
Published as a conference paper at ICLR 2024

IMAGE INPAINTING VIA TRACTABLE STEERING
OF DIFFUSION MODELS

Anji Liu1, Mathias Niepert2, Guy Van den Broeck1

1Department of Computer Science, University of California, Los Angeles
2Department of Computer Science, University of Stuttgart
liuanji@cs.ucla.edu, mathias.niepert@simtech.uni-stuttgart.de,
guyvdb@cs.ucla.edu,

ABSTRACT

Diffusion models are the current state of the art for generating photorealistic
images. Controlling the sampling process for constrained image generation tasks
such as inpainting, however, remains challenging since exact conditioning on
such constraints is intractable. While existing methods use various techniques to
approximate the constrained posterior, this paper proposes to exploit the ability
of Tractable Probabilistic Models (TPMs) to exactly and efficiently compute the
constrained posterior, and to leverage this signal to steer the denoising process
of diffusion models. Specifically, this paper adopts a class of expressive TPMs
termed Probabilistic Circuits (PCs). Building upon prior advances, we further
scale up PCs and make them capable of guiding the image generation process of
diffusion models. Empirical results suggest that our approach can consistently
improve the overall quality and semantic coherence of inpainted images across
three natural image datasets (i.e., CelebA-HQ, ImageNet, and LSUN) with only
∼10% additional computational overhead brought by the TPM. Further, with the
help of an image encoder and decoder, our method can readily accept semantic
constraints on specific regions of the image, which opens up the potential for more
controlled image generation tasks. In addition to proposing a new framework for
constrained image generation, this paper highlights the benefit of more tractable
models and motivates the development of expressive TPMs.

1 INTRODUCTION

Thanks to their expressiveness, diffusion models have achieved state-of-the-art results in generating
photorealistic and high-resolution images (Ramesh et al., 2022; Nichol & Dhariwal, 2021; Rombach
et al., 2022). However, steering unconditioned diffusion models toward constrained generation tasks
such as image inpainting remains challenging, as diffusion models do not by design support efficient
computation of the posterior sample distribution under many types of constraints (Chung et al.,
2022). This results in samples that fail to properly align with the constraints. For example, in image
inpainting, the model may generate samples that are semantically incoherent with the given pixels.

Prior works approach this problem mainly by approximating the (constrained) posterior sample
distribution. However, due to the intractable nature of diffusion models, such approaches introduce
high bias (Lugmayr et al., 2022; Zhang et al., 2023a; Chung et al., 2022) to the sampling process,
which diminishes the benefit of using highly-expressive diffusion models.

Having observed that the lack of tractability hinders us from fully exploiting diffusion models in
constrained generation tasks, we study the converse problem: what is the benefit of models that by
design support efficient constrained generation? This paper presents positive evidence by showing
that Probabilistic Circuits (PCs) (Choi et al., 2020), a class of expressive Tractable Probabilistic
Models that support efficient computation of arbitrary marginal probabilities, can efficiently steer
the denoising process of diffusion models towards high-quality inpainted images. We will define
a class of constraints that includes inpainting constraints for which we can provide the following
guarantee. For any constraint c in this class, given a sample xt at noise level t, we show that a PC
trained on noise-free samples (i.e., p(X0)) can be used to efficiently compute p(x0|xt, c), which
is a key step in the sampling process of diffusion models. This PC-computed distribution can then

1

Published as a conference paper at ICLR 2024

t = 0t = 249 t = 217

CoPaint

Tiramisu

t = 201 t = 0t = 249

p(x̃0|xt,x
k
0)

pTPM(x̃0|xt,x
k
0)

pDM(x̃0|xt,x
k
0)

pDM(x̃0|xt,x
k
0)

t = 100 t = 100Denoising process

TPM not used

t = 201t = 217

TPM not used

Figure 1: Illustration of the steering effect of the TPM on the diffusion model. The same random seed
is used by the baseline (CoPaint; Zhang et al. (2023a)) and our approach. At every time step, given
the image at the previous noise level, Tiramisu reconstructs x̃0 with both the diffusion model and the
TPM, and combines the two distributions by taking their geometric mean (solid arrows). The images
then go through the noising process to generate the input for the previous time step (dashed arrows).

be used to effectively guide the denoising process, leading to photorealistic images that adhere to
the constraints. Figure 1 illustrates the steering effect of PCs in the proposed algorithm Tiramisu
(Tractable Image Inpainting via Steering Diffusion Models). Specifically, we plot the reconstructed
image by the diffusion model (the first row of Tiramisu) and the PC (the third row) at five time steps
during the denoising process. Compared to the baselines, Tiramisu generates more semantically
coherent images with the PC-provided guidance. In summary, this paper has three main contributions:

A new scheme for controlled image generation. This is the first paper that demonstrates the possibility
of using TPMs for controlling/constraining the generation process of natural and high-resolution
images. This not only opens up new avenues for controlled image generation, but also highlights the
potential impact of non-standard learning architectures (e.g., PCs) on modern image generation tasks.

Competitive sample quality and runtime. Empirical evaluations on three challenging high-resolution
natural image datasets (i.e., CelebA-HQ, ImageNet, and LSUN) show that the proposed method
Tiramisu consistently improves the overall quality of inpainted images while introducing only ∼10%
additional computational overhead, which is the joint effort of (i) further scaling up PC models based
on prior art, and (ii) an improved custom GPU implementation for PC training and inference.

Potential for more complex controlled generation tasks. In its more general form, independent
soft-evidence constraints include tasks beyond image inpainting. As an illustrative example, we
demonstrate that Tiramisu is capable of fusing the semantics of image patches from a set of reference
images and generating images conditioned on such semantic constraints. This highlights the potential
of Tiramisu on more challenging controlled image generation tasks.

2 PRELIMINARIES

Denoising Diffusion Probabilistic Models A diffusion model (Ho et al., 2020; Sohl-Dickstein et al.,
2015) defined on variables X0 is a latent variable model of the form pθ(x0) :=

∫
pθ(x0:T)dx1:T ,

where x1:T are the latent variables and the joint distribution pθ(x0:T) is defined as a Markov chain
termed the reverse/denoise process:

pθ(x0:T) := p(xT) ·
T∏

t=1

pθ(xt−1|xt). (1)

For continuous variables x0:T , the initial and transition probabilities of the Markov chain typically
use Gaussian distributions: p(xT) := N (xT ;0, I), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)),
where µθ and Σθ are the mean and covariance parameters, respectively. The key property that
distinguishes diffusion models from other latent variable models such as hierarchical Variational
Autoencoders (Vahdat & Kautz, 2020) is the fact that they have a prespecified approximate pos-
terior q(x1:T |x0) :=

∏T
t=1 q(xt|xt−1). This is called the forward or diffusion process. For

continuous variables, the transition probabilities are also defined as Gaussians: q(xt|xt−1) :=

2

Published as a conference paper at ICLR 2024

N (xt;
√
1− βtxt−1, βtI), where {βt}Tt=1 is a noise schedule. Training is done by maximizing the

ELBO of pθ(x0) with the variational posterior q(x1:T |x0). See Kingma et al. (2021) for more details.

While it is possible to directly model pθ(xt−1|xt) with a neural network, prior works discovered that
the following parameterization leads to better empirical performance (Ho et al., 2020):

pθ(xt−1|xt) :=
∑

x̃0

q(xt−1|x̃0,xt) · pθ(x̃0|xt), (2)

where pθ(x̃0|xt) := N (x̃0; µ̃θ(xt, t), Σ̃θ(xt, t)) is parameterized by a neural network and
q(xt−1|x̃0,xt) has a simple closed-form expression (Ho et al., 2020). Following the definition
of the denoising process, sampling from a diffusion model boils down to first sampling from p(xT)
and then recursively sampling xT−1, . . . ,x0 according to pθ(xt−1|xt).

