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Abstract

Accurate segmentation of breast lesions in sonomammograms supports computer assisted
diagnosis and early breast cancer detection. Existing public ultrasound datasets contain
duplicates, mislabeled cases, and non-breast images, which leads to unreliable model eval-
uation. To address this, we construct a curated multi-centre dataset of 3,494 images with
expert-verified annotations and patient-level splits. Using this dataset, we define a unified
benchmarking protocol and evaluate eleven representative architectures, including nnU Net
variants, SegResNet, SwinUNETR, U Mamba, and SAMed. All models are trained and
assessed under identical preprocessing, training, and evaluation settings. Performance is
measured with Dice, Sensitivity, Specificity, Accuracy, and Hausdorff Distance metrics.
We also analyse how loss function choice and training data volume influence performance.
SAMed p512 obtains the best Dice score at 0.860 ± 0.141 and the lowest Hausdorff Distance
at 3.896 ± 5.472. The benchmark provides a reproducible reference for breast ultrasound
segmentation and clarifies how architecture design and data-related factors shape perfor-
mance in this setting.
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1. Introduction

Breast cancer is the most frequently diagnosed malignancy among women worldwide and
remains a major global health burden. In 2022, more than 2.3 million new cases and approx-
imately 670,000 deaths were reported, underscoring the critical need for early detection and
reliable diagnostic tools (Chaudhari et al., 2024). Nearly half of all diagnosed cases occur in
women without identifiable risk factors apart from age and sex, and although male breast
cancer is uncommon, it accounts for roughly 0.5 to 1 percent of diagnoses (Tarannum, 2024).
These observations highlight the importance of accurate and accessible imaging-based as-
sessment.

Mammography is the clinical standard for breast cancer screening, yet its diagnostic
performance is reduced in dense breast tissue, and it introduces exposure to ionising radia-
tion. Ultrasound imaging offers an important complementary role because it is non-ionising,
widely available, cost-effective, and suitable for repeated examinations (Dan et al., 2024;
Guo et al., 2018; Sahu et al., 2024). It provides real-time visualisation of soft tissues and is
commonly used to detect and characterise breast lesions in both diagnostic and screening
workflows. However, ultrasound interpretation is operator dependent, image quality varies
across devices and users, and artefacts can obscure lesion boundaries. These challenges
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motivate computational methods that can provide consistent and reproducible guidance in
clinical practice.

Deep learning has become central to medical image analysis, with convolutional neural
networks enabling high performing models for detection, classification, and segmentation.
Segmentation of breast lesions in ultrasound is particularly important because it defines
lesion extent and supports the extraction of morphological descriptors relevant to diagnosis.
U Net (Ronneberger et al., 2015) and its derivatives serve as widely adopted baselines, and
more recent architectures introduce attention mechanisms, transformers, and state space
modelling. Despite this growing landscape, performance comparisons across studies remain
difficult to interpret.

The first obstacle to consistent progress is the lack of standardised benchmarking. Exist-
ing studies often evaluate only a limited set of models and differ in their choice of data splits,
preprocessing procedures, and evaluation metrics. As a result, reported improvements are
not directly comparable. Variations in experimental design can mask or exaggerate archi-
tectural differences, which limits the ability to assess real performance gains.

A second challenge concerns the integrity of widely used datasets. The ultrasound
dataset introduced by Al Dhabyani et al. (Al-Dhabyani et al., 2020) is frequently used, yet an
audit by Pawlowska et al. (Pawlowska et al., 2023) identified duplicate images, inconsistent
labels, and non-breast scans that remained in the collection. Some images also contain
overlaid annotations within lesion regions. Without patient-level separation and integrity
checks, such issues can introduce information leakage during random splitting, which leads
to overly optimistic performance estimates. These findings highlight the importance of
dataset validation when developing and evaluating segmentation models.

Reliable benchmarking requires both high-quality data and a unified evaluation proto-
col. Architectural advances are difficult to interpret in the absence of validated datasets
and consistent experimental settings. Establishing a reproducible framework is therefore
essential for determining how different models behave under controlled conditions and for
providing reference points for future research.

