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Abstract

A common method to solve complex problems in software engineering, is to divide
the problem into multiple sub-problems. Inspired by this, we propose a Modular
Architecture for Software-engineering AI (MASAI) agents, where different LLM-
powered sub-agents are instantiated with well-defined objectives & strategies tuned
to achieve those objectives. Our modular architecture offers several advantages:
(1) employing and tuning different problem-solving strategies across sub-agents,
(2) enabling sub-agents to gather information from different sources scattered
throughout a repository, and (3) avoiding long trajectories which inflate costs
and add extraneous context. MASAI achieves competitive performance (28.33%
resolution rate) on the popular and challenging SWE-bench Lite dataset consisting
of 300 GitHub issues from 11 Python repositories. We conduct a comprehensive
evaluation of MASAI relative to other methods and analyze the effects of our
design decisions and their contribution to the success of MASAI.

1 Introduction
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Figure 1: Comparison of MASAI with existing
methods. Resolution rate refers to the percentage
of issues in SWE-bench Lite that are resolved.

Software engineering is a challenging activity
which requires exercising various skills such
as coding, reasoning, testing, and debugging.
The ever growing demand for software calls for
better support to software engineers. Recent
advances in AI offer much promise in this direc-
tion.

Large language models (LLMs) have shown re-
markable ability to code (Chen et al. [2021],
Roziere et al. [2023], CodeGemma Team [2024],
inter alia), reason [Kojima et al., 2022] and
plan [Huang et al., 2022]. Iterative reason-
ing, structured as chains [Wei et al., 2022] or
trees [Yao et al., 2024] of thought, further en-
hance their ability to solve complex problems
that require many inter-related steps of reason-
ing. When combined with tools or environ-
ment actions [Yao et al., 2023, Patil et al., 2023,
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Schick et al., 2024] and feedback from the envi-
ronment [Zhou et al., 2023, Shinn et al., 2024], they enable autonomous agents capable of achieving
specific goals [Zhang et al., 2023].

As the problem complexity increases, it becomes difficult to devise a single, over-arching strategy
that works across the board. Indeed, when faced with a complex coding problem, software engineers
break it down into sub-problems and use different strategies to deal with them separately. Inspired
by this, we propose a Modular Architecture of Software-engineering AI (MASAI) agents, where
different LLM-powered sub-agents are instantiated with well-defined objectives and strategies.

Our modular architecture consists of 5 different sub-agents: Test Template Generator which
generates a template test case and test command, Issue Reproducer which writes a test case to
reproduce the issue, Edit Localizer which finds files to be edited, Fixer which fixes the issue by
generating multiple possible patches, and Ranker which ranks the patches based on the generated
test. These sub-agents work in tandem to resolve complex real-world software engineering problems.

Our approach offers several advantages: (1) employing and tuning different problem-solving strategies
across sub-agents (e.g., ReAct or CoT), (2) enabling sub-agents to gather information from different
sources scattered throughout a repository (e.g., from a README or a test file), and (3) avoiding
unnecessarily long trajectories which inflate inference costs and pass extraneous context which could
degrade performance [Shi et al., 2023].

We evaluate MASAI on the popular and highly challenging SWE-bench Lite dataset [Jimenez
et al., 2024] of 300 GitHub issues from 11 Python repositories. Due to its practical relevance and
challenging nature, SWE-bench Lite has attracted significant efforts from academia, industry and
start-ups. As shown in Figure 1, MASAI achieves performance competitive on SWE-bench Lite. The
field of AI agents, and specifically software-engineering AI agents, is nascent and rapidly evolving.
In fact, published methods in Figure 1 have been developed within the past six months. We conduct a
thorough investigation into the performance of MASAI and recent methods on SWE-bench Lite, and
present the impact of key design decisions.

In summary, we make the following contributions:
(1) Propose a modular architecture, MASAI, that allows optimized design of sub-agents separately
while combining them to solving larger, end-to-end software engineering tasks.
(2) Show the effectiveness of MASAI by achieving the highest resolution rate on SWE-bench Lite.
(3) Conduct a thorough investigation into key design decisions of MASAI and the existing methods
which can help inform future research and development in this rapidly evolving space.
(4) For reproducibility, we provide our prompts in the Appendix and detailed logs as supplementary
material.

2 MASAI Agent Architecture

Solving a problem in a code repository requires understanding the problem description and the
codebase, gathering the necessary information scattered across multiple files, locating the root cause,
fixing it and verifying the fix. Instead of treating this as one long chain of reasoning and actions, we
propose modularizing the problem into sub-problems and delegating them to different sub-agents.

2.1 Agent Specification and Composition

A MASAI agent is a composition of several MASAI sub-agents. A MASAI sub-agent is specified by
a tuple ⟨Input, Strategy,Output⟩ where
(1) Input to the sub-agent comprises of the code repository, information obtained from other sub-
agents as necessary, a set of allowed actions and task instructions.
(2) Strategy is the problem-solving strategy to be followed by the sub-agent in using the LLM to
solve its given sub-problem. This could be vanilla completion, CoT [Wei et al., 2022], ReAct [Yao
et al., 2023], RAG [Lewis et al., 2020], etc.;
(3) Output is the specification of the content that the sub-agent must return upon completion as well
the format it must be presented in.

Compared to multi-agent frameworks [Wu et al., 2023, Qian et al., 2023, Hong et al., 2024], the
MASAI architecture is simpler, in that, the sub-agents are given modular objectives that do not require
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Figure 2: Overview of MASAI applied to the task of repository-level issue resolution on an example
issue 13142 from scikit-learn. MASAI takes a repository and an issue description as input, and
produces a single patch. The 5 sub-agents (shown in thick boxes) tackle different sub-problems. The
information flow between them is shown by directed edges. The sub-agents are marked with the
solution strategy and input–output pairs.

explicit one-to-one or group conversations between sub-agents. The sub-agents are composed by
passing the output from one sub-agent to the input of another sub-agent.

2.2 Action Space

All the sub-agents are presented with a set of actions which allows them to interact with the environ-
ment. The actions we use in this work are:
(1) READ(file, class, function): Query and read a specific function, class or file. The READ
action returns a lazy representation that aims to keep the output concise. When reading a file,
signatures of the top level definitions are presented; when reading a class, signature of the class (class
name and members) are presented and when reading a function, complete body is presented.
(2) EDIT(file, class, function): Marks a code segment for editing.
(3) ADD(file): Marks a (new) file for code addition.
(4) WRITE(file, contents): Writes the specified content to a file.
(5) LIST(folder): Lists contents of given folder.
(6) COMMAND(command): Executes the command in a shell. This event is regulated with a timeout,
truncation of large results and blocking critical blacklisted commands.
(7) DONE: Used by the agent to signal completion of objective.

2.3 Agent Instantiation

In this work, we focus on the general task of resolving repository-level issues, as exemplified by
the SWE-bench Lite dataset. A problem statement consists of an issue description and a repository.
The agent is required to produce a patch so that the issue is resolved. Issue resolution is checked by
ensuring that the relevant, held-out test cases pass.

Below, we refer to ReAct Yao et al. [2023] which is a problem-solving strategy that enables a LLM to
act as an agent by calling actions from the action space until it completes its objective. We also refer
to Chain of Thought (CoT) Wei et al. [2022], a method to enable LLM to take intermediate reasoning
steps in its response.

We instantiate 5 sub-agents to collectively resolve repository-level issues. Figure 2 shows the overall
architecture of our MASAI agent on a concrete example, along with the information flow between the
sub-agents (shown by the solid edges). Sub-agents with ReAct strategy are provided with all actions
described above in the action space. Sub-agents with CoT strategy have well designed prompts that
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invoke Chain of Thought reasoning in their responses. We describe each of the sub-agents and their
function below with detailed prompts in the Appendix A.
(1) Test Template Generator: Discovers how to write and run a new test by analyzing the test
framework specific to the repository.

• Input: The repository state along with basic information such as directory structure.
• Strategy: ReAct.
• Output: The code for a template test case (which is issue independent) for the repository along

with the command to run it. This is used to aid the Issue Reproducer sub-agent described next.