Tractable Probabilistic Models Tractable Probabilistic Models (TPMs) are a class of generative
models that by design support efficient and exact computation of certain queries (Poon & Domingos,
2011; Kisa et al., 2014; Choi et al., 2020; Correia et al., 2023; Sidheekh et al., 2023; Rahman et al.,
2014; Kulesza et al., 2012). Depending on their structure, TPMs support various queries ranging from
marginal/conditional probabilities to conditioning on logical constraints (Vergari et al., 2021; Bekker
et al., 2015). Thanks to their tractability, TPMs enable a wide range of downstream applications such
as constrained language generation (Zhang et al., 2023b), knowledge graph link prediction (Loconte
et al., 2023), and data compression (Liu et al., 2022a).

3 GUIDING DIFFUSION MODELS WITH TRACTABLE PROBABILISTIC MODELS

Given a diffusion model trained for unconditional generation, our goal is to steer the model to generate
samples given different conditions/constraints without the need for task-specific fine-tuning. In the
following, we focus on the image inpainting task to demonstrate that TPMs can guide diffusion
models toward more coherent samples that satisfy the constraints.

The goal of image inpainting is to predict the missing pixels given the known pixels. Define Xk
0 (resp.

Xu
0) as the provided (resp. missing) pixels. We aim to enforce the inpainting constraint Xk

0 = xk
0

on every denoising step pθ(xt−1|xt) (∀t ∈ 1, . . . , T). Plugging in Equation (2), the conditional
probabilities are written as:

∀t ∈ 1, . . . , T pθ(xt−1|xt,x
k
0) =

∑
x̃0

q(xt−1|x̃0,xt) · pθ(x̃0|xt,x
k
0),

where the first term on the right-hand side is independent of xk
0. To sample coherent inpainted images,

we need to draw unbiased samples from pθ(x̃0|xt,x
k
0). Applying Bayes’ rule, we get

pθ(x̃0|xt,x
k
0) =

1

Z
· pθ(x̃0|xt) · p(xk

0|x̃0) =
1

Z
· pθ(x̃0|xt) · 1[x̃k

0 = xk
0], (3)

where 1[·] is the indicator function and Z is a normalizing constant. One simple strategy to sample
from Equation (3) is by rejection sampling: sample unconditionally from pθ(x̃0|xt) (i.e., the learned
denoising model) and reject samples with x̃k

0 ̸= xk
0. However, this is impractical since the acceptance

rate could be extremely low. Existing algorithms use approximation strategies to compute or sample
from Equation (3). For example, Lugmayr et al. (2022) proposes to set x̃k

0 := xk
0 after sampling

x̃0∼ pθ(·|xt), leaving x̃u
0 untouched; Zhang et al. (2023a) and Chung et al. (2022) relax the hard

inpainting constraint to minx̃k
0
∥x̃k

0 − xk
0∥22 and use gradient-based methods to gradually enforce it.

This paper explores the possibility of drawing unbiased samples from pθ(x̃0|xt,x
k
0) given a TPM-

represented distribution pθ(x0). By applying Bayes’ rule from the other side, we have

pθ(x̃0|xt,x
k
0) =

1

Z
· q(xt|x̃0) · pθ(x̃0|xk

0) =
1

Z
·
∏
i

q(xi
t|x̃i

0) · pθ(x̃u
0 |xk

0) · 1[x̃k
0 = xk

0], (4)

where Z is a normalizing constant, xi
t is the ith variable in xt, and the factorization of q(xt|x0)

follows the definition of the diffusion process in Section 2. Although the right-hand side seems to
be impractical to compute due to the normalizing constant, we will demonstrate in the following
sections that there exists a class of expressive TPMs that can compute it efficiently and exactly.

From the diffusion model and the TPM, we have obtained two versions of the same distribution
p(x̃0|xt,x

k
0).

1 Thanks to the expressiveness of neural networks, the distribution approximated by the
diffusion model (i.e., Eq. (3); termed pDM(x̃0|xt,x

k
0)) encodes high-fidelity images. However, due

1Note that diffusion models can only approximate this distribution.

3

Published as a conference paper at ICLR 2024

to the inability to compute the exact conditional probability, pDM(x̃0|xt,x
k
0) could lead to images

incoherent with the constraint (Zhang et al., 2023a). In contrast, the TPM-generated distribution
(i.e., Eq. (4); termed pTPM(x̃0|xt,x

k
0)) represents images that potentially better align with the given

pixels. Therefore, pDM(x̃0|xt,x
k
0) and pTPM(x̃0|xt,x

k
0) can be viewed as distributions trained for

the same task yet with different biases. Following prior arts (Grover & Ermon, 2018; Zhang et al.,
2023b), we combine both distributions by taking the weighted average of the logits of every variable
in x̃0, hoping to get images that are both semantically coherent and have high fidelity:

p(x̃0|xt,x
k
0) ∝ pDM(x̃0|xt,x

k
0)

α · pTPM(x̃0|xt,x
k
0)

1−α, (5)
where α∈ (0, 1) is a mixing hyperparameter. In summary, as a key step of image inpainting with
diffusion models, we compute p(x̃0|xt,x

k
0) from both the diffusion model and a TPM, and use their

weighted geometric mean in the denoising process. We note that the use of TPMs is independent of
the design choices related to the diffusion model, and thus can be built upon any prior approach.

4 PRACTICAL IMPLEMENTATION WITH PROBABILISTIC CIRCUITS

The previous section introduces how TPMs could help guide the denoising process of diffusion models
toward high-quality inpainted images. While promising, a key question is whether pTPM(x̃0|xt,x

k
0)

(Eq. 4) can be computed efficiently and exactly? We answer the question in its affirmative by showing
that a class of TPMs termed Probabilistic Circuits (PCs) (Choi et al., 2020) can answer the query
while being expressive enough to model natural images. In the following, we first provide background
on PCs (Sec. 4.1). We then describe how they are used to compute pTPM(x̃0|xt,x

k
0) (Sec. 4.2).

4.1 BACKGROUND ON PROBABILISTIC CIRCUITS

Probabilistic Circuits (PCs) (Choi et al., 2020) are an umbrella term for a wide variety of TPMs,
including classic ones such as Hidden Markov Models (Rabiner & Juang, 1986) and Chow-Liu
Trees (Chow & Liu, 1968) as well as more recent ones including Sum-Product Networks (Poon &
Domingos, 2011), Arithmetic Circuits (Shen et al., 2016), and Cutset Networks (Rahman et al., 2014).
We define the syntax and semantics of PCs as follows.

X1

¬X2X2

0.4

0.6

1.0

¬X3X3

¬X4X4

1.0

0.8

0.2

0.5

0.5

1.0

1.00.0

1.00.0

1.0 0.0

1.0

1.0

0.0

0.0 0.6

1.0

1.0

0.8

0.6

0.8 0.7

p(x1x̄2x̄3x4) = 0.7

Figure 2: An example PC over boolean
variables X1, . . . , X4. Sum parame-
ters are labeled on the corresponding
edges. The probability of every node
given input x1x̄2x̄3x4 is labeled blue
on top of the corresponding node.

Definition 1 (Probabilistic Circuits). A PC p(X) represents
a distribution over X via a parameterized Directed Acyclic
Graph (DAG) with a single root node nr. There are three
types of nodes in the DAG: input, product, and sum nodes.
Input nodes define primitive distributions over some variable
X ∈ X, while sum and product nodes merge the distribu-
tions defined by their children, denoted in(n), to build more
complex distributions. Specifically, the distribution encoded
by every node is defined recursively as

pn(x) :=

fn(x) n is an input node,∏

c∈in(n) pc(x) n is a product node,∑
c∈in(n) θn,c · pc(x) n is a sum node,

(6)

where fn(x) is an univariate input distribution (e.g., Gaus-
sian, Categorical), and θn,c denotes the parameter corresponds to edge (n, c). Intuitively, sum nodes
and product nodes encode mixture and factorized distributions of their children, respectively. To
ensure that a PC models a valid distribution, we assume the child parameters of every sum node n
(i.e., {θn,c}c∈in(n)) sum up to 1. The size of a PC p, denoted |p|, is the number of edges in its DAG.

