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Abstract

Aspect-based sentiment analysis (ABSA) as-001
sesses sentiments towards specific aspects002
within texts, resulting in detailed sentiment tu-003
ples. Previous ABSA models often use static004
templates to predict all of the elements in the005
tuples, and these models often fail to accurately006
capture dependencies between elements. Multi-007
view prompting method improves the perfor-008
mance of ABSA by predicting tuples with vari-009
ous templates and then ensembling the results.010
However, this method suffers from inefficien-011
cies and out-of-distribution errors. In this pa-012
per, we propose a Dynamic Order Template013
(DOT) method for ABSA, which dynamically014
generates necessary views for each instance015
based on instance-level entropy. Ensuring the016
diverse and relevant view generation, our pro-017
posed method improves F1-scores on ASQP018
and ACOS datasets while significantly reduc-019
ing inference time.020

1 Introduction021

Aspect-based sentiment analysis (ABSA) aims to022

identify sentiment for the aspects in a given text023

rather than simply classifying the overall sentiment024

of the entire text. ABSA research evolves to gen-025

erate quadruples consisting of four elements: 1)026

Aspect (A), 2) Category (C) for the type of A, 3)027

Opinion (O) for A, and 4) Sentiment (S) for A.028

Many recent studies such as T5-paraphrase (Zhang029

et al., 2021c) tackle this problem using generative030

models. These approaches usually get review sen-031

tences as input and output the span of quadruples032

as fixed order paraphrased form, such as "C is S033

because A is O" (Zhang et al., 2021a). However,034

this static single-order template cannot express the035

dependence between elements as in Figure 1 due to036

the autoregressive nature of transformer (Vaswani037

et al., 2017). Moreover, the model’s output can038

heavily depend on the order of generating each039

element (Hu et al., 2022a).040

Figure 1: Comparison of three different generative
ABSA methods. 1) static single-view (T5-paraphrase),
2) static multi-view (MvP), and 3) dynamic-view pre-
diction (ours).

Multi-view prompting (Gou et al., 2023) (MvP) 041

deals with this issue by constructing order tem- 042

plates as a channel for "viewing" different per- 043

spectives in a sentence. As shown in Figure 1, 044

MvP permutes all possible element orders and sorts 045

them based on the dataset-level entropy of the pre- 046

trained model. Using this entropy, MvP samples 047

top-k orders and adds these orders as a prompt 048

template. During the inference time, MvP con- 049

ducts majority votes on generated sentiment tuples 050

with various templates. Through this ensemble ap- 051

proach, MvP utilizes the intuition of solving prob- 052

lems from different views in human reasoning and 053

decision (Stanovich and West, 2000), resulting in 054

significantly higher performance. However, we 055

find that this static multi-view approach of MvP has 056

several drawbacks: 1) Inefficient: Even for samples 057

where the answer can be easily found and multiple 058

views are not necessary, this method generates the 059

same number of views, resulting in unnecessary 060

computation that increases the inference time. 2) 061
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Figure 2: Overview of our proposed two stage method.
We use two T5 models for each stage: one for generating
views, the other for generating sentiment tuples.

