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ABSTRACT

The combination of knowledge distillation with contrastive learning has great
potential to distill structural knowledge. Most of the contrastive-learning-based dis-
tillation methods treat the entire training dataset as the memory bank and maintain
two memory banks, one for the student and one for the teacher. Besides, the repre-
sentations in the two memory banks are updated in a momentum manner, leading
to representation inconsistency. In this work, we propose Contrastive Consistent
Representation Distillation (CoCoRD) to provide consistent representations for
efficient contrastive-learning-based distillation. Instead of momentum-updating
the cached representations, CoCoRD updates the encoders in a momentum manner.
Specifically, the teacher is equipped with a momentum-updated projection head
to generate consistent representations. The teacher representations are cached
in a fixed-size queue which serves as the only memory bank in CoCoRD and is
significantly smaller than the entire training dataset. Additionally, a slow-moving
student, implemented as a momentum-based moving average of the student, is built
to facilitate contrastive learning. CoCoRD, which utilizes only one memory bank
and much fewer negative keys, provides highly competitive results under typical
teacher-student settings. On ImageNet, CoCoRD-distilled ResNet50 outperforms
the teacher ResNet101 by 0.2% top-1 accuracy. Furthermore, in PASCAL VOC
and COCO detection, the detectors whose backbones are initialized by CoCoRD-
distilled models exhibit considerable performance improvements.

1 INTRODUCTION

The remarkable performance of convolutional neural networks (CNNs) in various computer vision
tasks, such as image recognition (He et al., 2016; Huang et al., 2017) and object detection (Girshick,
2015; Ren et al., 2015; Redmon & Farhadi, 2017), has triggered interest in employing these powerful
models beyond benchmark datasets. However, the cutting-edge performance of CNNs is always
accompanied by substantial computational costs and storage consumption. Early study has suggested
that shallow feedforward networks can approximate arbitrary functions (Hornik et al., 1989). Numer-
ous endeavors have been made to reduce computational overheads and storage burdens. Among those
endeavors, Knowledge Distillation, a widely discussed topic, presents a potential solution by training
a compact student model with knowledge provided by a cumbersome but well-trained teacher model.

The majority of distillation methods induce the student to imitate the teacher representa-
tions (Zagoruyko & Komodakis, 2017; Park et al., 2019; Tian et al., 2020; Hinton et al., 2015;
Chen et al., 2021b;c; Yim et al., 2017; Tung & Mori, 2019; Ahn et al., 2019). Although representa-
tions provide more learning information, the difficulty of defining appropriate metrics to align the
student representations to the teacher ones challenges the distillation performance. Besides, failing
to capture the dependencies between representation dimensions results in lame performance. To
enhance performance, researchers attempt to distill structural knowledge by establishing connections
between knowledge distillation and contrastive learning (Tian et al., 2020; Chen et al., 2021b).

To efficiently retrieve representations of negative samples for contrastive learning, memory banks
cache representations which are updated in a momentum manner, as shown in Fig. 1. However, the
student is optimized sharply by the training optimizer. The student representations in the memory
bank are inconsistent because the updated representations differ from those not updated in that
iteration. Therefore, the student can easily contrast the positive and negative samples, keeping the
student from learning good features. The storage size of memory bank is another factor of concern
when applying contrastive-learning-based distillation methods. As in (Tian et al., 2020; Chen et al.,
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Figure 1: The general pipelines of contrastive learning based knowledge distillation methods and CoCoRD.
Instead of momentum updating the representations, CoCoRD updates the encoder in a momentum manner. The
teacher dictionary which contains representations from preceding batches is implemented as a queue.

2021b), there are two memory banks and each of them contains representations of all training images,
leading to massive GPU memory usage on large-scale datasets.

Motivated by the discussion above, we propose Contrastive Consistent Representation Distillation
(CoCoRD) as a novel way of distilling consistent representations with one fixed-size memory bank.
Specifically, CoCoRD is composed of four major components, as shown in Fig. 2: (1) a fixed-size
queue which is referred to as the teacher dictionary, (2) a teacher, (3) a student, and (4) a slow-moving
student. From a perspective of considering contrastive learning as a dictionary look-up task, the
teacher dictionary is regarded as the memory bank, where all the representations serve as the negative
keys. The encoded representations of the current batch from the teacher are enqueued. Once the
queue is full of representations, the oldest ones are dequeued. By introducing a queue, the size
of the memory bank is decoupled from dataset size and batch size, allowing it to be considerably
smaller than dataset size and larger than the commonly-used batch size. The student is followed by a
projection head, which maps the student features to a representation space. The teacher projection
head is initialized the same as the student one and is a momentum moving average of the student
projection head if the teacher and the student have the same feature dimension; otherwise, the teacher
projection head is randomly initialized and not updated. Since the contrast through the teacher
dictionary is to draw distinctions on an instance level, the cached teacher representations which share
the same class label as the student ones are mistakenly treated as negative keys, resulting in noise
in the dictionary. To alleviate the impact of the noise, a slow-moving student, implemented as a
momentum moving average of the student, is proposed to pull together anchor representations and
class-positive ones. As shown in Fig. 2, with a momentum-updated projection head, the slow-moving
student projects a data augmentation version of the anchor image to the representation space, which
serves as the instance-negative but class-positive key. The main contributions are listed as follows:

• We utilize only one lightweight memory bank (teacher dictionary), where all the representations
are treated as negative keys. We experimentally demonstrate that a miniature teacher dictionary
with much fewer negative keys can be sufficient for contrastive learning in knowledge distillation.