Figure 2 shows an example PC over boolean variables X1, . . . , X4, where , , and represent
input, product, and sum nodes, respectively. The key to guaranteeing the tractability of PCs is to add
proper structural constraints to their DAG structure. Specifically, this paper considers smoothness and
decomposability, which are required by the inference algorithm that will be introduced in Section 4.2.

Definition 2 (Smoothness and Decomposability). Define the scope ϕ(n) of node n as the collection
of variables defined by all its descendent input nodes. A PC is smooth if for every sum node n,
its children have the same scope: ∀c1, c2 ∈ in(n), ϕ(c1) = ϕ(c2); it is decomposable if for every
product node n, its children have disjoint scopes: ∀c1, c2 ∈ in(n) (c1 ̸= c2), ϕ(c1) ∩ ϕ(c2) = ∅.

4

Published as a conference paper at ICLR 2024

Answering queries with PCs amounts to computing certain functions recursively in postorder (i.e.,
feedforward) or preorder (i.e., backward) on its DAG. For example, computing the likelihood p(x)
boils down to a forward pass on the PC: we first assign a probability to every input node n by
evaluating its density/mass function fn(x), and then do a feedforward pass (children before parents)
of all sum and product nodes, computing their output probabilities following Equation (6). Finally,
the output value of the root node is the target likelihood. In Figure 2, the output probability of every
node for the query p(x1x̄2x̄3x4) is labeled blue on top of it.

As hinted by its definition, the set of learnable parameters in PCs includes (i) parameters of the sum
edges and (ii) parameters of the input nodes/distributions. All parameters can be jointly learned using
an Expectation-Maximization-based algorithm that aims to maximize the average log-likelihood of all
samples in a dataset D:

∑
x∈D log pr(x). Details of the EM algorithm is provided in Appendix C.1.

4.2 COMPUTING CONSTRAINED POSTERIOR DISTRIBUTION

Recall from Section 3 and Equation (5) that at every denoising step, we need to compute
pTPM(x̃0|xt,x

k
0) with the PC. This section proposes an algorithm that computes pTPM(x̃0|xt,x

k
0)

given a PC p(x0) in linear time w.r.t. its size. Specifically, we first demonstrate how Equation (4) can
be converted to a general form of queries we define as independent soft-evidence constraints. We
then establish an efficient inference algorithm for this query class.

After closer inspection of Equation (4), we observe that both q(xt|x̃0) and 1[x̃k
0 = xk

0] can be
considered as constraints factorized over every variable. Specifically, with wi(x̃

i
0) := q(xi

t|x̃i
0) if

X̃i
0∈X̃u

0 and wi(x̃
i
0) :=1[x̃k

0=xk
0] otherwise, pTPM(x̃0|xt,x

k
0) can be equivalently expressed as

pTPM(x̃0|xt,x
k
0) =

1

Z

∏
i

wi(x̃
i
0) · p(x̃0), where Z :=

∑
x0

∏
i

wi(x̃
i
0) · p(x̃0). (7)

We call wi the soft-evidence constraint of variable Xi
0 as it defines a prior belief of its value. In the

extreme case of conditioning on hard evidence, wi becomes an indicator that puts all weight on the
conditioned value. Recall from Section 2 that diffusion models parameterize pθ(x̃0|xt) as a fully-
factorized distribution. In order to compute the weighted geometric mean of pDM(x̃0|xt,x

k
0) and

pTPM(x̃0|xt,x
k
0) (cf. Eq. (5)), we need to also compute the univariate distributions pTPM(x̃i

0|xt,x
k
0)

for every X̃i
0 ∈ X̃0. While this seems to suggest the need to query the PC at least |X̃0| times, we

propose an algorithm that only needs a forward and a backward pass to compute all target probabilities.
The forward pass Similar to the likelihood query algorithm introduced in Section 4.1, we traverse
all nodes in postorder and store the output of every node n in fwn. For sum and product nodes,
the output is computed following Equation (6); the output of every input node n that encodes a
distribution of Xi

0 is defined as fwn :=
∑

xi
0
fn(x

i
0) · wi(x

i
0), where fn is defined in Equation (6).

The backward pass The backward pass consists of two steps: (i) traversing all nodes in preorder
(parents before children) to compute the backward value bkn; (ii) computing the target probabilities
using the backward value of all input nodes. For ease of presentation, we assume the PC alternates
between sum and product layers, and all parents of any input node are product nodes.2 First, we
compute the backward values by setting bknr of the root node to 1, then recursively compute the
backward value of other nodes as follows:

bkn :=

{∑
m∈pa(n)

(
θm,n · fwn/fwm

)
· bkm n is a product node,∑

m∈pa(n) bkm n is a input or sum node,

where pa(n) is the set of parents of node n. Next, for every i, we gather all input nodes defined on
Xi

0, denoted Si, and compute pTPM(x̃i
0|xt,x

k
0) :=

1
Z

∑
n∈Si

bkn · fn(xi
0) · wi(x

i
0). We justify the

correctness of this algorithm in the following theorem, whose proof is provided in Appendix A.

Theorem 1. For any smooth and decomposable PC p(X) and univariate weight functions {wi(Xi)}i,
define p′(x) = 1

Z

∏
i wi(xi) · p(x), where the normalizing constant Z :=

∑
x

∏
i wi(xi) · p(x).

Assume all variables in X are categorical variables with C categories, the above-described algorithm
computes p′(xi) for every variable Xi and its every assignment xi in timeO(|p|+ |X| ·C) = O(|p|).

2Every PC that does not satisfy such constraints can be transformed into one in linear time since (i) consecutive
sum or product nodes can be merged without changing the PC’s semantic, and (ii) we can add a dummy product
with one child between any pair of sum and input nodes.

5

Published as a conference paper at ICLR 2024

5 TOWARDS HIGH-RESOLUTION IMAGE INPAINTING

Another key factor determining the effectiveness of the PC-guided diffusion model is the expressive-
ness of the PC p(X0), i.e., how well it can model the target image distribution. Recent advances
have significantly pushed forward the expressiveness of PCs (Liu et al., 2022b; 2023), leading to
competitive likelihoods on datasets such as CIFAR (Krizhevsky et al., 2009) and down-sampled
ImageNet (Deng et al., 2009), which allows us to directly apply the guided inpainting algorithm to
them. However, there is still a gap towards directly modeling high-resolution (e.g., 256× 256) image
data. While it is possible that this could be achieved in the near future given the rapid development
of PCs, this paper explores an alternative approach where we use a (variational) auto-encoder to
transform high-resolution images to a lower-dimensional latent space. Although in this way we lose
the “full tractability” over every pixel, as we shall proceed to demonstrate, a decent approximation can
still be achieved. The key intuition is that the latent space concisely captures the semantic information
of the image, and thus can effectively guide diffusion models toward generating semantically coherent
images; fine-grained details such as color consistency of the neighboring pixels can be properly
handled by the neural-network-based diffusion model. This is empirically justified in Section 6.1.