Prone to Distribution shift: MvP uses the number062

of views k as a hyperparameter, applying the same063

k value across all datasets during training and in-064

ference. However, since the optimal number of065

ensemble models varies according to the data dis-066

tribution, it requires manual adjustment of the k067

value for each dataset (Shahhosseini et al., 2022),068

which hinders the transferability to other datasets.069

To resolve the aforementioned shortcomings, we070

propose a Dynamic Order Template (DOT) method071

for ABSA that combines the advantages of both072

single-view and multi-view approaches. By pri-073

oritizing multiple views based on instance-level074

entropy, DOT aims to generate only the necessary075

number of views for each instance during infer-076

ence. For an example that contains only one tuple077

as in Figure 1, DOT dynamically creates only one078

order template (i.e. view) that is necessary for079

predicting the tuple. After generating the views,080

DOT generates tuples using the order templates081

that correspond to the views. This phase operates082

in a multi-view manner, enabling us to retain the083

benefits of previous multi-view methods.084

Extensive experiments on five widely used senti-085

ment quadruple prediction datasets, derived from086

ASQP (Pontiki et al., 2016; Zhang et al., 2022)087

and ACOS (Cai et al., 2021, 2023), demonstrate088

that our method show state-of-the arts performance089

with significantly lower inference time compared090

to previous multi-view inference work. Moreover,091

we show that our method is robust to distribution092

shift compared to previous methods.093

2 Method094

Our proposed Dynamic Order Template (DOT)095

method is composed of two stages as in Figure 2.096

The first stage predicts the number of order tem- 097

plates to be used as a prompt. (Sec 2.1) Using 098

the order templates, second stage predicts the senti- 099

ment tuples. We train the model to generate distinct 100

tuples for each order template, enabling efficient 101

aggregation. (Sec 2.2) For both stages, we map 102

sentiment tuples (A, C, S, O) to marker tokens 103

[A], [C], [S], and [O] respectively. For the cases of 104

the instances that contain multiple sentiment tuples, 105

we indicate each tuple with the respective tokens 106

and concatenate the targets with [SSEP] tokens. 107

2.1 Stage 1: Generating the Number of Views 108

We assume that the number of sentiment tuples 109

present for each instance corresponds to the re- 110

quired number of views. In other words, we con- 111

sider that one separate view is necessary for pre- 112

dicting each tuple. We define this individual view 113

as the prediction order for each element of the sen- 114

timent tuple as shown in Figure 2. This allows each 115

prediction order to correspond one-to-one with a 116

sentiment tuple in second stage. We set the required 117

number of sentiment tuples Ki in the ith instance. 118

To predict the number of tuples Ki, we begin 119

by examining the entropy of all possible views 120

generated through permutations. Specifically, we 121

calculate entropy of each view v in instance-level 122

with vanilla T5 (Hu et al., 2022a) by calculating 123

conditional generation probability as follows: 124

Ei,v = p(yi,v|xi), (1) 125

where Ei,v denotes the entropy score of v in the 126

permutation set for ith instance. yi,v is a permuted 127

sentiment tuple in ith instance, based on v. At this 128

time, we note that existing ABSA methods have 129

generally struggled to extract O (Chebolu et al., 130

2023). Based on this observation, we consider that 131

O might hinder the calculation of entropy score. 132

Hence, we calculate entropy scores for v without 133

O (i.e. (A, C, S)) in this stage. We provide a 134

detailed analysis on excluding [O] in Appendix C.2. 135

After computing the entropy, we sort the views 136

by the entropy in ascending order and map each 137

element into marker tokens to get the ranked view 138

P
(1)
i . And then we sample top Ki views for each 139

sample Xi and concatenate these views as an order 140

template. 141

Using the original input sentence Xi, we train 142

the T5 model to generate the first-stage target y(1)i . 143

The format of y(1)i is as follows: 144

y
(1)
i = P

(1)
i,1 [SSEP]P (1)

i,2 [SSEP] . . . P (1)
i,Ki

, 145
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where P
(1)
i,Ki

denotes the order template for the jth146

order template of ith instance in the first stage. We147

set the loss function to train the T5 model as in148

Equation (2), where |B| denotes the batch size of149

the model. The scaling factor is omitted for sim-150

plicity.151

L1 = −
|B|∑
i=1

T∑
t=1

log p(y
(1)
i,t |xi,y

(1)
i,<t) (2)152

2.2 Stage 2: Sentiment Tuple Generation153

In the second stage, the model predicts the senti-154

ment tuple of given instance using the number of155

generated views in the first stage. Different from156

the first stage, we need to generate all elements157

in sentiment quadruples including O in this stage.158

Hence, we re-rank all views to pick Ki views in-159

cluding O (i.e. (A, C, S, O)). Here, we use the160

same ranking strategy as in the first stage using the161

entropy and denote ranked view set as P
(2)
i . We162

sample top Ki views from ranked view and these163

views are mapped into sentiment tuples one by one,164

making the model to learn different order template165

should generate different tuples. We then concate-166

nate the sampled views and add them as a prompt167

Pi to original input sentence Xi. We design the sec-168

ond stage target y(2)i by placing the corresponding169

element next to each marker token [SSEP] within170

Pi as follows.171

Pi = P
(2)
i,1 [SSEP]P (2)

i,2 [SSEP] . . . P (2)
i,Ki

,172

173

y
(2)
i = P

(2)
i,1 tuple1 [SSEP] . . . P (2)

