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ABSTRACT

Advanced generative model (e.g., diffusion model) derived from simplified conti-
nuity assumptions of data distribution, though showing promising progress, has
been difficult to apply directly to geometry generation applications due to the multi-
modality and noise-sensitive nature of molecule geometry. This work introduces
Geometric Bayesian Flow Networks (GeoBFN), which naturally fits molecule
geometry by modeling diverse modalities in the differentiable parameter space of
distributions. GeoBFN maintains the SE-(3) invariant density modeling property by
incorporating equivariant inter-dependency modeling on parameters of distributions
and unifying the probabilistic modeling of different modalities. Through optimized
training and sampling techniques, we demonstrate that GeoBFN achieves state-of-
the-art performance on multiple 3D molecule generation benchmarks in terms of
generation quality (90.87% molecule stability in QM9 and 85.6% atom stability in
GEOM-DRUG1). GeoBFN can also conduct sampling with any number of steps
to reach an optimal trade-off between efficiency and quality (e.g., 20× speedup
without sacrificing performance).

1 INTRODUCTION
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Figure 1: The framework of GeoBFN

Molecular geometries can be represented
as three-dimensional point clouds, charac-
terized by their Cartesian coordinates in
space and enriched with descriptive fea-
tures. For example, proteins can be repre-
sented as proximity spatial graphs (Jing
et al., 2021) and molecules as atomic
graphs in 3D (Schütt et al., 2017). Thus,
learning geometric generative models has
the potential to benefit scientific discover-
ies such as material and drug design. Re-
cent progress in deep generative model-
ing has paved the way for geometric gen-
erative modeling. For example, Gebauer
et al. (2019); Luo & Ji (2021) and Satorras
et al. (2021a) use autoregressive models
and flow-based models, respectively, for
generating 3D molecules in-silico. Most
recently, inspired by the huge success of
diffusion model (DM) in image genera-
tion Meng et al. (2022); Ho et al. (2020)
and beyond Li et al. (2022), DM incorporating geometric symmetries has been widely explored in
the field of geometry generation Hoogeboom et al. (2022); Xu et al. (2023).

∗Equal Contribution. Correspondence to Hao Zhou(zhouhao@air.tsinghua.edu).
1The scores are reported at 1k sampling steps for fair comparison, and our scores could be further improved

if sampling sufficiently longer steps
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However, two major challenges remain in directly applying DM to molecule geometry: multi-modality
and noise sensitivity. The multi-modality issue refers to the dependency on diverse data forms to
effectively depict the atomic-level geometry of a molecule. For instance, the continuous variable of
atom coordinates is essential for describing the spatial arrangement, while either the discretised atom
charge or categorical atom types are employed to completely determine the molecule’s composition.
Noise sensitivity refers to the fact that applying noise or perturbing the atom coordinates will not only
change the value of the variable but also have a significant impact on the relationship among different
atoms as the Euclidean distances are also changed. Therefore, a small noise on atom coordinates
could bring a sudden drop of the signal at the molecule level.

To alleviate these issues, Xu et al. (2023) introduces a latent space for alleviating the inconsistency
of unified Gaussian diffusion on different modalities. Anand & Achim (2022) propose to use
decomposed modeling of different modalities. Peng et al. (2023) use different noise schedulers for
different modalities to accommodate noise sensitivity. However, these methods either depend on the
sophisticated and artifact-filled design or lack of guarantee or constraint on the designed space.

In this work, we propose Geometric Bayesian Flow Networks (GeoBFN) to model 3D molecule
geometry in a principally different way. Bayesian Flow Networks Graves et al. (2023) (BFN) is
a novel generative model developed quite recently. Taking a unique approach by incorporating
Bayesian inference to modify the parameters of a collection of independent distributions, brings a
fresh perspective to geometric generative modeling. Firstly, GeoBFN uses a unified probabilistic
modeling formulation for different modalities in the molecule geometry. Secondly, regarding the
variable of 3D atom coordinates, the input variance for BFNs is considerably lower than DMs,
leading to better compatibility with the inherent noise sensitivity. Further, we bring the geometry
symmetries into the Bayesian update procedure through an equivariant inter-dependency modeling
module. We also demonstrate that the density function of implied generative distribution is SE-(3)
invariant and the generative process of iterative updating is roto-translational equivariant. Thirdly,
with BFN’s powerful probabilistic modeling capacity, 3D molecule geometry representation can
be further optimized into a representation with only two similar modalities: discretised charge and
continuous atom coordinates. The mode-redundancy issue on discretised variable in the original
BFNs is fixed by an early mode-seeking sampling strategy in GeoBFN.

With operating on the space with less variance, GeoBFN could sample with any number of steps
which provides a superior trade-off between efficiency and quality, which leads to a 20× speedup
with competitive performance. Besides, GeoBFN is a general framework that can be easily extended
to other molecular tasks. We conduct thorough evaluations of GeoBFN on multiple benchmarks, in-
cluding both unconditional and property-conditioned molecule generation tasks. Results demonstrate
that GeoBFN consistently achieves state-of-the-art generation performance on molecule stability and
other metrics. Empirical studies also show a significant improvement in controllable generation and
demonstrate that GeoBFN enjoys a significantly higher modeling capacity and inference efficiency.

2 PRELIMINARIES

2.1 SE-(3) INVARIANT DENSITY MODELING

To distinguish geometry representation and the atomic property features, we use the tuple g = ⟨x,h⟩
to represent the 3D molecules. Note here x = (x1, . . . ,xN ) ∈ RN×3 is the atom coordinate matrix,
and h = (h1, . . . ,hN ) ∈ RN×d is the node feature matrix, e.g., atomic types and charges. Density
estimation on the 3D molecules should satisfy specific symmetry conditions of the geometry. In this
work, we focus on the transformations Tg in the Special Euclidean group (SE-(3)), i.e., the group of
rotation and translation in 3D space, where transformations Tg can be represented by a translation
t and an orthogonal matrix rotation R. Note for a generative model on molecule geometry with
underlying density function pθ(⟨x,h⟩), the likelihood should not be influenced by the rotation or
translation of the entire molecule, which means the likelihood function should be SE-(3) invariant on
the input coordinates, i.e., pθ(⟨x,h⟩) = pθ(⟨Rx+ t,h⟩).

2.2 BAYESIAN FLOW NETWORKS

The Bayesian Flow Networks (BFNs) are based on the following latent variable models: for learning
the probability distribution pθ over g, a series of noisy versions ⟨y1, · · · ,yn⟩ of g are introduced as
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latent variables. And then the variational lower bound of likelihood is optimized:

log pθ(g) ≥ E
y1,...,yn∼q

[
log

pϕ (g | y1, . . . ,yn) pϕ (y1, . . . ,yn)

q(y1, . . . ,yn|g)

]
= −DKL(q∥pϕ (y1, . . . ,yn)) + E

y1,...,yn∼q
log [pϕ (g | y1, . . . ,yn)] (1)

And q is namely the variational distribution. The prior distribution of latent variables is usually
organized autoregressively, i.e., pϕ(y1, · · · ,yn) = pϕ(y1)pϕ(y2 | y1)pϕ(yn | yn−1 · · ·y1) which
also implies the data generation procedure, i.e., y1 → · · · → yn → g (Note: this procedure only
demonstrates the generation order, yet does NOT imply Markov property for the following derivative).

One widely adopted intuition for the generation process is that the information of the data samples
should progressively increase along with the above Markov chain, e.g., noisier images to cleaner
images. The key motivation of BFNs is that the information along the latent variables should change
as smoothly as possible for all modalities including discretized and discrete variables. To this end,
BFNs operate on the distributions in the parameter space, in contrast to the sample space.

