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Abstract

Model editing offers a promising paradigm for efficiently and precisely updating
knowledge in pre-trained transformers without costly retraining. While exten-
sively studied in language models (LMs), model editing for vision transform-
ers (ViTs) remains underexplored. Existing methods typically adapt LM-based
techniques by modifying the multi-layer perceptron (MLP) modules, overlook-
ing the unique characteristics of ViTs. In this work, we show that ViT pre-
dictions are more strongly influenced by the multi-head self-attention (MSA)
modules than by the MLPs. Building on this observation, we propose a two-
stage framework for editing ViTs. First, we identify which attention heads are
most responsible for incorrect predictions. Next, we selectively remove the
corresponding features to correct the model’s prediction. To further balance
error correction with predictive stability on unrelated data, we learn a projec-
tion matrix that refines the image representations. Extensive experiments across
multiple real-world datasets and model editing benchmarks demonstrate that
our method consistently outperforms existing model editing methods for ViTs,
achieving superior generalization and locality. Our code is available at https:
//github.com/shanghxy/Model-editing-for-vision-transformers,

1 Introduction

Model editing has emerged as a promising paradigm for efficiently and precisely updating the
knowledge encoded in pre-trained transformers, without the need for expensive retraining. While
numerous methods have been proposed for editing language models (LMs), there is an equally
pressing need to extend these capabilities to vision transformers (ViTs). In real-world deployments,
vision models frequently exhibit unexpected prediction failures, as highlighted in recent studies [23}
6,128, 31]]. These failures are particularly common when the downstream data distribution differs
from the pre-training distribution. A key reason is that pre-training datasets cannot fully capture the
diversity of real-world subpopulations, causing vision models to rely on spurious cues for predictions.
For example, models may use background or contextual attributes in images for recognition [34} 20]],
leading to incorrect predictions when these contexts change. Therefore, there is a strong need for
cost-effective model editing approaches to rectify errors in pre-trained vision models.

Editing ViTs, however, presents unique challenges that require specialized solutions. Although LMs
and ViTs both use transformer architectures, their training objectives and internal dependencies
differ. LMs, trained with auto-regressive loss to predict the next token, primarily encode factual
associations in their MLP modules [[10, 9, 8, 21]]. In contrast, ViTs are trained with a classification
loss, and their predictions depend more heavily on multi-head self-attention (MSA) modules, which
extract relationships between tokens to form high-level concepts. Our empirical studies (see Sec[3)
indicate that MSA modules contribute significantly more to predictions than MLP modules in ViTs,
a finding also supported by prior work on CLIP-ViTs [3]]. This reveals a key limitation of existing
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Figure 1: Overview of RefineViT: Stage One identifies attention-head-level features linked to prediction errors.
Stage Two learns a projection matrix by optimizing editing success 10ss (Lsuccess), locality 1oss (Liocatity ), and
cross-entropy loss (Lcg).

ViT editing methods, such as LWE-ViTs [32]], which adapt ideas from LMs by focusing on editing
MLP modules. Since ViTs’ predictions rely mainly on attention mechanisms rather than factual
associations, editing the MLP modules may force the model to overfit the editing data, introducing
unexpected information and leading to suboptimal performance. Therefore, specialized solutions
that target the unique architectural and functional characteristics of ViTs are necessary for effective
model editing.

In this paper, we propose a novel model editing method tailored for ViTs, aimed at rectifying
predictive errors using a limited number of samples. Our method is built on the observation that
individual attention heads within MSA modules specialize in extracting features related to specific
semantic concepts [S)]. These modules can detect various concepts from input images and integrate
these features into the residual stream. This suggests that classification errors in ViTs often arise not
from a failure to capture essential features, but from an over-reliance on spurious or non-causal ones.

To correct the prediction errors, we decompose the final representation of ViTs into features at both
the MLP-layer level and attention-head level. Leveraging this decomposition, we develop a two-stage
framework called RefineViT. In the first stage, we identify attention-head-level features that contribute
to prediction errors by analyzing a small set of samples. In the second stage, we rectify the final
representation by selectively ablating these problematic features. The framework enables effective
model editing with only a few examples and is illustrated in Fig. [I]

The second stage, representation rectification, can be implemented in different ways depending on the
task. For binary classification, we find that simply zeroing out the identified attention-head features
yields substantial performance gains. However, in multi-label classification, directly removing these
features may degrade performance on unrelated classes, as the ablated heads may still be important for
other predictions. To address this issue, we learn a projection matrix that aligns the final representation
of erroneous samples with their ablated counterparts, while preserving the original representations of
correctly predicted data. This approach balances error correction with predictive stability, allowing
precise model edits while minimizing side effects. The projection can be integrated into the classifier,
requiring no changes to the model architecture. Notably, our framework can also be seamlessly
applied to ViT-based models like CLIP-ViT, which use cosine similarity between image and text
embeddings for classification.

Summary of contribution:

* We empirically reveal a key difference between LMs and ViTs for model editing: while editing
MLP layers is effective in LMs, ViT predictions depend mainly on MSA modules, and errors
are often driven by spurious features extracted by specific attention heads. This suggests that
effective ViT editing should target MSA modules rather than MLPs.

* We propose a two-stage method that identifies and removes problematic attention-head features
from the final representation. To ensure both editing success and locality in multi-label classifica-
tion, we learn a projection matrix that aligns erroneous samples with their corrected counterparts
while preserving correct predictions.

» We validate the effectiveness of our framework on multiple real-world datasets and model editing
benchmarks. Our method achieves strong error correction with minimal impact on unrelated data,



outperforming existing ViT editing baselines in both generalization and locality. Moreover, it
generalizes well to ViT-based architectures such as CLIP-ViT.

2 Preliminaries

2.1 Problem Formulation: Model Editing for ViTs

In this paper, we tackle the challenge of error correction in Vision Transformers (ViTs). When a ViT
misclassifies an image « as ¢ instead of its true label y, this error often reflects a broader pattern
rather than an isolated mistake. Such errors typically recur across similar images with the same true
label y. We define this subset of misclassified data as Z,, ; = {«’|fo(x’) = ¢}, where f is the ViT
model with parameters 6.

Model editing aims to fix these misclassifications by refining the model to correct not only the specific
image « but also similar instances in Z, ;. This process focuses on two key goals:

* Edit success measures how well the modified model correctly classifies previously misclassified
data. We evaluate this by measuring the edited model’s accuracy on Z,, ;.

* Edit locality measures how well the modified model preserves the prediction on unrelated data.
This is measured by the edited model’s accuracy on data outside the target subset: O, ; = {x|z ¢
T,.4}. High edit locality indicates that the editing has minimal impact on unrelated data.

In practice, failures in object recognition are typically identified by testing the model’s performance
on a small set of samples from each class. These samples, along with their true labels and model
predictions, serve as the foundational data for model editing.