(2) Issue Reproducer: Writes a test that reproduces the behaviour reported in the given issue.

• Input: Repository state, issue description and the sample test template and command to run the
test, generated by the Issue Reproducer.

• Strategy: ReAct.
• Output: The code for a test case which reproduces the issue and would show a change in status

(pass vs. fail) when the issue is fixed. It also outputs the shell command to run this test.

Test Template Generator and Issue Reproducer and responsible for generating a testcase to reproduce
given issue and check sample patches. Test Template Generator explores the repository documentation
and existing steps to generate a test template and Issue Reproducer converts that into issue reproducing
testcase (See Section 4, RQ5 4.5 for further details and reasoning).

(3) Edit Localizer: Navigates the repository and identifies code locations (files, classes, functions)
that need to be edited to resolve the issue.

• Input: The repository state and the issue description.
• Strategy: ReAct.
• Output: List of code locations to edit.

(4) Fixer: Suggests multiple potential patches to the code locations marked by Edit Localizer that
may resolve the issue.

• Input: Issue description along with contents of the code locations required to be edited, from the
Edit Localizer.

• Strategy: CoT.
• Output: Multiple possible candidate patches to the provided suspicious code.

Edit Localizer searches the repository for erroneous file causing the issue. The Fixer uses minimal
rewrite response format for edits. Similar to Deligiannis et al. [2023], original and edited lines along
with exact line numbers are asked in the response. This helps us handle cases where tab spacing in
response and original file mismatch. In addition to this, if an exact match is not found, we use fuzzy
matching to find the closest matching span to apply. Finally, syntactically incorrect edits are rejected
and only valid resultant patches are used downstream.

(5) Ranker: Ranks the candidate patches from the Fixer, using the test generated by Issue Reproducer.

• Input: Issue description, candidate patches from Fixer, and generated testcase with the test
command from Issue Reproducer.

• Strategy: CoT.
• Output: Ranking of the candidate patches in the order of likelihood to resolve the issue.

Ranker uses results of generated testcase to rank patches. It gives to an LLM the output of the testcase
without any sample patch, then with each patch and asks the model to use this information to rank
sample patches. The top ranked patch is selected as the issue resolution. If the Issue Reproducer
sub-agent could not generate a test, then the Ranker ranks the patches using only the issue description.

3 Experimental Setup

Dataset: As stated earlier, we perform experiments on SWE-bench Lite [Jimenez et al., 2024] (MIT
license). The objective is given a repository and an issue description, produce a patch that fixes the
issue such that the issue-specific tests (hidden from the method) pass.
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Metrics: We report three metrics: (1) Resolution rate, the percentage of issues successfully resolved
(i.e., pass the issue-specific tests); (2) Localization rate, the percentage of issues where the patch
proposed by a method fully covers the ground-truth patch files, i.e., where recall is 100% at the
file level; (3) Application rate, the percentage of issues where the patch proposed by a method
successfully applies on the repository (i.e., the Linux command patch does not raise an error). We
also compare average cost of generating a patch for 1 issue for each of the below described methods.

Competing methods: We compare with recent published methods that evaluate on SWE-bench Lite
listed below. We exclude proprietary methods that do not disclose technical details and trajectories.
(1) SWE-agent [Yang et al., 2024a]: Utilizes a single ReAct loop along with specialized environment
interface with multiple tools. Uses GPT-4 (1106).
(2) AutoCodeRover [Zhang et al., 2024] (ACR): Uses ReAct loops for localization and for generating
patches. Uses specialized tools for searching specific code elements (class, method) and to present
them as signatures. Uses GPT-4 (0125).
(3) OpenDevin [OpenDevin]: Uses the CodeAct [Wang et al., 2024a] framework where the agent (a
single ReAct loop) can execute any bash command along with using various helper commands. The
version of OpenDevin with highest reported performance v1.3 gpt4o makes use of hints text in
SWE-bench Lite, conversation transcript of developers on an issue in GitHub. However, we compare
in detail with best version that does not use hints, v1.5 gpt4o nohints.
(4) Aider [Aider]: Uses static analysis to provide a compact view of the repository and, in turn, to
determine the file(s) to edit. Uses ReAct loop for editing the identified file(s) until a valid patch that
passes pre-existing tests is obtained. Uses GPT-4o and Claude 3 Opus on alternate runs.
(5) CodeR [Chen et al., 2024]: A multi-agent solution which reproduces and resolves the issue
iteratively. Uses BM25 along with test coverage statistics for fault localization. Uses GPT-4 (1106).
(6) Moatless [Moatless Tools]: Uses a ReAct loop to localize and another to fix the code. Leverages
semantic search to query for relevant code chunks.
(7) Agentless [Xia et al., 2024]: Employs semantic search for localization and heuristic-based ranking
of candidate repairs over a fixed set of LLM calls. Uses GPT-4o.
(8) RAG: Uses BM25 to retrieve relevant files which are used to prompt an LLM to generate a patch.
We compare with the best-performing RAG model on SWE-bench Lite: RAG + Claude 3 Opus
(Used as baseline).

Implementation: We evaluate MASAI by setting up a fresh development environment with all the
requirements and providing the issue description and repository from base-commit. We use the
GPT-4o model throughout our pipeline for all sub-agents. For Test Template Generator, we start
with a temperature of 0 and increase by 0.2 for each unsuccessful attempt. For Issue Reproducer,
Edit Localizer, and Ranker, we use a temperature of 0; for Fixer, we use 0.5 and sample 5 candidate
patches. We limit the ReAct loops of the Test Template Generator, Issue Reproducer, and Edit
Localizer to 25 steps and limit Test Template Generator to 3 retries. After the ranker selects the patch,
we run an auto-import tool to add missing imports. We discard any edits to pre-existing tests which
the agent might have made.

4 Results

We first present comprehensive results on the SWE-bench Lite dataset. Then we provide supporting
empirical observations and examples that bring out the effectiveness of our design choices.

4.1 RQ1: Performance on software engineering tasks in SWE-bench Lite

We present our main results in Table 1. Multiple remarks are in order.
(1) Our method, MASAI, achieves competitive resolution rate of 28.33% on the dataset alongside
CodeR [MASAI].
(2) Standard RAG baseline (first row) performs substantially poor on the dataset; which is a strong
indication of the complexity of the SWE-bench Lite dataset.
(3) MASAI localizes the issue (at a file-level) in 75% of the cases; the best method in terms of
localization rate, OpenDevin, at nearly 77%, however achieves only 25.67% resolution rate.
(4) The (edit) application rate is generally high for all LLM-based agents; MASAI’s patches, in
particular, successfully apply in over 95% of the cases.
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Method Resolution Rate Localization Rate Application rate Avg cost
(%) (%) (%) ($)

RAG 4.33 48.00 51.67 -
SWE-agent 18.00 61.00 93.67 $2.51
ACR 19.00 62.33 80.00 $1.30
Moatless 23.33 73.00 97.00 $0.13
OpenDevin 25.00 77.00 90.00 $1.50*

– hints 16.00 63.00 81.33 -
Aider 26.33 69.67 96.67 $3.18*
Agentless 27.33 68.67 97.33 $0.34
CodeR 28.33 66.67 74.00 $3.09

MASAI 28.33 75.00 95.33 $1.96
Table 1: Performance of competing methods on SWE-bench Lite (best in bold). Row “– hints”
indicates results of OpenDevin without hints text. * in the Cost column indicates that we computed
costs from publicly available trajectories. All other costs are as reported from methods.

(5) The average cost of generating a patch is $1.96. We break this down into individual sub-agent
costs in Appendix 7.

4.2 RQ2: Assumptions by different methods

High autonomy and less dependence on external signals (e.g., expert hints) is desirable from software-
engineering agents. In the standard SWE-bench Lite setup, all agents are provided the issue de-
scription along with the repository. However, we observe that different methods make different
assumptions about available auxiliary information.