This study addresses these gaps by introducing a curated sonomammogram dataset
that has been screened for duplicates, label inconsistencies, and non-breast images. We
use this dataset to evaluate eleven representative deep learning architectures for breast
lesion segmentation. These include classical encoder-decoder networks, attention-enriched
designs, transformer-based models, and state space architectures. All models are trained
and evaluated within a unified pipeline that standardises preprocessing, train-test division,
and metric computation. We assess performance using the Dice coefficient, sensitivity,
specificity, accuracy, and boundary-based measures.

This work makes three main contributions. (1) We introduce a curated, multi-institutional
dataset of 3,494 ultrasound images with expert-verified annotations and patient-level sep-
aration, along with explicit integrity checks for duplication and label consistency. (2) We
present a unified benchmarking protocol that evaluates eleven deep learning architectures
under identical preprocessing, training, and evaluation conditions. (3) We perform system-
atic analyses of architectural performance, loss function choice, and training data volume
to characterise factors that influence segmentation accuracy and boundary quality.

Rather than proposing a new segmentation model, this study establishes a reproducible
benchmark built on validated data and a transparent evaluation pipeline. The benchmark

2



A Comprehensive Benchmarking for Sonomammogram Segmentation

provides a reliable reference for future work in breast ultrasound segmentation and supports
the development of methods grounded in verifiable data quality.

2. Methodology

2.1. Dataset

This study utilises a newly curated dataset comprising 3,494 two-dimensional sonomam-
mogram images collected from 1,727 patients across multiple diagnostic centres in Poland
between 2019 and 2024. Each image is paired with a corresponding binary segmentation
mask delineating the tumour region. The annotations were created independently by five
board-certified radiologists, each with a minimum of ten years of experience in breast imag-
ing. Disagreements were resolved through consensus review, and all lesion-level diagnoses
were pathologically confirmed through biopsy or validated via follow-up imaging to ensure
diagnostic accuracy.

All images were standardised by resizing to 512 × 512 pixels while preserving anatomical
proportions. Images depicting benign and malignant lesions were included; however, normal
scans without visible tumours were excluded since they provide no relevant segmentation
information. To prevent data leakage and ensure realistic model evaluation, the dataset was
split at the patient level, such that all images from a single patient appeared exclusively in
either the training or testing set. The split was fixed at 80% of patients for training and
20% for testing, ensuring strict separation between seen and unseen subjects.

This dataset represents a significant step toward addressing the limitations of prior
public breast ultrasound datasets, which have been shown to contain duplication, labelling
errors, and non-breast images (Pawlowska et al., 2023). By ensuring data integrity, ex-
pert consensus, and patient-level segregation, the dataset provides a reliable foundation for
reproducible benchmarking and model comparison.

2.2. Model Architectures

To comprehensively assess the state of deep learning for sonomammogram segmentation,
we benchmarked eleven segmentation architectures spanning conventional encoder–decoder
designs, residual and attention-based extensions, and recent transformer and sequence-
modelling variants. Each model was configured using publicly available implementations,
with hyperparameters and training protocols standardised across experiments to ensure
fairness.

The evaluated models include:

• nnU-Net and its variants (Isensee et al., 2024): a self-configuring U-Net framework
that automatically adapts preprocessing, architecture depth, and training parameters
to the dataset. Both standard and residual versions were evaluated.

• LightMUNet (Liao et al., 2024): a lightweight, multi-scale U-Net variant optimised
for computational efficiency without significant performance degradation.

• SegResNet (Myronenko, 2019): an encoder–decoder model combining residual learn-
ing with U-Net topology, designed to capture deep semantic features while maintaining
localisation precision.
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• SwinUNETR (Hatamizadeh et al., 2021): a transformer-based U-Net utilising shifted-
window attention mechanisms to capture long-range spatial dependencies, represent-
ing the transformer paradigm in medical segmentation.

• U-MambaBot and U-MambaEnc (Ma et al., 2024): models integrating Mamba se-
quence modelling blocks into the segmentation pipeline. The U-MambaBot architec-
ture introduces a Mamba-based bottleneck module between the encoder and decoder,
while U-MambaEnc replaces the encoder entirely with Mamba layers, enabling dy-
namic context propagation through learned state-space representations.

• SAMed (Zhang and Liu, 2023): a medical adaptation of the Segment Anything Model
(SAM) fine-tuned for ultrasound data. Two configurations were tested with patch sizes
of 256 and 512, to evaluate the trade-off between local and global context modelling.

