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ABSTRACT

Molecular Dynamics (MD) is crucial in various fields such as materials science,
chemistry, and pharmacology to name a few. Conventional MD software strug-
gles with the balance between time cost and prediction accuracy, which restricts
its wider application. Recently, data-driven approaches based on deep generative
models have been devised for time-coarsened dynamics, which aim at learning
dynamics of diverse molecular systems over a long timestep, enjoying both uni-
versality and efficiency. Nevertheless, most current methods are designed solely
to learn from the data distribution regardless of the underlying Boltzmann dis-
tribution, and the physics priors such as energies and forces are constantly over-
looked. In this work, we propose a conditional generative model called Force-
guided Bridge Matching (FBM), which learns full-atom time-coarsened dynam-
ics and targets the Boltzmann-constrained distribution. With the guidance of our
delicately-designed intermediate force field, FBM leverages favourable physics
priors into the generation process, giving rise to enhanced simulations. Exper-
iments on two datasets consisting of peptides verify our superiority in terms of
comprehensive metrics and demonstrate transferability to unseen systems.

1 INTRODUCTION

Molecular Dynamics (MD), which simulates
the physical movements of molecular systems
at the atomic level via in silico methods, are
widely applied in the fields of materials science,
physics, chemistry, and pharmacology (Wolf
et al., 2005; Durrant & McCammon, 2011;
Salo-Ahen et al., 2020). Accurate MD sim-
ulations enable the researcher to comprehend
the equilibrium thermodynamics and kinetics
of different molecular phases without the need
for expensive wet-lab experiments. ~
Figure 1: Illustration of how molecular confor-
mations transfer from one state to another by
MD (path in white) and time-coarsened dynam-
ics (path in black).

Conventional MD software, like AM-
BER  (Pearlman et al, 1995) and
CHARMM (Vanommeslaeghe et al., 2010),
mostly pre-defines an empirical force field of
molecular systems and performs MD based on
the numerical integration of Newtonian equations over the timestep A¢. To minimize discretization
errors, At should be chosen small enough, typically on the order of femtoseconds (10~ !5s). Con-
sequently, simulating the full duration of critical phase transitions that occur on the microsecond
(10~ 5s) or even millisecond (10~3s) timescale becomes virtually impossible within a reasonable
wall-clock time. To overcome the efficiency limitation in long-timescale simulation, a surge of
approaches have been devised, including MD-like methods (Voter et al., 2000; Pang et al., 2017;
Laio & Parrinello, 2002) and Monte Carlo-based methods (Sadigh et al., 2012; Sugita & Okamoto,
1999; Neyts & Bogaerts, 2014). However, all these methods share a common drawback: different
molecular systems require customized simulations, despite the fact that many atomistic systems
should, in principle, exhibit similar dynamic mechanisms.
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Recently, data-driven approaches (Klein et al., 2024; Schreiner et al., 2024; Hsu et al., 2024; Li
et al., 2024; Jing et al., 2024) leveraging deep generative models have been used to enhance MD
simulations. Unlike traditional numerical integration, these methods directly learn MD from diverse
observed trajectories, offering superior transferability across different molecular systems. Addition-
ally, they can accelerate simulations through the use of time-coarsened dynamics, where models
learn to generate new states after a significantly larger timestep (7 > At) starting from an initial
state, as illustrated in Figure 1. Nevertheless, existing learning-based methods still face two signif-
icant issues. The first issue is that most current methods are designed solely to learn from the data
distribution, which may be biased compared to the underlying Boltzmann distribution (Boltzmann,
1877) — a fundamental concept for describing the thermal equilibrium of molecular systems in
relation to atomic positions and velocities. Although Timewarp (Klein et al., 2024) alleviates this
issues by employing the Metropolis-Hastings algorithm (Metropolis et al., 1953) to resample from
the equilibrium, the unbearably low acceptance rate still hinders its applicability. The second issue is
that physics priors (e.g., energies and forces) are constantly overlooked during the learning process,
which, yet, are critical for providing insights into the dynamics of molecular systems.

In this work, we delicately design a generative model to learn time-coarsened dynamics, and target

—

the Boltzmann-constrained distribution p(X). This distribution incorporates a potential energy term

exp(—ke(X)), into the original data distribution ¢(X), resulting in p(X) = %q(ﬁ) exp(—ke(X)).
Here, X stands for the molecular conformation, and Z is the normalization factor. The definition

—

of p(X) ensures that regions of high density in the generated distribution correspond to low po-

—

tentials £(X), thereby aligning more closely with thermodynamic principles. To learn p(X), we
utilize the bridge matching generative framework (Shi et al., 2024) in order to make the generation
to be conditioned on the starting molecular conformations rather than Gaussian priors. The most

—

challenging part is that, the vector field to generate p(X) is strongly associated with the virtual “en-
ergies” and “forces” during the generation process, which, yet, are nontrivial to obtain. To address
the issue, we derive an effective and rigorous way to interpolate a well-designed intermediate force
field into the bridge matching framework based on reasonable assumptions. The proposed frame-
work is termed as Force-guided Bridge Matching (FBM). It is also worth noting that FBM employs
TorchMD-NET (Pelaez et al., 2024) as the backbone model, which enables full-atom modeling
while preserving SO(3)-equivariance. Our main contributions are summarized as follows:

1. To our best knowledge, FBM is the first full-atom generative model that directly targets the
Boltzmann-constrained distribution without extra resampling steps, which is tailored for
time-coarsened dynamics.