• All methods apart from RAG and Moatless require that for each task, an environment be set up
with the appropriate requirements installed beforehand so that code can be executed.

• OpenDevin avails hints text provided by SWE-bench Lite as discussed in Section 3.
• Aider and Agentless when running pre-existing tests, use pre-determined test commands which

consist about (1) the testing framework used to run tests in the task repository and (2) specific unit
tests that target the code pertaining to the issue at hand. Both of the above inadvertently provide
additional information about which part of the repository is relevant to the issue.

• CodeR uses coverage-based code ranking [Wong et al., 2016] for fault localization. As in Aider,
this would require repository-specific commands to run pre-existing tests, and instrumentation of
the full repository to get coverage information.

MASAI aims for high autonomy by avoiding dependence on additional inputs, only relying on the
original setup proposed by Jimenez et al. [2024]. SWE-agent and AutoCodeRover operate at a similar
level of autonomy to MASAI. Results in Table 1 show that MASAI outperforms other approaches
without making additional assumptions.

4.3 RQ3: How does MASAI perform effective fault localization from issue description?

Localization requires multi-step reasoning to identify the root cause of the error from issue descrip-
tions, which are vague & only describe the problem. We observe that (1) the choice of ReAct as the
strategy, (2) the specificity of its objective (to only identify files to edit) and (3) the designs of tools
available enables the Edit Localizer to perform the required multi-step reasoning in a robust manner.
MASAI achieves a localization rate of 75% compared to SWE-agent 61%, OpenDevin 63% methods
that do not employ a separate localization step and Agentless 68.67% which employs one.

We observe the advantages of using a ReAct sub-agent, by comparing with Aider which uses a single
step CoT approach. In the 27 issues solved by MASAI but not by Aider, Aider failed to localize in 10
(37%) issues whereas among the 21 issues solved by Aider but not by MASAI, MASAI only failed to
localize in 3 (14%) issues. This shows that better localization plays a role in superior resolution rate.
Comparing the average search steps (as proxy for complexity) required for problems that both Aider
and MASAI solved (10.9) and those that only MASAI solved (12.8), we further see that MASAI’s
ReAct based Edit Localizer has the flexibility to scale to more complex localization challenges.

6



Selection 1 5
Strategy Sample Samples
Oracle 23.33% 35.00%
Random - 22.28%
LLM w/o test - 23.33%
- w/ test (Ranker) - 28.33%

Table 2: Resolution rates of MASAI on
SWE-bench Lite, with different num-
ber of Fixer samples (i.e., candidate
patches), using different sample selec-
tion strategies (rows, discussed in Sec-
tion 4.4).

Method Both Method MASAI
locl. resolv. resolv.

RAG 126 12 52 (+ 31.7%)
ACR 166 51 73 (+ 13.2%)
SWE-agent 166 48 65 (+ 10.2%)
OpenDevin 187 60 74 (+ 7.5%)
– hints 164 39 67 (+ 17.1%)

Moatless 193 62 75 (+ 6.7%)
Aider 189 71 71 (=)
Agentless 180 70 67 (- 1.7%)
CodeR 174 77 72 (- 2.8%)

Table 3: Comparing issues resolved by a method and
MASAI among issues localized by both. Row-wise max
in bold.

[Example 1]: MASAI performs multi-step reasoning required for localization in the task
scikit-learn scikit-learn-13142 (described in Fig. 2). Edit Localizer finds the class men-
tioned in the issue and then traces symbols and inheritance links to identify the root cause.

[Example 2]: Access to basic shell commands helps the Edit Localizer in the issue
matplotlib matplotlib-25332. grep is used to look for occurrences of an attribute within a
large file which helps identify the faulty function.

Neither Aider nor CodeR localized faulty functions correctly in the 2 examples. OpenDevin and
SWE-agent localized example 2. Links to the agent logs are in Appendix E.

4.4 RQ4: How does MASAI’s sampling and ranking compare to iterative repair?

We observe that sampling multiple repair patches from the Fixer significantly increases the possibility
of generating a correct patch, as reported in Table 2 (Oracle selection 23.33% at 1 sample vs 35% at
5 samples). However the LLM alone is unable to select amongst theses patches (LLM w/o test). This
can be overcome by using the output from the generated issue-reproduction test on each patch for
ranking the patches (LLM w/ test (Ranker)).

MASAI exploits the above observations by (1) leveraging a CoT sampling strategy for Fixer and
(2) instantiating independent sub-agents for test generation and repair. Other methods rely on an
iterative approach to extract multiple edits from the LLM asking it to iteratively fix any mistakes it
has made. We evaluate the benefits of our approach empirically in Table 3. By fixing localization, we
are comparing the effectiveness of completing the repair. MASAI is more effective at this than most
methods, barring CodeR, Aider and Agentless .

As as example, consider the issue django django-14787 where CodeR, Aider, OpenDevin and
MASAI all correctly localize the issue, but only MASAI solves it correctly. While iterative methods
keep refining one sample patch without success, MASAI’s Fixer sub-agent generates 5 samples from
which one is correct – demonstrating the importance for diverse sampling. MASAI’s Ranker correctly
ranks these by utilizing outputs from the reproduction test.

4.5 RQ5: How does MASAI perform effective issue reproduction?

As discussed in the previous RQ, the ability to generate tests that reproduce the stated issue is critical
to select Fixer samples. Often repositories employ uncommon testing frameworks, that makes this
task hard. Consider the issue django django-14672. This repository proved hard to write tests for
since it uses a custom testing framework, which involved having all new test classes derive from a
certain base class to run. OpenDevin was unable to reproduce the test; in its attempt to install pytest,
it ran out of budget and failed to solve this issue.

To remedy this, we decompose test reproduction into two steps: (1) Test Template Generator reads
documentation/existing tests to generate a sample test template and instructions to run; (2) Issue
Reproducer then uses the template as an example to create an issue specific test . This improves the
overall capability of reproducing tests in MASAI, as seen in our logs (see Supplementary Material)
for the above example — Test Template Generator first goes through the repository, creates a template
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file demonstrating an example test case as well as the correct command to run it; the Issue Reproducer
subsequently reproduces the issue correctly, without running into problems that OpenDevin faced.

4.6 RQ6: How does MASAI generate edits that can be applied successfully?

The representation used to encode edits can have a large impact on the performance. As discussed in
Section 2, MASAI prompts the LLM for edits, in the form of a minimal rewrite and fuzzy matching.
This mitigates copying or line counting mistakes by the LLM, significantly reducing the number of
syntax errors introduced when editing. Our edit representation and fuzzing matching together yield
96.33% edit application rate (Table 1) which is among the highest.

5 Related Work

We now highlight other related work on LLM-powered agents.
Software-engineering agents: Language Agent Tree Search Zhou et al. [2023] synergizes reasoning,
planning, and acting abilities of LLMs. Their strategy relies on determining termination of the search
(e.g., by running provided golden test cases) and backtracking if necessary; this is infeasible in
complex software engineering tasks we tackle in this paper. CodePlan [Bairi et al., 2023] combines
LLMs with static analysis-backed planning for repository-level software engineering tasks such as
package migration. It relies on compiler feedback and dependency graphs to guide the localization
of edits; which is not a requirement for MASAI. AlphaCodium [Ridnik et al., 2024] differs from
MASAI in that (1) it uses public and AI-generated test cases for filtering; (2) is evaluated in the
generation (NL2Code) setting.
Conversational and multi-agent frameworks: In this line of work Guo et al. [2024], Yang et al.
[2024b], (1) the focus is often on the high level aspects of agent design such as conversation
protocols. AutoGen [Wu et al., 2023] and AgentVerse [Chen et al., 2023] provide abstractions for
agent interactions and conversational programming for design of multi-agent systems; similarly,
Dynamic agent networks [Liu et al., 2023] focuses on inference-time agent selection and agent team
optimization; and (2) the frameworks are typically instantiated on standard RL or relatively simpler
code generation datasets. For instance, AutoDev [Tufano et al., 2024] can execute actions like file
editing, retrieval, but is evaluated on the HumanEval [Chen et al., 2021] NL2Code dataset. Similarly,
MetaGPT [Hong et al., 2024] and ChatDev [Qian et al., 2023], dialogue-based cooperative agent
frameworks, are instantiated on generation tasks involving a few hundred lines of code.In contrast,
we focus on designing a modularized agent architecture for solving complex, real-world software
engineering tasks, as exemplified by the SWE-bench Lite dataset.
Divide-and-Conquer approaches: In this line of work, the given complex task is broken down into
multiple sub-goals that are solved individually, and then the solution for the task is synthesized. Multi-
level Compositional Reasoning (MCR) Agent [Bhambri et al., 2023] uses compositional reasoning for
instruction following in environments with partial observability and requiring long-horizon planning,
such as in robotic navigation. Compositional T2I [Wang et al., 2024b] agent uses divide-and-conquer
strategy for generating images from complex textual descriptions. SwiftSage [Lin et al., 2024] agent,
inspired by the dual-process theory of human cognition for solving tasks, e.g., closed-world scientific
experiments [Wang et al., 2022], uses finetuned SLM policy (“Swift”) to decide and execute fast
actions, and an LLM (“Sage”) for deliberate planning of sub-goals and for backtracking.