This diverse selection encompasses the major design families in contemporary segmentation,
including CNNs, Transformers, and sequence-based architectures, allowing for an unbiased
and systematic comparison across paradigms.

2.3. Training and Evaluation

All models were implemented in PyTorch and trained on NVIDIA H100 PCIe GPUs. Train-
ing was conducted for 1,000 epochs with a batch size of 16. The Adam optimizer was used
with an initial learning rate of 0.01, governed by a polynomial decay scheduler to ensure
smooth convergence. Unless otherwise noted, the primary loss function was DiceCE, a
hybrid of Dice loss and Cross-Entropy loss that balances region overlap with pixel-wise
classification accuracy.

To ensure robust and unbiased evaluation, five-fold cross-validation was performed.
Model performance was assessed on the test set and reported as mean ± standard deviation
across all five runs.

Performance evaluation employed multiple complementary metrics to capture different
aspects of segmentation quality: Dice coefficient, Sensitivity, Specificity, Accuracy, and
Hausdorff Distance (HD). The Dice coefficient quantifies spatial overlap between predicted
and ground-truth masks, while sensitivity and specificity reflect clinical detection perfor-
mance for positive and negative regions, respectively. Accuracy provides an overall measure
of pixel-level correctness, and the Hausdorff Distance evaluates the maximum boundary dis-
crepancy, which is particularly important in assessing segmentation precision along lesion
margins.

All experiments were conducted under identical training conditions, preprocessing pipelines,
and evaluation metrics. This strict methodological uniformity ensures that performance dif-
ferences between models reflect architectural capabilities rather than implementation bias,
allowing for an objective and reproducible benchmarking analysis.
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3. Results and Analysis

3.1. Overall Benchmark Performance

Table 1 summarises the performance of eleven segmentation architectures on the curated
sonomammogram dataset. The models cover convolutional, hybrid, transformer-based, and
state-space designs, all trained and evaluated under the same protocol.

Table 1: Benchmarking of 11 segmentation models on the sonomammogram dataset.

Model Dice Sensitivity Specificity Accuracy HD

nnUNet 0.836±0.171 0.855±0.167 0.987±0.035 0.972±0.050 4.814±6.967

nnUNet ResEnc M 0.834±0.176 0.845±0.178 0.987±0.041 0.971±0.054 4.581±6.709

nnUNet ResEnc L 0.837±0.169 0.853±0.169 0.990±0.023 0.973±0.047 4.453±6.224

nnUNet ResEnc XL 0.838±0.167 0.855±0.163 0.987±0.040 0.972±0.054 4.571±6.508

LightMUNet 0.798±0.210 0.824±0.219 0.983±0.052 0.966±0.063 5.633±7.259

SegResNet 0.818±0.176 0.838±0.178 0.984±0.034 0.969±0.049 6.433±8.508

SwinUNETR 0.822±0.189 0.845±0.184 0.983±0.051 0.968±0.062 6.032±8.631

UMambaBot 0.830±0.187 0.850±0.182 0.985±0.042 0.971±0.054 4.886±7.394

UMambaEnc 0.840±0.162 0.853±0.176 0.989±0.025 0.974±0.046 4.753±6.499

SAMed (p256) 0.797±0.188 0.857±0.177 0.982±0.040 0.966±0.052 8.512±9.922

SAMed (p512) 0.860±0.141 0.875±0.150 0.990±0.023 0.978±0.040 3.896±5.472

Among all evaluated models, SAMed with patch size 512 achieves the highest mean Dice
coefficient (0.860 ± 0.141) and one of the lowest Hausdorff Distances (3.896 ± 5.472). Sta-
tistical testing confirms that SAMed (p512) yields a significant improvement over nnUNet
in Dice, sensitivity, accuracy, and Hausdorff Distance after Holm correction (p < 0.05), in-
dicating that large-patch transformer-based modelling is particularly effective for capturing
both lesion extent and boundary geometry in breast ultrasound. The significantly higher
sensitivity of SAMed (p512) further suggests improved detection of low-contrast or partially
obscured lesions, while maintaining very high specificity, demonstrating a strong balance
between detection and false-positive control.

The nnUNet family forms a strong convolutional baseline, with Dice scores clustered
tightly between 0.834 and 0.838 across all residual encoder variants. Statistical analysis
shows no significant differences between nnUNet and any of its residual encoder variants
across all evaluated metrics after correction, confirming that residual depth has only a mod-
est effect under the current training regime. These results reinforce that a well-configured
CNN architecture remains highly competitive even when compared with more recent hybrid
and transformer-based designs.

