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Abstract

Bayesian optimization is a principled optimization strategy for a black-box objective func-
tion. It shows its effectiveness in a wide variety of real-world applications such as scientific
discovery and experimental design. In general, the performance of Bayesian optimization
is reported through regret-based metrics such as instantaneous, simple, and cumulative
regrets. These metrics only rely on function evaluations, so that they do not consider geo-
metric relationships between query points and global solutions, or query points themselves.
Notably, they cannot discriminate if multiple global solutions are successfully found. More-
over, they do not evaluate Bayesian optimization’s abilities to exploit and explore a search
space given. To tackle these issues, we propose four new geometric metrics, i.e., precision,
recall, average degree, and average distance. These metrics allow us to compare Bayesian
optimization algorithms considering the geometry of both query points and global optima,
or query points. However, they are accompanied by an extra parameter, which needs to be
carefully determined. We therefore devise the parameter-free forms of the respective metrics
by integrating out the additional parameter. Finally, we empirically validate that our pro-
posed metrics can provide more delicate interpretation of Bayesian optimization algorithms,
on top of assessment via the conventional metrics.

1 Introduction

Bayesian optimization is a principled optimization strategy with a probabilistic regression
model for a black-box objective function. It demonstrates its effectiveness and validity in a wide variety of
real-world applications such as scientific discovery (Griffiths & Hernandez-Lobatol 2020; [Kim et al., [2022;
and experimental design (Attia et al., [2020; Shields et al.l[2021; |Ament et al.||2023). These applications
sometimes require not only finding a global optimum in terms of function evaluations but also diversifying
the candidates of global solutions on a search space given. Notably, such a need to find diversified solution
candidates is demanded in many real-world scientific problems such as virtual screening (Graff et all [2021}
[Fromer et al.| [2024)) and materials discovery (Tamura et al) 2021} Maus et al 2023).

To measure the performance of Bayesian optimization, we generally utilize instantaneous, simple, and cumu-
lative regrets; each definition can be found in Section [2] These performance metrics all focus on measuring
how the function value of some query point is close to the function value of a global solution (or potentially
global solutions). However, they only assess a solution quality in terms of function evaluations, so that they
do not consider relationships between query points and global solutions, or query points themselves. In
particular, if the finding of multiple global optima is crucial, these regret-based metrics often fail in discrim-
inating global solution candidates that can diversify the candidates. In addition, it is difficult to evaluate
the exploitation and exploration abilities of Bayesian optimization.

In this paper, we propose new geometric metrics beyond the regret-based metrics for Bayesian optimization,
in order to mitigate the drawbacks of the conventional metrics and improve the understanding of Bayesian
optimization algorithms. In particular, four categories of our new metrics, i.e., precision, recall, average
degree, and average distance, are designed to evaluate how many query points are close to multiple global
solutions, and vice versa, or how query points are distributed. However, these metrics are accompanied by an
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Table 1: Comparisons between metrics for Bayesian optimization supposing that the corresponding metric
is computed at iteration ¢ where s is the number of global optima. GO Info., Multiple GO, and Additional
Parameter indicate a requirement of global optimum information, consideration to multiple global optima,
and need for an additional parameter, respectively. x and x* represent a query point and a global optimum,
respectively, and PF stands for parameter-free.

Metric Inputs GO Info. Multiple GO Additional Parameter
Instantaneous regret f(xe), f(x) v

Simple regret FOc), f(xa)seeos fx0), FOT) v

Cumulative regret f(x1), f(x2),..., f(xe), f(x) v

Precision X1,X2, .y Xty X1, X5, 00, Xy v v v
Recall X1, X2, vy Xty X1, X5y, Xy v v v
Average degree X1,X2, .y Xt v
Average distance X1,X2, ..., Xt v
PF precision X1, X2, .-y Xty X1, X5y, Xy v v

PF recall X1,X2, .., Xty X1,X5, ..., X5 v v

PF average degree X1,X2, ..., X¢

PF average distance X1,X2,...,X¢

additional parameter. For example, precision, recall, and average degree are needed to determine the size of
ball query, and average distance requires the selection of the number of nearest neighbors we are interested in.
To alleviate the need to choose the additional parameter, the parameter-free forms of the respective metrics
are also proposed. The additional parameter is integrated out by sampling it from a particular distribution.
The characteristics of diverse metrics are compared in Table

To explain the procedure of Bayesian optimization briefly, we cover Bayesian optimization first.