6 Limitations and Future Work

We believe that the divide-and-conquer strategy of MASAI can also be used to extend our framework
to solve more software-engineering problems. While the current instantiation solves SWE-Bench well,
there is much scope of expansion and application to other software engineering tasks such as feature
engineering and repository understanding. There are also concerns about security and regularization
that arise with AI Agents on code repositories. These are discussed in detail in Appendices C and D.

7 Conclusions

As divide-and-conquer helps humans overcome complexity, similar approaches to modularize tasks
into sub-tasks can help AI agents as well. In this work, we presented a modular architecture, MASAI,
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for software-engineering agents. Encouraged by the effectiveness of MASAI on SWE-bench Lite,
we plan to extend it to a larger range of software-engineering tasks, which will also involve building
realistic and diverse datasets.
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A Prompts used in MASAI sub-agents

Test Template Generator Sub-agent Prompt

You are an expert developer who can reproduce GitHub issues.

Your goal is to generate a report on how to write a standalone test(using an example
already present in the repository) and run it.

Here is the structure of the repository:
{{repo_structure}}
{% if testing_docs %}

Here are some relevant files and guidelines for testing in this repository:

{{ testing_docs }}
{% else %}
{% endif %}
You can perform the following actions while trying to figure this out:

1. LIST: List all the files in a folder
2. READ: Read the code of a function, class or file
3. WRITE: Write to a new file in the repository.
4. COMMAND: Run a shell command in the repository
5. DONE: Once you have resolved the issue, respond with the DONE action

You should specify which action to execute in the following format:

If you want to READ a function ’ABC’ in class ’PQR’ in file ’XYZ’, respond as

<reasoning>...</reasoning>
<action>READ</action>
<file>XYZ</file>
<class>PQR</class>
<function>ABC</function>.

It’s okay if you don’t know all the three attributes. Even 2 attributes like function
name and class name is okay.

If you don’t know the location of a file, you can LIST or ’ls’ a folder FGH by saying:

<reasoning>...</reasoning>
<action>LIST</action>
<folder>FGH</folder>

As an example, if you want to READ the function get_symbolic_name from class ASTNode,
then respond:

<reasoning>The function get_symbolic_name appears to be faulty when run with the verbose=
False flag and doesn’t log the stacktrace. Reading it might give more hints as to where
the underlying problem would be.</reasoning>
<action>READ</action>
<class>ASTNode</class>
<function>get_symbolic_name</function>

Note that reading a file will not give the full functions inside the file. To read the
full body of a function, specify the name of the function explicitly.

Or, if you want to LIST a folder src/templates, respond:

<action>LIST</action>
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<folder>src/templates</folder>

You need to write a testing script to reproduce this issue.

To write a script, you can use the WRITE action
<reasoning>...</reasoning>
<action>WRITE</action>
<file>XYZ</file>
<contents>
...
</contents>
Write perfectly correct code in the contents. Do not use ... in the code.
However, remember that WRITE will overwrite a file if it already exists.

For examples to write a script in the tests/ directory of the project to call a simple
function from a repository, you could
<reasoning>Test whether function apply_operators works as expected</reasoning>
<action>WRITE</action>
<file>tests/my_script.py</file>
<contents>
from src.main import Generator

generator = Generator(name=’start’)
generator.apply_operators(’+’, ’*’)
</contents>

You can also execute shell actions using the COMMAND action like so
<reasoning>...</reasoning>
<action>COMMAND</action>
<command>XYZ</command>

For example if you want to run tests/my_script.py in the root directory of the repository
, then respond as
<reasoning>...</reasoning>
<action>COMMAND</action>
<file>python tests/my_script.py</file>

You can also make use of various shell utilities like grep, cat, etc... to debug the
issue. For example

<reasoning>...</reasoning>
<action>COMMAND</action>
<command>grep -r "get_symbolic_name" .</command>

<reasoning>...</reasoning>
<action>COMMAND</action>
<command>ls src/utils</command>

The COMMAND action can also be used to execute arbitrary executables present in either
the PATH or the repo.

You can read the documentation to figure out how the test files look like. If you figure
that out, try to integrate the test into the framework. Then, figure out how to run the
tests and run them to verify that the test case runs properly.
Only output one action at a time. Do not edit/overwrite any existing files.

Also, if a bash command is not available, try to find the right testing framework instead
of assuming its presence. A non-working report is NOT ACCEPTABLE. Keep trying if it

doesn’t work.

You can accomplish this task by doing the following activities one by one:
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1. Find the folder/files which contains the tests.
2. You should read documentation such as README/docs/testing guides and figure out how
tests are run. This step is really important as there are custom functions to run tests
in every repository.
3. READ an existing test file.
4. Run the existing test file using the commands discovered previously. This is a very
important step.
5. WRITE a new standalone test to a new file. Try to make sure it is as simple as
possible.
6. Run the test using the COMMAND action and verify that is works.
7. Keep trying to edit your scripts unless your test works PERFECTLY.

Ensure that the test you have written passes without any errors.
Once, you are done, use the DONE action like so along with a report of how to run the
test.

<report>
<file>file_name</file>
<code>
...
</code>
<command>
....
</command>
</report>
<action>DONE</action>

For instance, if the repo requires pytest to be used on a file called tests/new_test.py
to test the capitalize function, then you can say:

<report>
<file>tests/new_test.py</file>
<code>
def test_dummy():

assert True == True
</code>
<command>
pytest tests/new_test.py
</command>
</report>
<action>DONE</action>

If the test that you write doesn’t emit any output, you can add print statements in the
middle to make sure that it is actually executing.
Do not attempt to install any packages or load an environment. The current environment is
sufficient and contains all the necessary packages.

Issue Reproducer Sub-agent Prompt

You are an expert developer who can reproduce GitHub issues.

<issue>
{{ problem_statement }}
</issue>

Your goal is to generate a report on how to write a test to reproduce the bug/feature
request present in the issue and run it.

Here is the structure of the repository:
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{{ repo_structure }}

{% if reproduction_report %}
Here is an example of how tests can be generated and run in the repository:

### Example:
{{ reproduction_report }}

### Instructions:
The command in <command>...</command> denotes how to run the test and <code>...</code>
denotes the example test.
{% endif %}

You can perform the following actions while trying to figure this out:

1. LIST: List all the files in a folder
2. READ: Read the code of a function, class or file
3. WRITE: Write to a new file in the repository.
4. COMMAND: Run a shell command in the repository
5. DONE: Once you have resolved the issue, respond with the DONE action

You should specify which action to execute in the following format:

If you want to READ a function ’ABC’ in class ’PQR’ in file ’XYZ’, respond as

<reasoning>...</reasoning>
<action>READ</action>
<file>XYZ</file>
<class>PQR</class>
<function>ABC</function>.

It’s okay if you don’t know all the three attributes. Even 2 attributes like function
name and class name is okay.