2.2 ViT Image Representation Decomposition

A Vision Transformer (ViT) consists of L residual blocks. Each block contains a multi-head self-
attention (MSA) layer, followed by a multi-layer perceptron (MLP) layer. Both layers are preceded
by layer normalization. The ViT processes an input image x by dividing it 1nt0 N patches. Each
patch is embedded mto a d-dimensional token, resulting in N tokens: {z?}%,. Additionally,
a specml class token z! s 15 added. Together, these form the initial state of the residual stream
Z°=[29,,29,..,2%] € R4 (N+1) which is updated by the residual blocks. The residual blocks
sequentially update this stream, and the layer-normalized class token from the final layer serves as
the image representation ® (x):

7' =MSA! (2'71) + 2!, Z' = MLP! (Zl) + 2 1e{1,2,..,L}. (1
L L
(I)("B) == [ZL]CZS == [Zo]cls + Z[MSAZ<Zl71)]cls + Z[MLPI(ZI)]clsa (2)

=1 =1

where [Z L Jets refers to the first column of Z L corresponding to the class token. Here, we omit the
layer normalization for notational simplicity.

Following [4], the output of each MSA layer can be written as the sum of the outputs from all
attention heads, each multiplied by its own output matrix Wg. Specifically, the class token output
from the I-th MSA layer can be decomposed as:

H H N
IMSAY(Z' M )]es = D [Head"" (Z71)] . =D > gt Wi w2 3)
h=1 h=1 =0
Here, H is the number of attention heads in each layer; Head"" is the h-th head in the I-th MSA
layer; aé’}} is the attention weights from the class token to the i-th token; Wéh and W&h are the
output and value projection matrix; z ! is the i-th token from the (I — 1)-th MLP layer.

By substituting Eq. (3) into Egs. - and defining h"" = [Head"" (Z'1)]ais for simplicity, we
can express the final image representation as a sum of contributions from the initial class token, all
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Figure 2: Accuracy changes after mean ablation of MLP and MSA modules.

MLP layers, and all attention heads:

L L H
O(x) = [Z2°cs + Y _MLP (Z))]s + > > RV )
=1 =1 h=1
The decomposition in Eq. (@) illustrates the direct contribution of the initial class token, each MLP
layer, and each attention head in the MSA layers to the final image representation [5} [1]].

3 Differences in Model Editing between LMs and ViTs

Previous studies [22} 21} [10, O] suggest that feed-forward layers in Transformers play a crucial role
in shaping predictions, making them effective targets for model editing. However, these findings
are largely limited to Language Models (LMs) and may not be generalized to Visual Transformers
(ViTs). In this section, we analyze the roles of MSA and MLP modules in ViTs, and highlight key
differences in model editing between LMs and ViTs.

3.1 Direct Effects of MSA and MLP Modules in ViTs

To quantify the direct effect of each component, we measure the drop in classification accuracy after
mean ablation. Specifically, we replace the output features of target modules with their dataset-wide
mean, recompute the representations (see Eq.[d), and evaluate the resulting accuracy. A larger drop
indicates a stronger direct effect on predictions.

We conduct this analysis on ViT-S/16, ViT-B/16, and ViT-L/16 using 10,000 randomly sampled
images from the ImageNet test set [3]]. These samples are used to compute mean values for each
component and to assess classification accuracy.

Fig. 2| presents classification accuracies when replacing all direct contributions of MSAs or MLPs up
to a given layer with their dataset-wide mean. Two key observations emerge. First, ablating MLPs
causes only a marginal drop in accuracy, indicating that MLPs have a minimal direct impact on
predictions. Second, the effect of ablating MSAs varies across layers: replacing early MSAs has little
effect, while modifying the last two leads to a notable accuracy decline, highlighting their critical
role in final predictions.

These findings suggest that, unlike in LMs, editing MLP layers in ViTs is less likely to yield significant
changes in predictions. Therefore, alternative strategies should be explored for effective model editing
in ViTs.

3.2 The Devil is in the Spurious Correlations

Based on these observations, we hypothesize that many errors in ViTs are caused by the model relying
on misleading features, a phenomenon known as spurious correlation [[7, 24} [11]]. Simply fine-tuning
MSA modules using the edit sample can distort the features extracted by attention heads, affecting
predictions on unrelated data and resulting in low edit locality. A more effective strategy may be to
remove the influence of misleading features only for the target samples.

To test this hypothesis, we conduct an empirical study to examine whether removing the direct
contribution of a feature from the image representation can facilitate error correction. We use the
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Figure 3: Relative change in the logit gap between ground-truth and incorrect classes after ablating attention
heads or MLP module at different layers. For attention heads, we show the maximal and minimal relative
changes after ablating four heads. Results are based on ViT-B/16.

same editing dataset as in [32]]. For each editing case, we remove the direct effect of the feature
extracted by a specific component, such as an MLP module or an attention head in MSA modules,
and report the relative change in the logit gap between the ground-truth class and the incorrectly
predicted class. Specifically, let g, and g denote the logit gaps between the ground-truth class and
the incorrectly predicted class before and after feature removal, respectively. The relative change is
calculated as 9—90/|g,|. A relative change greater than 100% indicates that the prediction is likely to
shift from the original incorrect class to the ground-truth class.

The results in Fig. [3]show that ablating certain attention heads can achieve a positive relative change,
even greater than 100%. This supports our hypothesis that errors are often caused by misleading
features extracted by specific attention heads, and that removing their direct effect can correct these
errors. Additionally, we observe that ablating attention heads has a much greater impact than ablating
MLP modules, further confirming the central role of MSA modules in ViT predictions.

4 RefineViT: Model Editing for ViT

In the previous section, we show that misclassifications in ViTs often stem from misleading features
extracted by attention heads. Building on this observation, we propose RefineViT—a two-stage model
editing framework designed to mitigate such biases. In the first stage, we identify the attention heads
most responsible for misclassification. In the second stage, we temporarily disable (ablate) them
to create a modified model that corrects the error. To improve edit locality, we use the knowledge
gained from this ablation to update the original model, enabling it to fix the error while preserving
predictions on unrelated inputs.

4.1 Identify the Cause of Errors

Our analysis shows that attention heads in the later MSA layers have a strong direct impact on the
model’s final predictions. Accordingly, we focus on these layers to find the specific heads most
responsible for misclassification.

To this end, we define an ablation matrix A, where each element A;;, € {0, 1} indicates whether the
h-th head in [-th layer is ablated (A;, = 1) or not (A;;, = 0). When a head is ablated, its feature is

replaced by zero in the representation. Therefore, the image representation after ablation i)(:c, A)is
calculated as

L H L H
Pz, A) = [Z°)as + Z[MLP Nets + > Y (1= Ap)h"" = @(@) = Y > Auwh'", (5

=1 1=1 h=1 1=1 h=1
where ®(x) is the original image representation.

To measure how effective an ablation is at correcting an error, we define the following utility function:
U,y,5,4) = f (b, 4)) - f (b, 4)) | ©
Yy Yy

where @ is the input image, y is the ground-truth label, § is the incorrect prediction, and f(-),
represents the output logit for class y from the pretrained classifier.