• We equip the well-trained teacher with a momentum-updated projection head to provide consistent
representations for the teacher dictionary. Besides, a slow-moving student provides class-positive
representations to alleviate the impact of the potential noise in the teacher dictionary.

• We verify the effectiveness of CoCoRD by achieving the state-of-the-art performance in 11 out
of 13 student-teacher combinations in terms of model compression. On ImageNet, the CoCoRD-
distilled ResNet50 can outperform the teacher ResNet101 by 0.2% top-1 accuracy. Moreover,
we initialize the backbones in object detection with CoCoRD-distilled weights and observe
considerable performance improvements over the counterparts that the vanilla students initialize.
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Figure 2: Illustration of the proposed CoCoRD. Note that q+s- is detached from the computational graph during
the distillation process. q̃+s-, which obtained by feeding xs to the slow-moving student, is also detached. The
teacher is frozen and the teacher dictionary does not receive gradient.

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION

Hinton et al. (Hinton et al., 2015) first propose distilling the softened logits from the teacher to
the student. After the representative work (Hinton et al., 2015), various knowledge distillation
methods (Wang & Li, 2021; Song et al., 2021; Passban et al., 2020; Chen et al., 2021a;c) aim to
distill more informative knowledge via intermediate features. Among them, Passban et al. (Passban
et al., 2020) fuse all teacher information to avoid the loss of significant knowledge. Chen et al. (Chen
et al., 2021a) propose semantic calibration based on the attention mechanism for adaptively assigning
cross-layer knowledge. Chen et al. (Chen et al., 2021c) introduce a novel framework via knowledge
review in which the knowledge of multiple layers in the teacher can be distilled for supervising one
layer of the student. However, the methods mentioned above have difficulty in defining appropriate
metrics to measure the distance between the student representations and the counterparts from the
teacher. There are a few recent works exploiting the dependencies between representation dimensions
based on contrastive learning (Tian et al., 2020; Chen et al., 2021b) for boosting the distillation
performance. In particular, Tian et al. (Tian et al., 2020) formulate capturing structural knowledge as
contrastive learning and maximize the lower bound of mutual information between the teacher and
the student. Chen et al. (Chen et al., 2021b) leverage primal and dual forms of Wasserstein distance,
where the dual form yields a contrastive learning objective. In summary, the core of knowledge
distillation lies in the definition of knowledge and the way the knowledge is distilled.

2.2 CONTRASTIVE LEANING

The main goal of contrastive learning is to learn a representation space where anchor representations
stay close to the representations of the positive samples and distant from those of the negative samples.
Contrastive learning is a powerful approach in self-supervised learning. To learn powerful feature
representations in an unsupervised fashion, Wu et al. (Wu et al., 2018) consider each instance as
a distinct class of its own and use noise contrastive estimation (NCE) to tackle the computational
challenges. Contrastive learning is first combined with knowledge distillation by CRD (Tian et al.,
2020), which aims at exploring structural knowledge. In addition to CRD (Tian et al., 2020),
WCoRD (Chen et al., 2021b) combines LCKT (Chen et al., 2021b) and GCKT (Chen et al., 2021b)
based on Wasserstein dependency measure in contrastive learning (Ozair et al., 2019). However, the
memory banks in CRD and WCoRD contain representations of all the training images, which bring
about storage challenges on large-scale datasets. Besides, momentum updates to representations can
also lead to inconsistent representations that negatively affect the distillation performance. From a
perspective of considering contrastive learning as a dictionary lookup task, we implement the memory
bank as a first-in-first-out queue where all included representations serve as negative keys.

3 METHOD
The key idea of combining knowledge distillation with contrastive learning is straightforward. With
knowledge distillation, a proficient teacher can provide consistent representations that are beneficial
for contrastive learning. With contrastive learning, the student can obtain powerful features whose
representations are close to the positive teacher representations and distant from the negative ones in
a representation space. Contrastive learning can be generally formulated as a dictionary look-up task.
Given a query q and a dictionary K with N keys: K = {k1, · · · , kN}, contrastive learning matches
the query q to the positive key k+and pushes q away from the negative keys cached in K.
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3.1 CONTRAST AS LOOKING UP IN THE TEACHER DICTIONARY

In CoCoRD, the negative keys are encoded by the teacher and cached in a fixed-size queue which
is referred to as the teacher dictionary. Given an input image x, two views of x under random data
augmentations form a positive pair (a query and a positive sample), which is encoded in each iteration.

We define the input to the student S as the query xs and the input to the teacher T as the positive
sample xt. The outputs at the penultimate layer (before the last fully-connected layer) are projected
to a representation space by a projection head. For simplicity of notation, the student nested functions
up to the penultimate layer are denoted as gs(·) and the student projection head is denoted as fp

s (·).
Therefore, the query representations qs and the positive keys k+t are given by:

qs = fp
s (gs(xs)), k+t = fp

t (gt(xt)), (1)

where gt(·) denotes the teacher nested functions up the penultimate layer and fp
t (·) is the teacher

projection head. fp
s and fp

t are two-layer perceptrons. Besides, the cached i-th negative key in the
queue is denoted as k-ti which is produced the same way as k+t but from the preceding batches. The
fixed-size teacher dictionary K={k-t1 , · · · , k

-
tN } contains N negative keys. The representations of

the current batch are added to the queue, while the oldest representations are removed from the queue.

The contrastive loss. The value of the contrastive loss should be small when qs is close to k+t and
distant from k-ti in the representation space. To meet this condition, we consider the wildly-used and
effective contrastive loss function: InfoNCE (Van den Oord et al., 2018):

Lctr = − log
exp(qs · k+t /τ)

exp(qs · k+t /τ) +
∑N

i=1 exp(qs · k-ti/τ)
, (2)

where τ is a hyper-parameter that controls the concentration level. N is the size of the teacher dictio-
nary. Lctr can be intuitively interpreted as the log loss of a softmax-based (N+1)-way classification
task. In our case, we attempt to classify qs as k+t in the scope of {k+t } ∪ {k-t1 , k

-
t2 , · · · , k

-
tN }.