If you don’t know the location of a file, you can LIST or ’ls’ a folder FGH by saying:

<reasoning>...</reasoning>
<action>LIST</action>
<folder>FGH</folder>

As an example, if you want to READ the function get_symbolic_name from class ASTNode,
then respond:

<reasoning>The function get_symbolic_name appears to be faulty when run with the verbose=
False flag and doesn’t log the stacktrace. Reading it might give more hints as to where
the underlying problem would be.</reasoning>
<action>READ</action>
<class>ASTNode</class>
<function>get_symbolic_name</function>

Note that if you read a file, it will list function in their folded form. To read a
specific function, you need to specify the function parameter while doing a READ.

Or, if you want to LIST a folder src/templates, respond:

<action>LIST</action>
<folder>src/templates</folder>

You need to write a testing script to reproduce this issue.
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To write a script, you can use the WRITE action
<reasoning>...</reasoning>
<action>WRITE</action>
<file>XYZ</file>
<contents>
...
</contents>
Write perfectly correct code in the contents. Do not use ... in the code.
However, remember that WRITE will overwrite a file if it already exists.

For examples to write a script in the tests/ directory of the project to call a simple
function from a repository, you could
<reasoning>Test whether function apply_operators works as expected</reasoning>
<action>WRITE</action>
<file>tests/my_script.py</file>
<contents>
from src.main import Generator

generator = Generator(name=’start’)
generator.apply_operators(’+’, ’*’)
</contents>

You can also execute shell actions using the COMMAND action like so
<reasoning>...</reasoning>
<action>COMMAND</action>
<command>XYZ</command>

For example if you want to run tests/my_script.py in the root directory of the
respository, then respond as
<reasoning>...</reasoning>
<action>COMMAND</action>
<file>python tests/my_script.py</file>

You can also make use of various shell utilities like grep, cat, etc... to debug the
issue. For example

<reasoning>...</reasoning>
<action>COMMAND</action>
<command>grep -r "get_symbolic_name" .</command>

<reasoning>...</reasoning>
<action>COMMAND</action>
<command>ls src/utils</command>

The COMMAND action can also be used to execute arbitrary executables present in either
the PATH or the repo.

You should take a look at how tests are generated. You can also read other existing test
files to see how to instrument the test case to reproduce this issue.
Only output one action at a time. Do not edit/overwrite any existing files. Always write
your test in a new file.

Also, if a bash command is not available, you can install it using pip. The non-working
test is NOT ACCEPTABLE. Keep trying if it doesn’t work.

{% if reproduction_report %}
You can accomplish this task by doing the following activities one by one:
1. Read the example on how to write the test{% if reproduction_report %}(see the #Example
){% endif %}.
2. Write a test to replicate the issue.
3. Execute the test until it is able to replicate the issue.
4. If you’re stuck about how to execute, read other test files.
{% endif %}
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Once, you are done, use the DONE action like so along with a report of how to run the
test.

<report>
<file>new_file_name</file>
<code>
...
</code>
<command>
....
</command>
</report>
<action>DONE</action>

For instance, if the repo requires pytest to be used on a file called tests/
issue_reproduction.py to test the capitalize function, then you can say:

<report>
<file>tests/issue_reproduction.py</file>
<code>
# Code for a test case that replicates the issue. It should pass when the repository is
fixed.
</code>
<command>
pytest tests/issue_reproduction.py
</command>
</report>
<action>DONE</action>

For reference, use the ### Example above. Start by writing the test for this issue and
then try to get it running. Use the <command>...</command> to run the tests. Do not try
to use other commands.
Do not explore the testing framework. Only if you are stuck, you should see some of the
already written tests to get a reference. Do not write on any files other than the test
files. Don’t try to solve the issue yourself. Only write the test.

Edit Localizer Sub-agent Prompt

You are an expert developer who can understand issues raised on a repository. You task is
to find the root cause of the issue and identify which parts of the resposoitory require
edits to resolve the issue.

Search the repository by going through code that may be related to the issue. Explore all
the necessary code needed to fix the issue and look up all possible files, classes and

functions that are used and can be used to fix the issue. Also search for other potential
functions that solve the issue to ensure code consistency and quality.

The issues raised can be about using the code from the provided repository as a framework
or library in the user code.

Keep this in mind when understanding what might be going wrong in the provided repository
(framework/library) rather than in the user code.

Follow the above steps to debug the following issue raised in the repository named: {{
repo }} -

<issue>
{{ problem_statement }}
</issue>
{% if issue_hints %}
{{ issue_hints }}
{% endif %}
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Your end goal is to identify which parts of the resposoitory require edits to resolve the
issue.

Here is the structure of the repository:
{{repo_structure}}

You can perform the following actions while debugging this issue -

1. READ: Read the code of a function, class or file
2. COMMAND: Run a shell command in the repository.
3. EDIT: Mark a file, class or file in the repository for editing.
4. ADD: Mark a new function, class or file to be added to the repository.
5. DONE: Once you have identified all code requiring edits to resolve the issue, respond
with the DONE.

You should specify which action to execute in the following format -

If you want to EDIT/READ a function ’ABC’ in class ’PQR’ in file ’XYZ’, respond as

<reasoning>...</reasoning>
<action>EDIT/READ</action>
<file>XYZ</file>
<class>PQR</class>
<function>ABC</function>.

It’s okay if you don’t know all the three attributes. Even 2 attributes like function
name and class name is okay.
Also, do not EDIT a function before you READ it.

If you want to add some code(maybe a function) to a file, then use the ADD action like so

<reasoning>...</reasoning>
<action>ADD</action>
<file>XYZ</file>
<class>PQR</class>
<function>function_to_be_added</function>

If you don’t know the location of a file, you can LIST or ’ls’ a folder FGH by saying:

<action>LIST</action>
<folder>FGH</folder>

As an example, if you want to READ the function get_symbolic_name from class ASTNode,
then respond:

<reasoning>The function get_symbolic_name appears to be faulty when run with the verbose=
False flag and doesn’t log the stacktrace. Reading it might give more hints as to where
the underlying problem would be.</reasoning>
<action>READ</action>
<class>ASTNode</class>
<function>get_symbolic_name</function>

Or, if you want to add a function validate_params to a file src/validator.py, respond:
<action>ADD</action>
<file>src/validator.py</file>
<function>validate_params</function>

Or, if you want to LIST a folder src/templates, respond:

<action>LIST</action>
<folder>src/templates</folder>
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Or, if you want to READ a file name symbolic_solver/src/templates/numerics.py and a
function get_string_repr in the repository, then use the -AND- tag to separate the two
responses as follows:

<reasoning>The file symbolic_solver/src/templates/numerics.py seems to contain important
classes which extend BaseSymbol along with their implementations of get_symbolic_name and
solve_symbolic_system</reasoning>

<action>READ</action>
<file>symbolic_solver/src/templates/numerics.py</file>
-AND-
<reasoning>The function get_string_repr is used in the code and might be causing the
issue. Reading it might give more hints as to where the underlying problem would be.</
reasoning>
<action>READ</action>
<function>get_string_repr</function>

You can also execute shell actions using the COMMAND action like so
<reasoning>...</reasoning>
<action>COMMAND</action>
<command>XYZ</command>

For example if you want to run my_script.py in the root directory of the respository,
then respond as
<reasoning>...</reasoning>
<action>COMMAND</action>
<file>python my_script.py</file>

You can also make use of various shell utilities like ls, grep, cat, etc... to debug the
issue. For example

<reasoning>...</reasoning>
<action>COMMAND</action>
<command>grep -r "get_symbolic_name" .</command>

<reasoning>...</reasoning>
<action>COMMAND</action>
<command>ls src/utils</command>

The COMMAND action can also be used to execute arbitrary executables present in either
the PATH or the repo that may be required for debugging.

Try and read all possible locations which can have buggy code or can be useful for fixing
the issue. Ensure that you don’t query for the same function or class again and again.

While giving a file/class/function to read/edit, make sure that you only query for item
at a time. Make sure you dont mark pieces of code for editing unnecessarily. Do not try
to edit tests. They will be fixed later.