From the perspective of ablation study, U(x, y, 9, A) — U(x, y, §, 0) simultaneously quantifies the

of direct effect of the ablated attention heads to the incorrectly predicted label § as f (®(z)), —

f (i(m, A)) _and the negative direct effect to the ground-truth label y as f (®(z)), — f (fi)(a:, A)) .

7l y
Since U(x, y, §,0) is constant, we can ignore it and identify the attention heads within these layers
that contribute most to prediction errors by maximizing this utility

A" =argmax Uz, y, 9, A). @

However, solving the problem regarding the binary matrix A is NP-hard and generally requires
searching over all the possible solutions, which is infeasible. To make this tractable, we consider abla-
tions where only one head is ablated at a time. For each head, we compute the utility U (x, y, 9, 1;5),
where 1,5, is a matrix with a single 1 at position (I, h) and 0 elsewhere. We then rank all L x H
heads by their utility scores and select the top 7} heads with the highest scores. Empirically, we
observe that the selected heads are predominantly located in the later layers, consistent with our
earlier findings. We denote the set of these heads as Sy and construct the approximate optimal

ablation matrix A by setting Alh =1 for (I, h) € Sapiae and 0 otherwise.

In most cases, only a single error sample is available for editing, so we use zero-ablation to estimate
the contribution of each attention head. When more error samples or correctly classified samples are
available, more advanced techniques, such as mean ablation, can be used for a finer analysis. Details
of these extended methods are provided in Appendix

4.2 Refine ViT Through Representation Rectification

After identifying the attention heads that cause errors, a straightforward way to fix mistakes is to
directly remove their direct contributions from the image representation. For binary classification
tasks, this simple ablation can already lead to large improvements. Specifically, we compute the

ablated image representation as (z, A).

However, in more complex settings such as multi-label classification, simply removing these features
can hurt performance on other classes. This is because the ablated heads may still be important
for unrelated predictions. Moreover, modifying the forward pass to remove features can make
deployment more difficult.

To address these issues, we introduce a feature projection matrix P(f) € R4*?, where @ is the
trainable parameters and d is the dimension of the image representation. This matrix is applied after
the Transformer blocks and rectifies the image representation as follows:

L H
" (@) = P(0)®(2) = P(0)[2°)as + Y PO)IMLP'(Z")]as + 3 > POR™".  ®)
=1

=1 h=1

To achieve edit success, we propose transferring knowledge from the ablated representation, i‘(a:, A),
to the projected representation by minimizing the MSE loss for samples where the ViT fails to make
accurate predictions (x € Dryjjeq) as follows:

2

£success(‘9) = ]EzeDfaﬂed P(e)q)(ﬂ?) — &)(w, A)

©))

To achieve edit locality, we want the projection to keep the representation unchanged, preserving the
model’s original behavior. We use another MSE loss to align the representations before and after
projection for samples where the model is already correct ( € Dygyccess) as follows:

Clocality(g) = EmEDsuccess ||P(0)(I)(:'E) - ®(m)|‘2 ° (10)
If Dgyccess 18 NOt available, we constrain the projection matrix to be close to the identity matrix [ as

ﬁlocalily(e) = HP(G) - ]”i“ . 1

We combine these two objectives with the standard cross-entropy loss Lcg(6) for classification. The
total loss for learning the projection is:

0" = argmin [Lsuccess(0) + BLiocatity (0) + Lcr(0)], 12)
0
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Figure 4: Editing results for ViT/B-16.

where « and (3 are hyperparameters that balance error correction and locality preservation.

This projection-based approach allows us to correct specific errors while minimizing side effects on
other predictions. Importantly, it can be easily integrated into ViT-based models, including those like
CLIP-ViT that use cosine similarity for classification, since the projection only modifies the image
representation before the classifier.

5 Related Work

Model editing techniques [22} 2| 133]] aim to refine the behavior of LLMs for specific input-output
pairs, while preserving their performance on other data. These methods can be grouped into three
main categories: classifier-based, meta-learning-based, and locate-then-edit methods.

Classifier-based model editing methods retain the pre-trained parameters and use an auxiliary classifier
to determine behavioral modifications. This method ensures that the modifications are applied only
to targeted samples, leaving the original model predictions unchanged for unrelated samples outside
the edited scope. Locate-then-edit methods first identify model parameters associated with specific
knowledge, often through causal tracing, and then directly update these parameters to achieve the
desired edits. Meta-learning-based methods utilize a hyper-network, known as an editor, to update
parameters. This editor is meta-trained across multiple editing tasks to learn how to generate the
necessary updates based on the provided edit samples. For a comprehensive review of these methods
for language models, please refer to [33]].

Despite its strides in language models, adapting similar techniques to visual models like Vision
Transformers (ViTs) and CLIP remains largely untapped. [26] adapted classifiers in convolutional
neural networks to mitigate concept-level spurious features by mapping misleading visual concepts to
correct targets. However, this requires prior knowledge of the erroneous visual concept, its location,
and the target concept, which may not always be available. Another line of work [[1} 5] proposes to
interpret model components and ablate spurious components to rectify errors. Yet, these methods also
rely on knowing which visual concept triggers the error. Recently, [32] introduced a method inspired
by LMs editing techniques, which fine-tunes MLP modules in ViTs and employs a hyper-network
to determine where to apply edits. However, as discussed in Section 3] this approach may yield
suboptimal performance due to fundamental differences between LMs and ViTs.

Our method shares the goal of correcting errors by removing misleading features, as in [1} 15} [16 26]].
However, unlike these approaches, we identify spurious features using a data-driven strategy, without
requiring prior knowledge of biases or their locations. This makes our method more practical for
real-world scenarios where such information is not readily available.



Table 1: Average-group accuracy (%) and worst-group accuracy (%) on the Waterbirds Dataset. Methods
marked with an asterisk (*) use additional data for training or validation. The best results are highlighted in
bold, while the second-best results are underlined.

M \ VIiT-B/16 \ ViT-L/14 \ VIT-H/14
ethod
| Avg (1) Wst. () | Avg. (D) Wst. (1) | Avg. (1) Wst. (1)

Base 72.8 45.6 75.5 47.7 68.6 37.2
Tip-Adapter (training-free) 74.4 46.9 77.4 52.6 70.3 38.0
Tip-Adapter (training-based) 76.3 49.9 78.0 52.2 74.8 59.3
RefineViT (ours) 81.1 61.4 85.5 72.1 75.9 51.3
TextSpan * 78.5 57.5 84.4 729 72.9 433
RefineViT (ours) * 80.4 65.9 85.6 75.6 75.9 51.3

6 Experiments

We evaluate the proposed method, RefineViT, on the ViT editing benchmark from [32], the Binary
Waterbirds dataset [25]], CelebA [19], ImageNet-R [13], and ImageNet-A [14]. Our experiments are
designed to answer the following research questions: Q1: Does RefineViT, which edits the MSA
modules, outperform state-of-the-art methods that primarily focus on editing the MLP modules, in
terms of both editing success and locality in ViTs? (Sections[6.I) Q2: Can RefineViT generalize
to other ViT-based models such as CLIP-ViT? (Section Q3: Why does RefineViT work?
Specifically, is it effective in identifying the attention-head-level features responsible for prediction
failures? (Appendix[C) Ablation studies and sensitivity analyses are provided in Appendix [D}

6.1 Edit success and edit locality

To address Q1 and assess RefineViT’s editing success and locality, we evaluate it on the benchmark
proposed by [32]]. This benchmark collects misclassified samples by ViTs from naturally underrep-
resented images and Al-generated images. Further details about this benchmark are provided in
Appendix [B.1]

Evaluation Metrics. Following the experimental setup in [32], we evaluate all model editing methods
on the single-sample editing task and compare their performance using three evaluation metrics: 1)
Success Rate (SR): the prediction success rate of the edited model on the single sample used for
correction; 2) Generalization Rate (GR): the accuracy of the edited model on neighboring samples
within the editing scope; 3) Locality Rate (LR): the accuracy of the edited model on unrelated samples
outside the editing scope.

