1) is given by the product of the probabilities p(x) and p(y). In the log domain this
results in,

log p(z = 1) = log p(x = 1) + log p(y = 1). (50)

As we normalize after computing this activation function, this exactly mirrors the behavior of the
“Add & Normalize” layer in the vanilla transformer.

Note that the vanilla encoder has an additional add & norm layer after the feed-forward layer. We
would argue that the sum with residuals here is overkill, but that the layer norm does correspond to
the Bernoulli to categorical that happens after the encoder close-open-universe factor.

E FROM INDICATOR VECTORS TO EMBEDDING VECTORS

Until now we have been assuming embedding vectors that represent the probabilities of states in
a categorical distribution. Categorical vectors are not an efficient embedding, but they are easy
to understand. They are of length T , the number of tokens in the vocabulary, indexed by t ∈
{1, . . . , T}. Each element in these categorical vectors represents p(t), the probability of the tth

token. Just as in the vanilla transformer, categorical embeddings can be used to represent not just
tokens but all kinds of information deep within a network. Throughout this paper we have done just
that. The inner product of two indicator vectors is meaningful as a measure of the distance between
two categorical distributions, so we can compute semantic distance just as we would with dense
embedding vectors.

As in the vanilla transformer, at the input of the inductive transformer we have an embedding vector
for each token position in order to represent the token that is present at that position. If, as is true
at the input to the network, we are certain about what token is present at a given position, then we
have a “one-hot” vector with a single probability that is ≈ 1 for the tth token and ≈ 0 elsewhere. If,
as is true at the output of the network, we have a categorical distribution over tokens, then we have

28

Published as a conference paper at ICLR 2024

an array of probabilities from which we can sample a token. The inputs and outputs are therefore
identical to those of the vanilla transformer.

In order to implement dense embedding representations within the inductive transformer, we do the
typical thing and use an embedding matrix E to transform a categorical vector to a lower dimensional
“dense” embedding vector,

p(iembedding) = E · p(icategorical) (51)

=
∑

icategorical

p(iembedding|icategorical)p(icategorical), (52)

and then at the output use ET to transform from an embedding vector back to a categorical vector.
The only problem with this approach for the inductive transformer is that all of our factors were
defined to operate on categorical variables and/or to transform a categorical variable to a group of
Bernoulli variables, operate on Bernoullis, and then transform back to categorical.

Constructing an inductive transformer with dense embedding vectors is not present a major challenge
however. Assume for example, an arbitrary factor where the variables acategorical, bcategorical, ccategorical
are categorical. As always, inference is marginalization. For example,

p(a) =
∑
b,c

p(a|b, c)p(b)p(c) (53)

If we only know p(a|b, c) in the categorical representation, we can always use our learned ET to
project our incoming distributions from the dense embedding vector representation into categorical
representation,

p(bcategorical) =
∑

bembedding

p(bcategorical|bembedding)p(bembedding) (54)

p(ccategorical) =
∑

cembedding

p(ccategorical|cembedding)p(cembedding), (55)

then apply the factor in categorical representation as we did in equation 53, and then project back
again using E,

p(aembedding) =
∑
ae

p(aembedding|acategorical)p(acategorical). (56)

The only problem with this is that the categorical representation may be very large, making this
computationally inefficient. We can solve this problem by training a multi-layer perceptron to ap-
proximate the entire function from dense embeddings to dense embedding, while remaining in a
smaller number of dimensions the entire time. This is, in fact, what we would argue is happening in
the vanilla transformer.

Using categorical variables in our exposition, however, allowed us the theoretical and pedagogical
luxury of more easily explaining the factors in the inductive transformer.

29

	Introduction and Prior Art
	The Inductive Transformer Model
	Inference in the Inductive Transformer
	Illustrative Example
	Model Weights and Activations
	Prompting and Generation
	Identifiability
	Controllability

	Discussion
	Connectivity in the Inductive Transformer
	Residual Connections in Vanilla Transformer Reduced Productions in the Inductive Transformer
	Connecting the Encoder to the Decoder

	Activation Functions
	Open Closed Universe: Representing an open universe non-parametric model in a closed universe neural network with fixed layer width
	Bernoulli-Categorical
	Encoder
	Categorical-Bernoulli
	Encoder
	Decoder
	Decoder Token

	Self-Attention in the Inductive Transformer
	Vanilla Self-Attention
	The Goal of the Self-Attention Mechanism
	A Note About Credences and Probabilities

	 in the Log Probability Domain
	From Indicator Vectors to Embedding Vectors