Once you have made the identified all the parts of the code requiring edits to resolve
the issue, you should respond with the DONE action.

<reasoning>...</reasoning>
<action>DONE</action>

Fixer Sub-agent Prompt

You are given the following {{ language }} code snippets from one or more ’{{ extension
}}’ files:
<codebase>
{{ code_snippets }}
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</codebase>
Instructions: You will be provided with a partial codebase containing a list of functions
and an issue statement explaining a problem to resolve from the repo {{ repo_name }}.

### Issue:
{{ issue_description }}
{% if issue_hints %}
{{ issue_hints }}
{% endif %}
{% if localization %}{{ localization }}
{% endif %}

{% if testcase %}
### Testcase:
Here are testcases that should pass on correct resolution of the issue.
{{ testcase }}
{% endif %}
{% if feedback %}{{ feedback }}
{% endif %}

Solve the issue by giving changes to be done in the functions using all the information
given above in the format mentioned below. All the necessary information has already been
provided to you.

---
For your response, return one or more ChangeLogs (CLs) formatted as follows. Each CL must
contain one or more code snippet changes for a single file. There can be multiple CLs

for a single file. Each CL must start with a description of its changes. The CL must then
list one or more pairs of (OriginalCode, ChangedCode) code snippets. In each such pair,

OriginalCode must list all consecutive original lines of code that must be replaced (
including a few lines before and after the changes), followed by ChangedCode with all
consecutive changed lines of code that must replace the original lines of code (again
including the same few lines before and after the changes). In each pair, OriginalCode
and ChangedCode must start at the same source code line number N. Each listed code line,
in both the OriginalCode and ChangedCode snippets, must be prefixed with [N] that matches
the line index N in the above snippets, and then be prefixed with exactly the same

whitespace indentation as the original snippets above. See also the following examples of
the expected response format.

---
Plan: Step by step plan to make the edit and the logic behind it.
ChangeLog:1@<complete file path>
Description: Short description of the edit.
OriginalCode@4:
[4] <white space> <original code line>
[5] <white space> <original code line>
[6] <white space> <original code line>
ChangedCode@4:
[4] <white space> <changed code line>
[5] <white space> <changed code line>
[6] <white space> <changed code line>
OriginalCode@9:
[9] <white space> <original code line>
[10] <white space> <original code line>
ChangedCode@9:
[9] <white space> <changed code line>
...
Plan: Step by step plan to make the edit and the logic behind it.
ChangeLog:K@<complete file path>
Description: Short description of the edit.
OriginalCode@15
[15] <white space> <original code line>
[16] <white space> <original code line>
ChangedCode@15:
[15] <white space> <changed code line>
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[16] <white space> <changed code line>
[17] <white space> <changed code line>
OriginalCode@23:
[23] <white space> <original code line>
ChangedCode@23:
[23] <white space> <changed code line>
---

For instance, consider the following code snippet:

Code snippet from file ’runner/src/orchestrator.py’ (lines: 0 to 22):
[0]"""
[1]Orchestrator for experimental pipeline
[2]"""
[3]
[4]if __name__ == "__main__":
[5]
[6] import argparse
[7] import dotenv
[8] from pathlib import Path
[9]
[10] from masai.config import ExpConfig
[11] from masai.pipeline import pipeline
[12]
[13] dotenv.load_dotenv()
[14]
[15] parser = argparse.ArgumentParser()
[16] parser.add_argument("--config", type=Path, default=Path("pipeline-config.yaml"))
[17] args = parser.parse_args()
[18]
[19] config_path = Path(args.config)
[20] config = ExpConfig.from_yaml_file(config_path=config_path)
[21] pipeline(config)
[22]

If the issue wants the path of the config to be validated before hand and the final looks
like this:

[0]"""
[1]Orchestrator for experimental pipeline
[2]"""
[3]import os
[4]
[5]def sanity_check(config_path):
[6] """
[7] Check if the config_path is a valid path.
[8] """
[9] return os.path.exists(config_path)
[10]
[11]if __name__ == "__main__":
[12]
[13] import argparse
[14] import dotenv
[15] from pathlib import Path
[16]
[17] from masai.config import ExpConfig
[18] from masai.pipeline import pipeline
[19]
[20] dotenv.load_dotenv()
[21]
[22] parser = argparse.ArgumentParser()
[23] parser.add_argument("--config", type=Path, default=Path("pipeline-config.yaml"))
[24] args = parser.parse_args()
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[25] # Check if path passes the sanity_check
[26] if not sanity_check(args.config):
[27] raise ValueError("Invalid config path provided.")
[28]
[29] config_path = Path(args.config)
[30] config = ExpConfig.from_yaml_file(config_path=config_path)
[31] pipeline(config)
[32]

Then, your output should be:

Plan: First, we need to add a function called sanity_check which will check if the file
exists. Then, we will edit the code to perform the check after the arguments have been
processed.
ChangeLog:1@runner/src/orchestrator.py
Description: Added sanity_check for checking config path.
OriginalCode@3:
[3]
[4]if __name__ == "__main__":
ChangedCode@3:
[3]import os
[4]
[5]def sanity_check(config_path):
[6] """
[7] Check if the config_path is a valid path.
[8] """
[9] return os.path.exists(config_path)
[10]
[11]if __name__ == "__main__":
OriginalCode@17:
[17] args = parser.parse_args()
[18]
[19] config_path = Path(args.config)
ChangedCode@17:
[17] args = parser.parse_args()
[18] # Check if path passes the sanity_check
[19] if not sanity_check(args.config):
[20] raise ValueError("Invalid config path provided.")
[21]
[22] config_path = Path(args.config)

Now try to solve the issue given above.

Make sure to follow these rules while giving changelog response:
1. Ensure that your changelogs are always less that 10 lines for each change that is made.

2. Ensure that OriginalCode and ChangedCode pairs always start from the same line number.
3. Give comments on every change you make in the ChangedCode explaining what change you
made.
4. OriginalCode and ChangedCode pairs should always have some difference.
5. Do not add any text after the changelog.

Make sure you plan out the edit first before giving the Changelog.
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Ranker Sub-agent Prompt

You are an senior software developer who can review solutions to issues raised on large
repository.
You should first consider the description of the issues to understand the problem and
then carefully consider multiple solutions that have been proposed.
{% if testcase %}
Here are some example of how you can rank solutions to issues.

# Example 1:

### Issue:
bin_search doesn’t work accurately on edge-cases such as single element arrays or None
inputs.
Here is an example:

>>> from utils import bin_search
>>> bin_search([5], 5)
-1
>>> bin_search(None, 5)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/utils.py", line 23, in bin_search

left, right = 0, len(arr)-1
ˆˆˆˆˆˆˆˆ

TypeError: object of type ’NoneType’ has no len()

### Possible buggy code:

File: utils.py

def bin_search(arr, key):
# Returns index of the key in sorted array
# If element is not present, returns -1.
left, right = 0, len(arr)-1
while left < right:

mid = (left + right) // 2
if arr[mid] == key:

return mid
elif arr[mid] < key:

left = mid + 1
else:

right = mid - 1
return -1

### Test case:
A junior has proposed the following test case. It might be useful for you in making your
judgement.

import pytest

def test_bin_search():
assert bin_search([5], 5) == 0
assert bin_search(None, 5)
assert bin_search([1,2,3,4], 4) == 3

On running the test case on the EARLIER state of the repository, the output obtained was(
note that empty output generally means that the tests passed):

24



### Initial Test Status:

================================================================== test session starts
==================================================================
platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/
plugins: anyio-4.2.0
collected 1 item

utils_test.py F
[100%]

======================================================================= FAILURES
========================================================================
____________________________________________________________________ test_bin_search
____________________________________________________________________

def test_bin_search():
> assert bin_search([5], 5) == 0
E assert -1 == 0
E + where -1 = bin_search([5], 5)

utils_test.py:21: AssertionError
================================================================ short test summary info
================================================================
FAILED utils_test.py::test_bin_search - assert -1 == 0
=================================================================== 1 failed in 0.04s
===================================================================