Competing Methods. We rigorously evaluate RefineViT under the same conditions as [32], and
compare its performance with recent model editing methods as follows:1) Learning-Where-To-Edit
(LWE-ViTs) [32]: A meta-learning-based approach that selects edit locations within the 8th to 10th
MLP layers in ViT-B/16; 2) Standard Fine-Tuning (FT): standard fine-tuning targeting the 8th to 10th
MLP layers; 3) FT-{5: extends standard fine-tuning by incorporating 5-norm regularization; 4) KE
[2]] and 5) MEND [22]: leverage hyper-networks to guide parameter updates in the last three MLP
layers; 6) T-Patcher [17]]: introduces and trains a small set of additional neurons in the final MLP
layer; 7) SPT [12]: sensitivity-aware, parameter-efficient fine-tuning; 8) ROME [21]]: modifies the
last MLP layer to update specific factual associations; 9) LoRA [15]: low-rank updates to all MSA
layers in the Transformer.

Main Results. Since most methods achieve nearly 100% SR, demonstrating their effectiveness in
correcting single predictive errors, we focus on the GR-LR curve in Figll] As shown, RefineViT
outperforms LWE-ViTs [32], which is the previous state-of-the-art on this benchmark, and achieves
substantially better GR-LR performance than all baselines. This improvement likely stems from
the fact that most existing methods (LWE-ViTs, FT, FT-{s, KE, MEND, T-Patcher, ROME) focus on
editing MLP layers, a strategy inspired by findings in language models that highlight the efficacy
of modifying MLP modules for NLP tasks. In contrast, RefineViT targets the last few MSA layers,
which proves more effective for computer vision tasks. Although LoRA also targets MSA layers, it
updates all of them directly and simultaneously, resulting in a large number of trainable parameters
and potential distortion of attention head features.
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Figure 5: Comparison of RefineViT and Standard Fine-Tuning with ViT-L/14. From left to right, the first
two figures show the average accuracy for the target classes and other classes on the Waterbirds + ImageNet-R
combined dataset, while the next two figures display the corresponding results for the ImageNet-A dataset. We
repeat the experiment with three random seeds and report the average results.

Moreover, RefineViT is highly efficient, as it avoids modifying the Transformer and instead trains a
lightweight projection matrix. This allows updates in under 0.3 seconds for 50 epochs on a single
NVIDIA A100 (40GB) as the output of the backbone can be cached and reused. In comparison,
LWE-ViTs takes around 12 seconds for fine-tuning under the same conditions, without considering
the extra cost of training a hyper-network before editing.

6.2 Generalization to ViT-Based Models

Although RefineViT is designed for ViTs, it generalizes effectively to ViT-based models such as CLIP-
ViT, which uses cosine similarity between textual and visual embeddings for zero-shot classification.
We evaluate RefineViT within CLIP-ViT for both performance enhancement and model editing tasks.

Performance Enhancement and Debiasing. We evaluate RefineViT on the Binary Waterbirds [25]]
and CelebA [[19] datasets, both widely used benchmarks for CLIP debiasing. Our goal is to enhance
CLIP-ViTs’ zero-shot ability to distinguish between waterbirds and landbirds despite background
interference in the Binary Waterbirds dataset, and to improve its accuracy in predicting age (young
vs. old) in the CelebA dataset. More implementation details can be found in Appendix [B.2]

Competing Methods. On the Waterbirds dataset, we compare RefineViT with: (1) TextSpan [3],
which treats background as a known spurious feature and uses human expertise to analyze over
5,000 test images and identify spurious attention heads; and (2) Tip-Adapter [35], a robust method
that improves CLIP-ViT’s accuracy while preserving its zero-shot capabilities. We evaluate both
its training-free and training-based variants. For the CelebA dataset, where spurious features are
unknown, we compare only against Tip-Adapter. Since these baselines focus on binary classification
rather than model editing, we use a simplified version of RefineViT, applying zero ablation in the
second stage instead of learning a projection matrix.

Results. Table || presents the performance of various methods and CLIP-ViT variants on the
Binary Waterbirds dataset. We report both average and worst-case accuracy across the four bird
groups (landbirds on land, landbirds on water, waterbirds on water, and waterbirds on land). For
CelebA, Table 2] shows the results of RefineViT and Tip-Adapter in predicting the ‘Young’ vs. ‘Old’
attribute using CLIP-ViT-B/16. Key observations include: (i) Given the same number of samples per
class, RefineViT outperforms Tip-Adapter on both datasets. (ii) RefineViT also generally surpasses
TextSpan on Waterbirds, despite using fewer samples, incurring lower computational cost, and
requiring no human intervention. Its performance can be further improved with a validation set.

Model Editing. We evaluate RefineViT for CLIP-ViT in model editing scenarios using ImageNet-A
and a combined dataset of Waterbirds and ImageNet-R. Additional details are available in Appendix

Results. We compare RefineViT with standard fine-tuning, which also updates the projection matrix
using the same samples. As shown in Fig. 5] RefineViT achieves higher accuracy on target classes
while substantially mitigating performance drops on non-target classes, avoiding the common issue
caused by overfitting in standard fine-tuning.

Ablation study and Sensitive Analysis. We conduct experiments to analyze the impact of the
hyperparameters « and £ in the loss function Eq. (I12)), the number of candidate attention heads



selected (T') in stage one, the update strategies employed, and other factors to fully assess our method.
The results and analyses are presented in Appendix [D]

7 Conclusion and Future Directions

In this work, we study model editing for vision transformers and uncover a key difference from
language models. While MLP modules are often the main editing targets in language models, we
find that the predictions of vision transformers are more sensitive to changes in the multi-head
self-attention layers. Based on this finding, we introduce RefineViT, a two-stage framework that first
identifies the attention heads responsible for prediction errors and then refines their representations
to correct these errors. Experiments on standard benchmarks show that RefineViT achieves SOTA
performance in both edit accuracy and generalization. The framework also generalizes well to
ViT-based models such as CLIP-ViT, demonstrating its broader applicability. Additional ablation and
sensitivity studies confirm the robustness and effectiveness of the proposed approach.