i,Ki
tupleKi ,174

where P
(2)
i,Ki

represents the order template for the175

jth order template of ith instance in the second176

stage, and tuplej is the sentiment tuple correspond177

to P
(2)
i,Ki

. We design the loss function for training178

another T5 model in second stage as follows.179

L2 = −
|B|∑
i=1

T∑
t=1

log p(y
(2)
i,t |xi,Pi,y

(2)
i,<t) (3)180

2.3 Two-stage inference181

During inference time, two stages are conducted182

sequentially. In the first stage, we generate the183

necessary views ˆy(1) based on the predicted number184

of views K̂ (i.e. the number of tuples). Given K̂,185

we sample top K̂ orders from ranked order set P̂186

and construct order template P̂ . Note that we rank187

orders in full elements for each instance. Lastly, we188

directly add P̂ to inference sentence and generate189

targeted sentiment tuples in second stage.190

3 Experiment 191

3.1 Benchmark Datasets 192

We adopt two widely used ABSA datasets: ASQP 193

and ACOS, where the task is to predict sentiment 194

quadruples. For ASQP task, we use rest15(R15) 195

and rest16(R16) datasets released from (Pontiki 196

et al., 2016; Zhang et al., 2022). For ACOS task, we 197

use laptop16(Lap) and rest16(Rest) datasets con- 198

structed by (Cai et al., 2021; Pontiki et al., 2016). 199

Also, we adopt additional ACOS dataset(MR) from 200

MEMD restaurant data (Xu et al., 2023) which uses 201

a different source from the previous datasets. 202

3.2 Baselines 203

We compare our method against several strong 204

baselines for ABSA as follows. Paraphrase (Zhang 205

et al., 2021b) formulates a novel paraphrase gener- 206

ation process for ABSA with a single fixed order. 207

Seq2Path (Mao et al., 2022) generates sentiments 208

tuples as multiple paths of a tree, and automatically 209

selects valid one. DLO (Hu et al., 2022b) augments 210

data via the multiple order templates. MvP aggre- 211

gates sentiment tuples generated from different or- 212

ders of prompts via ensembling. AugABSA (Wang 213

et al., 2023) generates a original text based on aug- 214

mented sentiment quadruples. Also, we benchmark 215

popular LLMs such as GPT-3.5, LLaMa-3 (Team, 216

2024), and Mistral-7b (Jiang et al., 2023). Detailed 217

setups for LLMs are described in Appendix E. 218

3.3 Implementation Details 219

We utilize the pre-trained T5-base (Raffel et al., 220

2020) model as the backbone for the first stage. 221

We also use the model trained in the first stage as 222

the backbone for the second stage, allowing us to 223

leverage a tuned initial point for the ABSA dataset 224

to have the regularization effect inspired by (Fu 225

et al., 2023). Also, we eliminate irregularities in 226

tuples through stop-word filtering in the second 227

stage. Please see Appendix A for more details. 228

3.4 Results 229

F1 score We use F1 score, which is a standard 230

metric for ABSA, to measure the performance of 231

the systems. As demonstrated in Table 1, our 232

proposed method outperforms all baselines and 233

achieves state-of-the-art performance across four 234

datasets for ABSA. Our model shows slightly re- 235

duced performance on the Rest dataset, which we 236

attribute to the substantial number of implicit as- 237

pects and opinions within this dataset. Additionally, 238
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Methods ASQP ACOS Time(s)R15 R16 Lap Rest MR

Paraphrase 46.93 57.93 43.51 61.16 57.38 40.63
Seq2Path - - 42.97 58.41 - -
DLO 48.18 59.79 43.64 59.99 57.07 260.74
MvP 51.04 60.39 43.92 61.54 58.12 2161.81
AugABSA 50.01 60.88 - - - -

GPT 3.5-turbo 34.27 36.71 16.00 37.71 - -
LLaMa3 8b 37.52 47.60 40.07 54.06 - -
Mistral 7b 44.14 51.96 39.02 53.02 - -

DOT (Ours) 51.91 61.24 44.92 59.25 58.25 298.17

Table 1: F1 scores for ABSA on five datasets. The
best results are in bold and the second best are under-
lined. We conduct experiments with 5 different seeds
and report the average of the outcomes. Time denotes
the averaged inference time.