Bayesian Optimization. We are supposed to solve the following minimization problem:

xt = ar}%en;in f(x), (1)

where X C R? is a d-dimensional search space and f is a black-box function. We deal with f using a
history of query points and their evaluations in Bayesian optimization, so that we rely on a probabilistic
regression model to estimate the unknown function. In particular, we can choose one of generic probabilistic
regression models such as Gaussian processes (Rasmussen & Williams| 2006), Student-t processes (Shah
et all 2014} [Martinez-Cantin et al.| 2018), deep neural networks (Snoek et all [2015]), Bayesian neural
networks (Springenberg et al., |2016} [Li et all 2023), and tree-based regression models (Hutter et al.l 2011}
Kim & Choil, |2022). These regression models are capable of producing function value estimates over query
points in a search space and their uncertainty estimates, which are able to be used to balance exploitation
and exploration. By employing the regression models, an acquisition function to sample the next solution
candidate is defined. Probability of improvement (Kushner, [1964)), expected improvement (Jones et al.,
1998), and Gaussian process upper confidence bound (Srinivas et al.; |2010]) are often used as an acquisition
function. Bayesian optimization eventually determines the next query point by maximizing the acquisition
function. We can sequentially find a better solution repeating these steps in determining and evaluating
the query point. By the sample-efficient nature of Bayesian optimization, it is beneficial for optimizing a
black-box function that is costly to evaluate.

Before describing the details of metrics for Bayesian optimization, we summarize the contributions of this
work as follows:

(i) We identify the drawbacks of the conventional regret-based metrics, i.e., instantaneous, simple, and
cumulative regrets, for Bayesian optimization;
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(ii) We propose four geometric metrics, i.e., precision, recall, average degree, and average distance, and
their parameter-free forms;

(iii) We show that our new metrics help us to interpret and understand the performance of Bayesian
optimization from distinct perspectives.

We will release our implementation upon publication.

2 Instantaneous, Simple, and Cumulative Regrets

In Bayesian optimization, instantaneous, simple, and cumulative regrets are often used to report its perfor-
mance 2023)). Intriguingly, these metrics are suitable for not only evaluating the performance of
optimization algorithms but also conducting their theoretical analysis. Given a global optimum x* and a
query point x; at iteration ¢, an instantaneous regret is defined as the following:

= fxe) = f(x). (2)

It is noteworthy that this metric does not need to take into account multiple global optima because function
evaluations are only involved in the metric. The instantaneous regret represents the quality of every
immediate decision. Due to the property of a trade-off between exploitation and exploration in Bayesian
optimization, a series of instantaneous regrets in a single round tends to oscillate. Such oscillation comes from
exploration-focused and exploitation-focused decisions; rigorously speaking, it is hard to identify whether a
particular function evaluation is led by exploration-focused or exploitation-focused decision, but a dominant
factor, i.e., either exploration or exploitation, may exist when a query point is selected. Moreover, while the
oscillation of instantaneous regrets does not imply that exploration-focused evaluations always differ from
exploitation-focused ones, exploration-focused decisions are likely to obtain unexpected function evaluations
that are far from the best evaluation until the current iteration. For these reasons, it is unlikely to consider
the instantaneous regret as a solid performance metric to show the performance of Bayesian optimization.
As a straightforward alternative to the instantaneous regret, a simple regret is defined as the following:

= min f () — (), 3)
where x1,...,x; are t query points. The simple regret is equivalent to the minimum of instantaneous
regrets until ¢ iterations, which can represent the best solution out of ¢ solution candidates xy,xo, ..., X;.