The consistency in the teacher dictionary. The introduction of the fixed-size teacher dictionary
decouples the size of the memory bank from batch size and dataset size. The teacher dictionary
can be larger than the commonly-used batch and smaller than the dataset. Therefore, we bypass
huge batch, which aims at providing in-batch negative samples. Besides, we can avoid sampling
inconsistent negative keys from the memory bank. The core to learning good features by contrastive
learning lies in the rich and challenging negative representations. In CRD (Tian et al., 2020) and
WCoRD (Chen et al., 2021b), the negative keys are momentum updated. The momentum update
to the negative keys brings about two main issues: (1) the negative keys were updated only when
they were last processed, and (2) the update interval for each negative key can be highly different.
The two issues cause inconsistent negative keys. To provide consistent negative keys, we update the
teacher projection head in a momentum manner. Since gt are frozen in the distillation framework,
momentum updating the teacher projection head results in consistent negative keys. Specifically,
denoting the parameters of fp

t as ωt and those of fp
s as ωs, we update ωt as:

ωt ← mcωt + (1−mc)ωs. (3)

mc ∈ [0, 1] is a momentum coefficient which adjusts the update smoothness. Since ωs are optimized
by the training optimizer, the momentum update of ωt makes the teacher projection head fp

t progress
more smoothly than the student projection head fp

s . Therefore, the difference between the teacher
projection heads at different iterations can be made small. As a result, the negative keys encoded at
different iterations can be consistent. Besides, the teacher dictionary itself is gradually updated. The
representations of the current batch are enqueued, while the representations of the oldest batch are
dequeued. This gradual replacement is beneficial for maintaining the consistency of the queue since
the oldest representations are the least consistent with the current ones.

3.2 REPRESENTATIONS OF ONE CLASS FLOCK TOGETHER

As shown in Eq. 2, classifying qs as k+t in the scope of {k+t , k-t1 , k
-
t2 , · · · , k

-
tn} is a discrimination on

an instance level. However, k-ti which shares the same class label with qs should be close to qs in the
representation space. Simply rejecting those k-ti is not beneficial for the student learning good features.
To bring qs closer to its instance-negative but class-positive keys, we introduce a slow-moving student
whose nested functions up to the penultimate layer are denoted as g′s(·). Specifically, the slow-moving
student is implemented as a momentum moving average of the student. The slow-moving student is
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also accompanied with a projection head f ′
s, which is also updated in a momentum manner. Denoting

the parameters of gs as θs, the parameters of g′s as θ′s and those of f ′
s as w′

s, we update θ′s and w′
s by:

θ′s ← mrθ
′
s + (1−mr)θs w′

s ← mrw
′
s + (1−mr)ws, (4)

where mr ∈ [0, 1] is another momentum coefficient and ws denotes the parameters of the student
projection head fp

s . Therefore, the instance-negative but class-positive keys q+s- can be obtain by:

q+s- = f ′
s(g

′
s(x

′
s)), ◁ the instance-negative but class-positive keys (5)

where x′
s is another view of x under the random data augmentations. Instead of directly narrowing

down the distance between qs and q+s-, we use qs to predict q+s-, which softens the constraint.
Formally, a predictor hs, implemented as a two-layer perceptron, is proposed to produce the prediction
ps ≜ hs(qs). The loss is simply defined as the mean squared error between l2 normalized ps and q+s-:

Lpred = ∥ ps
∥ps∥2

− q+s-
∥q+s-∥2

∥22 = 2− 2⟨ ps
∥ps∥2

,
q+s-
∥q+s-∥2

⟩. (6)

Furthermore, we symmetrize the loss by feeding x′
s to the student and xs to the slow-moving student

to compute L̃pred. Formally, denoting the representations output from x′
s by the student as q̃s and the

corresponding instance-negative but class-positive keys as q̃+s-, we compute L̃pred by:

L̃pred = ∥ p̃s
∥p̃s∥2

− q̃+s-
∥q̃+s-∥2

∥22 = 2− 2⟨ p̃s
∥p̃s∥2

,
q̃+s-
∥q̃+s-∥2

⟩. (7)

Here p̃s ≜ hs(q̃s), q̃+s- ≜ f ′
s(g

′
s(xs)) and q̃s ≜ fp

s (gs(x
′
s)). Note that q+s- and q̃+s- are detached from

the current computational graph during the distillation process.

3.3 TRAINING THE STUDENT

With the slow-moving student and the teacher, Eq. 2, Eq. 6 and Eq. 7 aim at assisting the student
to effectively learn powerful features through contrastive learning. The student still needs to learn
features from the training data. For image classification, the task-specific loss is defined as the
cross-entropy loss. Overall, the total loss Ltotal can be formulated as:

Ltotal = λctrLctr + λpred(Lpred + L̃pred) + λclsLcls, (8)

where λctr, λpred and λcls are three balancing factors. Lcls ≜ H(y, ys), where H(·) refers to the
standard cross-entropy, y denotes the one-hotel label and ys is the student output.