Define the latent space of the image X0 as Z0. We adopt Vector Quantized Generative Adversarial
Networks (VQ-GANs) (Esser et al., 2021), which are equipped with an encoder q(z0|x0) and a
decoder p(x0|z0), to transform the images between the pixel space and the latent space.3 We approx-
imate pTPM(x̃0|xt,x

k
0) (Eq. 7) by first estimating pTPM(z̃0|xt,x

k
0) with a PC p(Z0) trained on the

latent space and the VQ-GAN encoder; this latent-space conditional distribution is then converted
back to the pixel space. Specifically, the latent-space conditional probability is approximated via

pTPM(z̃0|xt,x
k
0) ≈

1

Z

∏
i

wz
i (z̃

i
0) · p(z̃0), where wz

i (z̃
i
0) :=

1

Zi

∑
x̃0

∏
j

wj(x̃
j
0) · q(z̃i0|x̃0), (8)

where Z and {Zi}i are normalizing constants and q(z̃i0|x̃0) is the VQ-GAN encoder. It is safe to
assume the independence between the soft evidence for different latent variables (i.e., wz

i) since every
latent variable produced by VQ-GAN corresponds to a different image patch, which corresponds
to a different set of pixel-space soft constraints (i.e., wi). In practice, we approximate wz

i (z̃
i
0) by

performing Monte Carlo sampling over x̃0 (i.e., sample x̃0 following
∏

j wj(x̃
j
0), and then feed

them through the VQ-GAN encoder). Finally, pTPM(x̃0|xt,x
k
0) is approximated by Monte Carlo

estimation of pTPM(x̃0|xt,x
k
0) := Ez̃0∼pTPM(·|xt,xk

0)
[p(x̃0|z̃0)], where p(x̃0|z̃0) is the VQ-GAN

decoder. We observe that as few as 4-8 samples lead to significant performance gain across various
datasets and mask types. See Appendix B for details of the design choices.

Another main contribution of this paper is to further scale up PCs based on Liu et al. (2022b; 2023) to
achieve likelihoods competitive with GPTs (Brown et al., 2020) on the latent image space generated
by VQ-GAN. Specifically, for 256× 256 images, the latent space typically consists of 16× 16 = 256
categorical variables each with 2048-16384 categories. While the number of variables is similar
to datasets considered by prior PC learning approaches, the variables are much more semantically
complicated (e.g., patch semantic vs. pixel value). We provide the full learning details including the
model structure and the training pipeline in Appendix C.2.

In summary, similar to the pixel-space guided inpainting algorithm introduced in Section 3 and 4.2, its
latent-space variant also computes pTPM(x̃0|xt,x

k
0) to guide the diffusion model pDM(x̃0|xt,x

k
0)

with Equation (5), except that it is approximated using a latent-space PC combined with VQ-GAN.

6 EXPERIMENTS

In this section, we take gradual steps to analyze and illustrate our method Tiramisu (Tractable Image
Inpainting via Steering Diffusion Models). Specifically, we first qualitatively investigate the steering
effect of the TPM on the denoising diffusion process (Sec. 6.1). Next, we perform an empirical
evaluation on three high-resolution image datasets with six large-hole masks, which significantly
challenges its ability to generate semantically consistent images (Sec. 6.2). Finally, inspired by the
fact that Tiramisu can handle arbitrary constraints that can be written as independent soft evidence (cf.
Sec. 4.2), we test it on a new controlled image generation task termed image semantic fusion, where
the goal is to fuse parts from different images and generate images with semantic coherence and high
fidelity (Sec. 6.3). Code is available at https://github.com/UCLA-StarAI/Tiramisu.

3We adopt VQ-GAN since it has a discrete latent space, which makes PC training easier.

6

https://github.com/UCLA-StarAI/Tiramisu

Published as a conference paper at ICLR 2024

Table 1: Quantative results on three datasets: CelebA-HQ (Liu et al., 2015), ImageNet (Deng et al.,
2009), and LSUN-Bedroom (Yu et al., 2015). We report the average LPIPS value (lower is better)
(Zhang et al., 2018) across 100 inpainted images for all settings. Bold indicates the best result.

Tasks Algorithms

Dataset Mask Tiramisu (ours) CoPaint RePaint DDNM DDRM DPS Resampling

CelebA-HQ

Left 0.189 0.185 0.195 0.254 0.275 0.201 0.257
Top 0.187 0.182 0.187 0.248 0.267 0.187 0.251
Expand1 0.454 0.468 0.504 0.597 0.682 0.466 0.613
Expand2 0.442 0.455 0.480 0.585 0.686 0.434 0.601
V-strip 0.487 0.502 0.517 0.625 0.724 0.535 0.647
H-strip 0.484 0.488 0.517 0.626 0.731 0.492 0.639
Wide 0.069 0.072 0.075 0.112 0.132 0.078 0.128

ImageNet

Left 0.286 0.289 0.296 0.410 0.369 0.327 0.369
Top 0.308 0.312 0.336 0.427 0.373 0.343 0.368
Expand1 0.616 0.623 0.691 0.786 0.726 0.621 0.711
Expand2 0.597 0.607 0.692 0.799 0.724 0.618 0.721
V-strip 0.646 0.654 0.741 0.851 0.761 0.637 0.759
H-strip 0.657 0.660 0.744 0.851 0.753 0.647 0.774
Wide 0.125 0.128 0.127 0.198 0.197 0.132 0.196

LSUN-Bedroom

Left 0.285 0.287 0.314 0.345 0.366 0.314 0.367
Top 0.310 0.323 0.347 0.376 0.368 0.355 0.372
Expand1 0.615 0.637 0.676 0.716 0.695 0.641 0.699
Expand2 0.635 0.641 0.666 0.720 0.691 0.638 0.690
V-strip 0.672 0.676 0.711 0.760 0.721 0.674 0.725
H-strip 0.679 0.686 0.722 0.766 0.726 0.674 0.724
Wide 0.116 0.115 0.124 0.135 0.204 0.108 0.202

Average 0.421 0.427 0.459 0.532 0.531 0.434 0.514

6.1 ANALYSIS OF THE TPM-PROVIDED GUIDANCE

Since we are largely motivated by the ability of TPMs to generate images that better match the
semantics of the given pixels, it is natural to examine how the TPM-generated signal guides the
diffusion model during the denoising process. Recall from Section 3 that at every denoising step t, the
reconstruction distributions pDM(x̃0|xt,x

k
0) and pTPM(x̃0|xt,x

k
0) are computed/estimated using

the diffusion model and the TPM, respectively. Both distributions are then merged into p(x̃0|xt,x
k
0)

(Eq. (5)) and are used to generate the image at the previous noise level (i.e., xt−1). In all experiments,
we adopt CoPaint (Zhang et al., 2023a) to generate pDM(x̃0|xt,x

k
0), which is independent of the

design choices related to the TPM. Therefore, qualitatively comparing the denoising process of
Tiramisu and CoPaint allows us to examine the steering effect provided by the TPM.

Figure 1 visualizes the denoising process of Tiramisu by plotting the images corresponding to the
expected values of the aforementioned distributions (i.e., pDM(x̃0|xt,x

k
0), pTPM(x̃0|xt,x

k
0), and

p(x̃0|xt,x
k
0)). To minimize distraction, we first focus on image pairs of the DM- and TPM-generated

image pairs in the same column. Since they are generated from the same input image xt, comparing
the image pairs allows us to examine the built-in inductive biases in both distributions. For instance,
in the celebrity face image, we observe that the contour of the facial features is sharper for the
TPM-generated image. This is more obvious in images at larger time steps since the guidance
provided by the TPM is accumulated throughout the denoising process.

Next, we look at the second row (i.e., p(x̃0|xt,x
k
0)) of Tiramisu. Although blurry, global semantics

appear at the early stages of the denoising process. For example, on the right side, we can vaguely
see two ostriches visible at time step 217. In contrast, the denoised image at t = 217 for CoPaint
does not contain much semantic information. Conditioning on these blurred contents, the diffusion
model can further fill in fine-grained details. Since the image semantics can be generated in a few
denoising steps, we only need to query the TPM at early time steps, which also significantly reduces
the computational overhead of Tiramisu. See Section 6.2 for quantitative analysis. As a result,
compared to the baseline, Tiramisu can generate inpainted images with higher quality.

6.2 COMPARISON WITH THE STATE OF THE ART

In this section, we challenge Tiramisu against state-of-the-art diffusion-based inpainting algorithms
on three large-scale high-resolution image datasets: CelebA-HQ (Liu et al., 2015), ImageNet (Deng
et al., 2009), and LSUN-Bedroom (Yu et al., 2015). To further challenge the ability of Tiramisu to
generate semantically coherent images, we use seven types of masks that reveal only 5-20% of the
original image since it is very likely for inpainting algorithms to ignore the given visual cues and
generate semantically inconsistent images. Details of the masks can be found in Appendix D.