We introduce components of BFNs one by one (Fig.2a). Firstly, the variational distribution q is
defined by the following form:

q (y1, . . . ,yn | g) =
n∏

i=1

pS (yi | g;αi) (2)

pS (yi | g;αi) is termed as the sender distribution, which could be seen as adding noise to the data
according to a predefined accuracy αi.

Secondly, for the definition of pϕ, BFNs will first transfer the noisy sample y to the parameter
space, obtaining θ, then apply Bayesian update in the parameters space and transfer back to the
noisy sample space at last. To clarify, θ refers to the parameter of distributions in the sample space,
e.g., the mean/variance for Gaussian distribution or probabilities for categorical distribution. In the
scope of BFNs, the distributions on the sample space are factorized by default, e.g., p(g | θ) =∏D

d=1 p
(
g(d) | θ(d)

)
.

Thirdly, a neural network Φ takes θ as input and aims to model the dependency among different
dimensions hence to recover the distribution of the original sample g. The output of neural network
Φ(θ) still lies in the parameter space, and we termed it as the parameter of output distribution pO,
where pO(y|θ;ϕ) =

∏D
d=1 pO(y

(d) | Φ(θ)(d)).
To map the noisy sample y to the input space, Bayesian update is applied to θ:

θi ← h(θi−1,yi, αi), (3)
h is called Bayesian update function . The distribution over (θ0, . . . ,θn−1) is then defined by the
Bayesian update distribution via marginalizing out y:

pϕ (θ0, . . . ,θn−1) = p(θ0)

n∏
i=1

pU (θi | θi−1;αi) , (4)

where p(θ0) is a simple prior for ease of generation, e.g., standard normal, and pU could be obtained
from Eq. 3:

pU (θi | θi−1;αi) = E
pR(yi|θi−1;αi)

δ (θi − h(θi−1,yi, αi)) , (5)

δ being the Dirac delta distribution. pR(yi|θi−1, αi) = E
pO(x′|θi−1;ϕ)

pS(yi|x′;αi) and is also called

the as receiver distribution.

At last we map Φ(θ) back to the noisy sample space by combining the known form, accuracy of PS

and marginalizing out y:

pϕ (y1, . . . ,yn) = pϕ(y1)

n∏
i=2

pϕ(yi | y{1:i−1} =

n∏
i=1

pϕ(yi | θi−1)

=

n∏
i=1

E
pO(x′

i|θi−1;ϕ)
[pS(yi|x′

i;αi)] , (6)
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a Graphical Model of BFN b Graphical Model of Diffusion

Figure 2: Graphical View of Comparison between BFN and Diffusion

where we use θ0:n−1 to abbreviate (θ0, . . . ,θn−1), and y similar. . Till now, we have defined q,
pϕ(y1, . . . ,yn), and pϕ (g | y1, . . . ,yn) is simply pO(g | θn) on each sample, thus Eq.1 can be
estimated.

3 METHODOLOGY

3.1 SE-(3) INVARIANT GEOMETRY DENSITY MODELING

As discussed in Sec. 2.1, for a generative model on the 3D molecule geometry, it is crucial to hold the
SE-(3) invariant conditions. Recall the mathematics formula of the geometries g = ⟨x,h⟩, we denote
the latent variable, e.g., noisy samples, of g as yg . We are interested in applying the SE-(3) invariant
conditions to the probabilistic model pϕ. To this end, we need to first reformulate the likelihood
function:

pϕ(g) = pϕ(⟨x,h⟩) =
∫
yg
1 ,··· ,y

g
n

pϕ(g | yg
1, · · · ,yg

n)pϕ(y
g
1, · · · ,yg

n)dy
g
1 . . . dy

g
n. (7)

With θx and yx and all the distributions defined in the same way as above, we focus on the variables
corresponds to x in the geometry yg . Then we have the following theorem:
Theorem 3.1. (SE-(3) Invariant Condition)

• With the θx, yx, x constrained in the zero Center of Mass(CoM) space (Köhler et al., 2020;
Xu et al., 2022), the likelihood function pϕ is translational invariant.

• When the following properties are satisfied, the likelihood function pϕ is roto-invariant:

pO
(
x′ | θx

i−1;ϕ
)
= pO

(
R(x′) | R(θx

i−1);ϕ
)
; pS (yx | x′;α) = pS (R(yx) | R(x′);α) ;

h(R(θx
i−1),R(yx

i ), αi) = Rh(θx
i−1,y

x
i , αi); p(x

′|θx
0 ) = p(R(x′)|θx

0 ), ∀ orthogonal R

Proposition 3.2. With the condition in Theorem. 3.1 satisfied, the evidence lower bound objective in
Eq. 1, i.e.,

LVLB(x) = E
pϕ(θx

0 ,...,θ
x
n)

[
n∑

i=1

DKL(pS (· | x;αi) ∥pR(· | θx
i−1;αi))− log pϕ (x | θx

n)

]
, (8)

with the Bayesian update distribution pϕ
(
θx
0 , . . . ,θ

x
n−1

)
=

∏n
i=1 pU (θi | θi−1,x;αi) similar to

Eq. 4. And pR(· | θx
i−1;αi) = E

pO(x′
i|θx

i−1;ϕ)
[pS(yi|x′

i;αi)], pϕ(x|θx
n) = pO(x|θx

n, ϕ). Derivation

from Eq. 1 to equation 8 is at Appendix C.4. if pU (θi | θi−1,x;αi) = pU (Rθi | Rθi−1,Rx;αi),
then LVLB(x) is also SE-(3) invariant.

We leave the formal proof of Theorem. 3.1 and Proposition. 3.2 in Appendix C.

3.2 GEOMETRIC BAYESIAN FLOW NETWORKS

Then we introduce the detailed formulation of geometric Bayesian flow networks (GeoBFN) based on
the analysis in Sec. 3.1. For describing a 3D molecule geometry g = ⟨x,h⟩, various representations
can be utilized for the node features. The atom types ht and atomic charges hc are commonly
employed, with the former being discrete (categorical) and the latter being discretized (integer).
Together with the continuous variable, e.g., atom coordinates x, the network module in the modeling
of the output distribution of GeoBFN could be parameterized with an equivariant graph neural
network (EGNN) (Satorras et al., 2021b) Φ:

Φ(Rθx + t, [θht ,θhc ]) = [Rθx′
+ t,θh′

t ,θh′
c ], ∀R, t (9)

4



Published as a conference paper at ICLR 2024

where Φ(θx, [θht ,θhc ]) = [θx′
,θh′

t ,θh′
c ]. And then we introduce the necessary components to

derive the objective in Eq. 8

Atom Coordinates x and Charge hc: For the continuous and discretized variables, the input

distribution is set as the factorized Gaussian distributions, where θ
def
:= {µ, ρ} the parameter of

N
(
· | µ, ρ−1I

)
. For simplicity, we take x as an example to illustrate the common parts of the

two variables. And θx
0 is set as {0, 1}. The sender distribution pS is also an isotropic Gaussian

distribution:
pS(· | x;αI) = N

(
x, α−1I

)
(10)

Given the nice property of isotropic Gaussian (proof given by Graves et al. (2023)), the simple form
of Bayesian update function could be derived as:

h ({µi−1, ρi−1} ,y, α) = {µi, ρi} , Here ρi = ρi−1 + α,µi =
µi−1ρi−1 + yα

ρi
(11)