Our framework still faces several limitations. The current analysis considers only the direct effect
(first-order effect) of individual attention heads and does not account for the indirect effect that may
accumulate across layers. Incorporating these higher-order effects may further improve reliability.
In addition, our experiments focus on image classification tasks. Extending RefineViT to dense-
prediction tasks will require new attribution strategies and evaluation protocols. Finally, model
editing involves a trade-off between success, generalization, and locality. Although our projection-
based refinement helps reduce unintended side effects, achieving complete locality remains an open
challenge for future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately reflect the paper’s
theoretical and experiments results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the limitations section in appendix ??.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results. The formulas are numbered and
cross-referenced.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The implementation details are shown in Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: The code will be open-sourced upon acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The implementation details are shown in Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard deviations over multiple random seeds are reported for experiments
where applicable.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The computer resources are provided in section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research meets the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: This paper presents work whose goal is to advance the field of Model Editing
for ViTs. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: Societal impacts are not applicable to this paper
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The work is solely based on open-sourced dataset, models and code.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not introduce any new datasets or models.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: This paper does not involve any crowdsourcing or research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: This paper does not involve any crowdsourcing or research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Head Identification Using Mean Ablation

The utility function in Eq. (I8, which is based on zero-ablation, is designed for the typical model
editing scenario where only a single error sample is available. To extend this approach to cases where
multiple error or correctly classified samples are present, we introduce a mean-ablation strategy.
Specifically, we assume access to three sets of data: (1) a set of misclassified samples with ground-
truth label y and predicted label §, denoted as W, 4; (2) a set of correctly classified samples with
ground-truth label y, denoted as C,; and (3) a set of correctly classified samples with ground-truth
label 9, denoted as Cy. For each set, we compute the average feature for each attention head, denoted

as ﬁﬁ,’(}y " ﬁlc’:, and l_zég, respectively. The mean-ablated representation of an input x is then defined
as
®(x, ht") = ®(x) — AH" 4+ hUP, (13)

We propose four utility functions to assess the contribution of each attention head to model predictions,
each leveraging different combinations of the available data sets.

Utility A. To evaluate the influence of attention head h'", we first consider replacing its feature in
misclassified samples W, 4 with the average feature from correctly classified samples C,, i.e., hlcf

We then measure whether this replacement shifts the model’s prediction towards the correct label 3
and away from the incorrect label 4:

U~ By, . {f (3@ AE) ~ 1 (B RE) } . (14)

Yy

A large value of Ui’xh indicates that the head in question plays a significant role in the model’s
misclassification, as its replacement leads to a notable correction in the prediction.

Utility B. While Utility A focuses on misclassified samples, Utility B takes the opposite perspective
by considering correctly classified samples in C,,. Here, we replace the attention head feature with the
average from misclassified samples fzi}(}y 5 and measure the extent to which this substitution causes
the prediction to deteriorate, i.e., to shift towards the incorrect label §:
UY* = Egec, {f (é(m,ﬁﬁ;g A))A —f (ci(az,ﬁlv’c‘ A)) ] . (15)
Y ' Y

Y,y

A higher value of U%h suggests that the head, when replaced with features from misclassified
samples, pushes the model towards making the same error, highlighting its contribution to in incorrect
predictions.

Utility C. Utilities A and B focus on samples with the same ground-truth label but different predictions.
In contrast, Utilities C and D examine samples that share the same predicted label but have different

ground-truth labels. For Utility C, we consider misclassified samples in W, 4 and replace the attention

head feature with the average from correctly classified samples of class ¢, i.e., l_zég:

U = Bacw, ;|1 (Bl hl) - 1 (BaRl2) |- Y

Intuitively, if the attention head is causal for class g, this replacement will further reinforce the
incorrect prediction, resulting in a small Uéih. Conversely, if the head is misleading, the replacement
will have a limited effect, leading to a larger Ulclh than that of causal attention head.

Utility D. Finally, Utility D evaluates the effect of replacing attention head features in correctly
classified samples of class 7, i.e., Cy, with the average from misclassified samples i_li/’\};y .

UL = e, {f (@(m,hwyvg))g —f (@(m,hlv’vﬁw))y] : a7
Since the data in W, ; is misclassified, the attention head features associated with the incorrect class
4, which are spurious features, tend to dominate the image representation, while the contribution from
causal features relevant to the true class y remains weak. Consequently, replacing the misleading
heads (those aligned with ) further increases the model’s prediction confidence for class g, whereas
replacing the causal heads (those aligned with y) enhances the prediction for the correct class y. As a
result, the misleading heads exhibit large values of U Lh while the causal heads correspond to smaller

Lh
Uy values.
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Summary of Utility Scores. We propose four utility scores to analyze the role of attention heads. The

first two, U Il4’h and U4", compare samples with the same ground-truth label but different predictions.
These scores help identify attention heads that contribute to inconsistent or unstable predictions. In

contrast, Uéjh and Ugh compare samples with different ground-truth labels but identical predictions,
highlighting attention heads that may cause the model to confuse distinct classes.

Figure [] illustrates these concepts using the Waterbird dataset [25], where the goal is to classify
images as waterbirds or landbirds. In this dataset, the background (water or land) is a common source
of spurious correlation. Since the four utility scores are designed to capture different types of features,
but their specific behavior is difficult to validate in general, we leverage this known spurious feature
to test them. By selecting failed samples in which background plays a key role, we can examine
whether the scores respond as expected.

Specifically, using Ui{h and U4", we examine two types of samples: one correctly predicted as a
waterbird with a water background, and another incorrectly predicted as a landbird, despite being a
waterbird with a land background. If an attention head focuses on the background, it may help in the

first case but harm in the second, indicating unstable behavior. Ui"h and Ugh are proposed to identify
these type of attention heads.

On the other hand, Ué:h and U,lj’h focus on cases where the model predicts the same label for two
semantically different samples, such as a waterbird on land and a landbird on water, both predicted
as landbirds. Attention heads that rely on background features can mislead the model in both cases,
suggesting they encode spurious correlations that negatively affect generalization. Ué}h and Ugh are
proposed to identify these attention heads.

Landbird
! Water background

Model J

—_ Landbird

Landbird

Model J

——>  Waterbird

Waterbird
1 Land background

Waterbird
‘Water backgroun

Landbird

Figure 6: Illustration of utility scores on the Waterbird dataset. The computation of the four
utility scores does not require carefully selected samples or prior domain knowledge. The examples
shown here are chosen solely to illustrate the properties of the scores.

Ranking and Ensembling of Utilities. Each utility score (U l’h, Ullg’h, U l’h, Ullj’h) produces a ranked
list of attention heads. For each utility, we select the top 7" heads, and for each ¢ from 1 to 7', we
define S; as the set of the top ¢ heads. To determine the optimal set of heads to ablate, we evaluate
the validation utility of each candidate set S; as follows:

U(S) =Eacn,s |F(2@)— Y BM@) - 3 f(e@- > »"@) |, a8
hlhes; Yot v/ #ygt hbhesy Y
where D 4 denotes the data set consisting of all available samples and y; refers to the ground truth
label for each corresponding image. The candidate set Sypjae With the highest validation utility is
selected for ablation.