Unlike the instantaneous regret, the simple regret is monotonically decreasing by the definition of . The
common goal of Bayesian optimization is to seek a solution that makes zero, which implies that the
best solution found by Bayesian optimization coincides with a global solution; if there exist multiple global
solutions, we cannot verify that all global solutions are sought by Bayesian optimization with this metric.
Furthermore, using , we can readily define a cumulative regret until iteration ¢:

Ry = Z T;ns7 (4)

which is also used as the metric of Bayesian optimization. Since 7" > 0, the cumulative regret is always
monotonically increasing.

Although instantaneous, simple, and cumulative regrets are representative metrics for empirically showing the
performance of Bayesian optimization and theoretically analyzing Bayesian optimization algorithms (Gar-
, , it is challenging to consider geometric relationships between query points and global solutions,
or query points themselves, verify whether multiple global optima are successfully discovered or not, and
measure the degrees of exploration and exploitation. To tackle the aforementioned challenges and provide
the better understanding of Bayesian optimization outcomes, we propose new geometric metrics for Bayesian
optimization in Section [3}
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Figure 1: Examples of how precision (upper panels) and recall (lower panels) are computed where three
global optima (red x) and ten query points (green +) are given. Selected points (blue dot) are marked if
they are located in the vicinity (yellow circle) of query points. The Branin function is used for these examples
and the colorbar visualized in each figure depicts its function values.

3 Geometric Metrics for Bayesian Optimization

In this section we introduce new geometric metrics for Bayesian optimization beyond instantaneous, simple,
and cumulative regrets. We would like to emphasize that the goal of our new metrics is to complement
the conventional regret-based metrics and provide more delicate interpretation of Bayesian optimization
algorithms in diverse realistic scenarios.

Suppose that we are given ¢ query points x1,Xa,...,%; and s global solutions xj,x3,...,x%. An indicator
function I(z) returns 1 if z is true and 0 otherwise.

3.1 Precision

*

We first define precision over x1,Xas,...,x; and xj,x3,...,x5:

t 2 2
Ve I |x — x5 <6
precisiong ({x1,Xa, ..., X}, {x],%x5,...,x5}) = Lzt =1 (I tz 3”2 — ), (5)

where § is the radius of ball query and V stands for a logical disjunction operation. The goal of this metric is to
count the number of query points in the vicinity of global optima. If a metric value is close to one, most query
points are located in the close region of global optima. In the spirit of Bayesian optimization, exploration-
focused decisions may decrease the values of this metric. Nevertheless, after evaluating a sufficient number
of query points, the metric values should increase if a Bayesian optimization algorithm appropriately works.

3.2 Reacall

*

Recall over x1,%2,...,%x; and x7,x35,...,x} is given by the following:

S Ve I(|lxy — x4]13 < 62
recalls ({x1, X2, ..., % }, {x], X5, ..., x5}) = iz V=l sl illz < ), (6)
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Table 2: Quantitative results on the examples shown in Figures and IR, SR, CR indicate instantaneous,
simple, and cumulative regrets, respectively. Note that Figure @ is presented in Section |§|

Precision Recall Average Degree Average Distance
60=20=40=66=20=46=60=26=40=6k=2k=4 k=6

Figure(l| 15.892 15.892 657.097 0.100 0.400 0.700 0.333 0.667 1.000 0.400 1.600 3.000 3.646 5.163 6.818
Figure 166.061 3.963 1278.801 0.200 0.350 0.750 0.667 0.667 1.000 1.000 4.700 8.200 2.114 2.790 3.347

Example IR SR CR

where § is the radius of ball query and V stands for a logical disjunction operation. Its goal is to count
the number of global optima in the vicinity of query points. If a metric value is one, all global optima are
located in close proximity to some query points. The values of this metric should become closer to one, if a
Bayesian optimization method successfully finds all global solutions.