As shown in Eq. 11, the randomness only exists in µ, and the corresponding Bayesian update
distribution in Eq. 8 is as:

pU (θi | θi−1,x;α) = N
(
µi |

αx+ µi−1ρi−1

ρi
,
α

ρ2i
I

)
(12)

The above discrete-time Bayesian update could be easily extended to continuous-time, with an
accuracy scheduler defined as β(t) =

∫ t

t′=0
α (t′) dt′, t ∈ [0, 1]. Given the accuracy additive

property of pU (proof given by Graves et al. (2023)), E
pU (θi−1|θi−2,x;αa)

pU (θi | θi−1,x;αb) =

pU (θi | θi−2,x;αa + αb), the Bayesian flow distribution could be obtained as:

pF (θ
x | x; t) = pU (θx | θ0,x;β(t)) (13)

The key difference of atom coordinates x and charges hc lies in the design of the output distribution.
For continuous variable x, the network module Φ directly outputs an estimated x̂ = Φ(θg, t). Hence
for timestep t, the output distribution is

pO (x′ | θg, t;ϕ) = δ(x− Φ(θg, t)) (14)

While for discretized variable hc, the network module will output two variables, µhc
and lnσhc

with
dimension equivalent to hc which implies a distribution N (µhc

, σ2
hc
I). With a K-bins discretized

variable, the support is split into K buckets with each bucket k centered as kc = 2k−1
K − 1 and left

boundary as kl = kc − 1
K and right boundary as kr = kc +

1
K . Then for each k, the probability is

the mass from kl to kr, i.e.,
∫ kr

kl
N (µhc , σ

2
hc
I). And the first and last bins are curated by making sure

the sum of the probability mass is 1. Then the output distribution is:

pO(hc | θg, t;ϕ) =

D∏
d=1

p
(d)
O

(
k
(
h(d)
c

)
| θg, t;ϕ

)
, (15)

where the function k(·) maps the variable to the corresponding bucket.

Atom Types ht: The atom types ht are discrete variables with K categories, where the corresponding
parameter space lies in probability simplex thus the procedure is slightly different from the others.
The input distribution for ht is pI(ht | θ) =

∏D
d=1 θ

ht(d), where D is number if variables. And
the input prior θht

0 = 1
K , where 1

K is the length KD vector whose entries are all 1
K . The sender

distribution, could be derived with the central limit theorem, lies in the form of

pS(y | ht;α) = N (y | α (Keht
− 1) , αKI) (16)

where 1 is a vector of ones, I is the identity matrix, and ej ∈ RK is a vector defined as the projection
from the class index j to a length K one-hot vector (proof given by Graves et al. (2023)). In other
words, each element of ej is defined as (ej)k = δjk, where δjk is the Kronecker delta function. And

eht

def
=

(
e
h

(1)
t
, . . . , e

h
(D)
t

)
∈ RKD.
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GeoBFN

EDM

Figure 3: The Bayesian Flow and Diffusion Process of GeoBFN and EDM.

The Bayesian update function could be derived as h (θi−1,y, α)=
eyθi−1∑K

k=1 e
yk(θi−1)k

(proof given by

Graves et al. (2023)) . And similar to Eq. 13, the Bayesian flow distribution for ht is as:

pF (θ
ht | ht; t) = E

N(yht |β(t)(Keht−1),β(t)KI)
δ(θht − softmax(yht)) (17)

With the network module Φ, the output distribution could be obtained as

p
(d)
O (k | θg; t) =

(
softmax

(
Φ(d)(θg, t)

))
k
, pO(ht | θ; t) =

D∏
d=1

p
(d)
O

(
h
(d)
t | θg; t

)
(18)

Training Objective: By combining the different variables together, we could obtain the unified
continuous-time loss for GeoBFN based on Eq. 25 to Eq. 41 in (Graves et al., 2023) as:

L∞(g) = L∞(⟨x,hc,ht⟩) = E
t∼U(0,1),pF (θg|g;t)

[
αg(t)

2
∥g − Φ(θg, t)∥2

]
= E

t∼U(0,1),
θg∼pF (·|g;t)

[
αx(t)

2
∥x− Φx∥2 +

αhc(t)

2
∥hc − Φhc

∥2 + αht(t)

2
∥ht − Φht

∥2
]

(19)

Where Φ· is short for Φ·(θ
g, t). The joint Bayesian flow distribution is decomposed as:

pF (θ
g | g; t) = pF (θ

x | x; t)pF (θhc | hc; t)pF (θ
ht | ht; t), (20)

with αx, αhc and αht refer to the corresponding accuracy scheduler (details provided by
Graves et al. (2023)). And Φx is defined the same as in Eq. 14; while Φhc

is de-
fined by the weighted average of different bucket centers with the output distribution in
Eq. 15 as

(∑K
k=1 p

(1)
O (k | θ, t)kc, . . . ,

∑K
k=1 p

(D)
O (k | θ, t)kc

)
; And for Φht

, it is defined as the∑K
k=1 p

(d)
O (k | θ; t)ek based on Eq. 18.

Remark 3.3. The GeoBFN defined in the above formulation satisfied the SE(3)-invariant condition in
Theorem. 3.1.

Sampling GeoBFN will generate samples follow the graphical model in the recursive procedure as
illustrated in Fig. 2a: e.g., g′ ∼ pO(·|θi−1)→ y ∼ pS(·|g′, α)→ θi = h(θi−1, y, α).

3.3 OVERCOME NOISE SENSITIVITY IN MOLECULE GEOMETRY

One key obstacle of applying diffusion models to 3D molecule generation is the noise sensitivity
property of the molecule geometry. The property of noise sensitivity seeks to state the fact: When
noise is incorporated into the coordinates and displaces them significantly from their original positions,
the bond distance between certain connected atoms may exceed the bond length range[1]. Under these
circumstances, the point cloud could potentially lose the critical chemical information inherently
encoded in the bonded structures; Another perspective stems from the reality that when noise is
added to the coordinates, the relationships (distance) between different atoms could alter at a more
rapid pace, e.g. modifying the coordinates of one atom results in altering its distance to all other
atoms. Thus, the intermediate steps’ structure in the generation procedure of diffusion models the
intermediate steps’ structure might be uninformative. And the majority of the information being
acquired in the final few steps of generation (as depicted in Fig. 3).

6



Published as a conference paper at ICLR 2024

A fundamental belief underpinning GeoBFN is that a smoother transformation during the generative
process could result in a more favorable inductive bias according to (Graves et al., 2023). This
process occurs within the parameter space of GeoBFN, which is regulated through the Bayesian
update procedure. Specifically, samples exhibiting higher degrees of noise are assigned lesser weight
during this update (refer to Eq. 11). This approach consequently leads to a significant reduction in
variance within the parameter space as (Graves et al., 2023), which in turn facilitates the smooth
transformation of molecular geometries. As illustrated in Fig. 3, this is evidenced by the gradual
convergence of the structure of the intermediary steps towards the final structure, thus underscoring
the effectiveness of smoother transformation.