the size of the Rest dataset is relatively small, being239

less than half that of the Lap or MR datasets, which240

are derived from the same ACOS dataset.241

Inference time We also measure inference time242

using T5-base model for all baselines. We check243

inference time for each dataset, and average them.244

All baselines are As in Table 1, we dramatically245

reduce inference time particularly compared to the246

multi-view methods such as MvP (Gou et al., 2023),247

by predicting solely the necessary number of views248

for each sample. On the other hand, in terms of249

single view inferences (Zhang et al., 2021b), we sig-250

nificantly improve the F1 score performance while251

suppressing the rate of increase in inference time.252

We also provide more details about computing the253

inference time in Appendix D.254

3.5 Analysis255

Ablation study To further investigate the effec-256

tiveness of each component of our framework, we257

conduct an ablation study and present the average258

F1 score across the datasets in Table 2. We first259

unify the two stages into one, directly generating260

multiple order templates and tuples without includ-261

ing order prompting to validate the effect of stage262

division. Additionally, we evaluate the results of263

directly using the generated views from the first264

stage, omitting the sampling of new order tem-265

plates. Lastly, we exclude the multi-view approach266

by training and testing our model using the order267

template with the lowest entropy for each instance.268

By observing the gaps between these variants with269

the original model, we verify the effectiveness of270

each component of our method.271

Distribution Shift To examine the effect of distri-272

bution shift of each model, we conduct an in-depth273

Model Configuration Average F1

Full Model 53.94

w/o stage division 52.73 (-1.21)
w/o re-sampling 52.47 (-1.47)
w/o multi view 53.31 (-0.63)

Table 2: Ablation study for the proposed method.

Train SemEval Yelp

Test SemEval Yelp Yelp SemEval

Paraphrase 52.38 38.52(-11.86) 57.38 44.88(-12.50)
MvP3 55.62 34.42(-21.20) 57.27 41.72(-15.55)
MvP9 56.89 35.02(-21.87) 56.98 42.52(-14.46)
MvP15 57.66 35.21(-21.45) 58.12 41.94(-16.18)
DOT 57.47 39.88(-17.59) 58.25 46.97(-11.28)

Table 3: Cross-dataset evaluation results for validating
the effect of distribution shift.

experiment on cross-dataset evaluation. We group 274

the datasets into two groups based on their source: 275

SemEval (Pontiki et al., 2016) (R15, R16, Rest) and 276

Yelp (MEMD). Then we assess the performance 277

between these groups by training on one group and 278

testing on the other in a zero-shot setting. For the 279

MvP model, we vary the number of views used for 280

ensembling into 3, 9, and 15 (default) to measure 281

the sensitivity of this number in static multi-view 282

methods. Additionally, we evaluate T5-paraphrase 283

which uses a static single order. Table 3 demon- 284

strates that our model significantly outperforms 285

the baselines in cross-dataset evaluation. While 286

T5-paraphrase experiences a smaller performance 287

drop compared to the others, it still lags behind our 288

method. In particular, MvP exhibits significant per- 289

formance degradation, irrespective of the number 290

of views. From these experiments, we show that 291

our model can effectively find the optimal number 292

of views even for the out-of-domain datasets. 293

4 Conclusion 294

We propose Dynamic Order Template (DOT) 295

method for aspect-based sentiment analysis, ad- 296

dressing inefficiencies and out-of-distribution er- 297

rors in static multi-view prompting. By dynami- 298

cally generating necessary views based on instance- 299

level entropy, DOT efficiently predicts the senti- 300

ment tuple in each instance. Our experiments on 301

ASQP and ACOS datasets demonstrate that DOT 302

achieves state-of-the-art F1-scores with reduced in- 303

ference time, effectively balancing the strengths of 304

single and multi-view approaches for ABSA. 305
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Limitation306

Our DOT method is highly efficient and powerful,307

yet it still has several limitations. DOT method308

consists of two stages: view generation and tuple309

generation. We train separate models for each task,310

and these two models perform inference sequen-311

tially. This form is not end-to-end, so it is disad-312

vantageous in terms of training time and memory.313

Also, since we directly connect first stage and314

second stage, if any errors occur, the errors may315

propagate and magnify as it moves to the subse-316

quent stage. However, by splitting the task of ’pre-317

dicting the appropriate number of tuples’ into two318

sub-tasks—’predicting the appropriate number of319

tuples’ and ’accurately predicting the tuples’—it320

becomes significantly easier to achieve accurate321

results in both areas, thereby enhancing overall322

performance in our work.323

Ethics Statement324

This study utilizes the various datasets for aspect-325

based sentiment analysis, which are accessible on-326

line. Additionally, we have properly cited all the327

papers and sources referenced in our paper. We328

plan to release the pre-trained model and the code329

for training the proposed system.330
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A Detailed Experimental Setups476