Summary of the Procedure. For model editing tasks with multiple available samples, the first
stage of RefineViT identifies the attention heads most responsible for prediction failures through the
following systematic process:

1. Score Calculation: For each attention head, compute all four utility scores (U l’h, U]léh,
U lclh, Ugh) as permitted by the available data.
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2. Candidate List Generation: For each utility, rank the attention heads in descending order
and select the top 7" heads to form a candidate list.

3. Ablation Candidate Generation: For each candidate list, iteratively select the top ¢ heads
(for t = 1 to T') as ablation candidates, denoted as S;.

4. Validation Utility Evaluation: For each ablation set S;, evaluate the validation utility
(Eq. on all available samples. The set S; with the highest validation utility is chosen as
the final set of attention heads for ablation, i.e., Saplate-

This strategy enables RefineViT to systematically identify and ablate the attention heads that most
contribute to prediction errors, leveraging all available data for effective model editing.

B Experiment Details and Extra Results

B.1 More Details in Section [6.1]

The benchmark introduced by [32] comprises 16 types of misclassification for natural images and 22
types of misclassification for Al-generated oil painting images on ViT-B/16. Each sample serves as a
single reference point for model editing, simulating a scenario where only one misclassified sample is
available for correction. Other samples exhibiting the same type of prediction error as the reference
sample are treated as neighboring samples within the editing scope for the generalization rate (GR)
computation. Furthermore, 2,071 carefully curated images near the decision boundary of ViT-B/16,
sourced from the validation sets of ImageNet-1K [3], ImageNet-R [13]], and ImageNet-Sketch [30],
are used as unrelated samples outside the editing scope for the calculation of the locality rate (LR).

For RefineViT, we fix the number of training epochs to 50 and use the Adam optimizer with a
learning rate of 0.00002. For simplicity, the hyperparameter [ is set to 0. We evaluate the method
using @ € {10,50,100}. For each value of «, we apply our approach to each sample in the
benchmark—treating it as the sole available failed sample—and report the average performance
across three evaluation metrics.

B.2 More Details in Section[6.2; Performance Enhancement and Debiasing Scenarios

We randomly select 10 samples per class—waterbirds and landbirds for the Waterbirds dataset [235]],
and young and old celebrities for the CelebA dataset [19]—including both correctly and incorrectly
predicted instances from CLIP-ViT. These samples are categorized into four groups based on their
ground-truth and predicted labels. We then apply the four utility scores described in Appendix [A]
skipping any scores that are infeasible due to insufficient data in the comparison set. If the comparison
reference set lacks sufficient data, we fall back to zero ablation rather than performing mean ablation.

Next, for each valid utility score, we obtain the top 7" = 15 attention heads, as a candidate list. Then
we compute the validation utility score defined in Eq. (18), repeat for all candidate lists and select the
attention head set with largest utility validation score as the final list.

For our method enhanced with a validation set, we perform ablation on the top ¢ (¢ = 1, 2..., T') heads
in each ordered candidate list and select the one that delivers the best performance on the validation
set, rather than relying on the validation utility score estimation.

Both our method and Tip-Adapter are evaluated in a zero-shot setting, leveraging CLIP-ViT’s zero-
shot capabilities without training additional classifiers. We show the results in Table [T] and Table

Stability Analysis To evaluate the stability of RefineViT, we run experiments on the Binary Water-
birds dataset with n = 10, 20, and 30 samples per class, using four random seeds for each setting.
Table 3| reports the mean and standard deviation of accuracies. RefineViT consistently demonstrates
robust performance improvements across varying sample sizes and different random initializations,
indicating its reliability and stability in data-scarce scenarios.

B.3 More Details in Section[6.2; Model Editing Scenarios

Datasets and Settings ImageNet-R [13]] contains a diverse set of real-world images that CLIP-ViT
can typically classify with high accuracy. We select the 18 classes with the most cartoon-style images
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Table 2: Average-group accuracy (%) and worst-group accuracy (%) for classifying *Young’ or *Old’
on the CelebA dataset using CLIP-ViT-B/16.

Method Avg. (1) Wst. (D)
Base 70.1 43.8
Tip-Adapter 73.7 52.2
Ours 74.1 56.4

Table 3: Stability Analysis Results Across Varying Sample Sizes on the Binary Waterbirds Dataset

| ViT-B/16 | ViT-L/14 | ViT-H/14
| Ave () Wst(D | Ave () Wst. () | Avgd)  Wst.(D)

Base 72.8 45.6 75.5 47.7 68.6 37.2

Ours(n=10) | 79.8+1.2 59.79+1.7 | 86.5+£08 71.9£08 | 745+£1.0 46.5+3.3
Ours(n=20) | 80.8£0.2 685+23 | 8.7+04 739+£11 | 749+£06 481=£10
Ours(n=30) | 80.4+0.2 65.8+£23 | 8.5+£04 724£21 | 73.5+£1.7 47.7+3.2

Method

from ImageNet-R and combine them with the Binary Waterbirds dataset [25], resulting in a new
dataset with 20 classes. Our objective is to improve performance on the bird classes while preserving
locality—minimizing unintended side effects on the ImageNet-R classes—using only 10 samples per
bird class.

Similarly, we also evaluate RefineViT on ImageNet-A [[14], a dataset of real-world images that are
commonly misclassified by ResNet models. We select the 10 most populous classes and target the
two worst-performing ones for improvement, while minimizing degradation on the remaining eight.
This is done using only 4 samples from each of the two target classes.

Implementation Detail All experiments use the Adam optimizer with a fixed learning rate of
2 x 10~°. We set both hyperparameters « and /3 to 1000. For the standard fine-tuning baseline, we
freeze the ViT backbone and train only an appended projection matrix—mirroring the architecture of
our proposed RefineViT. All experiments are repeated with three random seeds to reduce variance
due to random initialization.

C Experimental validation of attention heads identified

To validate whether RefineViT can effectively identify attention-head-level features responsible
for prediction failures in the first stage, we test our four mean-ablation-based utility scores on the
Binary Waterbirds Dataset [25]]. This dataset combines thousands of waterbird and landbird images
from the CUB dataset [29] with water or land backgrounds from the Places dataset [36]. Since the
classification task focuses on bird type, the background introduces a significant known spurious
correlation that can lead to prediction failures.

The core idea of our evaluation is that, while each utility score captures different aspects of attention
heads’ behavior in prediction failures, we design them to specifically identify heads that focus on
spurious background cues. This is achieved by selecting samples in which the background is expected
to be most prominent source of spurious correlation. By demonstrating that the attention regions
identified by these methods are largely consistent, we validate that the scores behave as intended.
This consistency is expected, as background-associated attention regions are fixed and should be
detectable by all score variants.