3.3 Average Degree

Average degree over x1,Xa,...,X; computes the average of degrees over all query points:

t t
Yim1 2o Mlxi = x5 < 6%) — 1
t )

average-degrees ({x1,Xa,...,X;}) =

(7)

where § is the radius of ball query. The goal of this metric is to show how many points are mutually close
and eventually express an exploitation degree. For example, the metric value becomes one if all points are
located in a ball of radius § — it implies that all decisions are exploitation-focused.

3.4 Average Distance

Average distance over X1, Xs,...,X; is defined as the following:

Sicy Yy ki — xll21(x; € NNk (xs))
kt ’

(8)

average-distance, ({x1,Xa,...,Xt}) =

where NN (x;) is a k-nearest neighbor function to obtain k nearest neighbors based on the Euclidean
distance. It is to calculate how query points are distributed. If metric values are larger, query points are
well-distributed. As an extreme case with four query points in a two-dimensional search space, if all four
query points are located on the respective corners of the search space, it will be the maximum value. Thus,
this metric indicates the degree of exploration.

As presented in Figures [1] and and Table 2] we show two examples of four geometric metrics as well
as three conventional metrics for Bayesian optimization. The Branin function, which is employed in these
examples, has three global optimum (red x), and its search space is [[—5, 10], [0, 15]]. By using a fixed number
of random points (green +), i.e., 10 for Figure [l|and 20 for Figure metric values are reported in Table
As expected, our proposed geometric metrics are capable of considering geometric relationships between
query points and global optima, while instantaneous, simple, and cumulative regrets only take into account
the function evaluations of query points. However, as shown in the results with 6 =2,4,6 or kK = 2,4, 6, the
metric values are sensitive to § or k. To resolve such an issue, we introduce the parameter-free forms of our
metrics in Section

3.5 Parameter-Free Forms of New Metrics

To propose new metrics without additional parameters, which are hard to determine, we define the parameter-
free forms of four metrics, i.e., precision, recall, average degree, and average distance. In general, we integrate
out ¢ or k by sampling it from a particular distribution. Firstly, we describe parameter-free precision and
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Figure 2: Bayesian optimization results versus iterations for the Branin function. Sample means over 50
rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for parameter-free.

parameter-free recall:

precision({x1,Xa, ..., X¢ }, {x],x5,...,x:})

: Es [precisiong ({x1, X2, ..., X¢ }, {X], %5, ..., x5 })]

M
1 .. * * *
i E precisiong, ({x1,X2,..., X}, {X],X5,...,%x5}), (9)

i=1

recall({x1,Xa, ..., x¢ }, {x7,%5,...,x5}) = Es [recalls({x1, X2, ..., Xe }, {xX], %5, ..., x5 })]

M

1

i Zrecallgi({xl,xQ, X (X, x5, x5, (10)
i=1

where every ¢ is sampled from the exponential distribution with a rate parameter 1/d: 0; ~
Exponential(d; 1/d) and M is the number of samples. Since the exponential distribution, which is defined
with 6 > 0, is monotonically decreasing as § increases, it is suitable for our case. Specifically, the use of
this distribution for sampling M parameters naturally considers penalizing a farther region from a particular
point. Moreover, we provide such a rate parameter, in order to make the variance of the distribution larger
if the dimensionality of an optimization problem is larger. Similarly, parameter-free average degree is also
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Figure 3: Bayesian optimization results versus iterations for the Zakharov 4D function. Sample means
over 50 rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for
parameter-free.