3.4 OPTIMIZED DISCRETISED VARIABLE SAMPLING

Previous research (Hoogeboom et al., 2022; Xu et al., 2023; Wu et al., 2022) utilizes both the atom
types ht and charges hc to represent the atomic properties. The hc usually serves as an auxiliary loss
for improving training which is not involved in determining the molecule graph during generation due
to the insufficient modeling. However, there is redundant information between these two variables,
since the ht and hc variables have a one-to-one mapping, e.g.the charge value 4 could be uniquely
determined as the Carbon atom. We found that with advanced probabilistic modeling on discretized
data, GeoBFN could conduct training and sampling only with x and hc. However, there exists a
counterexample for the objective in Eq. 19 and the output distribution during sampling as in Eq. 15.
As shown in Fig 5, the boundary condition for clamping the cumulative probability function in
the bucket could cause the mismatch, e.g., the true density should be centered in the center bucket
while the ouput distribution instead put the most density in the first and last buckets which cause the
mode-redundancy as shown in upper-left in Fig. 5. Though the weighted sum in Eq. 19 is optimized,
the sampling procedure will rarely sample the center buckets. And such cases could be non-negligible
in our scenarios, especially when the number of bins is small for low dimensional data. To alleviate
this issue, we instead update the output distribution in the sampling procedure to:

k̂c(θ, t) = NEAREST_CENTER(

[
K∑

k=1

p
(1)
O (k | θ, t)kc, . . . ,

K∑
k=1

p
(D)
O (k | θ, t)kc

]
) (21)

Function NEAREST_CENTER compares inputs to the center bins k⃗c =
(
k
(1)
c , . . . , k

(D)
c

)
, and return

the nearest center for each input value. The updated distribution is unbiased towards the training
objective and also reduce the variance during generation which could be found in the trajectory of
Fig.5.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Task and Datasets We focus on the 3D molecule generation task following the setting of prior
works (Gebauer et al., 2019; Luo & Ji, 2021; Satorras et al., 2021a; Hoogeboom et al., 2022; Wu et al.,
2022). We consider both Unconditional Molecular Generation which assesses the capability to learn
the underlying molecular data distribution and generate chemically valid and structurally diverse
molecules and the Conditional Molecule Generation tasks which evaluate the capacity of generating
molecules with desired properties. For Conditional Molecule Generation, we implement a conditional
version GeoBFN with the details in the Appendix. The widely adapted QM9 (Ramakrishnan et al.,
2014) and the GEOM-DRUG (Gebauer et al., 2019; 2021) with large molecules are used for the
experiments. And the data configurations directly follow previous work(Anderson et al., 2019;
Hoogeboom et al., 2022; Xu et al., 2023)2.

Evaluation Metrics The evaluation configuration follows the prior works (Hoogeboom et al., 2022;
Wu et al., 2022; Xu et al., 2023). For the Unconditional Molecular Generation, the bond types
are first predicted (single, double, triple, or none) based on pair-wise atomic distance and atom
types in the 10000 generated molecular geometries (Hoogeboom et al., 2022). With the obtained
molecular graph, we evaluate the quality by calculating both atom stability and molecule stability
metrics. Besides, the validity (based on RDKIT) and uniqueness are also reported. Regarding the

2The official implementation is at https://github.com/AlgoMole/GeoBFN
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Table 1: Results of atom stability, molecule stability, validity, validity×uniqueness (V×U), and
novelty. A higher number indicates a better generation quality. The results marked with an asterisk
were obtained from our own tests. And GeoBFNk denote the results of sampling the molecules with
a specific number of steps k

QM9 DRUG
# Metrics Atom Sta (%) Mol Sta (%) Valid (%) V×U (%) Novelty (%) Atom Sta (%) Valid (%)

Data 99.0 95.2 97.7 97.7 - 86.5 99.9

ENF 85.0 4.9 40.2 39.4 - - -
G-Schnet 95.7 68.1 85.5 80.3 - - -
GDM-AUG 97.6 71.6 90.4 89.5 74.6 77.7 91.8
EDM 98.7 82.0 91.9 90.7 58.0 81.3 92.6
EDM-Bridge 98.8 84.6 92.0 90.7 - 82.4 92.8
GEOLDM 98.9 ± 0.1 89.4 ± 0.5 93.8 ± 0.4 92.7 ± 0.5 57.0 84.4 99.3

GEOBFN 50 98.28 ± 0.1 85.11 ± 0.5 92.27 ± 0.4 90.72 ± 0.3 72.9 75.11 91.66
GEOBFN 100 98.64 ± 0.1 87.21 ± 0.3 93.03 ± 0.3 91.53 ± 0.3 70.3 78.89 93.05
GEOBFN 500 98.78 ± 0.8 88.42 ± 0.2 93.35 ± 0.2 91.78 ± 0.2 67.7 81.39 93.47
GEOBFN 1k 99.08 ± 0.06 90.87 ± 0.2 95.31 ± 0.1 92.96 ± 0.1 66.4 85.60 92.08
GEOBFN 2k 99.31 ± 0.03 93.32 ± 0.1 96.88 ± 0.1 92.41 ± 0.1 65.3 86.17 91.66

Table 2: Mean Absolute Error for molecular prop-
erty prediction with 500 sampling steps. A lower
number indicates a better controllable generation
result.

Property α ∆ε εHOMO εLUMO µ Cv

Units Bohr3 meV meV meV D cal
mol K

QM9* 0.10 64 39 36 0.043 0.040

Random* 9.01 1470 645 1457 1.616 6.857
Natoms 3.86 866 426 813 1.053 1.971
EDM 2.76 655 356 584 1.111 1.101
GEOLDM 2.37 587 340 522 1.108 1.025
GEOBFN 2.34 577 328 516 0.998 0.949

Table 3: Ablation study, GeoBFN models
molecule charge settings, the sampling step is
set to 1,000.

Charge Feature Atom Stable (%) Mol Stable (%)
discretised_basis 99.08 90.87
continuous_basis 98.97 89.94
discrete 98.93 88.93
discrete + continuous 98.96 89.33
discrete + discretised 98.91 88.65

Conditional Molecule Generation, we evaluate our conditional version of GeoBFN on QM9 with
6 properties: polarizability α, orbital energies εHOMO, εLUMO and their gap ∆ε, Dipole moment
µ, and heat capacity Cv. Following previous work Hoogeboom et al. (2022); Xu et al. (2023), the
conditional GeoBFN is fed with a range of property s to generate samples and the same pre-trained
classifier w is utilized to measure the property of generated molecule as ŝ. The Mean Absolute Error
(MAE) between s and ŝ is calculated to measure whether the generated molecules is related to the
conditioned property.

Baselines GeoBFN is compared with several advanced baselines including G-Schnet (Gebauer et al.,
2019), Equivariant Normalizing Flows (ENF) (Satorras et al., 2021a) and Equivariant Graph Diffusion
Models (EDM) with its non-equivariant variant (GDM) (Hoogeboom et al., 2022). Also with recent
advancements, EDM-Bridge (Wu et al., 2022) which improves upon the performance of EDM by
incorporating well-designed informative prior bridges and also GeoLDM (Xu et al., 2023) where
a latent space diffusion model is applied are both included. To yield a fair comparison, all the
method-agnostic configurations are set as the same. The implementation details could be found in
Appendix. B.
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4.2 MAIN RESULTS

The results of Unconditional Molecular Generation can be found in Tab. 1. We could observe that in
both the QM9 and GEOM-DRUG datasets, GeoBFN achieves a new state-of-the-art performance
regarding both the quality and diversity of the generated molecules which demonstrates the huge
potential of GeoBFN on geometry generative modeling. The phenomenon demonstrates that the
GeoBFN does not hold the tendency to collapse to the subset of training data which could imply
a probabilistic generalization ability and could be useful for several application scenarios; The
Conditional Molecule Generation results can be found in Tab. 2. GeoBFN consistently outperforms
other baseline models by an obvious margin in all conditional generation tasks. This clearly highlights
the effectiveness and generalization capability of the proposed methods.