2. Under rigorous theoretical derivation, we integrate a well-defined intermediate force field
into the bridge matching framework, which effectively involves the guidance of physics
priors for better MD simulations.

3. We evaluate FBM on two datasets consisting of small peptides, where FBM exhibits trans-
ferability to unseen peptide systems and consistently showcases state-of-the-art results
across various peptides.

2 RELATED WORK

Boltzmann Generator An important objective of MD research is to quickly sample from the
Boltzmann distribution, thereby revealing the free energy landscape and collective variables of mat-
ter of molecular systems. Boltzmann generators (Noé et al., 2019; Kohler et al., 2021; 2023; Falkner
et al., 2023; Klein et al., 2024; Klein & Noé, 2024) employ generative models to produce samples
asymptotically from the Boltzmann distribution mainly by: (i) Apply reweighting techniques to
ii.d. generated samples. (ii) Inference in a Markov Chain Monte Carlo (MCMC) procedure. These
approaches heavily rely on MC resampling techniques, which are the bottleneck of the sampling ef-
ficiency due to costly energy calculation and low acceptance rates. Most similar to our work, Wang
et al. (2024) propose ConfDiff that incorporate the energy and force guidance directly into score dif-
fusion to target the Boltzmann-constrained distribution, yet it only works well on protein backbones
and generate conformations in an unconditional way that fails to capture temporal dynamics. In con-
trast, FBM introduces the force guidance into the bridge matching framework, making it possible to
sample straightforwardly from the Boltzmann-constrained distribution.
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Time-Coarsened Dynamics To overcome the instability of numerical integration of conventional
MD simulations, many deep learning methods have adopted the fashion of time-coarsened dynamics,
where models learn dynamics of diverse molecular systems over a long timestep. Fu et al. (2023)
proposes a multi-scale graph network to learn dynamics of polymers, which fails to operate in the
all atom system. ITO (Schreiner et al., 2024) is devised to learn the transition probability over
multiple time resolutions, yet its transferability across chemical space remains unknown. Recently,
Timewarp (Klein et al., 2024) and TBG (Klein & Noé, 2024) utilize augmented normalizing flows
and flow matching respectively for transferable time-coarsened dynamics of small peptides, while
both need additional reweighting procedures to debias expectations to the Boltzmann distribution.
In addition, Score Dynamics (Hsu et al., 2024) applies score diffusion to capture dynamic patterns
merely from the data distribution, while F3low (Li et al., 2024) and MDGen (Jing et al., 2024)
learn transformations of proteins under coarse-grained representations. On the contrary, FBM is
designed to learn time-coarsened dynamics at the atomic level and target the Boltzmann-constrained
distribution by directly inference without extra steps, which aligns well to thermodynamic principles
and exhibits transferability to unseen peptide systems as well.

3 METHOD

In this section, we will present the overall workflow of our method. Specifically, in § 3.1, we will
define our task formulation of time-coarsened dynamics, with providing necessary notations. Then
in § 3.2, we introduce how to learn the time-coarsened dynamics from the data distribution, via a
conditional generative model based on bridge matching, which is dubbed as FBM-BASE. Built upon
this baseline, in § 3.3, we further propose a novel generative framework that targets the Boltzmann-
constrained distribution by incorporating an intermediate force field into the FBM-BASE model,
leading to our eventual model FBM. All proofs of propositions are provided in § B.

3.1 MOLECULAR REPRESENTATION

We represent each molecule (namely peptide in our experiments) as a graph G = (V, &) consisting
of the node set V and the edge set £. For a molecule with NV atoms (including hydrogens), V =
{vo, -+ ,un—1} where v; (0 < i < N) represents the i-th atom of the molecule. Each node v;
is further attributed with Cartesian coordinates &; € R3 from the structural information and node
features z; € R from the embedding of atom types, where H represents the hidden dimension.
Particularly for peptides that are composed of 20 natural amino acids and exhibit similar features, we
construct the atom type vocabulary based on the atom nomenclature of Protein Data Bank (Berman
et al., 2000) to obtain more refined atomic representations. Formally, the features and Cartesian
coordinates of all nodes are concatenated as node representations:

X = [507"' 7£N71]T € RNX?)a Z = [Z(),"' aszl]T € RNXH' (1)

The edges are constructed with the cutoff radius 7. For any node pair (v;, v, ), the connection is
established iff ||€; — &;|| < 7cut. Constructing cutoff graphs is a favorable choice for modelling
molecular systems since forces and chemical bonds are highly related to interatomic distances. With
the aforementioned notations, we provide the task formulation below.