defined:

average-degree({x1, X2, ...,x:}) = Es [average-degrees({x1, X2, ..., Xt})]
M

1
= Z average-degrees ({X1,X2,...,X¢}), (11)
i=1

where 01,02, ...,d) ~ Exponential(d; 1/d). Moreover, parameter-free average distance is defined:

average-distance({x1,Xa,...,x:}) = Es [average-distance, ({x1,X2, ..., X:})]
M

1
=7 Z average-distancey, ({X1,X2,...,X¢}), (12)
i=1

where every k is sampled from the geometric distribution with a success rate 0.5: k; ~ Geometric(k;0.5)
for i € [M], and M is the number of samples. The choice of the geometric distribution also resorts to its
decaying property, where the geometric distribution is essentially the discrete version of the exponential
distribution. To sample the number of neighbor neighbors not depending on any factors in a Bayesian
optimization process, we set a success probability as 0.5.
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Figure 4: Bayesian optimization results versus iterations for the Zakharov 16D function. Sample means
over 50 rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for
parameter-free.

4 Numerical Analysis

To exhibit the characteristics of our proposed metrics, we conduct numerical analysis on our metrics in diverse
popular benchmark functions. This analysis is designed to thoroughly understand our geometric metrics as
well as the conventional regret-based metrics. In particular, we will visualize metric values over iterations
for different metrics, and then show the Spearman’s rank correlation coefficients between metrics, based on
the results of the metric values over iterations. For the geometric metrics defined with 6, ¢ = max-dist(X’)/10
where max-dist(X) is the maximum distance of a search space X. If X = [[0,10],[-5,10],[—10,10]],
max-dist(X) = +/725. In this numerical analysis, we normalize all search spaces to [0,1]¢ in order to
fairly compare diverse benchmarks and various algorithms. Thus, max-dist(X) = v/d in these cases. In
addition, we use k = min(max(t/5,1),5) for the average distance. For our parameter-free metrics, M = 100.
Moreover, we evaluate 500 points for each algorithm where 5 initial points sampled from the uniform distri-
bution are given, and repeat each algorithm 50 times for all experiments. For batch algorithms, a batch size
is set as 5. Consequently, 100 batches are sequentially selected so that 500 points are acquired.

Baseline Methods. Surrogate models of all methods are implemented with Gaussian processes with

Matérn 5/2 kernels (Rasmussen & Williams|, 2006) and we use either expected improvement (Jones et al.
1998) or Gaussian process upper confidence bound (Srinivas et all,[2010) for the acquisition function of each
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Figure 5: Spearman’s rank correlation coefficients between metrics for different benchmark functions such
as the Branin, Zakharov 4D, and Zakharov 16D functions. Red regions indicate the coefficients with NaN
values. More results are depicted in Figures 26| and
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Figure 6: Spearman’s rank correlation coefficients between metrics for different Bayesian optimization algo-
rithms with the expected improvement.

baseline method. To find kernel parameters of the Gaussian process regression model, marginal likelihood is

maximized using BFGS (Nocedal & Wright, [2006)). Moreover, L-BFGS-B (Byrd et all [1995)) is employed in

optimizing an acquisition function with 128 initial points. We utilize the following baseline strategies:

(i) Random search: This is a random algorithm to select points from the uniform distribution;

(ii) Bayesian optimization: It is a vanilla Bayesian optimization algorithm, which is denoted as BO;

(iii) Batch Bayesian optimization with random search: This approach, which is denoted as BBO Random,
selects a single point using the vanilla Bayesian optimization and the other points using random search
in the process of selecting a batch;
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Figure 7: Spearman’s rank correlation coefficients between metrics for different Bayesian optimization algo-
rithms with the Gaussian process upper confidence bound.