4 EXPERIMENTS
We validate the effectiveness of CoCoRD in improving the student performance. The student-teacher
combinations are divided into two main categories: (1) students share the same architecture style
with teachers, and (2) the architectures of the students are different from those of the teachers.
Datasets. To investigate the performance improvements of students, we employ two benchmarks:
(1) CIFAR100 (Krizhevsky et al., 2009) and (2) ImageNet-1K (Russakovsky et al., 2015). CIFAR100
has 100 classes and there are 500 training images and 100 validation images per class. ImageNet-1K,
a large-scale dataset, contains 1000 classes and provides 1.28 million training images and 50K
validation images. To test the transferability of features that students learn by CoCoRD, we utilize
two more datasets: (1) STL-10 (Coates et al., 2011) and (2) TinyImageNet (Chrabaszcz et al., 2017).
We only use the 5K labeled training images and 8K validation images from 10 classes in STL-10.
TinyImageNet consists of 200 classes and each has 500 training images and 50 validation images.

4.1 EXPERIMENTS ON CIFAR100
We experiment on CIFAR100 with 13 student-teacher combinations in total1, 7 of which are student-
teacher combinations with the same architecture style, and the remaining 6 are student-teacher
combinations with different architectures. Table 1 focuses on student-teacher combinations with the
same architecture style, while Table 2 provides experimental results of student-teacher combinations
with different architectures. As can be observed in both tables, KD (Hinton et al., 2015), a simple
yet effective method, provides a strong baseline. CoCoRD can consistently outperform KD and

1On CIFAR100, λctr=1, λcls=1, λpred=4. More training details and data augmentations are provided in the
supplementary materials
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Table 1: CIFAR100 test accuracy (%) of students trained with different distillation methods (ours is CoCoRD),
when having the same architecture style as the teacher. ↑ denotes outperforming KD, and ↓ denotes underper-
forming. For all the compared methods, we use author-provided or author-verified code from the CRD repository.
Our reported results are the averages over 5 runs. The best result among the methods which are not combined
with another method is shown in bold. The best result among the combined methods is underlined.

Teacher
Student

WRN-40-2
WRN-16-2

WRN-40-2
WRN-40-1

resnet56
resnet20

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

KD 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet 73.58 (↓) 72.24 (↓) 69.21 (↓) 68.99 (↓) 71.06 (↓) 73.50 (↑) 71.02 (↓)
AT 74.08 (↓) 72.77 (↓) 70.55 (↓) 70.22 (↓) 72.31 (↓) 73.44 (↑) 71.43 (↓)
SP 73.83 (↓) 72.43 (↓) 69.67 (↓) 70.04 (↓) 72.69 (↓) 72.94 (↓) 72.68 (↓)
CC 73.56 (↓) 72.21 (↓) 69.63 (↓) 69.48 (↓) 71.48 (↓) 72.97 (↓) 70.71 (↓)
VID 74.11 (↓) 73.30 (↓) 70.38 (↓) 70.16 (↓) 72.61 (↓) 73.09 (↓) 71.23 (↓)
RKD 73.35 (↓) 72.22 (↓) 69.61 (↓) 69.25 (↓) 71.82 (↓) 71.90 (↓) 71.48 (↓)
PKT 74.54 (↓) 73.45 (↓) 70.34 (↓) 70.25 (↓) 72.61 (↓) 73.64 (↑) 72.88 (↓)
AB 72.50 (↓) 72.38 (↓) 69.47 (↓) 69.53 (↓) 70.98 (↓) 73.17 (↓) 70.94 (↓)
FT 73.25 (↓) 71.59 (↓) 69.84 (↓) 70.22 (↓) 72.37 (↓) 72.86 (↓) 70.58 (↓)
FSP 72.91 (↓) n/a 69.95 (↓) 70.11 (↓) 71.89 (↓) 72.62 (↓) 70.23 (↓)
NST 73.68 (↓) 72.24 (↓) 69.60 (↓) 69.53 (↓) 71.96 (↓) 73.30 (↓) 71.53 (↓)
CRD 75.48 (↑) 74.14 (↑) 71.16 (↑) 71.46 (↑) 73.48 (↑) 75.51 (↑) 73.94 (↑)
LCKT 75.22 (↑) 74.11 (↑) 71.14 (↑) 71.23 (↑) 72.32 (↑) 74.65 (↑) 73.50 (↑)
GCKT 75.47 (↑) 74.23 (↑) 71.21 (↑) 71.43 (↑) 73.41 (↑) 75.45 (↑) 74.10 (↑)
CoCoRD (ours) 75.48 (↑) 75.17 (↑) 71.74 (↑) 72.11 (↑) 74.20 (↑) 75.29 (↑) 73.99 (↑)
CRD+KD 75.64 (↑) 74.38 (↑) 71.63 (↑) 71.56 (↑) 73.75 (↑) 75.46 (↑) 74.29 (↑)
WCoRD 75.88 (↑) 74.73 (↑) 71.56 (↑) 71.57 (↑) 73.81 (↑) 75.95 (↑) 74.55 (↑)
CoCoRD+KD 75.90 (↑) 75.25 (↑) 72.09 (↑) 72.18 (↑) 74.37 (↑) 75.28 (↑) 74.26 (↑)

Table 2: CIFAR100 test accuracy (%) of students trained with different distillation methods, when the teachers’
architectures are significantly different from those of the students. ↑ denotes outperforming KD, and ↓ denotes
underperforming. Our results are the averages over 5 runs. The best result among the methods which are not
combined with another method is shown in bold. The best result among the combined methods is underlined.