4.3 ANY-STEP SAMPLING

One notable property of GeoBFN is that training with the continuous-time loss, e.g., Eq. 19, the
sampling could be conducted with any steps without incurring additional training overhead. As shown
in Tab. 1, GeoBFN could get superior performance compared to several advanced models with only 50
steps during sampling which brings 20× speed-up during sampling due to the benefit of low variance
parameter space. As we could find in Fig 4, with the sampling steps increasing from 50 to 4600, the
molecule stability could be further boosted to approach the upper bound, e.g., 94.25% with 4000 steps.

4.4 ABLATION STUDIES

We conduct ablation studies on the effect of input modalities in Tab. 3. We try different compositions
and losses to represent the atom types, discretised basis refers to the case where the charge feature is

used with discretised and the Gaussian basis, i.e., ϕj(x) = exp

(
− (x−µj)

2)
2σ2

)
is used as functional

embedding for charge; continous basis only differ in that the continous loss is utilized. The discrete
refers to including the one-hot type representation; discrete+continuous refers to both the one-hot
type and charge are included while continuous loss is included; Similar is the discrete+continuous.
With only discretised variable utilized, the performance is superior to including the discrete variable
which implies powerful probabilistic modeling capacity and the benefits of applying similar modality.

5 RELATED WORK

Previous molecule generation studies have primarily focused on generating molecules as 2D graphs
(Jin et al., 2018; Liu et al., 2018; Shi et al., 2020), but there has been increasing interest in 3D
molecule generation. With the increasing interest in 3D molecule generation, G-Schnet and G-
SphereNet (Gebauer et al., 2019; Luo & Ji, 2021) respectively, employ autoregressive techniques
to create molecules in a step-by-step manner by progressively connecting atoms or molecular
fragments. These frameworks have also been extended to structure-based drug design (Li et al.,
2021; Peng et al., 2022; Powers et al., 2022). There are approaches use atomic density grids
that generate the entire molecule in a single step by producing a density over the voxelized 3D
space (Masuda et al., 2020). Most recently, the attention has shifted towards using DMs for 3D
molecule generation (Hoogeboom et al., 2022; Wu et al., 2022; Peng et al., 2023; Xu et al., 2023),
with successful applications in target drug generation (Lin et al., 2022), antibody design (Luo et al.,
2022), and protein design (Anand & Achim, 2022; Trippe et al., 2022). However, our method is
based on the Bayesian Flow Network (Graves et al., 2023) objective and hence lies in a different
model family which fundamentally differs from this line of research in both training and generation.

6 CONCLUSION

We introduce GeoBFN, a new generative framework for molecular geometry. GeoBFN operates
in a differentiable parameter space for variables from different modalities. Also, the less variance
in parameter space is naturally compatible with the noise sensitivity of molecule geometry. Given
the appealing property, the GeoBFN achieves state-of-the-art performance on several 3D molecule
generation benchmarks. Besides, GeoBFN can also conduct sampling with an arbitary number
of steps to reach an optimal trade-off between efficiency and quality (e.g., 20× speedup without
sacrificing performance).
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A EXPLANATION OF THE DATA EXCHANGE PERSPECTIVE OF BAYESIAN
FLOW NETWORKS

In this section, we provide a brief overview of the Bayesian Flow Networks Graves et al. (2023) from
a data exchange perspective. Bayesian Flow Networks (BFNs) is a new class of generative model
that operates on the parameters of a set of independent distributions with Bayesian inference. The
meta elements of BFNs are the input distributions, sender distributions, and output distributions.
To start with, we denote the D-dimensional variable as m =

(
m(1), . . . ,m(D)

)
∈ MD, and

θ =
(
θ(1), . . . , θ(D)

)
represent the parameters of a D-dimensional factorised distribution, i.e.,

p(m | θ) =
∏D

d=1 p
(
m(d) | θ(d)

)
.

The basic logic of BFN could be better explained by the following communication example between
the sender, referred to as Alice, and the receiver Bob. Alice aims to transfer some data to Bod in a
progressive fashion, i.e., at each timestep, Alice corrupts the data according to some channel noise,
and then the noisy sample is transferred. The sender distribution is then defined to describe the noise-
adding procedure, which is also a factorized distribution, pS(y |m;α) =

∏D
d=1 pS

(
y(d) | m(d);α

)
.

α refers to the accuracy parameter, α = 0 refers to the information of the sample being totally
destroyed by the noise, and with α increase the noisy sample will contain more information of the
original sample. Intuitively, the sender distribution could be approximately understood as adding
noise to each dimension of the data independently.

After receiving the noisy sample y, Bob will first update an initial “guess” of what is the original
sample behind the noisy sample, i.e. input distribution. Note that except for the noisy sample, Bob
also knows the accuracy parameter α and noise formulation while not aware of the original sample m,
i.e., the noise level to create such a sample. The input distribution is initially a simple prior on the data
space, e.g., a standard Gaussian, lies in the mean-field family, pI(m | θ) =

∏D
d=1 pI

(
x(d) | θ(d)

)
.

The parameter of input distribution will be updated through Bayesian inference, noted as θi =
h (θi−1,y, αi). This update usually lies in a simple form, e.g. additive or weighted average.

After updating the parameter of input distribution, Bob has an “assistant” which will help to provide
a better guess on the original data which generates the observed noisy sample. The assistant aims
to exploit more context information between different dimensions, e.g., the relationship between
different pixels in an image, in contrast to updating each dimension independently as in the input
distribution. Empirically, the assistant could be implemented by a neural network Ψ which takes
all parameters of input distribution for the prediction of parameters of each dimension, i.e, Ψ(θ) =(
Ψ(1)(θ, t), . . . ,Ψ(D)(θ, t)

)
.

The output distribution is then implied by the predicted parameter which lies in the formulation of
pO(m | θ, t) =

∏D
d=1 pO

(
m(d) | Ψ(d)(θ, t)

)
. Then Bob could construct a distribution to approxi-

mate the sender distribution at accuracy α by combining the output distribution with the known noise
form, accuracy, i.e., pR (· | θ; t, α) = EpO(x′|θ;t)pS (y | x′;α). Such distribution is called receiver
distribution. The "assistant" of BFNs Ψ is to minimize the KL divergence with a defined accuracy
scheduler under different timesteps, i.e., DKL (pS (· |m;αi) ∥pR (· | θi−1; ti−1, αi)), which could
also be interpreted as transmission cost under the bits-back coding scheme.

B IMPLEMENTATION DETAILS

The bayesian flow network is implemented with EGNNs Satorras et al. (2021b) by PyTorch (Paszke
et al., 2017) package. We set the dimension of latent invariant features k to 1 for QM9 and 2 for
DRUG, which extremely reduces the atomic feature dimension. For the training of vector field
network vθ: on QM9, we train EGNNs with 9 layers and 256 hidden features with a batch size 64;
and on DRUG, we train EGNNs with 4 layers and 256 hidden features, with batch size 64. The
model uses SiLU activations. We train all the modules until convergence. For all the experiments,
we choose the Adam optimizer (Kingma & Ba, 2014) with a constant learning rate of 10−4 as our
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default training configuration. The training on QM9 takes approximately 2000 epochs, and on DRUG
takes 20 epochs.

C PROOF OF THEOREMS

In this Section, we provide the formal proof of the Theorem. 3.1 and Proposition. 3.2, as well as the
detailed derivations for Equations.