7

Published as a conference paper at ICLR 2024

CoPaint

Tiramisu
(ours)

RePaint

DDNM

DDRM

DPS

Left Expand1 Expand2 V-strip

Resample

Origin

CelebA-HQ
Left Expand1 Expand2 V-strip

ImageNet
Left Expand1 Expand2 V-strip

LSUN-Bedrooms

Figure 3: Qualitative results on all three adopted datasets. We compare Tiramisu against six diffusion-
based inpainting algorithms. Please refer to Appendix E.2 for more qualitative results.

Methods We consider the six following diffusion-based inpainting algorithms: CoPaint (Zhang et al.,
2023a), RePaint (Lugmayr et al., 2022), DDNM (Wang et al., 2022), DDRM (Kawar et al., 2022),
DPS (Chung et al., 2022), and Resampling (Trippe et al., 2022). Although not exhaustive, this set of
methods summarizes recent developments in image inpainting and can be deemed as state-of-the-art.
We base our method Tiramisu on CoPaint (i.e., generate pDM(x̃0|xt,x

k
0) with CoPaint). Please see

the appendix for details on Tiramisu (Appx. B and C.2) and the baselines (Appx. D).

Quantitative and qualitative results Table 1 shows the average LPIPS values (Zhang et al., 2018)
on all 3× 7 = 21 dataset-mask configurations. First, Tiramisu outperforms CoPaint in 18 out of 21
settings, which demonstrates that the TPM-provided guidance consistently improves the quality of
generated images. Next, compared to all baselines, Tiramisu achieves the best LPIPS value on 14 out
of 21 settings, which indicates its superiority over the baselines. This conclusion is further supported
by the sample inpainted images shown in Figure 3, which suggests that Tiramisu generates more
semantically consistent images. See Appx. E.2 for more samples and Appx. E.1 for user studies.

Figure 4: Performance and runtime.

Computational efficiency As illustrated in Section 6.1, we
can use PC to steer the denoising steps only in earlier stages.
While engaging PCs in more denoising steps could lead to bet-
ter performance, the runtime is also increased accordingly. To
better understand this tradeoff, we use CelebA + the Expand1
mask as an example to analyze this tradeoff. As shown in Fig-
ure 4, as we use PCs in more denoising steps, the LPIPS score
first decreases and then increases, suggesting that incorporating
PCs in a moderate amount of steps gives the best performance
(around 20% in this case). One explanation to this phenomenon
is that in later denoising stages, the diffusion model mainly focuses on refining details. However, PCs
are better at controlling the global semantics of images in earlier denoising stages. We then focus on
the computation time. When using PCs in 20% of the denoising steps, the additional computational
overhead incurred by the TPM is around 10s, which is only 10% of the total computation time.

6.3 BEYOND IMAGE INPAINTING

The previous sections demonstrate the effectiveness of using TPMs on image inpainting tasks. A nat-
ural follow-up question is whether this framework can be generalized to other controlled/constrained
image generation tasks? Although we do not have a definite answer, this section demonstrates
the potential of extending Tiramisu to more complicated tasks by showing its capability to fuse
the semantic information from various input patches/fragments. Specifically, consider the case of

8

Published as a conference paper at ICLR 2024

+ = + =

+

+

=

=

+

+

=

=

Semantic coherence Semantic coherence

+ =

+ = + =

+ = + =

+ =

Figure 5: CelebA-HQ qualitative results for the semantic fusion task. In every sample, two reference
images together with their masks are provided to Tiramisu. The task is to generate images that (i)
semantically align with the unmasked region of both reference images, and (ii) have high fidelity.
For every input, we generate five samples with different levels of semantic coherence. The left-most
images are the least semantically constrained and barely match the semantic patterns of the reference
images. In contrast, the right-most images strictly match the semantics of the reference images.

latent-space soft evidence constraints {wz
i}i (i.e., Eq. (8)). For various recent autoencoder models

such as VQ-GAN, the latent variables of size Hl ×Wl are encoded from images of size H ×W .
Intuitively, every latent variable encodes the semantic of an H/Hl ×W/Wl image patch. Therefore,
every wz

i can be viewed as a constraint on the semantics of the corresponding image patch.

We introduce a controlled image generation task called semantic fusion, where we are given several
reference images each paired with a mask. The goal is to generate images that (i) semantically align
with the unmasked region of every reference image, and (ii) have high quality and fidelity. Semantic
fusion can be viewed as a preliminary task for more general controlled image generation since any
type of visual word information (e.g., language condition) can be transferred to constraints on {wz

i}i.
Figure 5 shows qualitative results of Tiramisu on semantic fusion tasks. For every set of reference im-
ages, we generate five samples with different semantic coherence levels by adjusting the temperature
of every soft evidence function wz

i (z
i
0). See Appendix F for more details.

7 RELATED WORK AND CONCLUSION

Existing approaches for image inpainting can be divided into two classes: supervised methods and
unsupervised methods. Specifically, supervised approaches require the model to be explicitly trained
on inpainting tasks, while unsupervised approaches do not require task-specific training. Supervised
methods are widely used for Variational Autoencoders (Peng et al., 2021; Zheng et al., 2019; Guo
et al., 2019), Generative Adversarial Networks (Iizuka et al., 2017; Zhao et al., 2020; Guo et al., 2019),
and Transformers (Yu et al., 2021; Wan et al., 2021). A major problem of supervised inpainting
algorithms is that they are highly biased toward mask types observed during training and often
need to be fine-tuned individually for every inpainting task (Xiang et al., 2023). However, since
approximating the probability of masked pixels given known pixels is highly intractable for these
models, we are unfortunately restricted to supervised inpainting approaches.

Recent developments in diffusion models (Ho et al., 2020; Song et al., 2020) open up the possibility
for unsupervised inpainting as these models provide potential ways to approximate the constrained
posterior. Specifically, the existence of variables at different noise levels allows us to blend in
information from the known pixels to the denoising process of the diffusion models (Song & Ermon,
2019; Avrahami et al., 2022; Kawar et al., 2022). Additionally, techniques such as resampling images
at higher noise levels (Lugmayr et al., 2022) and using partial filtering to approximate the constrained
posterior (Trippe et al., 2022) greatly contribute to generating high-quality images.

The transition from supervised to unsupervised inpainting methods is a clear example that demon-
strates the benefits of using more tractable models. Based on this observation, this paper seeks to
further exploit tractable models. Specifically, we study the “extreme case”, where we use TPMs that
can exactly compute the constrained posterior. Empirical results suggest that TPMs can effectively
improve the quality of inpainted images with only 10% additional computational overhead.

9

Published as a conference paper at ICLR 2024

Acknowledgements This work was funded in part by the DARPA PTG Program under award
HR00112220005, the DARPA ANSR program under award FA8750-23-2-0004, NSF grants #IIS-
1943641, #IIS-1956441, #CCF-1837129, and a gift from RelationalAI. GVdB discloses a financial
interest in RelationalAI. Mathias Niepert acknowledges funding by Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC and support by
the Stuttgart Center for Simulation Science (SimTech).

Reproducibility statement To facilitate reproducibility, we have clearly stated the proposed PC
inference algorithm in Section 4.2. Algorithmic details including the choice of hyperparameters are
provided in Appx. B and C.2. Formal proof of Thm. 1 is provided in Appendix A. We provide the code
to train the PCs and to generate inpainted images at https://github.com/UCLA-StarAI/
Tiramisu.

REFERENCES

Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of natural
images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 18208–18218, 2022.

Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, and Guy Van den Broeck. Tractable
learning for complex probability queries. Advances in Neural Information Processing Systems, 28,
2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. oct 2020. URL http://starai.cs.ucla.
edu/papers/ProbCirc20.pdf.

YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group fairness by probabilistic modeling
with latent fair decisions. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 12051–12059, 2021.