Teacher
Student

vgg13
MobileNetV2

ResNet50
MobileNetV2

ResNet50
vgg8

resnet32x4
ShuffleNetV1

resnet32x4
ShuffleNetV2

WRN-40-2
ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50

KD 67.37 67.35 73.81 74.07 74.45 74.83
FitNet 64.14 (↓) 63.16 (↓) 70.69 (↓) 73.59 (↓) 73.54 (↓) 73.73 (↓)
AT 59.40 (↓) 58.58 (↓) 71.84 (↓) 71.73 (↓) 72.73 (↓) 73.32 (↓)
SP 66.30 (↓) 68.08 (↑) 73.34 (↓) 73.48 (↓) 74.56 (↑) 74.52 (↓)
CC 64.86 (↓) 65.43 (↓) 70.25 (↓) 71.14 (↓) 71.29 (↓) 71.38 (↓)
VID 65.56 (↓) 67.57 (↑) 70.30 (↓) 73.38 (↓) 73.40 (↓) 73.61 (↓)
RKD 64.52 (↓) 64.43 (↓) 71.50 (↓) 72.28 (↓) 73.21 (↓) 72.21 (↓)
PKT 67.13 (↓) 66.52 (↓) 73.01 (↓) 74.10 (↑) 74.69 (↑) 73.89 (↓)
AB 66.06 (↓) 67.20 (↓) 70.65 (↓) 73.55 (↓) 74.31 (↓) 73.34 (↓)
FT 61.78 (↓) 60.99 (↓) 70.29 (↓) 71.75 (↓) 72.50 (↓) 72.03 (↓)
NST 58.16 (↓) 64.96 (↓) 71.28 (↓) 74.12 (↑) 74.68 (↑) 74.89 (↑)
CRD 69.73 (↑) 69.11 (↑) 74.30 (↑) 75.11 (↑) 75.65 (↑) 76.05 (↑)
LCKT 68.21 (↑) 68.81 (↑) 73.21 (↑) 74.62 (↑) 74.70 (↑) 75.08 (↑)
GCKT 68.78 (↑) 69.20 (↑) 74.29 (↑) 75.18 (↑) 75.78 (↑) 76.13 (↑)
CoCoRD (ours) 69.86 (↑) 70.22 (↑) 74.52 (↑) 75.99 (↑) 77.28 (↑) 76.42 (↑)
CRD+KD 69.94 (↑) 69.54 (↑) 74.58 (↑) 75.12 (↑) 76.05 (↑) 76.27 (↑)
WCoRD 69.47 (↑) 70.45 (↑) 74.86 (↑) 75.40 (↑) 75.96 (↑) 76.32 (↑)
CoCoRD+KD 69.26 (↑) 69.89 (↑) 74.62 (↑) 76.48 (↑) 77.39 (↑) 76.56 (↑)

achieve highly competitive performance compared with other state-of-the-art methods. Note that mc

in Formula 3 is set to 1 for the WRN-40-2/WRN-40-1 combination. Although the teacher projection
head attached to WRN-40-2 is only randomly initialized and not updated during the distillation
process, CoCoRD still achieves the state-of-the-art result. This implies the features provided by the
well-trained teacher from the penultimate layer are already distinguishing, which are then projected
into the representation space by the frozen teacher projection head fp

t .

Based on the discussion above, the teacher projection heads in Table 2 are randomly initialized since
the difference in architecture style is very likely to bring about the difference in the input shape. Note

6



Under review as a conference paper at ICLR 2023

Table 3: To evaluate the transferability of features learned by different distillation methods, we employ linear
probing to perform a 10-way classification on STL10 and 200-way classification on TinyImageNet. For this
experiment, we use the combination of teacher WRN-40-2 and student WRN-16-2. Top-1 accuracy (%) is
reported. The student baseline and teacher are trained from scratch. Details are in the supplemental materials.

Student KD AT CRD CRD+KD CoCoRD Teacher

CIFAR100→STL-10 69.93 70.82 70.39 71.36 71.59 73.63 68.31
CIFAR100→TinyImageNet 34.53 33.83 33.80 35.88 36.07 38.39 32.38

Table 4: Top-1 and Top-5 error rates (%) of the students ResNet-18 trained with different distillation methods
on ImageNet-1K validation set. The best performance is shown in bold.

Teacher Student AT KD SP CC CRD CRD+KD ReviewKD SSKD WCoRD CoCoRD

Top-1 26.70 30.24 29.30 29.34 29.38 30.04 28.83 28.62 28.39 28.48 28.51 28.26
Top-5 8.58 10.92 10.00 10.12 10.20 10.83 9.87 9.51 9.49 9.33 9.84 9.30

that it is because of the projection heads that CoCoRD can achieve distillation under cross-architecture
setting. The projection heads can project features at the penultimate layer of different shapes into one
representation space, where we can easily define the contrastive loss based on Eq. 2.

As shown in Table 2, CoCoRD is highly effective for combinations of different architectures. Even if
the teacher projection head is not updated, CoCoRD can consistently achieve the best performance
compared to those not combined with another method. Especially, for the resnet-32x4/ShuffleNetV2
pair, CoCoRD presents 77.28% Top-1 accuracy, which is 1.5% higher than the second best GCKT
(75.78%). On the other hand, methods based on intermediate features perform poorly with different-
architecture combinations. The observation suggests that CoCoRD can largely blur the requirement
for significant similarities between students and teachers. We conjecture that knowledge distillation
based on features at the penultimate layer can avoid the conflicts of different inductive biases that
different models exploit. This indicates that the proposed CoCoRD is more generally applicable for
student-teacher combinations with different architectures.
Limitations. In Table 1, CoCoRD+KD does not bring further performance improvements over
CoCoRD. The same phenomenon can be observed in Table 2. MobileNetV2 (Sandler et al., 2018)
does not obtain more performance improvements with CoCoRD+KD. These phenomena indicate that
further investigations are needed to combine CoCoRD with other knowledge distillation methods and
extremely lightweight student models are still challenging for knowledge distillation.
Linear probing. Following CRD (Tian et al., 2020), we employ linear probing to evaluate the
transferability of the student features. We freeze the student and train a linear classifier on the global
average pooling features of the student to perform a 10-way classification on STL10 and 200-way
classification on TinyImageNet. As shown in Table. 3, CoCoRD exhibits strong transferability and
outperform the second best (CRD+KD) by a large margin on the two datasets (2.04% improvement on
STL10 and 2.32% on TinyImageNet). The proposed CoCoRD, which has a negligible performance
drop on CIFAR100 compared with the teacher, (Please see Table. 1), shows better transferability
than the teacher (5.32% improvement on STL10 and 6.01% TinyImageNet). The linear probing
experiment indicates that CoCoRD-distilled models have better generalization ability.