(iv)

(vi)

(vii)

Batch Bayesian optimization with a constant (Ginsbourger et all [2010): It sequentially selects each
point in a batch where a fake evaluation with a particular constant is provided every acquisition. After
acquiring a batch, query points in the batch are evaluated. The fixed constant is set as 100 and this
method is denoted as BBO Constant;

Batch Bayesian optimization with predicted function values (Ginsbourger et al.,[2010): This strategy is
similar to BBO Constant, but the evaluations of select points are set as the posterior means of Gaussian
process regression. It is denoted as BBO Prediction;

Batch Bayesian optimization with pure exploration (Contal et al.|2013): This method, which is denoted
as BBO PE, sequentially chooses points to evaluate using Bayesian optimization with pure exploration,
while the first query point is selected by the vanilla Bayesian optimization. Since the posterior variances
of Gaussian process regression do not depend on function evaluations, the acquisition strategy of pure
exploration can be run without evaluating query points;

Batch Bayesian optimization with local penalization (Gonzalez et al. 2016): This algorithm, which
is denoted as BBO LP, sequentially determines a batch of query points by penalizing an acquisition
function with a local penalization function.

We do not necessitate confining Bayesian optimization methods to batch Bayesian optimization. However,
in order to show difference between metrics by utilizing the inherent nature of batch Bayesian optimization
methods on the diversification of query points, we adopt them as baseline methods.

4.1

Analysis on Metric Values over lterations

We report the arithmetic means of metric values and their standard errors of the sample mean, as illustrated
in Figures 2] B} and [] and Figures [I1] to 24] which are included in the appendices. Empirical analysis
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with a total of 11 metrics is demonstrated by optimizing several benchmark functions through Bayesian
optimization. We find that the metric values of instantaneous regret, simple regret, average distance, and
parameter-free average distance generally decrease as Bayesian optimization iterates. On the other hand, the
metric values of the other metrics such as cumulative regret, precision, recall, average degree, parameter-free
precision, parameter-free recall, and parameter-free average degree tend to increase, as iterations proceed.
These results are expected because of the goals of the respective metrics.

As shown in Figure [2] although the metric values of the simple regret become closer to zero and the values of
the cumulative regret also converge to specific values for some algorithms, the values of the parameter-free
recall do not reach to one. It implies that the algorithms used in this analysis fail to find multiple global
solutions. Such results are not demonstrated by the use of the conventional regret-based metrics. Also, the
metric values of the average degree, average distance, and parameter-free forms of the average degree and
average distance for BBO Random and BBO PE are closer to their values for random search, compared
to the results of the simple and cumulative regrets. We presume that the components of random search
and pure exploration in the respective algorithms make those values more similar to the values for random
search. This observation supports our motivation on the development of geometric metrics for measuring
the degrees of exploration and exploitation.

Interestingly, the precision, recall, and average degree struggle to measure the performance of Bayesian
optimization algorithms in higher-dimensional problems; see the 16-dimensional case shown in Figure [dl To
ensure that these metrics work appropriately, we need to carefully select ¢ in their definitions. However,
this parameter selection task is almost infeasible due to the problem formulation that a black-box function
is optimized. In contrast to these metrics involved with an additional parameter, our parameter-free metrics
successfully compare distinct optimization algorithms as presented in Figure [

4.2 Analysis on the Spearman’s Rank Correlation Coefficients between Metrics

We investigate the Spearman’s rank correlation coefficients between di-
verse metrics, in order to reveal relationships between metrics. Given
the means of metric values over 50 rounds, the Spearman’s rank cor-
relation coefficients are calculated:

- cov(rank(X), rank(Y")) 7 (13)
Orank(X)Orank(Y)

|

Spearman’s Rank Correlation

where rank(X) is a function to produce the rank of a given variable
X, cov(X7, X2) indicates the covariance of two input variables X7, Xo,
and ox corresponds to the standard deviation of a given variable X.