CKCN Chow and Cong Liu. Approximating discrete probability distributions with dependence trees.
IEEE transactions on Information Theory, 14(3):462–467, 1968.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022.

Alvaro HC Correia, Gennaro Gala, Erik Quaeghebeur, Cassio de Campos, and Robert Peharz.
Continuous mixtures of tractable probabilistic models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 7244–7252, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873–12883, 2021.

Aditya Grover and Stefano Ermon. Boosted generative models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

Zongyu Guo, Zhibo Chen, Tao Yu, Jiale Chen, and Sen Liu. Progressive image inpainting with
full-resolution residual network. In Proceedings of the 27th acm international conference on
multimedia, pp. 2496–2504, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

10

https://github.com/UCLA-StarAI/Tiramisu
https://github.com/UCLA-StarAI/Tiramisu
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Published as a conference paper at ICLR 2024

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Globally and locally consistent image
completion. ACM Transactions on Graphics (ToG), 36(4):1–14, 2017.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696–21707, 2021.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sentential decision
diagrams. In Fourteenth International Conference on the Principles of Knowledge Representation
and Reasoning, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine learning. Foundations
and Trends® in Machine Learning, 5(2–3):123–286, 2012.

Anji Liu, Stephan Mandt, and Guy Van den Broeck. Lossless compression with probabilistic circuits.
In Proceedings of the International Conference on Learning Representations (ICLR), 2022a.

Anji Liu, Honghua Zhang, and Guy Van den Broeck. Scaling up probabilistic circuits by latent
variable distillation. In The Eleventh International Conference on Learning Representations,
2022b.

Xuejie Liu, Anji Liu, Guy Van den Broeck, and Yitao Liang. Understanding the distillation process
from deep generative models to tractable probabilistic circuits. In International Conference on
Machine Learning, pp. 21825–21838. PMLR, 2023.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Lorenzo Loconte, Nicola Di Mauro, Robert Peharz, and Antonio Vergari. How to turn your
knowledge graph embeddings into generative models via probabilistic circuits. arXiv preprint
arXiv:2305.15944, 2023.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471, 2022.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the latent variable interpreta-
tion in sum-product networks. IEEE transactions on pattern analysis and machine intelligence, 39
(10):2030–2044, 2016.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy
Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable
learning of tractable probabilistic circuits. In International Conference on Machine Learning, pp.
7563–7574. PMLR, 2020.

Jialun Peng, Dong Liu, Songcen Xu, and Houqiang Li. Generating diverse structure for image
inpainting with hierarchical vq-vae. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10775–10784, 2021.

Hoifung Poon and Pedro Domingos. Sum-product networks: a new deep architecture. In Proceedings
of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pp. 337–346, 2011.

Lawrence Rabiner and Biinghwang Juang. An introduction to hidden markov models. ieee assp
magazine, 3(1):4–16, 1986.

11

Published as a conference paper at ICLR 2024

Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. Cutset networks: A simple, tractable,
and scalable approach for improving the accuracy of chow-liu trees. In Machine Learning and
Knowledge Discovery in Databases: European Conference, ECML PKDD 2014, Nancy, France,
September 15-19, 2014. Proceedings, Part II 14, pp. 630–645. Springer, 2014.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable operations for arithmetic circuits of
probabilistic models. Advances in Neural Information Processing Systems, 29, 2016.

Sahil Sidheekh, Kristian Kersting, and Sriraam Natarajan. Probabilistic flow circuits: towards unified
deep models for tractable probabilistic inference. In Uncertainty in Artificial Intelligence, pp.
1964–1973. PMLR, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha,
Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky. Resolution-
robust large mask inpainting with fourier convolutions. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pp. 2149–2159, 2022.

Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
scaffolding problem. arXiv preprint arXiv:2206.04119, 2022.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667–19679, 2020.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A compositional
atlas of tractable circuit operations for probabilistic inference. Advances in Neural Information
Processing Systems, 34:13189–13201, 2021.

Ziyu Wan, Jingbo Zhang, Dongdong Chen, and Jing Liao. High-fidelity pluralistic image completion
with transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 4692–4701, 2021.

Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
null-space model. In The Eleventh International Conference on Learning Representations, 2022.

Hanyu Xiang, Qin Zou, Muhammad Ali Nawaz, Xianfeng Huang, Fan Zhang, and Hongkai Yu. Deep
learning for image inpainting: A survey. Pattern Recognition, 134:109046, 2023.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a large-
scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365,
2015.

Yingchen Yu, Fangneng Zhan, Rongliang Wu, Jianxiong Pan, Kaiwen Cui, Shijian Lu, Feiying Ma,
Xuansong Xie, and Chunyan Miao. Diverse image inpainting with bidirectional and autoregressive
transformers. In Proceedings of the 29th ACM International Conference on Multimedia, pp. 69–78,
2021.

12

Published as a conference paper at ICLR 2024

Guanhua Zhang, Jiabao Ji, Yang Zhang, Mo Yu, Tommi Jaakkola, and Shiyu Chang. Towards coherent
image inpainting using denoising diffusion implicit models. arXiv preprint arXiv:2304.03322,
2023a.

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for
autoregressive language generation. In International Conference on Machine Learning, pp. 40932–
40945. PMLR, 2023b.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, I Eric, Chao Chang, and Yan Xu.
Large scale image completion via co-modulated generative adversarial networks. In International
Conference on Learning Representations, 2020.

Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. Pluralistic image completion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1438–1447, 2019.

13

Published as a conference paper at ICLR 2024

Supplementary Material
A PROOF OF THEOREM 1

The proof contains two main pairs: (i) shows that the forward pass computes
∑

x0

∏
i wi(x

i
0) · p(x0),

and (ii) demonstrates the backward pass computes the conditional probabilities pTPM(x̃i
0|xt,x

k
0).

Correctness of the forward pass We show by induction that the forward value fwn of every node
n computes

∑
x0

∏
i∈ϕ(n) wi(x

i
0) · p(x0).

• Base case: input nodes. By definition, for every input node defined on variable Xi
0 := ϕ(n), its

forward value is
∑

x0
wi(x

i
0) · pn(x0).

• Inductive case: product nodes. For every product node n, assume the forward value of its every
child node c satisfies fwc =

∑
x0

∏
i∈ϕ(c) wi(x

i
0) · pm(x0). Note that the forward value of product

nodes is computed according to Equation (6), we have

fwn =
∏

c∈in(n)

fwc,

=
∏

c∈in(n)

∑
x0

∏
i∈ϕ(c)

wi(x
i
0) · pc(x0),

(a)
=

∑
x0

∏
c∈in(n)

∏
i∈ϕ(c)

wi(x
i
0) · pc(x0),

(b)
=

∑
x0

∏
i∈ϕ(n)

wi(x
i
0)

∏
c∈in(n)

pc(x0),

(c)
=

∑
x0

∏
i∈ϕ(n)

wi(x
i
0) · pn(x0),

where (a) follows from the fact that scopes of the children ϕ(c) are disjoint, and the child PCs
{pc(x0)}c are defined on disjoint sets; (b) follows from the fact that ϕ(n) =

⋃
c∈in(n) ϕ(c); (c)

follows the definition in Equation (6).

• Inductive case: sum nodes. Similar to the case of product nodes, for every sum node n, we assume
the forward value of its children satisfies the induction condition. We have

fwn =
∑

c∈in(n)

θn,c · fwc,

=
∑

c∈in(n)

θn,c
∑
x0

∏
i∈ϕ(c)

wi(x
i
0) · pc(x0),

(a)
=

∑
x0

∏
i∈ϕ(n)

wi(x
i
0) ·

∑
c∈in(n)

ϕn,c · pc(x0),

(b)
=

∑
x0

∏
i∈ϕ(n)

wi(x
i
0) · pn(x0),

where (a) holds since ∀c ∈ in(n), ϕ(c) = ϕ(n), and (b) follows from Equation (6).

Therefore, the forward value of every node n is defined by fwn =
∑

x0

∏
i∈ϕ(n) wi(x

i
0) · pm(x0).