4.2 EXPERIMENTS ON IMAGENET

To investigate the scalability of CoCoRD to large-scale datasets, we employ ResNet-18 and ResNet-34
as the student-teacher combination to perform experiments on ImageNet-1K. For a fair comparison,
we follow the standard PyTorch ImageNet training practice except that we have 100 training epochs
like CRD and WCoRD. We also use the PyTorch-released ResNet-34/18 as our teacher/student. On
ImageNet, we set λctr=1, λcls=1, λpred=4 and only calculate Lpred. The Top-1 and Top-5 error rates
of different distillation methods are provided in Table 4 (the lower, the better). The results in Table 4
show that the proposed CoCoRD achieves the best performance on the large-scale ImageNet. The
relative improvement of CoCoRD over WCoRD (Chen et al., 2021b) on Top-1 error is 14.45%, and
the relative improvement of CoCoRD over CRD (Tian et al., 2020) on Top-1 error is 40.43%. Both
improvements validate the scalability of the proposed CoCoRD to large-scale datasets.

4.3 ABLATION STUDY

4.3.1 STUDY OF ENCODER COMBINATIONS

By default, we use the teacher to generate representations for contrastive learning and the slow-
moving student is employed to produce representations of another view of the input of the student.
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Table 5: CIFAR100 test accuracy (%) of resnet32 trained with different encoder combinations. The best
performance and the corresponding encoder combinations are shown in bold. The teacher is resnet110. mean
denotes the average over 5 runs and std stands for the corresponding standard deviation. Note that the resnet110
is pre-trained and the resnet32 is initialized the same as the student and updated in a momentum manner.

Option A B C D E F

Encoder Contrastive Cognate Contrastive Cognate Contrastive Cognate Contrastive Cognate Contrastive Cognate Contrastive Cognate
resnet110 resnet32 resnet32 resnet32 resnet32 resnet110 resnet110 resnet110 resnet110 - - resnet32

mean (±std) 74.07 (±0.14) 68.56 (±0.78) 72.18 (±0.37) 73.71 (±0.34) 72.92 (±0.23) fails

(a) Effects of T (b) Effects of the teacher dictionary size

Figure 3: Effects of the temperature (τ ) in InfoNCE with N=2048, as shown in (a), and the effects of the
teacher dictionary size (N ) with τ=0.1, as shown in (b).

To investigate how the representation quality affects the distillation performance, we utilize different
models to provide those representations. For clarity, the model that generates dictionary-caching
representations is referred to as contrastive encoder. The model that produces the instance-negative
but class-positive representations is referred to as cognate encoder. Results are reported in Table 5.
Comparing options A (the default option) and B, we can find that leveraging the pre-trained teacher
to provide quality representations for contrastive learning is more beneficial for the distillation.
Besides, removing the cognate encoder and setting λpred to zero (option E) lead to poor performance,
suggesting the cognate encoder can alleviate the adverse impact of the potential noise. If we remove
the contrastive encoder and still use the dictionary with cognate encoder (option F), the distillation
process fails. The results in Table 5 can support the effectiveness of each encoder in CoCoRD.

4.3.2 STUDY OF MOMENTUM

Table 6: CIFAR100 test accuracy (%) of the student resnet32 trained with different combinations of mc (in
Eq. equation 3) and mr (in Eq. equation 4). The best performance and the corresponding mc and mr are shown
in bold. The teacher is resnet110 and the accuracy of vanilla student and the teacher can be found in Table 1.
mean denotes the average over 5 runs and std stands for the corresponding standard deviation.

mr 0 0.9 0 0.99 0.999 0.9999 1 1
mc 0 0.9 0.99 0.999 0.9999 1 0.999

mean 73.00 72.87 73.34 73.89 74.07 73.70 73.80 73.80 73.65 73.54 72.93 72.86 73.12

std 0.33 0.32 0.23 0.24 0.14 0.32 0.12 0.25 0.22 0.52 0.40 0.50 0.20

As shown in Formulas 3 and 4, mc controls the progressing speed of the teacher projection head fp
t ,

while mr manages the speed of the slow-moving student and its projection head. To investigate the
impact of momentum, we employ resnet110 as the teacher to train resnet32 with different mc and
mr. The results are reported in Table 6. When mc=mr=0 and mc=mr=1, CoCoRD can improve
the student performance. The effectiveness in both cases implies CoCoRD is robust. Besides, with
mr fixed, a large value of mr (e.g. 0.99 or 0.999) works much better than mr=0, suggesting that
consistent representations in the teacher dictionary are beneficial for the distillation.

4.3.3 STUDY OF HYPER-PARAMETERS

The temperature τ . The value of τ in Eq. 2 varies from 0.07 to 0.11. As shown in Figure 3(a),
CoCoRD is sensitive to τ . Both extremely high and low temperature lead to sub-optimal performance.
As suggested in CRD (Tian et al., 2020), we set τ to 0.1 for experiments on CIFAR100, while τ is set
to 0.07 on ImageNet. We suggest tuning the value of τ based on the classification difficulty.