The U-Mamba models reach Dice scores of 0.830 (UMambaBot) and 0.840 (UMam-
baEnc), positioning them between the best-performing transformer models and the nnUNet
variants. However, no statistically significant differences were observed between either U-
Mamba variant and nnUNet across Dice or accuracy after correction, indicating that their
apparent improvements remain within the range of statistical uncertainty. UMambaEnc,
which incorporates Mamba blocks throughout the encoder, shows slightly higher mean Dice
than UMambaBot and most convolutional models, while maintaining boundary accuracy
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comparable to nnUNet. This suggests that state-space modelling can complement convo-
lutional features for ultrasound segmentation, although it does not close the performance
gap to SAMed (p512) on this dataset.

SegResNet, LightMUNet, and SwinUNETR exhibit intermediate performance. Light-
MUNet and SegResNet demonstrate statistically significant differences in Dice relative to
nnUNet after correction, while SwinUNETR does not. For boundary accuracy, Light-
MUNet, SegResNet, and SwinUNETR all achieve significantly lower Hausdorff Distances
than nnUNet, indicating improved contour precision despite moderate Dice values. Light-
MUNet trades representational power for efficiency, yielding a lower mean Dice (0.798) with
increased variance, consistent with its reduced architectural capacity.

Specificity is uniformly high across all architectures, exceeding 0.98 in every case, indi-
cating consistently reliable background identification. In contrast, sensitivity varies more
markedly (0.824–0.875), reflecting different capabilities for detecting small or low-contrast
lesions. Only SAMed (p512) demonstrates a statistically significant improvement in sen-
sitivity over nnUNet after correction. The combined evidence of high Dice, low Hausdorff
Distance, and statistically significant gains across multiple metrics for SAMed (p512) in-
dicates that its performance improvements reflect genuine boundary fidelity and detection
enhancement, rather than merely increased region overlap.

Figure 1 provides qualitative examples across five representative cases. The nnUNet
variants generally produce anatomically plausible segmentations, particularly in lesions with
clear hypoechoic cores. LightMUNet and SegResNet tend to undersegment small or poorly
contrasted lesions and sometimes oversmooth irregular boundaries, consistent with their
lower Dice and higher Hausdorff values.

UMambaBot and UMambaEnc deliver coherent masks that preserve lesion morphol-
ogy with fewer isolated artefacts, supporting the quantitative observation that sequence
style modelling helps maintain global consistency. For SAMed, the patch size has a vis-
ible effect. SAMed (p256) occasionally overextends lesion boundaries or introduces small
spurious regions, while SAMed (p512) yields tighter contours and better alignment with
expert annotations. In some well-defined cases, classic nnUNet matches or slightly exceeds
SAMed (p256), illustrating that strong convolutional baselines remain relevant when the
lesion boundary is sharp and local context is sufficient.

Across all models, failure cases are concentrated in lesions with indistinct, fragmented,
or shadowed boundaries. In such cases, both convolutional and transformer-based archi-
tectures may misplace the contour or miss fine protrusions. This is consistent with the
relatively large standard deviations in Dice and Hausdorff Distance and reflects the intrin-
sic difficulty of ultrasound interpretation in these scenarios.

3.2. Effect of Loss Function

Table 2 reports the impact of different loss functions on nnUNet performance. DiceCE loss
achieves the highest mean Dice coefficient (0.836 ± 0.171), together with a balanced trade-
off between sensitivity and specificity. Paired statistical testing confirms that DiceCE yields
a statistically significant improvement in Dice over all other loss functions after correction
(p < 0.05), indicating that the observed gain is not attributable to random variation.
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Figure 1: Qualitative comparison of eleven deep learning segmentation models on five rep-
resentative sonomammograms. The first row shows the ultrasound images, fol-
lowed by ground truth masks. Subsequent rows display predictions from nnUNet
variants, LightMUNet, SegResNet, SwinUNETR, UMamba models, and SAMed
(p256/p512).
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Table 2: Effect of different loss functions using nnU-Net.