C.1 DISCUSSION ON THE TRANSLATIONAL INVARIANCE

Remark C.1. It is important to distinguish it from the rotation invariant. The rotational invariant
is defined as p(x) = p(Rx), while the translational is not as p(x) = p(x+ t) as such distribution
can not integrate into one and hence does not exist. Fortunately, the freedom of translation could
be eliminated by only focusing on learning distribution on the linear subspace where the center of
gravity is always zero. This is, for all configurations on Rn×3 space, the density on the zero CoM
space is utilized to represent their density; It’s important to note that the distribution is not defined for
configurations outside the zero CoM space. However, it remains possible to leverage the distribution
to provide a density-evaluation (not probability density) on the configurations outside the zero CoM
space. This is achieved by projecting them back into the subspace. The evaluation procedure for
configurations out of zero CoM space could only get a quantity defined artificially instead of the true
density of some real distribution, e.g. It is referred to as "CoM-free density" in (Xu et al., 2022).
Thus, there does not exist correctness issues.

C.1.1 ZERO CENTER OF MASS(COM) IN THE GEOBFN

Here we provide detailed discussions on optimizing the distribution in the zero CoM space. Recall
the training objective in equation 8,

LVLB(x) = E
pϕ(θx

0 ,...,θ
x
n)

[
n∑

i=1

DKL(pS (· | x;αi) ∥pR(· | θx
i−1;αi))− log pϕ (x | θx

n)

]
, (22)

where pϕ(x|θx
n) = pO(x|θx

n, ϕ). For learning a distribution on the zero CoM space of Rn×3, the
pS (· | x;αi), pR(· | θx

i−1;αi) and pϕ (x | θx
n) are all defined and supported on the zero CoM space,

here
∑n

i=1 xi = 0 and
∑n

i=1 θ
x = 0. In other words, such distribution has no definition for variable

v ∈ Rn×3 if
∑n

i=1 vi ̸= 0. We then express the likelihood function of an isotropic diagonal Gaussian
distribution, which is originally defined on the zero CoM space ((n− 1)× 3-dimensional), in the
ambient space (n× 3-dimensional) as (Hoogeboom et al., 2022):

Nx

(
x | µ, σ2I

)
= (
√
2πσ)−(n−1)×3 exp

(
− 1

2σ2
∥x− µ∥2

)
(23)

Here σ2 is the variance which is equivalent for each dimension. Recall the Eq. 35 in the
(Graves et al., 2023), which shows that DKL(pS (· | x;αi) ∥pR(· | θx

i−1;αi)) takes the form of
DKL

(
N

(
x, α−1

i I
)
∥N (Φx(θ

g, t), α−1
i I)

)
which is the KL divergence between to diagonal Gaus-

sian, then we derive the KL divergence for isotropic diagonal normal distributions of zero CoM with
means represent on the ambient space. If pS = N

(
µ̂1, σ

2I
)

and pR = N
(
µ̂2, σ

2I
)

on subspace,
where µ̂1 and µ̂2 is (n− 1)× 3-dimension. Then the KL between them could be represented as:

DKL(q∥p) =
1

2

[
∥µ̂1 − µ̂2∥2

σ2

]
(24)

There is an orthogonal transformation Q which transforms the ambient space µi ∈ Rn×3 where∑
i µi = 0 to the subspace in the way that

[
µ̂
0

]
= Qµ. With ∥µ̂∥ = ∥

[
µ
0

]
∥ = ∥µ∥, there is

∥µ̂1 − µ̂2∥2 = ∥µ1 − µ2∥2. Hence we have:

DKL

(
N

(
x, α−1

i I
)
∥N (Φx(θ

g, t), α−1
i I)

)
=

αi

2
∥x− Φx (θ

g, t)∥2 (25)

Hence we demonstrate the correctness of our objective in Eq. 19.
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C.1.2 PROOF OF THE TRANSLATIONAL INVARIANT DENSITY EVALUATION PROCEDURE.

Proof. For an n-atom molecule g = ⟨x,h⟩, the coordinate variable x has the dimension of n × 3.
Note that with the zero Center of Mass mapping (Xu et al., 2022; Satorras et al., 2021a), where
we constrain the center of gravity as zero (

∑n
i=1 xi = 0), then variable x essentially lies in the

(n − 1) × 3-dimensional linear subspace. The generative distributions pX mentioned in all of the
related literature (Satorras et al., 2021a; Hoogeboom et al., 2022; Xu et al., 2022; 2023) is constrained
in the zero Center of Mass space. This is, for samples in the ambient space, if

∑n
i=1 xi ̸= 0, pX is not

defined. The translational invariant property of distribution pX mentioned is not referred to the fact
that pX(x) = pX(x+ t) for all translation vector t is satisfied in the ambient space with dimension
n × 3. Actually, such conditions could not be satisfied in any space (Satorras et al., 2021a). The
translational invariant condition actually refers to the invariant function f which could evaluate the
density of all the ambient space based on pX, the evaluated density by f also referred to as "CoM-free
standard density" in (Xu et al., 2022). The function f is defined as

f(x) = pX(Qx) (26)

where Q refers to the operation which maps the x to the zero Center of Mass space, e.g. in our work
Q is defined as

Q = I3 ⊗
(
IN −

1

N
1N1T

N

)
, s.t. Qx =

x1 −
∑n

i=1 xi

n
· · ·

xn −
∑n

i=1 xi

n

 (27)

that subtracting mean
∑n

i=1 xi

n from each xi, where Ik denotes the k × k identity matrix and 1k

denotes the k-dimensional vector filled with 1s. Then the density evaluation function f is translational
invariant in the ambient space:

f(x+ t) = pX(Q̂(x+ t)) = pX(

x1 + ti −
∑n

i=1(xi+ti)

n
· · ·

xn + tn −
∑n

i=1(xi+ti)

n

) (28)

Note t stands for a translation vector, which implies that t1 = · · · = ti = tn = C ∈ R3. Then we
have:

f(x+ t) = pX(

x1 + C−
∑n

i=1(xi+C)

n
· · ·

xn + C−
∑n

i=1(xi+C)

n

) = pX(

x1 −
∑n

i=1 xi

n
· · ·

xn −
∑n

i=1 xi

n

) = pX(Qx) = f(x) (29)

Furthermore, the above proof has no constraint on the distribution pX. This is, for any distribution on
the zero Center of Mass space, the corresponding evaluation function defined in Eq. 26 is translational
invariant.

C.2 PROOF OF THEOREM. 3.1.

Given the above discussion on the translational invariance, for simplicity, we could only focus on the
rotation transformation.