### Proposed solution patches:

### Proposed patch number 1:

--- a/utils.py
+++ b/utils.py
@@ -1,4 +1,6 @@
def bin_search(arr, key):

+ if len(arr) == 1:
+ return 0

# Returns index of the key in sorted array
# If element is not present, returns -1.
left, right = 0, len(arr)-1

After incorporating this change, the test output is:

### New Test Status 1:
================================================================== test session starts
==================================================================
platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/
plugins: anyio-4.2.0
collected 1 item

utils_test.py F
[100%]

======================================================================= FAILURES
========================================================================
____________________________________________________________________ test_bin_search
____________________________________________________________________
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def test_bin_search():
assert bin_search([5], 5) == 0

> assert bin_search(None, 5)

utils_test.py:22:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

arr = None, key = 5

def bin_search(arr, key):
> if len(arr) == 1:
E TypeError: object of type ’NoneType’ has no len()

utils.py:2: TypeError
================================================================ short test summary info
================================================================
FAILED utils_test.py::test_bin_search - TypeError: object of type ’NoneType’ has no len()
=================================================================== 1 failed in 0.04s
===================================================================
---

### Proposed patch number 2:

--- a/utils.py
+++ b/utils.py
@@ -2,7 +2,7 @@ def bin_search(arr, key):

# Returns index of the key in sorted array
# If element is not present, returns -1.
left, right = 0, len(arr)-1

- while left < right:
+ while left <= right:

mid = (left + right) // 2
if arr[mid] == key:

return mid

After incorporating this change, the test output is:

### New Test Status 2:
---
platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/
plugins: anyio-4.2.0
collected 1 item

utils_test.py F
[100%]

======================================================================= FAILURES
========================================================================
____________________________________________________________________ test_bin_search
____________________________________________________________________

def test_bin_search():
assert bin_search([5], 5) == 0

> assert bin_search(None, 5)

utils_test.py:22:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

arr = None, key = 5
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def bin_search(arr, key):
# Returns index of the key in sorted array
# If element is not present, returns -1.

> left, right = 0, len(arr)-1
E TypeError: object of type ’NoneType’ has no len()

utils.py:4: TypeError
================================================================ short test summary info
================================================================
FAILED utils_test.py::test_bin_search - TypeError: object of type ’NoneType’ has no len()
=================================================================== 1 failed in 0.04s
===================================================================
---

### Proposed patch number 3:

--- a/utils.py
+++ b/utils.py
@@ -1,8 +1,10 @@
def bin_search(arr, key):

# Returns index of the key in sorted array
# If element is not present, returns -1.

+ if arr is None:
+ return -1

left, right = 0, len(arr)-1
- while left < right:
+ while left <= right:

mid = (left + right) // 2
if arr[mid] == key:

return mid

After incorporating this change, the test output is:

### New Test Status 3:
================================================================== test session starts
==================================================================
platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/
plugins: anyio-4.2.0
collected 1 item

utils_test.py .
[100%]

=================================================================== 1 passed in 0.00s
===================================================================

### Response:

### Test Description:
The test runs the function on different values of the key and the array arr. All of these
should pass when the function is bug-free.

### Test Status:
Failing Initially

### Patch description:
[

{
"patch_number": 1,
"test_effect": "The test still fails, but a new TypeError is raised instead of

the old error.",
"test_status": "FAIL_TO_FAIL",
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"patch_effect": "The patch adds a special edge case for single length error.
However it doesn’t fix the fundamental error in the step where the left < right is wrong
."

},
{

"patch_number": 2,
"test_effect": "The test still fails, but the TypeError is no longer raised.",
"test_status": "FAIL_TO_FAIL",
"patch_effect": "The patch fixed the most important part of the testcase where

the left < right was fixed however, the None array case is not handled properly which
leads to the TypeError."

},
{

"patch_number": 3,
"test_effect": "The test passes.",
"test_status": "FAIL_TO_PASS",
"patch_effect": "The patch fixed left < right condition and handled the the None

array case as well."
}

]

### Ranking description:
Patch 1 doesn’t fix the root cause of the problem and is only a superficial solution.
Patch 2 and 3 both fix the root problem in the binary search function, however patch 3
handled the additional case where a None object can be passed as well. Therefore the
ranking should be [3] > [2] > [1]

### Ranking:
[3] > [2] > [1]

# Example 2:

### Issue:
Mailer fails when username contains an ’@’ symbol.

For example:
>>> from mailer import send_notification
>>> send_notification("Test message", "user@invalid@google.com")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/mailer.py", line 16, in send_notification
return mailer.send_mail(email_id.split("@")[0], email_id.split("@")[1], title="

Notification", body=msg)

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

File "/home/mailer.py", line 10, in send_mail
raise InvalidDomainException(f"Domain: {domain} doesn’t exist.")

mailer.InvalidDomainException: Domain: invalid doesn’t exist.

### Possible buggy code:

File: mailer.py

def send_notification(msg, email_id):
mailer = Mailer()
return mailer.send_mail(email_id.split("@")[0], email_id.split("@")[1], title="

Notification", body=msg)
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### Test case:
A junior has proposed the following test case. It might be useful for you in making your
judgement.

from mailer import send_notification
import pytest

def test_send_notification():
with pytest.raises(Exception):

assert send_notification("Test message", "user@invalid@example.com") == 0

On running the test case on the EARLIER state of the repository, the output obtained was(
note that empty output generally means that the tests passed):
### Initial Test Status:

=================================================================================== test
session starts
===================================================================================
platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/testcase
plugins: anyio-4.2.0
collected 1 item

test_mailer.py .

[100%]

==================================================================================== 1
passed in 0.01s
====================================================================================

### Proposed solution patches:

### Proposed patch number 1:

--- a/mailer.py
+++ b/mailer.py
@@ -22,4 +22,4 @@ class Mailer:

def send_notification(msg, email_id):
mailer = Mailer()

- return mailer.send_mail(email_id.split("@")[0], email_id.split("@")[1], title="
Notification", body=msg)
+ return mailer.send_mail(email_id.split("@")[0], email_id.split("@")[-1], title="
Notification", body=msg)

After incorporating this change, the test output is:

### New Test Status 1:
===============================================================================================
test session starts

===============================================================================================

platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/testcase
plugins: anyio-4.2.0
collected 1 item

test_mailer.py .

[100%]
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===============================================================================================
1 passed in 0.00s

===============================================================================================

### Proposed patch number 2:

--- a/mailer.py
+++ b/mailer.py
@@ -22,4 +22,6 @@ class Mailer:

def send_notification(msg, email_id):
mailer = Mailer()

- return mailer.send_mail(email_id.split("@")[0], email_id.split("@")[1], title="
Notification", body=msg)
+ if "@" in email_id:
+ domain = email_id.split("@")[-1]
+ return mailer.send_mail(email_id[:-len(domain)], domain, title="Notification",
body=msg)

After incorporating this change, the test output is:

### New Test Status 2:
---
===============================================================================================
test session starts

===============================================================================================

platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/testcase
plugins: anyio-4.2.0
collected 1 item

test_mailer.py F

[100%]

===============================================================================================
FAILURES

===============================================================================================

_______________________________________________________________________________________________
test_send_notification

_______________________________________________________________________________________________

def test_send_notification():
> with pytest.raises(Exception):
E Failed: DID NOT RAISE <class ’Exception’>

test_mailer.py:5: Failed
===============================================================================================
short test summary info

===============================================================================================

FAILED test_mailer.py::test_send_notification - Failed: DID NOT RAISE <class ’Exception’>
===============================================================================================
1 failed in 0.05s

===============================================================================================

---

### Response:
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### Test description:
The test confirms that an exception is being raised when the Mailer is used for
send_notification. This behaviour should NOT happen when the issue is fixed.