Loss function Dice Sensitivity Specificity Accuracy HD

DiceTopK10Loss 0.824±0.188 0.835±0.198 0.989±0.028 0.972±0.049 4.790±6.655

CE loss 0.824±0.202 0.824±0.214 0.989±0.033 0.973±0.048 4.127±5.512

Dice loss 0.820±0.189 0.856±0.183 0.985±0.031 0.971±0.049 5.475±7.482

DiceCE loss 0.836±0.171 0.855±0.167 0.987±0.035 0.972±0.050 4.814±6.967

In contrast, sensitivity differs significantly across loss functions. Both CE and Dice-
TopK10 losses produce significantly lower sensitivity compared to DiceCE (p < 0.05), in-
dicating a reduced ability to detect low-contrast or small lesion regions. Pure Dice loss
achieves sensitivity comparable to DiceCE, but without a corresponding improvement in
boundary accuracy. These findings suggest that DiceCE provides a more reliable balance
between foreground detection and false-negative control.

No statistically significant differences are observed in specificity or accuracy among any
of the loss functions, with all methods exceeding 0.98 in specificity and exhibiting simi-
lar overall classification accuracy. This indicates that background discrimination remains
robust and largely insensitive to the choice of loss function.

For boundary accuracy, however, cross-entropy loss achieves a significantly lower Haus-
dorff Distance than DiceCE and the other losses (p < 0.05), demonstrating superior contour
precision and more conservative boundary delineation. This behavior is consistent with the
voxel-wise nature of cross-entropy, which penalizes boundary misclassification more uni-
formly than overlap-based losses.

Overall, these results indicate that DiceCE is preferable when balanced lesion detec-
tion and stable region segmentation are required, as it significantly improves sensitivity
without sacrificing specificity or accuracy. Cross-entropy loss, while inferior in sensitivity, is
more effective for strict boundary regularization, as reflected by its significantly lower Haus-
dorff Distance. This highlights a fundamental trade-off between detection performance and
boundary precision when selecting the training objective for breast ultrasound segmenta-
tion.

3.3. Impact of number of Training Data

Table 3: Effect of the number of training images on segmentation performance for nnUnet.

# Training (%) Dice Sensitivity Specificity Accuracy HD

5 0.661±0.318 0.669±0.323 0.969±0.074 0.945±0.084 15.368±16.534

20 0.786±0.221 0.817±0.225 0.986±0.028 0.968±0.049 10.241±12.256

50 0.800±0.232 0.822±0.234 0.982±0.059 0.967±0.067 6.354±5.339

80 0.813±0.214 0.839±0.209 0.985±0.042 0.970±0.051 5.051±7.340

100 0.836±0.171 0.855±0.167 0.987±0.035 0.972±0.050 4.814±6.967
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To assess data dependence, nnUNet was trained with increasing fractions of the available
training set. Table 3 summarises the results.

Performance improves strongly as the training fraction increases from 5% to 50%, with
Dice rising from 0.661 to 0.800 and Hausdorff Distance decreasing from 15.37 to 6.35.
Statistical testing confirms that Dice, sensitivity, and Hausdorff Distance differ significantly
across all training fractions (p < 0.05), demonstrating a clear dependence of both region
overlap and boundary accuracy on the amount of training data.

Gains between 50% and 80% are smaller, and performance begins to stabilise as the
full dataset is approached. At 100% of the training data, Dice reaches 0.836 ± 0.171 and
Hausdorff Distance reduces to 4.814 ± 6.967, indicating further refinement in segmenta-
tion quality. The continued statistically significant reduction in Hausdorff Distance with
increasing data volume highlights that boundary precision benefits particularly from addi-
tional training samples, even when region-level overlap improvements begin to plateau.

For accuracy and specificity, statistically significant differences are observed only be-
tween the extreme low-data regime (5%) and the higher training fractions, while no signifi-
cant differences are detected among the 20%, 50%, 80%, and 100% settings. This indicates
that background classification remains highly robust once a minimal amount of training
data is available, whereas lesion detection performance continues to improve with increased
data exposure.

Overall, these results indicate that, for this architecture and dataset, approximately
half of the available training images are sufficient to reach the main performance regime,
with additional data primarily contributing to improved boundary localisation and reduced
variability rather than substantial gains in Dice. The pronounced and statistically consistent
decrease in Hausdorff Distance with increasing data volume suggests that exposure to a
wider diversity of lesion shapes, sizes, and echotextures is particularly important for accurate
contour delineation in breast ultrasound segmentation.