We conduct two empirical analyses using the Spearman’s rank correla-

tion coefficients: the coefficients between metrics for each benchmark Figure 8: Spearman’s rank correla-
function and for each optimization algorithm. As shown in Figure [5] tion coefficients between metrics for
and Figures[26|and [27)of the appendices, the simple regret is highly cor- the random search method.

related with the average distance and parameter-free average distance

in general. Moreover, the average degree, parameter-free precision, parameter-free recall, and parameter-
free average degree are positively correlated with each other. On the contrary, the average distance and
parameter-free average distance are negatively correlated with the average degree, parameter-free precision,
parameter-free recall, and parameter-free average degree. In addition, the coefficients with NaN values ap-
pear in higher-dimensional cases, since metric values are all identical; see the results of the precision and
recall in 16-dimensional examples. These results can be thought of as the evidence of the need to propose
parameter-free metrics, instead of selecting an additional parameter carefully.

As presented in Figures [f] [7] and [ the precision, recall, and average degree are positively correlated with
each other, while they are negatively correlated with the average distance and its parameter-free form. In
this analysis, the relationships between instantaneous, simple, and cumulative regrets are clearly affirmed.
Specifically, the instantaneous and cumulative regrets are highly correlated with each other, and they are
loosely correlated with the simple regret.

11



Under review as submission to TMLR

20

»
2
3

80

1

10
100
1000
10000

60

S

40

Parameter-Free Precision
Parameter-Free Recall
=
=
Parameter-Free Average Degree

Parameter-Free Average Distance

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 ’ 100 200 300 400 500
Iteration Iteration Iteration Iteration

(a) PF precision (b) PF recall (c) PF average degree (d) PF average distance

Figure 9: Impact of the number of samples M for parameter-free metrics. The Branin function is optimized
using the vanilla Bayesian optimization with the expected improvement.

5 Discussion and Limitations on Our Geometric Metrics

Related Work. [Wessing & Preuss| (2017)) have been proposed alternative metrics such as averaged Haus-
dorff distance and peak ratio. These metrics can be used to evaluate multi-local optimization and global
optimization. On the other hand, we can directly utilize the information from the posterior predictive dis-
tributions of a surrogate model to measure the degrees of exploration and exploitation. For every decision
through Bayesian optimization, we can calculate the contributions of function value and variance estimates.
However, the geometry of the history of query points are not counted for these calculations.

On Parameter-Free Metrics. One drawback of our parameter-free metrics is that their values are prone
to oscillating. Since the calculation of the parameter-free metrics include a step for sampling M parameters,
this consequence occurs. As shown in Figure[J] a larger M stabilizes metric values, while the use of a larger
M makes the calculation slower. Therefore, we need to take into account such a trade-off in the process of
selecting M. According to these results, M should be equal to or greater than 100.

On Global Solution Information. To deal with regret-based metrics or our metrics excluding average
degree, average distance, and their parameter-free forms, we require knowing the function value or locations
of global solutions; see Table [I] for the detailed comparisons. However, it is rarely possible to obtain this
information in real-world problems. We leave such a topic on new metrics without global solution information
for future work. As a naive future direction, we can define the approximation of global solutions utilizing the
points that have been acquired. It is noteworthy that our average degree, average distance, parameter-free
average degree, and parameter-free average distance are defined with the locations of query points only.

6 Conclusion

We have proposed new geometric metrics that can be used to measure the performance of Bayesian opti-
mization. By utilizing information on the geometry of acquired points and potentially global solutions, the
precision, recall, average degree, and average distance are defined. Moreover, to mitigate the need to use
an additional parameter for the geometric metrics, we also suggested their parameter-free forms. In the
end, we provided numerical analysis on metric values over optimization iterations and the Spearman’s rank
correlation coefficients between various metrics, by testing several Bayesian optimization algorithms as well
as random search on a variety of benchmark functions.

Broader Impact Statement

This work does not have a direct broader impact in that it suggests new metrics for Bayesian optimization.
However, from the perspective of the development of optimization algorithms, our work can be used to
identify solutions of harmful and unethical optimization tasks. In response to such an issue, we should be
aware of how Bayesian optimization algorithms can be applied in unethical tasks when we devise optimization
strategies using our geometric metrics.
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A Additional Examples of Precision and Recall for the Branin Function
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Figure 10: Examples of how precision (upper panels) and recall (lower panels) are computed where three
global optima (red x) and twenty query points (green +) are given. Selected points (blue dot) are marked
if they are located in the vicinity (yellow circle) of query points. The Branin function is used for these
examples and the colorbar visualized in each figure depicts its function values.