Correctness of the backward pass We first provide an intuitive semantics for the backward value
bkn of every node: for every node n, if its forward value fwn were to set to fw′n (the other inputs of
the PC remains unchanged), the value at the root node nr would change to (1− bkn) · fwnr

+ bkn ·
fwnr

· fw′n/fwn. In the following, we prove this result by induction over the root node.

• Base case: the PC rooted at n. Denote bknr
n as the backward value of node n w.r.t. the PC rooted at

nr. Since by definition bknn = 1, we have that when the value of n is changed to fw′n, the root node’s

14

Published as a conference paper at ICLR 2024

value becomes

(1− bknn) · fwnr + bknn · fwn · fw′n/fwn = fw′n.

• Inductive case: sum node. Suppose the statement holds for all children of a sum node m. Define
bkmn,c as the backward value of edge (n, c) for the PC rooted at m. Following the definition of the
backward values, we have

∑
c∈in(m) bk

m
n,c = bkmn . When the value of n is changed to fw′n, the value

of m becomes:∑
c∈in(m)

θm,c · fw′c =
∑

c∈in(m)

θm,c ·
[
(1− bkcn) · fwc + bkcn · fwc · fw′n/fwn

]
,

=
∑

c∈in(m)

θm,c · fwc︸ ︷︷ ︸
fwm

+
∑

c∈in(m)

θm,c · bkcn · fwc ·
(
fw′n/fwn − 1

)
,

= fwm +
∑

c∈in(m)

θm,c ·
(
bkmn,c ·

fwm

θm,c · fwc

)
︸ ︷︷ ︸

bkcn

·fwc ·
(
fw′n/fwn − 1

)
,

= fwm +
∑

c∈in(m)

bkmn,c︸ ︷︷ ︸
bkmn

·fwm ·
(
fw′n/fwn − 1

)
,

= (1− bkmn) · fwm + bkmn · fwm · fw′n/fwn,

• Inductive case: product node. Suppose the statement holds for all children of a product node m.
Thanks to decomposability, at most one of m’s children can be an ancestor of n. Denote this child as
c′. When the value of n is changed to fw′n, the value of m becomes:∏

c∈in(m),c̸=c′

fw′c =
∏

c∈in(m),c̸=c′

fwc ·
[
(1− bkc

′

n) · fwc′ + bkc
′

n · fwc′ · fw′n/fwn
]
,

(a)
=

∏
c∈in(m),c ̸=c′

fwc ·
[
(1− bkmn) · fwc′ + bkmn · fwc′ · fw′n/fwn

]
,

(b)
= (1− bkmn) · fwc′ + bkmn · fwc′ · fw′n/fwn,

where (a) holds since bkmn = bkc
′

n and (b) follows from the definition of product nodes in Equa-
tion (6).

Next, assume that the input nodes are all indicators in the form of 1[Xi = xi]. In fact, any discrete
univariate distribution can be represented as a mixture (sum node) of indicators. By induction, we
can show that the sum of backward values of all input nodes corresponding to a variable Xi is
1, since sum nodes only “divide” the backward value, and product nodes preserve the backward
value sent to them. By setting the value of the input node 1[Xi = xi], we are essentially computing∏

j ̸=i wj(xj)·1[Xi = xi]·p(x). Therefore, the backward values of these input nodes are proportional
to the target conditional probability pTPM(x̃i

0|xt,x
k
0).

We are left with proving that the sum of backward values of all input nodes corresponding to variable
Xi equals 1. To see this, consider the subset of nodes whose scope contains Xi. This subset of nodes
represents a DAG with the root node as the only source node and input nodes of variables Xi as the
sink. Consider the backward algorithm as computing flows in the DAG. For every node non-sink
node, the amount of flow it accepts equals the amount it sends. Specifically, product nodes send all
their flow to their only child node (according to decomposability, at most one child of a product node
contains Xi in its scope); for every sum node n, the sum of flows sent to its children equal to the flow
it receives. Since the flow sent by all source nodes equals the flow received by all sink nodes, we
conclude that the backward values of the input nodes for variable Xi sum up to 1. □

15

Published as a conference paper at ICLR 2024

B DESIGN CHOICES FOR HIGH-RESOLUTION GUIDED IMAGE INPAINTING

In all experiments, we compute wz
i (z̃

i
0) by first drawing 4 samples from 1

Z

∏
j wj(x̃

j
0), and then feed

them to the VQ-GAN’s encoder. For every sample, we get a distribution over variable Z̃i
0. wz

i (z̃
i
0) is

then computed as the mean of the four distributions. In the following decoding phase that computes
pTPM(x̃0|xt,x

k
0) := Ez̃0∼pTPM(·|xt,xk

0)
[p(x̃0|z̃0)], we draw 8 random samples from pTPM(·|xt,x

k
0)

to estimate pTPM(x̃0|xt,x
k
0).

In the following, we describe the hyperparameters of the adopted VQ-GAN for all three datasets:

Table 2: Hyperparameters of the adopted VQ-GAN models for Tiramisu.
CelebA-HQ ImageNet LSUN-Bedroom

latent variables 16× 16 16× 16 16× 16
Vocab size 1024 16384 16384

Additional hyperparameters of Tiramisu For the distribution mixing hyperparameter α (cf.
Section 3), we use an exponential decay schedule from a to b with a temperature parameter λ.
Specifically, the mixing hyperparameter at time step T is

(b− a) · exp(−λ · t/T) + a. (9)

We further define a cutoff parameter tcut such that when t ≤ tcut, the TPM guidance is not used. In all
experiments, we used the first three samples in the validation set to tune the mixing hyperparameters.
Hyperparameters are given in the following table. In all settings, we have T = 250.

Table 3: Mixing hyperparameters of Tiramisu.
CelebA-HQ ImageNet LSUN-Bedroom

a 0.8 0.8 0.8
b 1.0 1.0 1.0
λ 2.0 2.0 2.0
tcut 200 235 235

C PC LEARNING DETAILS

C.1 THE EM PARAMETER LEARNING ALGORITHM

As illustrated by Definition 1, when performing a feedforward evaluation (i.e., Equation (6)), a PC
takes as input a sample x and outputs its probability pn(x). Given a dataset D, our goal is to learn
a set of PC parameters (including sum edge parameters and input node/distribution parameters)
to maximize the MLE objective:

∑
x∈D log pn(x). The Expectation-Maximization algorithm is

a natural way to learn PC parameters since PCs can be viewed as latent variable models with a
hierarchically nested latent space (Peharz et al., 2016). There are two interpretations of the EM
learning algorithm for PCs: one based on gradients (Peharz et al., 2020) and the other based on a new
concept called circuit flows (Choi et al., 2021). We use the gradient-based interpretation since it is
easier to understand.

Note that the feedforward computation of PCs is differentiable and can be modeled by a computation
graph. Therefore, after computing the log-likelihood log pn(x) of a sample x, we can efficiently
compute its gradient with respect to all PC parameters via the backpropagation algorithm. Given
a mini-batch of samples, we use the backpropagation algorithm to accumulate gradients for every
parameter. Take sum parameters as an example. Define the cumulative gradient of θn,c as gn,c, the
updated parameters {θn,c}c∈in(n) for every sum node n is given by:

θn,c ← (1− α) · θn,c + α · gn,c · θn,c∑
m∈in(n) gn,m · θn,m

,

where α ∈ (0, 1] is the step size. For input nodes, since we only use categorical distributions that
can be equivalently represented as a mixture over indicator leaves (i.e., a sum node connecting these
indicators), optimizing leaf parameters is equivalent to the sum parameter learning process.