3.4. Comparative Insights

Taken together, the experiments support several observations. First, architectures that
explicitly model broader context, such as SAMed and the U Mamba variants, tend to achieve
better combinations of Dice, sensitivity, and Hausdorff Distance than purely convolutional
baselines. This indicates that access to long-range information is useful in ultrasound, where
lesion boundaries are often defined by subtle intensity transitions and extended contextual
cues rather than sharp edges.

Second, model robustness does not simply track parameter count. The nnUNet configu-
rations, which are relatively compact and rely on data-driven configuration, remain among
the most reliable performers. Their stable behaviour across loss functions and training set
sizes supports their role as strong baselines for future studies.

Third, Hausdorff Distance provides complementary information to region-based metrics.
Models such as SegResNet and SwinUNETR can achieve reasonable Dice scores while still
exhibiting higher boundary errors, which could be clinically relevant in tasks where small
deviations affect downstream measurements. Reporting both overlap and distance metrics
is therefore important for a complete assessment of segmentation quality.
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Finally, the relatively large standard deviations, particularly for Dice and Hausdorff
Distance, reflect the heterogeneity of breast lesions in size, shape, and echotexture. This
variability exposes limitations of current architectures and highlights the continued need
for methods that can better handle very small, low-contrast, or highly irregular lesions.

Overall, the benchmark shows that large patch transformer-based architectures like
SAMed (p512) currently offer the best trade-off between lesion detection and boundary
precision on this curated dataset. At the same time, nnUNet remains a strong and accessible
reference method, and the data scaling and loss function analyses provide practical guidance
for configuring future models on breast ultrasound segmentation tasks.

4. Discussion

The benchmarking analysis provides several insights into deep learning based segmenta-
tion in sonomammography and clarifies how architectural design, data integrity, and the
characteristics of ultrasound imaging interact to shape performance.

A consistent pattern across experiments is the importance of context modelling. Archi-
tectures that explicitly capture longer range spatial relationships, such as transformer based
models (SAMed, SwinUNETR) and state space designs (UMambaEnc, UMambaBot), tend
to achieve stronger overall performance than the simpler convolutional baselines. Breast
ultrasound images often exhibit low contrast at lesion boundaries and substantial speckle
noise, which limits the discriminative power of purely local filters. Mechanisms that aggre-
gate information over larger regions appear to help resolve ambiguous contours and stabilise
segmentation in heterogeneous tissue.

At the same time, the nnUNet framework remains a robust and competitive baseline.
Across all experiments, nnUNet variants achieve performance close to the best models while
relying solely on convolutional operations and automatic configuration. This supports the
view that careful preprocessing, normalisation, and optimisation can offset some of the
advantages of more elaborate architectures. It also reinforces nnUNet as an appropriate
reference point for future breast ultrasound studies, particularly in settings where compu-
tational resources or implementation complexity are constrained.

Within the context aware models, SAMed with a patch size of 512 pixels achieves the
best trade off between Dice, sensitivity, and Hausdorff Distance. Its large receptive field and
attention based encoding likely facilitate the integration of both global context and local
texture cues, which is consistent with its improved boundary localisation. The UMamba
variants occupy an intermediate position. Their state space layers provide a form of dy-
namic context propagation that yields performance above most convolutional baselines, but
they do not consistently match SAMed on the current dataset. These results suggest that
designing architectures that combine efficient local processing with flexible context handling
is beneficial for ultrasound segmentation, but no single family is uniformly dominant.

The data volume experiments highlight that both the quantity and diversity of training
data are important. Performance improves sharply when the training fraction increases
from 5 to 50 percent of the available images and then gradually plateaus as the full dataset
is used. The associated reduction in Hausdorff Distance indicates that additional data
particularly benefits boundary precision rather than coarse lesion detection. This pattern
implies that, once a representative range of lesion appearances and acquisition conditions is
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seen during training, further gains from simply adding more similar images may be limited.
Future improvements are therefore likely to depend on complementary strategies, such as
incorporating data from other centres and devices, more targeted augmentation, or explicitly
modelling uncertainty in challenging regions.