Specifically, for Uil’h and U4", we use images where the background aligns with the bird type in
correctly predicted samples and mismatches it in misclassified ones. For Uélh and U]ljh, to ensure
that the background consistently contributes to prediction errors, we include only samples with

mismatched backgrounds in both sets. An example of this selection is shown in Fig. [6]
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We select 5 samples in each set, resulting in a total of 30 samples, with different correctly predicted
samples used across the groups. We evaluate our method on the CLIP-ViT-L/14 model [18]] and select
the top 7" = 15 attention heads that induce the largest expected model shift for each utility score. The
selected attention heads for each score are reported in Table 4] while the jointly selected attention
heads and their corresponding TextSpan-generated[S5] textual descriptions are presented in Table[5]

The results, presented in Table show that Ui{h and Ujlg’h , as well as Uélh and Ujlj’h, produce identical
outcomes. This is expected, as each pair compares the same sets of samples and is based on the same
underlying principle, leading to approximately the same results.

Notably, 8 of the 15 selected attention heads are shared across four utility scores. We present these
shared attention heads along with their corresponding TextSpan-generated descriptions in Table 3]
Furthermore, we use Grad-CAM [27] to visualize the regions these attention heads focus on, as
shown in Figure

The TextSpan-generated textual descriptions and Grad-CAM visualizations consistently show that
the shared attention heads predominantly focus on background features. This confirms that the utility
scores in RefineViT-stage-one effectively identify attention heads associated with prediction failures,
thereby addressing Q3.

Table 4: Attention heads identified by each utility score. Those jointly selected attention heads are
highlighted in bold. (L22,H0) represents the (0+1)-th head in the (22+1)-th layer.

Utility A Utility B Utility C Utility D

(L23,H2) (L23,H2) (L23,H2) (L23,H2)
(L23,H5) (L23,HS) (L23,H6) (L23,H6)
(L22,H6)  (L22,H6)  (L22,H1)  (L22,H1)
(L22,H4)  (L22,H4) (L23,HS) (L23,HS)
(L23,H14) (L23,H14) (L23,H8) (L23,HS)
(L23,H3) (L23,H3) (L23,H0) (L23, HO)
(L22,H2)  (L22,H2) (L22,HS)  (L22, HS)
(L21,HO)  (L21,HO)  (L23,H3) (L23,H3)
(L23,H12) (L23,H12) (L23,H9) (L23,H9)
(L23,HS) (L23,HS) (L23,HI) (L23,HI)
(L22,H12) (L22,H12) (L21,H9) (L21, H9)
(L23,H9) (L23,H9) (L22,H9) (L22, H9)
(L22,H1) (L22,H1) (L23,H12) (L23,H12)
(L23,H6) (L23,H6) (L20,H10) (L20, H10)
(L21,H15) (L21,H15) (L22,HO)  (L22, HO)

D Ablation Study and Sensitivity Analysis

D.1 Sensitivity Analysis of hyper-parameter T in Stage One

For model editing tasks with multiple available samples, the hyper-parameter 7" in RefineViT stage
one does not directly determine the number of attention heads to be ablated; rather, it defines the
size of the pool from which we select attention heads based on their utility scores. Consequently, the
performance improvement from ablation tends to plateau once 7 is sufficiently large. To support this
claim, we conduct a sensitivity analysis on the Waterbirds dataset [25] using both CLIP-ViT-B/16
and CLIP-ViT-L/14. Each experiment is repeated with three random seeds to reduce variability. As
shown in Fig. 8] performance gains stabilize when 7" exceeds 10.

D.2 Ablation Study of Attention Heads Identified in Stage One
we conduct an ablation study to evaluate the contribution of the whole stage one in RefineViT.

Specifically, we remove the influence of stage one by treating all available samples equally during
stage two. In this setting, the model is trained to minimize the MSE with the initial model across
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Original Image Initial Model Identified by RefineViT  Identified by TextSpan

Figure 7: Grad-Cam visualization. We present four examples from the Waterbirds dataset, each
illustrating, from left to right: (1) the original image, (2) a heatmap showing the focus of the initial
model, (3) a heatmap highlighting the attention heads identified by RefineViT as correlated with error
sources based on all four utility scores, and (4) a heatmap highlighting the attention heads selected
by TextSpan as related to the background. In the task of distinguishing waterbirds from landbirds,
domain knowledge suggests that bird claws and beaks are causal features, whereas the background
often introduces spurious correlations that lead to prediction errors. As shown in the examples, the
attention heads identified by RefineViT predominantly focus on background regions. Moreover,
compared to TextSpan, RefineViT selects attention heads that exhibit a stronger emphasis on the
background and a weaker focus on causal features, despite TextSpan incorporating prior domain
knowledge and requiring substantially more human effort and computational resources.

all available samples, rather than partitioning the samples into two groups—one aligned with the
output of the ablated model and the other with that of the initial model. This variant is referred to as
RefineViT (ablated). As shown in Fig. 0] the results demonstrate that stage one, where the attention
heads responsible for errors are identified, effectively guides the error correction process for target
classes. This guidance leads to smoother and more robust learning curves across different random
seeds.

D.3 Ablation Study of Lgyccess(?) and Liocaiity ()
In accordance with Eq. (9), (I0), and (T2)), the fine-tuning loss function is defined as a combination of

the edit success 10ss, Lyccess(0), the edit locality 10ss, Ligcality (7). and the cross-entropy loss, Lcg ().
To evaluate the contribution of the first two components to edit success and locality, we perform
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Accuracy (%)

Table 5: Common attention head with their top-5 results of TextSpan.

Layer 23, Head 5

Layer 23, Head 3

Intertwined tree branches
Flowing water bodies

A meadow

A smoky plume

Blossoming springtime blooms

Bustling city square

Serene park setting

Warm and cozy indoor scene
Modern airport terminal
Remote hilltop hut

Layer 23, Head 8

Layer 23, Head 6

Photograph with a red color palette
An image with cold green tones
Timeless black and white

Image with a yellow color
Photograph with a blue color palette

Picture taken in Sumatra

Picture taken in Alberta, Canada

Picture taken in the geographical location of Spain
Image taken in New England

Photo captured in the Arizona desert

Layer 23, Head 2

Layer 23, Head 12

Image showing prairie grouse
Image with a penguin

A magnolia

An image with dogs

An image with cats

Image with polka dot patterns
Striped design

Checkered design

Artwork with pointillism technique
Photo taken in Galapagos Islands

Layer 23, Head 9

Layer 22, Head 1

ornate cathedral

detailed reptile close-up
Image with a seagull

A clover

Futuristic space exploration

A semicircular arch
An isosceles triangle
An oval

Rectangular object
A sphere

Avg. Acc (CLIP-ViT-B/16)

Wst. Acc (CLIP-ViT-B/16)

Avg. Acc (CLIP-ViT-L/14)

Wst. Acc (CLIP-ViT-L/14)
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Figure 8: Sensitivity analysis for T'

an ablation study on the *Waterbirds + Imagenet-R’ dataset by isolating each loss term. For clarity,
the weight of the cross-entropy loss is fixed at 1, while the weights of Lgyccess(€) and Liocaiity (€) are
donated as « and 3, respectively. All of our experiments are based on CLIP-ViT-L/14.