16

Published as a conference paper at ICLR 2024

C.2 DETAILS OF THE PC LEARNING PIPELINE

PC structure We adopt a variant of the original PD structure proposed in Poon & Domingos
(2011). Specifically, starting from the whole image, the PD structure gradually uses product nodes
to horizontally or vertically split the variable scope into half. As a result, the scope of every
node represents a patch (of variable size) in the original image. We use categorical input nodes in
accordance with the VQ-GAN’s latent space. We treat the set of parameters belonging to nodes with
the same scope as the parameters of the scope. Based on the original structure, we further tie the
parameters representing every pixel and every 2× 2 patch. Since the marginal distribution of every
latent variable should be similar thanks to the spatial invariance of images.

Parameter learning This paper uses the latent variable distillation (LVD) technique (Liu et al.,
2022b; 2023) to initiate the PC parameters before further fine-tuning them with the EM algorithm
described in Appendix C.1. Intuitively, LVD provides extra supervision to PC optimizers through
semantic-aware latent variable assignments extracted from deep generative models. We refer readers
to the original papers for more details.

After initializing PC parameters with LVD, we further fine-tune the parameters with EM with the
following hyperparameters:

Table 4: Hyperparameters of EM fine-tuning process.
Name Value

Step size 1.0
Batch size 20000

Pseudocount 0.1
iterations 200

D DETAILS OF THE MAIN EXPERIMENTS AND THE BASELINES

Left Top Expand1

Expand2 V-strip H-strip

Figure 6: Used masks.

Adopted Masks Six of the seven adopted mask types are shown in
Figure 6 (gray indicates masked region). We adopt the wide masks from
Lugmayr et al. (2022); Suvorov et al. (2022). There are 100 masks
generated by uniformly sampling from polygonal chains dilated by a high
random width and rectangles of arbitrary aspect ratios.

The “wide” masks can be downloaded from
https://drive.google.com/uc?id=1Q_
dxuyI41AAmSv9ti3780BwaJQqwvwMv, which is provided
by (Lugmayr et al., 2022).

Pretrained Models For all inpainting algorithms, we adopt the same diffusion model checkpoint
pretrained by Lugmayr et al. (2022) (for CelebA-HQ) and OpenAI (for ImageNet and LSUN-
Bedroom; https://github.com/openai/guided-diffusion). The links to the check-
points for all three datasets are listed below.

• CelebA-HQ: https://drive.google.com/uc?id=1norNWWGYP3EZ_
o05DmoW1ryKuKMmhlCX

• ImageNet: https://openaipublic.blob.core.windows.net/diffusion/
jul-2021/256x256_diffusion.pt and https://openaipublic.blob.core.
windows.net/diffusion/jul-2021/256x256_classifier.pt.

• LSUN-Bedroom: https://openaipublic.blob.core.windows.net/diffusion/
jul-2021/lsun_bedroom.pt.

Data For CelebA-HQ and LSUN-Bedroom, we use the first 100 images in the validation set. We
adopt the validation split of CelebA-HQ following Suvorov et al. (2022). For ImageNet, we use a
random validation image for the first 100 classes.

17

https://drive.google.com/uc?id=1Q_dxuyI41AAmSv9ti3780BwaJQqwvwMv
https://drive.google.com/uc?id=1Q_dxuyI41AAmSv9ti3780BwaJQqwvwMv
https://github.com/openai/guided-diffusion
https://drive.google.com/uc?id=1norNWWGYP3EZ_o05DmoW1ryKuKMmhlCX
https://drive.google.com/uc?id=1norNWWGYP3EZ_o05DmoW1ryKuKMmhlCX
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_classifier.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_classifier.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_bedroom.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_bedroom.pt

Published as a conference paper at ICLR 2024

Table 5: User study results. We report the vote difference (%), i.e., [percentage of votes to Tiramisu] -
[percentage of votes to the baseline]. The higher the vote difference value, the more the annotators
prefer images generated by Tiramisu compared to the baseline.

Tasks Algorithms

Dataset Mask Tiramisu (ours) CoPaint RePaint DPS

CelebA-HQ Expand1 Reference 22 34 14
Wide Reference 26 30 22

ImageNet Expand1 Reference 32 20 24
Wide Reference 14 6 12

LSUN-Bedroom Expand1 Reference 18 2 8
Wide Reference 4 6 -6

E ADDITIONAL EXPERIMENTS

E.1 USER STUDY

Since image inpainting is an ill-posed problem and LPIPS alone may not be sufficient to indicate the
performance of each algorithm, we recruited human evaluators to evaluate the quality of inpainted
images. Specifically, for every baseline method, we sample inpainted image pairs from the baseline
and Tiramisu using the same inputs (source image and mask). For every image pair, the evaluator is
provided with both inpainted images and is tasked to select the better one based on the following
criterion: images that visually look more natural and without artifacts (e.g., blurry, distorted). A
screenshot of the interface is shown in Figure 7.

The user study is conducted on the three strongest baselines based on their overall LPIPS scores:
CoPaint (Zhang et al., 2023a), RePaint (Lugmayr et al., 2022), and DPS (Chung et al., 2022). We use
two mask types for comparison: “expand1” and “wide”. For every comparison, we report the vote
difference (%), which is the percentage of votes to Tiramisu subtracted by that of the baseline. A
positive vote difference value means images generated by Tiramisu are preferred compared to the
baselines, while a negative value suggests that the baseline is better than Tiramisu.

We adopt the three most competitive baselines, i.e., CoPaint, RePaint, and DPS, based on their
average LPIPS scores (Table 1). For all three datasets, we conduct user studies on two types of masks:
“expand1” and “wide”. Results are shown in Table 5. The vote difference scores are mostly high,
indicating the superior inpainting performance of Tiramisu. Additionally, we observe that Tiramisu
generally performs better with the “expand1” mask (with larger to-be-inpainted regions), which
suggests that Tiramisu may be more helpful in the case of large-hole image inpainting.

E.2 ADDITIONAL QUALITATIVE RESULTS

Please refer to Figure 8 to 10 for additional qualitative results on all three adopted datasets.

F DETAILS OF THE SEMANTIC FUSION EXPERIMENT

The mixing hyperparameters are the same as described in Appendix B.

The VQ-GAN encoder first generates an embedding e for every latent variable Z̃i
0, and it is then

discretized with the VQ codebook by selecting the ID in the codebook that has the minimum L2
distance with e. We soften this process by setting wz

i (j) = exp(−∥e− ej∥2/λsf), where ej is the
jth embedding in the codebook, and λsf is the temperature that controls the semantic coherence level
of the generated images. The closer λsf is to 0, the higher the coherence level.

18

Published as a conference paper at ICLR 2024

Figure 7: User study interface.

19

Published as a conference paper at ICLR 2024

CoPaint TiramisuRePaintDDNMDDRMDPSResampleImage

Left

Top

Expand1

Expand2

V-strip

H-strip

Figure 8: Additional qualitative results on CelebA-HQ with six mask types.

20

Published as a conference paper at ICLR 2024

CoPaint TiramisuRePaintDDNMDDRMDPSResampleImage

Left

Top

Expand1

Expand2

V-strip

H-strip

Figure 9: Additional qualitative results on ImageNet with six mask types.

21

Published as a conference paper at ICLR 2024

CoPaint TiramisuRePaintDDNMDDRMDPSResampleImage

Left

Top

Expand1

Expand2

V-strip

H-strip

Figure 10: Additional qualitative results on LSUN-Bedroom with six mask types.

22

	Introduction
	Preliminaries
	Guiding Diffusion Models with Tractable Probabilistic Models
	Practical Implementation with Probabilistic Circuits
	Background on Probabilistic Circuits
	Computing Constrained Posterior Distribution

	Towards High-Resolution Image Inpainting
	Experiments
	Analysis of the TPM-Provided Guidance
	Comparison With the State of the Art
	Beyond Image Inpainting

	Related Work and Conclusion
	Proof of Theorem 1
	Design Choices for High-Resolution Guided Image Inpainting
	PC Learning Details
	The EM Parameter Learning Algorithm
	Details of the PC Learning Pipeline

	Details of the Main Experiments and the Baselines
	Additional Experiments
	User Study
	Additional Qualitative Results

	Details of the Semantic Fusion Experiment