A key aspect of this study is the use of an integrity checked dataset with expert ver-
ified annotations and patient level splits. Previous work has frequently relied on public
breast ultrasound datasets that contain duplicates, label inconsistencies, and non breast
images (Pawlowska et al., 2023). Under those conditions, random splitting can lead to
information leakage and optimistic estimates of performance. In contrast, the results re-
ported here are obtained under stricter data curation and controlled evaluation. The abso-
lute performance levels are generally lower than some values reported in earlier literature,
but they are more consistent across models and better aligned with the known difficulty
of ultrasound interpretation. This supports the view that rigorous dataset validation and
transparent benchmarking are essential for obtaining reliable estimates of model capability.

The comparative findings also have implications for future model development. Purely
convolutional pipelines appear to be approaching a practical performance ceiling on this
task, whereas architectures that incorporate broader context, such as transformers and
state space models, offer measurable gains at the cost of increased complexity. An at-
tractive direction is therefore the design of hybrid models that retain the efficiency and
inductive biases of convolutions while adding lightweight mechanisms for non local informa-
tion flow. In parallel, extending evaluations beyond point estimates to include calibration,
uncertainty measures, and case wise error analysis will be important for understanding how
these systems behave in clinical scenarios.

4.1. Clinical Implications

Accurate segmentation of breast lesions in ultrasound directly affects diagnostic assessment
and treatment planning. Reliable boundary delineation supports consistent estimation of
lesion size, shape, and margin characteristics, which are integral to BI-RADS categorisa-
tion, malignancy risk assessment, and longitudinal follow up. The observed reductions in
boundary error for the best performing context aware models suggest that they could im-
prove the precision of these measurements, particularly in dense or heterogeneous breast
tissue where manual delineation is challenging.

The curated dataset and patient level partitioning used in this work provide a foundation
for reproducible evaluation, which is a prerequisite for clinical translation. Benchmarks that
are based on validated data and explicit protocols help ensure that reported segmentation
accuracy reflects genuine clinical capability rather than artefacts of dataset construction.
By quantifying how architecture, loss design, and data volume influence robustness, the
present study offers practical guidance for integrating segmentation modules into computer
assisted diagnosis pipelines and decision support systems.

4.2. Limitations and Future Directions

Despite its scope, this study has several limitations. First, although the dataset is multi
institutional, all images originate from centres in a single country, and the cohort may not
fully represent the diversity of breast anatomy and imaging protocols encountered interna-
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tionally. External validation on datasets from other regions and devices will be necessary
to assess generalisability.

Second, all models were trained and evaluated under a common set of hyperparameters
and training schedules. This design supports a fair comparison but may not reflect the
optimal configuration for each individual architecture. It is possible that some models
could achieve higher performance with more extensive tuning or task specific modifications.

Third, the data consist of two dimensional static ultrasound images with single expert
consensus segmentations. Temporal information, three dimensional acquisitions, and ex-
plicit modelling of inter observer variability were not considered. These aspects could be
important in clinical practice and represent natural extensions of the current benchmark.

Finally, the dataset, although carefully curated, is of moderate size by modern deep
learning standards, and access constraints may limit direct reuse in some settings. Future
work will focus on extending the benchmark to larger and more diverse cohorts, incorporat-
ing multi centre external validation, and exploring uncertainty aware and clinically guided
evaluation criteria. Addressing these points will be critical for translating segmentation
models into robust and trustworthy tools for routine breast imaging.

5. Conclusion

This study delivers a comprehensive, methodologically consistent benchmark of deep learn-
ing architectures for breast ultrasound segmentation. Transformer- and state-space models,
such as SAMed and U-MambaEnc, achieved the highest boundary accuracy and contextual
understanding, while classical CNNs like nnU-Net remained competitive when rigorously
configured. This demonstrates that segmentation success in ultrasound depends less on
architectural novelty and more on data fidelity, reproducibility, and balanced optimisation.

Beyond model performance, this work represents a methodological correction for the
field of ultrasound-based breast cancer imaging. It exposes how unreliable datasets have
distorted prior results and provides a transparent foundation upon which future methods
can be developed and compared without bias.

Looking forward, the integration of multi-centre, multi-device datasets, combined with
hybrid architectures that balance interpretability and contextual depth, will be essential to
advancing the clinical readiness of deep learning–based segmentation systems. The bench-
mark presented here not only quantifies the state of the art but also redefines the standards
for credibility, reproducibility, and clinical relevance in breast ultrasound image analysis.
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