We use AdamW optimizer (Loshchilov and Hutter,477

2017) with a learning rate of 1e-4 for training two478

T5 models. We set the batch size to 16 for training479

and 24 for inference. We train the first stage model480

for 30 epochs, and train 40 epochs for the second481

stage. Additionally, we observe that the label of the482

datasets (i.e. sentiment tuples) irregularly contains483

stop words. For example, as in the first example of484

Figure 3, the inclusion of negations in the opinion485

terms is inconsistent. Also, as in the second exam-486

ple, element tuples sometimes contain ambiguous487

and meaningless stop words as an element. As a488

result, the fine-tuned model sometimes generates489

sentiment tuples containing stop words irregularly.490

It can yield critical performance degradation, even491

though they don’t affect the meaning of the senti-492

ment elements. To resolve the problem from stop493

words, we filter these stop words using nltk pack-494

age(Farkiya et al., 2015) for both generated results495

and dataset labels. We use four RTX 4090 GPUs496

to train and evaluate all of the models.497

Figure 3: Two examples of irregularity of stop words.
Note that these examples are the not all of the stop-word
problems.

B Case Study498

We conduct a case study and analyze the properties499

of the outputs generated by the proposed method.500

As depicted in 4, we classify the output results into501

three main cases.502

The first case involves sentences that do not re-503

quire multiple views for accurate prediction. For504

these sentences, our model succeeds in making ef- 505

ficient predictions using only a single view. We 506

observe that this case is the most common type in 507

our study, significantly contributing to the model’s 508

efficiency. 509

The second case involves sentences predicted to 510

require fewer views, but in reality, required more 511

views. Our analysis reveals that such cases fre- 512

quently occurred with implicit O. As shown in 513

Table 1, this suggests that our model’s performance 514

might lag behind other baselines on the ACOS 515

Rest16 dataset, which contains many samples with 516

implicit A and O. Additionally, the model strug- 517

gles with predicting infrequent C in the training 518

set. Incorporating the concept of self-information 519

and defining the necessary number of views based 520

on the ’amount of information in a sample’ could 521

effectively address this issue. 522

The final case involves sentences with multi- 523

ple sentiment tuples and longer lengths. Errors in 524

this scenario stem from two main reasons. Firstly, 525

longer sentences include extended phrases that 526

modify A or O. Including all these modifiers as 527

elements often leads to errors, a common problem 528

across different models that requires an alternative 529

solution. Secondly, errors occur when the number 530

of tuples is incorrectly predicted in the first stage. 531

If the predicted number of tuples is insufficient, 532

some target sentiment tuples might be overlooked. 533

Conversely, overestimation leads to the extraction 534

of irrelevant aspects, as depicted in the figure. How- 535

ever, we optimized the first stage to reduce tuple 536

count errors, which helped mitigate performance 537

drops by minimizing incorrectly generated or over- 538

looked tuples. 539

C Depth Analysis on First Stage 540

C.1 Accuracy on the Number of Views 541

We assess the accuracy of predicting the correct 542

number of views in the first stage and present the re- 543

sults in Table 4. We evaluate the output by compar- 544

ing it to the labeled sentiment tuples using RMSE 545

and accuracy. We carefully implement the first 546

stage baselines to compare our method properly 547

as follows: Random: We find that the number of 548

sentiment tuples in training dataset is mostly in 549

range of 1 to 6. For each inference, we randomly 550

sample one of the 6 numbers and compare it with 551

our first stage result. Majority: We also reveal that 552

about 60 percent of labels consist of single tuple. 553

We construct a baseline that predicts only 1 for 554
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Figure 4: Case study for three main types of results. Blue one denotes correct, red one denotes incorrect, and the
yellow one denotes irrelevant.

the number of tuples, to check whether our model555

has ability to predict the number of sentiment tu-556

ples of a sentence. Classification: We adopt the557

RoBERTa model (Liu et al., 2019) to evaluate the558

results when treating the prediction of the num-559

ber of views as a sequence classification task. We560

set the classes based on the number of sentiment561

tuples. As shown in 5, the distribution of tuple562

counts is skewed towards the lower end, with in-563

stances containing more than seven tuples being564

nearly non-existent. Consequently, we limit the565

categories from 1 to 6 and clip instances with 7566

or more tuples to 6. Additionally, to address label567

imbalance, we employ a weighted loss function,568

where the weights are set as the inverse of the fre-569

quency ratio for each category as in Equation (4).570

We use same notation as in Section 2.1, and I ()571

denotes indicator function. This approach enables572

the model to effectively classify even the less rep-573

resented classes.574

Wc =
|D|∑

D I(min(|y|, 6) = c)
(c ∈ [1, 6])

Lcls = −
|B|∑
i=1

Wki log p(ki|xi)I (ki ≤ 6)

(4)575
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Figure 5: Distribution of the number of sentiment tuples.
The sources are from training datasets of each task. We
normalize each count by dividing it by the total number
of data points. The number of tuples is clipped to 7.