Similar to Figure [[] Figure [[0]illustrates the examples of how precision and recall are computed in the case
of the Branin function, varying the size of ball query.
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B Additional Analysis on Metric Values over lterations
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Figure 11: Bayesian optimization results versus iterations for the Ackley 4D function. Sample means over 50
rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for parameter-free.

In addition to the results reported in the main article, we present more analysis on metric values over
iterations in Figures|11]to The experimental settings of these results are the same as the corresponding
settings described in the main article.
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Figure 13: Bayesian optimization results versus iterations for the Beale function. Sample means over 50
rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for parameter-
free.
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Figure 14: Bayesian optimization results versus iterations for the Bohachevsky function. Sample means
over 50 rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for
parameter-free.
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Figure 15: Bayesian optimization results versus iterations for the Bukin 6 function. Sample means over 50
rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for parameter-free.
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Figure 16: Bayesian optimization results versus iterations for the Colville function. Sample means over 50
rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for parameter-free.
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Figure 17: Bayesian optimization results versus iterations for the De Jong 5 function. Sample means over 50
rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for parameter-free.
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Figure 18: Bayesian optimization results versus iterations for the Eggholder function. Sample means over 50
rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for parameter-free.
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Figure 19: Bayesian optimization results versus iterations for the Hartmann 3D function. Sample means
over 50 rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for
parameter-free.
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Figure 20: Bayesian optimization results versus iterations for the Hartmann 6D function. Sample means
over 50 rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for
parameter-free.
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Figure 21: Bayesian optimization results versus iterations for the Levy 4D function. Sample means over 50
rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for parameter-free.
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Figure 22: Bayesian optimization results versus iterations for the Levy 16D function. Sample means over 50
rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for parameter-free.
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Figure 23: Bayesian optimization results versus iterations for the Six-Hump Camel function. Sample means
over 50 rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands for
parameter-free.
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Figure 24: Bayesian optimization results versus iterations for the Three-Hump Camel function. Sample
means over 50 rounds and the standard errors of the sample mean over 50 rounds are depicted. PF stands
for parameter-free.
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C Analysis on Metric Values in the Ackley 128D function
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Figure 25: Optimization results versus iterations for the Ackley 128D function. Sample means over 50 rounds
and the standard errors of the sample mean over 50 rounds are depicted. PF stands for parameter-free.

To show the behavior of the regret-based and geometric metrics in higher-dimensional problems, we test
random search on the Ackley 128D function, which is considered as a high-dimensional problem in the
Bayesian optimization community. According to this analysis presented in Figure our parameter-free
geometric metrics successfully represent the performance of an optimization algorithm in terms of distinct
criteria, so that we can interpret the optimization results from geometric perspectives.
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D Additional Analysis on the Spearman’s Rank Correlation Coefficients between

Metrics
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Figure 26: Spearman’s rank correlation coeflicients between metrics for different benchmark functions such
as the Ackley 4D, Ackley 16D, Beale, Bohachevsky, Bukin 6, Colville, De Jong 5, Eggholder, and Hatmann
3D functions. Red regions indicate the coefficients with NaN values.

We visualize the Spearman’s rank correlation coefficients between metrics for diverse benchmark functions
in Figures [26] and 27} These results are obtained by using the same settings detailed in the main article.
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Figure 27: Spearman’s rank correlation coefficients between metrics for different benchmark functions such
as the Hartmann 6D, Levy 4D, Levy 16D, Six-Hump Camel, and Three-Hump Camel functions. Red regions
indicate the coefficients with NaN values.
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