Proof. Recall the graphical model in Fig. 2, we could reformulate the density function in Eq. 7 as:

pϕ(x) =

∫
pϕ(x | θx

1 , · · · ,θx
n)pϕ(θ

x
1 , · · · ,θx

n)dθ
x
1:n (definition of marginal)

=

∫
pϕ(x | θx

n)p(θ0)

n∏
i=1

pU (θi | θi−1;αi) dθ
x
1:n. (30)

Note that pϕ(x | θx
n) = pϕ(Rx | Rθx

n) = pO (R(x) | R(θx
n);ϕ) due to the property of EGNN,

and p(θ0) = p(Rθ0) since θ0 = 0. Then we prove that pU (θi | θi−1;αi) satisfies the equiv-
ariant condition that pU (θi | θi−1;αi) = pU (Rθi | Rθi−1;αi). Recall that pU (θi | θi−1;αi) =
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E
pO(yi|θi−1;αi)

δ (θi − h (θi−1,yi, αi)), then we have:

pU (Rθi | Rθi−1;αi) = E
pO(yi|Rθi−1;αi)

δ (Rθi − h (Rθi−1,yi, αi))

=

∫
pO (yi | Rθi−1;αi) δ (Rθi − h (Rθi−1,yi, αi)) dyi (31)

Then we apply integration-by-substitution and replace the variable yi with a new variable y′
i, i.e.

yi = Ry′
i, into the Eq. 31:∫

pO (yi | Rθi−1;αi) δ (Rθi − h (Rθi−1,yi, αi)) dyi

=

∫
pO (Ry′

i | Rθi−1;αi) δ (Rθi − h (Rθi−1,Ry′
i, αi)) dRy′

i

=

∫
pO (Ry′

i | Rθi−1;αi) δ (Rθi − h (Rθi−1,Ry′
i, αi)) |det(R)|dy′

i (32)

The rotation matrix R is a SO(3) matrix, thus the |det(R)| = 1. And for the continuous coordinate
variable, the update function h defined in Eq. 11 is also equivariant:

h (Rθi−1,Ryi, αi) =
Rθi−1ρi−1 +Ryiαi

ρi
= Rh (θi−1,yi, αi) (33)

Putting these conditions back to the Eq. 32, we have that

pU (Rθi | Rθi−1;αi) =

∫
pO (yi | Rθi−1;αi) δ (Rθi − h (Rθi−1,yi, αi)) dyi

=

∫
pO (Ry′

i | Rθi−1;αi) δ (Rθi −Rh (θi−1,y
′
i, αi)) |det(R)|dy′

i

=

∫
pO (y′

i | θi−1;αi) δ (θi − h (θi−1,y
′
i, αi)) dy

′
i

= pU (θi | θi−1;αi) (34)

Hence the transitions on the θ space are the Markov and equivariant to rotation as shown in Eq. 30.
The initial state θ0 is a zero vector 0 which is rotation invariant. To derive the rotation-invariant
property of pϕ, we will use the following Lemma, which is the direct application of Proposition 1 in
(Xu et al., 2022). We changed the notation to make it consistent with our literature.

Lemma C.2. (Xu et al., 2022) Let p (θ0) be an SE(3)-invariant density function, i.e., p (θ0) =
p (Tg (θ0)). If Markov transitions p (θi | θi−1) are SE(3)-equivariant, i.e., p (θi | θi−1) =
p (Tg (θi) | Tg (θi−1)), then we have that the density p (θn) =

∫
p (θ0) p (θ1:n | θ0) dθ0:n is also

SE(3)-invariant. (Tg stands for the SE(3) transformations.)

For completeness, we also include the derivation of the lemma from (Xu et al., 2022):

p (Tg(θn)) =

∫
p (Tg(θ0)) p (Tg(θ1:n) | Tg(θ0)) dθ0:n

=

∫
p (Tg (θ0))Π

n
i=1p (Tg (θi) | Tg (θi−1)) dθ0:n

=

∫
p (θ0)Π

n
i=1pθ (Tg (θi) | Tg (θi−1)) dθ0:n ( invariant prior p (θ0))

=

∫
p (θ0)Π

n
i=1pθ (θi | θi−1) dθ0:n (equivariant kernels p (θi | θi−1))

=

∫
p (θ0) p (θ1:n | θ0) dθ0:n

= p (θn)

(35)

Given the invariant property of θ0 and equivariant property of the transition pU (θi | θi−1;αi) and
the pϕ(x | θx

n), we could directly get the conclusion in Theorem. 3.1. Now we finish the proof.
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C.3 PROOF OF PROPOSITION. 3.2.

Proof. Then we derive the invariant property of the variational lower bound in of the variational
lower bounds in equation 8:

LV LB(x) = E
pϕ(θx

0 ,...,θ
x
n)
[

n∑
i=1

DKL(pS (· | x;αi) ∥pR(· | θx
i−1;αi))− log pϕ (x | θx

n)]

To start with, we consider the first term:

E
pϕ(θx

0 ,...,θ
x
n)

n∑
i=1

DKL(pS (· | x;αi) ∥pR(· | θx
i ;αi))

=

n−1∑
i=0

E
pϕ(θx

i )
DKL(pS (· | x;αi) ∥pR(· | θx

i ;αi))

(36)

Note a natural conclusion from the Theorem. 3.1 is that the SE(3) invariance property is not only
satisfied in the marginal distribution of the last time step variable p(θn), but also for the distribution
of any intermediate p(θi). Such property could be justified based on the condition in Lemma. C.2.
Actually, the proof of Theorem. 3.1 in the above section does not specify the time steps, hence the
marginal distribution of any time step could be proved in exactly the same way. Consider the i-th
term in the KL part of LVLB(Rx):

E
pϕ(θx

i )
DKL(pS (· | Rx;αi) ∥pR(· | θx

i ;αi))

=

∫
pϕ (θ

x
i )DKL(pS (· | Rx;αi) ∥pR(· | θx

i ;αi))dθ
x
i

(37)

we introduce the variable θ′
i similar to Eq. 32, i.e. θi = Rθ′

i, and then we extend i-th term in the
Eq. 36: ∫

pϕ

(
Rθx′

i

)
DKL(pS (· | Rx;αi) ∥pR(· | Rθx′

i ;αi))|det(R)|dθx′

i (38)

As proved in the proof of Theorem. 3.1, pϕ is invariant and hence pϕ

(
Rθx′

i

)
= pϕ(θ

x′

i ); Also the
|det(R)| = 1 for SO(3) rotation matrix. And then we discuss the KL divergence term:

DKL(pS (· | Rx;αi) ∥pR(· | Rθx′

i ;αi)) =

∫
pS (y | Rx;αi) log

pS (y | Rx;αi)

pR(y | Rθx′
i ;αi)

dy

=

∫
pS (Ry′ | Rx;αi) log

pS (Ry′ | Rx;αi)

pR(Ry′ | Rθx′
i ;αi)

det(R)|dy′

=

∫
pS (y′ | x;αi) log

pS (y′ | x;αi)

pR(y′ | θx′
i ;αi)

dy′ = DKL(pS (· | x;αi) ∥pR(· | θx′

i ;αi)) (39)

Note that pS (y′ | x;αi) = pS (Ry′ | Rx;αi) is due to that the sender distribution is isotropic;
And for receiver distribution, the equivariant property that pR (y′ | x;αi) = pR (Ry′ | Rx;αi) is
guaranteed by both the parameterization of pO with Equivariant Graph Neural Network and the
isotropic pS . At last, we put the above conclusion back to Eq. 37, and we get that:

E
pϕ(θx

i )
DKL(pS (· | Rx;αi) ∥pR(· | θx

i ;αi))

=

∫
pϕ (θ

x
i )DKL(pS (· | Rx;αi) ∥pR(· | θx

i ;αi))dθ
x
i

=

∫
pϕ (θ

x
i )DKL(pS (· | x;αi) ∥pR(· | θx

i ;αi))dθ
x
i

= E
pϕ(θx

i )
DKL(pS (· | x;αi) ∥pR(· | θx

i ;αi))

(40)

And here we prove the first term in LV LB(Rx) is equivalent to LV LB(x). The second term could be
derived in exactly the same way, and here we finish the proof.
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C.4 DERIVATION OF EQUATION 8

Note that the equation 8:

LVLB(x) = E
pϕ(θx

0 ,...,θ
x
n)

[
n∑

i=1

DKL(pS (· | x;αi) ∥pR(· | θx
i−1;αi))− log pϕ (x | θx

n)