C.2 Effect of Element Exclusions 576

We analyze the impact of excluding various marker 577

tokens, including the [O] token representing opin- 578

ions, to determine which token exclusions con- 579

tribute to performance improvements. Addition- 580

ally, we experiment with cases where no element 581

exclusion is performed. In this section, we have 582

also included the second stage results to provide a 583

detailed comparison of the overall performance. 584

As in Table 4, our proposed method outperforms 585

the other baselines and nearly predicts the actual 586

distribution of sentiment tuples within a small mar- 587
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Methods First stage Second stage
RMSE Acc. F1 score

Random 2.80 18.89 -
Majority 0.99 63.39 -
Classification 0.83 61.90 -
DoTfirst 0.54 77.83 54.33

exclude [C] 0.54 77.53 53.91
exclude [A] 0.53 77.77 53.71
exclude [S] 0.54 77.65 53.55
full elements 0.55 78.22 53.94

Table 4: First stage results for each main baseline and
exclusion of specific tokens. We report average RMSE
loss and accuracy for first stage, and F1 score for second
stage.
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Figure 6: Inference time among dataset size for each
model.

gin of error. This result justifies the direct use of588

the output from the first stage in the second stage.589

Also, the overall performance improved as the dif-590

ficulty of predicting the excluded marker token’s591

element increased. The results from the first stage592

do not appear to be strongly correlated with those593

of the second stage. This emphasizes the impor-594

tance of using a well-tuned initial model for the595

second stage.596

D Computing Inference Time597

We compare inference times based on view meth-598

ods across different dataset sizes. The dataset con-599

sisted of randomly sampled test data from laptop16,600

with 200, 400, 600, and 800 samples. The baselines601

were set as static single view (T5-paraphrase) and602

static multi view (MvP), with the number of views603

for the multi view fixed at 15. Figure 6 shows that604

we not only dramatically reduce inference time of605

utilizing multi views, but also reduce the rate of in-606

crease in inference time with respect to the number607

of datasets. On the other hand, in terms of sin-608

gle view, we significantly increase F1 performance609

while suppressing the increase in inference time610

and the rate of its increase. These results suggest 611

that the efficiency of our method becomes more 612

pronounced as the dataset size increases. 613

E Detailed Setups for LLM Experiments 614

As in Table 1, we perform the ABSA task using 615

the GPT 3.5 Turbo, LLaMa-3 8B, and Mistral 7B 616

models, and compared the results with our DOT 617

model. For the GPT model, we utilize in-context 618

learning (Brown et al., 2020). We randomly sam- 619

ple 10 instances and combine them with instruc- 620

tion format, and add it as a prompt. For the other 621

two open-source LLMs, we employ instruction tun- 622

ing (Wei et al., 2021) with the training dataset for 623

fine-tuning, using the same instructions as in GPT 624

prompts. To ensure stable model training during 625

fine-tuning, we utilize the LoRa (Hu et al., 2021). 626

We present the specific prompts and framework in 627

Figure 7. 628
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According to the following sentiment elements definition:

- The 'aspect term ' refers to a specific feature , attribute , or aspect of a product
or service that a user may express an opinion about , the aspect term might be '
null ' for implicit aspect.

- The 'opinion term ' refers to the sentiment or attitude expressed by a user towards
a particular aspect or feature of a product or service , the aspect term might

be 'null ' for implicit opinion.
- The 'aspect category ' refers to the category that aspect belongs to, and the

available categories includes: {dataset specific categories}.
- The 'sentiment polarity ' refers to the degree of positivity , negativity or

neutrality expressed in the opinion towards a particular aspect or feature of a
product or service , and the available polarities inlcudes: 'positive ', 'negative
' and 'neutral '.

Recognize all sentiment elements with their corresponding aspect terms , aspect
categories , opinion terms and sentiment polarity in the following text with the
format of [('aspect term ', 'aspect category ', 'sentiment polarity ', 'opinion
term '), ...]:

Figure 7: Instruction format for two LLM frameworks. We utilize in-context learning for ChatGPT inference, and
instruction-tuning for LLaMa-3 and Mistral inference respectively.
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