The size of the teacher dictionary. The number of negative keys is determined by the teacher
dictionary size N . To investigate the effects of the teacher dictionary size, we validate various values
of N . As shown in Figure 3(b), extremely small teacher dictionary provides insufficient negative keys,
leading to sub-optimal performance. However, the extremely large teacher dictionary can introduce
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noise, which adversely affects the distillation performance. Based on our experiments, N=2048
should suffice on CIFAR100 while N= 65536 on ImageNet. Note that the teacher dictionary in Co-
CoRD is significantly smaller than the memory banks in CRD (Tian et al., 2020) and WCoRD (Chen
et al., 2021b), which is more economic for large-scale datasets.

Table 7: The effects of the three balancing
factors. CIFAR100 test accuracy (%) is reported.
The best performance is shown in bold. Average
over 5 runs. More details can be found in the
supplementary material.

λcls λctr λpred mean (std)

1 1 4 74.20 (±0.14)

% ! ! fails
! % ! 71.81 (±0.42)
! ! % 72.92 (±0.23)

The balancing factors. We conduct experiments on
CIFAR100 to investigate the effects of the three bal-
ancing factors λctr, λcls and λpred. We use resnet32-
resnet110 as the student-teacher combination. For ex-
periments on balancing factors, we set τ=0.1, N=2048,
mc=0.999 and mr=0.9. “%” denotes we set the bal-
ance factor to 0 and “!” means we set the balance fac-
tor to the corresponding value provided in the second
row. Details on simple grid search for each balancing
factor can be found in the supplementary material. As
we can see from Table. 7, all components in CoCoRD
are essential for achieving high distillation performance.
When λctr is set to 0, there is a serious performance
drop, which indicates contrasting student representa-
tions with negative keys in teacher dictionary is necessary in improving the student performance.
Moreover, by comparing the result when λpred=0 with the result when λpred=4, we can see that the
slow-moving student can reduce the negative effects of the noise in the teacher dictionary.

4.4 TRANSFER LEARNING

Table 8: Transfer learning. For PASCAL VOC, Faster R-CNN is fine-tuned on VOC trainval07+12 and
evaluated on 2007test. For COCO, Mask R-CNN is fine-tuned on COCO train2017 and evaluated on
val2017. The Faster/Mask R-CNN models are with the R50-C4 backbones (He et al., 2017). Numbers in
green indicate the performance improvement over the detectors initialized by the vanilla student. Please see the
supplementary material for details. ResNet101 is the teacher with 77.37% top-1 accuracy on ImageNet.

Classification Object Detection

ImageNet PASCAL VOC Detection CoCo Detection

Top-1 accuracy (%) AP50 AP AP75 AP50 AP AP75
scratch - 60.2 33.8 33.1 44.0 26.4 27.8

Student 76.15 81.3 53.5 58.8 59.9 40.0 43.1
CRD 76.86 (+0.71) 81.7 (+0.4) 54.2 (+0.7) 60.0 (+1.2) 60.5 (+0.6) 40.7 (+0.7) 43.9 (+0.8)

CoCoRD 77.57 (+1.42) 82.0 (+0.7) 55.0 (+1.5) 61.1 (+2.3) 60.9 (+1.0) 41.0 (+1.0) 44.5 (+1.4)

We further validate the feature quality of CoCoRD-distilled models by transferring the model weights
to object detection task, including PASCAL VOC (Everingham et al., 2010) and COCO detection (Lin
et al., 2014). We fine-tune the pre-trained models in an end-to-end manner on the target datasets.
The detector for PASCAL VOC is Faster R-CNN (Ren et al., 2015) with a backbone of R50-C4.
For COCO object detection, the model is Mask-RCNN (He et al., 2017) with the R50-C4 backbone.
Note that the CoCoRD-distilled ResNet50 can outperform the teacher ResNet101 by 0.2% top-1
accuracy on classification. As shown in Table 8, the CoCoRD-initialized detectors exhibit better
performance than the student-initialized and CRD-initialized counterparts. The valid reuse of model
weights further demonstrates the transferability of CoCoRD-distilled features.

5 CONCLUSION

In this paper, we propose a contrastive-learning-based knowledge distillation method named Con-
trastive Consistent Representation Distillation. From a perspective of regarding contrastive learning
as a dictionary looking-up task, we build a fixed-size dictionary to cache consistent teacher represen-
tations. Besides, to alleviate the adverse impact of the potential noise in the teacher dictionary, we
employ a slow-moving student, implemented as a momentum-based moving average of the student,
to provide instance-negative but class-positive targets. CoCoRD does not employ the entire dataset as
the memory bank, which is economic for large-scale datasets. Extensive experiments demonstrate
that CoCoRD, which utilizes fewer negative keys, can boost the performance of the students on
diverse image classification datasets. Additionally, the models distilled by CoCoRD on ImageNet
classification can efficiently improve object detection performance on PASCAL VOC and COCO.
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A APPENDIX

A.1 QUANTITATIVE RESULTS ON THE ACHIEVED SPEED-UP, MEMORY REDUCE AND OTHERS

In the following three tables, we provide quantitative results on the achieved speed-up, memory cost
reduce, and other quantitative information about the teacher/student (T/S) combinations used on
CIFAR100 (in Tabs. 1 and 2) and those T/S combinations used on ImageNet (Tabs. 4 and 8). The
results are measured with Intel Core i7-8700 CPU on Ubuntu 20.04 operating system and memory
cost is measured by Pytorch Profiler in a forward pass.