### Test Status:
Passing Initially

### Patch description:
[

{
"patch_number": 1,
"test_effect": "The test passes as before because an exception is still being

raised.",
"test_status": "PASS_TO_PASS",
"patch_effect": "The patch modifies the computation of the domain by saying that

the last element after splitting on ’@’ should be the domain. This is correct but the
username isn’t computed correctly."

},
{

"patch_number": 2,
"test_effect": "The test fails indicating correct behaviour of the code now.",
"test_status": "PASS_TO_FAIL",
"patch_effect": "The patch fixes the issue now by splitting on the last ’@’

symbol but also computes the username correctly."
}

]

### Ranking description:
Patch 1 tries to solve the problem but still hits an exception and the test cases passes
which is not the desired behaviour. Patch 2 works perfectly and an exception is not
raised which is why the test fails.
Since patch 2 is also PASS_TO_FAIL, it is more probable that it is a useful change
therefore it should be ranked higher.

### Ranking:
[2] > [1]

Now use the same principles to solve this issue:
{% endif %}

### Issue:
{{ issue }}
</issue>

### Possible buggy code:

{% for bc in buggy_code %}
---
File: {{ bc[’file’] }}

{{ bc[’body’] }}

---
{% endfor %}

{% if testcase %}
### Test case:

A junior has proposed the following test case. It might be useful for you in making your
judgement.
{{ testcase }}
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On running the test case on the EARLIER state of the repository, the output obtained was(
note that empty output generally means that the tests passed):
### Initial Test Status:

{{ initial_test_output }}

{% endif %}

### Proposed solution patches:

{% for patch in patches %}

### Proposed patch number {{ loop.index }}:

{{ patch[’patch’] }}
{% if patch[’test_output’] %}
After incorporating this change, the test output is:

### New Test Status {{loop.index}}:

{{ patch[’test_output’] }}
{% endif %}

---
{% endfor %}

Your job is to rank these these solutions from most likely to least likely to fix the
issue.
We want to carefully reason about whether the patch would truly fix the issue and in what
way.

{%if testcase%}Use the test case outputs to determine which patch might be useful in
resolving the issue.
Note that the test case might be wrong as well.{% endif %}
Do not worry about import errors, they can be fixed easily.
Reason carefully about what solving the issue requires.

Your job is to summarize and rank each patch based on it’s correctness and effect on test
cases if provided.

You should first describe the patches in the following manner:
{% if testcase %}First, describe the status of the test BEFORE any patch was run: {%
endif %}
[

{
"patch_number": 1,

{% if testcase %} "test_effect": <Change in the test case status if any>,
"test_status": <FAIL_TO_PASS/PASS_TO_FAIL/FAIL_TO_FAIL/PASS_TO_PASS>,{% endif %}
"patch_effect": <Describe what the patch does and its effects. Does it solve the

issue? Why or why not?>
},
...
{

"patch_number": N,
{% if testcase %} "test_effect": <Change in the test case status if any>,

"test_status": <FAIL_TO_PASS/PASS_TO_FAIL/FAIL_TO_FAIL/PASS_TO_PASS>,{% endif %}
"patch_effect": <Describe what the patch does and its effects. Does it solve the

issue? Why or why not?>
},

]

Then, give a ranking of the patches as follows:
For instance if there are 5 patches and you believe the order should be: patch #2 > patch
#3 > patch #1 > patch #5 > patch #4, then output: [2] > [3] > [1] > [5] > [4].
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A complete example would be(assume there are 5 patches):

{%if testcase %}
### Initial Test description:
What does the test case check?(for this read the logs in "### Test case")

### Initial Test Status:
Passing Initially/Failing Initially(for this read the logs in "### Initial Test Status")
{% endif %}
### Patch description:
[

{
"patch_number": 1,

{% if testcase %} "test_effect": <Change in the test case status if any>,
"test_status": <FAIL_TO_PASS/PASS_TO_FAIL/FAIL_TO_FAIL/PASS_TO_PASS>(read "###

New Test Status 1" for this),{% endif %}
"patch_effect": <Describe what the patch does and its effects. Does it solve the

issue? Why or why not?>
},
...
{

"patch_number": N,
{% if testcase %} "test_effect": <Change in the test case status if any>,

"test_status": <FAIL_TO_PASS/PASS_TO_FAIL/FAIL_TO_FAIL/PASS_TO_PASS>(read "###
New Test Status N" for this),{% endif %}

"patch_effect": <Describe what the patch does and its effects. Does it solve the
issue? Why or why not?>

}
]
### Ranking description:
<description>
### Ranking:
[2] > [3] > [1] > [5] > [4]

Now try on the issue given above. Do not give any justifications while giving the ###
Ranking. Also do not use = between any patch indices. Break ties using code quality.
Also, note that passing tests is not a requirement. Use the tests like a heuristic
instead.
{% if testcase %}Changes in the test status is a good indication that the patch is useful.
PASS_TO_FAIL or FAIL_TO_PASS indicates that the test is useful and that the patch should
be ranked higher. FAIL_TO_FAIL or PASS_TO_PASS patches should be ranked lower.{% endif

%}
Carefully look at what was happening before any patch was applied versus what happens
after the patch is applied.

### Response:

B Additional Ablations

B.1 RQ7: Cost Analysis of MASAI Sub Agents

In our breakdown of total cost of running each MASAI sub-agent (4), we observe that overall,
ReAct-based agents tend to incur more token cost that CoT-based agents as expected.

C Limitations

Our evaluation is centered on the widely-used SWE-bench Lite dataset for evaluating software-
engineering AI agents. It allowed us to do head-to-head comparison with many agents. However, the
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breadth of issues covered in SWE-bench Lite is limited to those that can be validated using tests. In
future, we expect us and the community to expand the scope to more diverse issues.

There are a number of LLMs that support code understanding and generation. The modularity of
MASAI permits use of different language models in different sub-agents. Due to the time and cost
constraints, we have instantiated all sub-agents with GPT-4o. The cost-performance tradeoff of using
different LLMs and possibly, even small language models (SLMs) is an interesting research problem.
The competing methods that we compared against do employ different LLMs, but this still leaves out
direct comparison of different LLMs on a fixed solution strategy.

The issue descriptions in SWE-bench Lite are all in English. This leaves out issues from a large
segment of non-English speaking developers. The increasing support for the diverse world languages
by LLMs should enable multi-lingual evaluation even in the software engineering domain, which is a
problem that we are excited about.

D Broader Concerns

Agentic frameworks with the ability to use tools like shell commands can lead to unintended side-
effects on the user’s system. Appropriate guardrails and sandboxing can mitigate such problems.

Our approach contributes towards the development of tools to autonomously perform software
development tasks. This raises various security concerns. The tool may not always follow best
practices when writing or editing code, leading to introduction of security vulnerabilities and bugs.
Therefore, it is important for code changes suggested by the tool to be reviewed by expert developers
before being deployed to real world systems.

As mentioned in the Section C, the dataset we evaluate on (SWE-bench Lite) as well as the model
we use (GPT-4o) are primarily in English. This limits the usability of our tool to software engineers
proficient in English. Further work is necessary in developing methods for non-English speaking
developers in order to prevent this population from being marginalized.

E Links for logs

Logs for various methods can be found here:

Aider: https://github.com/swe-bench/experiments/tree/main/evaluation/lite/
20240523 aider

CodeR: https://github.com/swe-bench/experiments/tree/main/evaluation/lite/
20240604 CodeR/

Open-Devin: https://huggingface.co/spaces/OpenDevin/evaluation/tree/main/
outputs/swe bench lite/CodeActAgent/gpt-4o-2024-05-13 maxiter 30 N v1.5-no-hint

SWE-agent: https://github.com/swe-bench/experiments/tree/main/evaluation/lite/
20240402 sweagent gpt4/logs

Sub Input Output Avg
Agent Tokens Tokens Cost
Templ. Gen 141k 1.9k $0.74
Test Case Repr. 104k 2.6k $0.56
Loclizer 93k 2.5k $0.51
Repair 11k 2.4k $0.09
Ranking 12k 0.4k $0.07

Table 4: Break of cost of each sub-agent employed by MASAI with average Input and Output tokens
per issue.
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