The ablation study for Licaiity (f) is performed by fixing the weights of Lcg(6) and Lgyecess(0) to 1
and 0, respectively, while varying the weight 5 of Liqcaiity (6) over the set {0, 10,100, 1000}. Each
hyperparameter configuration is evaluated using 20 samples selected under three fixed random seeds.

As shown in Fig[I0] increasing (3 generally leads to improvements in the average accuracies of
both unrelated and target classes. Moreover, the variance across the three seeds diminishes with
larger (3 values, suggesting a more stable and robust training process. These results indicate that an
appropriately chosen 3 serves as an effective regularizer, guiding the model toward more consistent
and generalizable representations.
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Figure 9: Performance comparison for the ablation study. The hyperparameters of our method are set

to a = B = 1000. For a fair comparison, the weight of the MSE loss in RefineViT (ablated) is also
set to 1000.
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Figure 10: Ablation study for Liocalicy (7).

Similarly, we perform an ablation study on Lgecess(f) by varying its weight o over the set
{0, 10, 100, 1000}, while keeping the weights of Lcg(6) and Liocaiey () fixed at 1 and 0, respec-
tively. As shown in Fig. [T} increasing « yields notable gains in the average accuracy of target
classes, accompanied by reduced variance across the three random seeds. In addition, the accuracy
of unrelated classes also improves. This suggests that, although the success 10ss Lgccess(f) may

conflict with the original locality objective £locality(9>; it helps mitigate overfitting, providing a more
generalizable alternative to standard fine-tuning.

D.4 Sensitivity Analysis of « and

Based on the ablation study of Lgyccess(€) and Liocaiity (¢) conducted on the *Waterbirds+ImageNet-R’
dataset using CLIP-ViT-L/14, we observe that when the weights for Lguccess(6) and Liocaiity (6) are
set to approximately 103, our method achieves optimal performance in terms of both edit success
and edit locality. To assess whether this weight range consistently yields stable performance across
different datasets on CLIP-ViT-L/14, we performed a sensitivity analysis of the coefficients a and 3
on ‘Waterbirds+ImageNet-R* and ‘ImageNet-A’. Specifically, we fixed the training epochs to 80 for
‘Waterbirds+ImageNet-R’ and 20 for ‘ImageNet-A’. We used 3 fixed random seeds and computed
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Figure 12: Sensitivity analysis on *Waterbirds + ImageNet-R’

the average accuracy (in percentage) on the target classes and the unseen unrelated classes for each
combination of o and 3.

As illustrated in Figures[I2]and [I3] we observe a consistent improvement in accuracy on both the
target and unrelated classes as « and (3 increase. Notably, the accuracy on the target classes reaches its
peak when « is approximately 1000 across both datasets. Furthermore, our results reveal a trade-off
between Lgyccess(6) and Lioeaiity (8). Specifically, when the coefficient o for Lyccess (0) exceeds 1000,
increasing the coefficient for Licality (¢) results in a degradation of accuracy on the target classes.
This phenomenon is observed in both datasets.

D.5 Qualitative Analysis of Individual Utility Score Effectiveness

In all experiments, we observe that when selecting the final list of ablated attention heads based
on their performance on available samples, Utility C and Utility D generally outperform Utility A
and Utility B in identifying heads for ablation. Notably, on the CelebA [19]] dataset, ablating only
the heads selected by Utility A and Utility B can significantly degrade performance, often leading
the model to predict all samples as belonging to a single class. This failure arises from the implicit
assumption behind Utility A and Utility B that the model is capable of fair prediction without systemic
bias.

In practice, however, models often rely heavily on a narrow set of features and can exhibit strong
bias toward dominant classes. For instance, when predicting whether a celebrity is young or old
in CelebA [[19], the CLIP-ViT-B/16 model tends to predict most individuals as "young". Although
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Figure 13: Sensitivity analysis on ImageNet-A

this yields high accuracy for genuinely young samples, it results in substantially lower accuracy for
older individuals. A plausible explanation is that the model relies on simplistic visual cues—such as
the presence of wrinkles—to make predictions: if wrinkles are detected, the model predicts "old";
otherwise, "young." Although this heuristic may be partially effective, it is insufficient, as not all
older individuals exhibit visible wrinkles.

Utility A and Utility B tend to identify attention heads associated with features that are important
but exhibit inconsistent behavior across correctly and incorrectly classified samples. In the case of
CelebA, this can lead to the unintended selection of heads tied to wrinkle-related features, which are
mistakenly flagged as harmful due to their differing influence on the model’s predictions across these
groups. As a result, ablating these heads removes features that are essential but not always correct,
which further amplifies the model’s bias and ultimately leads it to predict a single class for all inputs.

In contrast, Utility C and Utility D aim to identify attention heads that negatively impact both correctly
and incorrectly classified samples. This leads to more conservative and balanced modifications,
making them more effective in challenging cases like CelebA.

D.6 Update Strategies

In Section[3.2] we demonstrate that spurious correlations are a key factor contributing to prediction
failures in computer vision tasks. To mitigate the influence of misleading features in the learned
representations, RefineViT employs a trainable projection matrix after the transformer blocks as
an update strategy, rather than directly fine-tuning the later MSA modules, which may distort the
extracted features.

To further validate the effectiveness of this design choice, we compare it with LoRA, a widely used
update strategy for MSA modules. Specifically, we apply LoRA to the last two MSA layers during
the second stage of RefineViT, as these later layers have been shown to play a crucial role. Due to
its significantly higher computational cost compared to the original RefineViT, this experiment is
conducted only on one group from the Natural ViT Benchmark [32].

The rank in LoRA serves as a hyperparameter that balances fine-tuning capacity and the risk of
overfitting by controlling the number of trainable parameters. In our hyperparameter search, we find
that values of « € [0, 1] generally yield better performance. Accordingly, for each rank, we evaluate
LoRA with a € {0,0.1,0.5} and compare the results to the original RefineViT using the projection
matrix. As shown in Figure[[4] using LoRA in the last two MSA layers results in substantially worse
performance, despite requiring much greater computational resources. These observations further
support the effectiveness of our proposed update strategy.

D.7 Extension to Segmentation Task

To examine the adaptability of our method beyond image classification, we conduct a preliminary
experiment on a CLIP-based segmentation task following the setup in [5]]. In contrast to classification,
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Figure 14: Comparison of update strategies: LoRA vs. projection matrix

segmentation requires the model to process all patch tokens to predict pixel-level outputs, which
introduces additional challenges for attribution and decomposition during model editing. Using
a single edit sample, we apply our method to the segmentation model and evaluate the resulting
performance in terms of pixel-wise accuracy.

The edited model achieves higher accuracy on images similar to the edit sample and a slight improve-
ment in overall performance, as summarized below:

Model Similar Data Overall

Original CLIP-ViT 72.29% 76.78%
CLIP-ViT-Edited (Ours) 74.50 % 77.01%

These results suggest that our framework can be adapted to more complex vision tasks such as
segmentation, showing its potential generality beyond classification.
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