Table 9: Quantitative results on the achieved speed-up, parameter compression and memory cost reduce. The
combinations are from Tab. 1. The inference latency is measured on image of size 32x32.

Combination(T/S) Inference Latency (ms) Speed-up Memory Cost (MB) Mult-Add Parameters (K)

WRN-40-2/WRN-16-2 21.28/7.98 62.50% 11.73/4.39 327.62M/101.12M 2255/703
WRN-40-2/WRN-40-1 21.28/10.51 50.61% 11.73/5.87 327.62M/83.29M 2255/570

resnet56/resnet20 21.75/11.48 47.22% 8.72/3.21 125.76M/40.82M 862/278
resnet110/resnet20 56.09/11.48 79.53% 16.97/3.21 253.16M/40.82M 1737/278
resnet110/resnet32 56.09/17.01 69.67% 16.97/5.05 253.16M/69.13M 1737/473

resnet32x4/resnet8x4 24.93/7.52 69.84% 20.71/6.03 1.08G/177.07M 7434/1234
vgg13/vgg8 8.72/3.89 55.39% 4.20/2.10 285.2M/96.33M 9462/3965

Table 10: Quantitative results on the achieved speed-up, parameter compression and memory cost reduce. The
combinations are from Tab. 2. The inference latency is measured on image of size 32x32.

Combination(T/S) Inference Latency (ms) Speed-up Memory Cost (MB) Mult-Add Parameters (K)

Vgg13/MobileNetV2 8.72/14.97 - 4.20/3.39 285.2M/6.54M 9462/813
ResNet50/MobileNetV2 17.01/14.97 11.99% 3.63/3.39 83.67M/6.54M 23713/813

ResNet50/vgg8 17.01/3.89 77.13% 3.63/2.10 83.67M/96.33M 23713/3965
resnet32x4/ShuffleNetV1 24.93/31.84 - 20.71/13.90 1.08G/38.72M 7434/949
resnet32x4/ShuffleNetV2 24.93/19.01 23.75% 20.71/9.01 1.08G/44.52M 7434/1356
WRN-40-2/ShuffleNetV1 21.28/31.84 - 11.73/13.90 327.62M/38.72M 2255/949

Table 11: Quantitative results on the achieved speed-up, parameter compression and memory cost reduce. The
combinations are from Tabs. 4 and 8. The inference latency is measured on image of size 224x224.

Combination(T/S) Inference Latency (ms) Speed-up Memory Cost (MB) Mult-Add Parameters (M)

ResNet34/ResNet18 43.97/28.52 35.14% 59.82/39.75 3.66G/1.81G 21.80/11.69
ResNet101/ResNet50 104.37/50.84 51.29% 259.72/177.83 7.80G/4.09G 44.55/25.56

Additionally, we compare the size of the teacher dictionary in the proposed CoCoRD with the size of
the memory banks in CRD. Note that the keys in CRD memory banks are only 128-d while the keys
in the proposed CoCoRD teacher dictionary are 2048-d. Even with higher dimensions of the stored
keys, CoCoRD are still more storage efficient.

Table 12: Comparison on the size of memory bank(s). Note that there is one teacher dictionary in the proposed
CoCoRD while there are two memory banks in CRD.

CRD CoCoRD Relative Size

CIFAR100 51.20MB 16.78MB 32.77%
ImageNet 1311.92MB 536.87MB 40.92%
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A.2 THEORETICAL STUDY

Given two deep neural networks, a teacher fT and a student fS , and let x be the network input. We
denote representations at the penultimate layer as fT (x) and fS(x), respectively. We would like to
bring fS(xi) and fT (xi) close while pushing apart fS(xi) and fT (xj) (xi and xj represent different
training samples).

For clear notation, we define variables S and T for the student representations and the teacher ones
of the data, respectively: x ∼ p(x); S = fS(x); T = fT (x).

Let us define a distribution q with variable C. The latent variable C decides whether the tuple
(fS(xi), fT (xj)) is drawn form the joint distribution p(T, S) (when C=1) or drawn from the product
of marginal distributions p(S)p(T ) (when C=0).

q(T, S|C = 1) = p(T, S), q(T, S|C = 0) = p(T )p(S)

Suppose we are given 1 congruent pair drawn from the joint distribution (i.e. the same input provided
to T and S) for every N incongruent pairs drawn from the product of marginals (independent randomly
inputs provided to T and S). Then the priors on the latent C are:

q(C = 1) =
1

N + 1
, q(C = 0) =

N

N + 1
.

By Bayes’ rule and simple manipulations, the posterior for C = 1 is given by:

q(C = 1|T, S) = q(T, S|C = 1)q(C = 1)

q(T, S|C = 0)q(C = 0) + q(T, S|C = 1)q(C = 1)
=

p(T, S)

p(T, S) +Np(T )p(S)
.

We can observe a connection with mutual information:

log q(C = 1|T, S) = − log(1 +N
p(T )p(S)

p(T, S)
) ≤ − log(N) + log

p(T, S)

p(T )p(S)
.

Taking expectation on both sides w.r.t p(T, S) and rearranging gives us:

I(T ;S) ≥ log(N) + Eq(T,S|C=1) log q(C = 1|T, S),

where I(T ;S) is the mutual information between the distributions of the teacher and student repre-
sentations. Though we do not know the true distribution q(C = 1|T, S), a neural network can be
used to estimate whether a pair comes from the joint distribution or the marginals.

By maximizing KL divergence between the joint distribution p(T, S) and the product of marginal
distributions p(T )p(S), we can maximize the mutual information between the student representations
and the teacher representations.

13