]
, (41)

is the extension formulation of Eq. 1. To align the notation of Eq. 1 and equation 8, we use x in
the following derivation. We first consider the term −DKL(q∥pϕ (y1, . . . ,yn)) in Eq. 1, we put the
Eq. 2

q = q (y1, . . . ,yn | x) =
n∏

i=1

pS (yi | x;αi) (42)

And the pϕ (y1, . . . ,yn)) in Eq. 6 as

pϕ (y1, . . . ,yn) = E
pϕ(θ0:n−1)

[
n∏

i=1

E
pO(x′

i|θi−1;ϕ)
[pS(yi|x′

i;αi)]

]

= E
pϕ(θ0:n)

n∏
i=1

pR(yi|θi−1;αi) (43)

Putting them together into the KL divergence term, and then we get the

DKL(q∥pϕ (y1, . . . ,yn)) = E∏n
i=1 pS(yi|x;αi)

log

∏n
i=1 pS (yi | x;αi)

E
pϕ(θ0:n−1)

∏n
i=1 pR(yi|θi−1;αi)

= E
pϕ(θ0:n−1)

E∏n
i=1 pS(yi|x;αi)

log

∏n
i=1 pS (yi | x;αi)∏n
i=1 pR(yi|θi−1;αi)

= E
pϕ(θ0:n−1)

n∑
i=1

DKL(pS (· | g;αi) ∥pR(· | θi−1;αi))

(44)

And we have derived the first term in equation 8. And for the second term,

log pϕ(x|y1, · · · ,yn) = log pϕ(x|θ0, · · · ,θn) (Graphical Model in Fig. 2)
= log pϕ(x|θn) (Markov Property of θ) (45)

And here we finish the derivation.

D DETAILS ON CONDITIONAL GENERATION EXPERIMENTS

D.1 PARAMETERIZATION AND SAMPLING

For the conditional experiments, we directly follow the conditional setting of previous litera-
ture (Hoogeboom et al., 2022). We discuss the details of the parameterization and sampling in
the following. For conditional experiments, we add the property c as the extra input for the interde-
pendency modeling module in Eq. 19. The conditional objective will be as:

L∞(g, c)

= E
t∼U(0,1),pF (θg|g;t)

[
αx(t)

2
∥x− Φx∥2 +

αhc(t)

2
∥hc − Φhc∥2 +

αht(t)

2
∥ht − Φht∥2

]
(46)

Where Φ·(θ
g, t, c) is short for Φ·(θ

g, t, c).

For the sampling procedure, the property c and node number M will be firstly sampled from a prior
p(c,M) defined in (Hoogeboom et al., 2022). Here p(c,M) is computed on the training partition as
a parametrized two-dimensional categorical distribution where the continuous variable c is discretized
into small uniformly distributed intervals. Then we could conduct generation as in Algorithm 3 based
on the conditional output distribution pO(·|θ, c, t) base on Φ(θ, c, t).
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D.2 EXPLANATIONS ON THE PROPERTIES IN TAB. 2

α Polarizability: Tendency of a molecule to acquire an electric dipole moment when subjected to
anexternal electric field.
εHOMO: Highest occupied molecular orbital energy.
εLUMO: Lowest unoccupied molecular orbital energy.
∆ε Gap: The energy difference between HOMO and LUMO.
µ : Dipole moment.
Cv : Heat capacity at 298.15 K

E DETAILED ALGORITHMS FOR TRAINING AND SAMPLING

For a better understanding of the whole procedure in training and sampling, we involve the detailed
algorithms and implements of functions in Algorithm 1, Algorithm 2 and Algorithm 3.

Algorithm 1 Functions for GeoBFN

function DISCRETISED_CDF(µ ∈ R, σ ∈ R+, x ∈ R)
F (x)← 1

2

[
1 + erf

(
x−µ

σ
√
2

)]
G(x)←


0 if x ≤ −1
1 if x ≥ 1

F (x) otherwise
Return G(x)

end function

function OUTPUT_PREDICTION(µx ∈ RD×3, µh ∈ RD, t ∈ [0, 1], γx, γh ∈ R+, tmin ∈ R+)
# tmin set to 0.0001 by default
if t < tmin then

x̂(θ, t)← 0
µ̂h ← 0
σ̂h ← 1

else
Input (µx,µh, t) to network, receive ϵ̂(θ, t), µ̂ϵ

h, ln σ̂ϵ
h as output

x̂(θ, t)← µx

γx
−
√

1−γx

γx
ϵ̂(θ, t)

µ̂h ← µ̂h

γh
−
√

1−γh

γh
µ̂ϵ

h

σ̂h ←
√

1−γh

γh
ln σ̂ϵ

h

end if
for d ∈ 1, · · · , D, k ∈ K do

p
(d)
O (k | θ; t)← DISCRETISED_CDF(µ̂

(d)
h , σ̂

(d)
h , kr)− DISCRETISED_CDF(µ̂

(d)
h , σ̂

(d)
h , kl)

end for
Return x̂(θ, t), pO(· | θ; t)

end function
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Algorithm 2 Training with continuous loss

Require: σx, σh ∈ R, number of bins K ∈ N
Input: coordinates x ∈ RD×3, normalized charges h ∈ [ 1K − 1, 1− 1

K ]D

t ∼ U(0, 1)
γx ← 1− σ2t

x , γh ← 1− σ2t
h

µx ∼ N (γx, γx(1− γx)I)
µh ∼ N (γh, γh(1− γh)I)
x̂(θ, t),pO(· | θ; t)← OUTPUT_PREDICTION(µx,µh, t, γx, γh)

k̂(θ, t)←
(∑

k p
(1)
O pO(k | θ; t)kc, . . . ,

∑
k p

(D)
O (k | θ; t)kc

)
L∞(x)← − lnσxσ

−2t
x ∥x− x̂(θ, t)∥2

L∞(h)← − lnσhσ
−2t
h

∥∥∥h− k̂(θ, t)
∥∥∥2

Return L∞(x) + L∞(h)

Algorithm 3 Sampling procedure

# k⃗c =
(
k
(1)
c , . . . , k

(D)
c

)
# Function NEAREST_CENTER compares inputs to the center bins k⃗c,
# and return the nearest center for each input value.
Require: σx, σh ∈ R+, number of steps N ∈ N
µx,µh ← 0
ρx, ρh ← 1
for i = 1 to N do

t← i−1
n

γx ← 1− σ2t
x , γh ← 1− σ2t

h
x̂(θ, t),pO(· | θ; t)← OUTPUT_PREDICTION(µx,µh, t, γx, γh)

αx ← σ
−2i/n
x

(
1− σ

2/n
x

)
αh ← σ

−2i/n
h

(
1− σ

2/n
h

)
k̂c(θ, t)← NEAREST_CENTER(

[∑
k p

(1)
O (k | θ; t)kc, . . . ,

∑
k p

(D)
O (k | θ; t)kc

]
)

yh ∼ N (k̂c(θ, t), α
−1
h I)

yx ∼ N (x̂(θ, t), α−1
x I)

µx,µh ← ρxµx+αxyx

ρx+αx
, ρhµh+αhyh

ρh+αh

ρx, ρh ← (ρx + αx), (ρh + αh)
end for
x̂(θ, 1),pO(· | θ; 1)← OUTPUT_PREDICTION(µx,µh, 1, 1− σ2

x, 1− σ2
h)

k̂c(θ, 1)← NEAREST_CENTER(
[∑

k p
(1)
O (k | θ; 1)kc, . . . ,

∑
k p

(D)
O (k | θ; 1)kc

]
)

Return x̂(θ, 1), k̂c(θ, 1)
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