Task Formulation Given each MD trajectory, we extract molecule pairs D = {(Gs,Gs4-) | s €
S} to create a training dataset, where G denotes the starting state at time s and G, represents the
future state after a temporal interval 7. Our goals are: (i) Train a baseline model that fits the condi-

tional data distribution ,u()_f S+T|)_f s) from D, denoted as ¢. (ii) Based on the trained baseline model,

—

we further train a new model that admits the Boltzmann constraint: p(X) = %q(i) exp(—ke(X)),
where k, €, and Z denote the inverse temperature, the potential of the molecular system, and the
partition function, respectively. During the training process, we require the queries of the MD ener-
gies and forces for each pair (G, G4+ ), namely, ((X,),e(X,4,)) and (Ve(X,), Ve(Xir)). In
the following context, we will train three neural networks vy, ug, and wg to approximate the vector
fields that are used to generate the distributions ¢ and p.
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3.2 BASELINE BRIDGE MATCHING

We will present the baseline BM model (i.e., FBM-BASE) to fit the conditional data distribution

M(X' S+T|Xs) from dataset D. For the sake of convenience and consistency with the continuous
diffusion time between [0, 1], we refer to the prior graph as Gy and the target graph as G; in what

follows, and denote their corresponding coordinates as X and X, accordingly.

Bridge Matching Framework We leverage the generative framework of bridge matching (Shi
et al., 2024), which learns a mimicking diffusion process between two arbitrary distributions, al-
lowing for more flexible choices of priors. Let qg, g1 denote the prior and target data distributions,
respectively, and ¢ € [0, 1] be the continuous diffusion time. We define the forward process:

aX; = ft(Xt) dt + 0y dBy, Xg ~ qo, )

where X, and B, represent the random variable and the Brownian motion of the diffusion process
at time ¢, respectively. With the process pinned down at an initial point Xo and terminal point
X, the conditional distribution g;(-| X, X1 ) will be realized as a diffusion bridge in the form of
dX; = {ft(it) + 02V log qt()zl\}_it)} dt + o, dB; with Xy = X,, where Doob h-transform
theory (Rogers & Williams, 2000) guarantees X; = X;. For simplification, by considering f; = 0
and o, = o, the process will degenerate to the following Brownian bridge:

— —»

. X, S
dX; = ﬁ Ldt + odB,, Xo = Xo, 3)

which yields the conditional distribution g (X;| X, X) at time ¢ € [0, 1], with its marginal defined

as ¢:(X¢). The core of bridge matching is to find a Markov diffusion governed by a vector field v:

dX,; = v(Xy,t) dt + odBy, )

which admits the same marginal Xt ~ @4, such that f(l ~ @1 holds. To achieve this, we can learn a
parametric vector field vy via the following regression loss:

Liva =E — (X4, )7, (5)

I~ URI(0,1), (G061 )~ D, Ry (Ko, Xo) || =T

where Uni(0, 1) denotes the uniform distribution of [0, 1], and vy is implemented by a neural net-

work parameterized by 6. The calculation of Eq. (5) requires sampling from qt(fit |X 0, X 1), which
usually needs additional SDE simulations. Fortunately, Eq. (3) enables a closed-form solution as
follows:

(Xe| X0, X1) = N(t X1 + (1 — t) X0, t(1 — t)o*1), (6)
where we can sample X, efficiently during each training step with any given ¢.

The optimal vector field vg to minimize the loss in Eq. (5) is actually equal to the expecta-

tion v* (X, t) = E, ('-'lXt)[%]. Then the distribution ¢; can be estimated by performing

SDE sampling in Eq. (4), using vg as the vector field v. In our experiments, vg is built upon
TorchMD-NET (Pelaez et al., 2024) for full-atom modeling while satisfying SO(3)-equivariance.
Details of the architecture of neural networks used in our model are further elucidated in § C.

3.3 FORCE-GUIDED BRIDGE MATCHING

In most cases, the training datasets are biased from the underlying Boltzmann distribution, leading
to defective prediction even for superior generative models. In this section, we will introduce how to
train a force-guided generative model FBM, which admits the Boltzmann-constrained distribution
denoted as p; (X;) = +q (X1) exp(—ke(X,)). Here, the exponential term exp(—ke(X;)) serves
as the physics prior from thermodynamic principles. The overall framework of FBM as well as
FBM-BASE is illustrated in Figure 2.
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dit = ‘U* (it! t)dt + o'dBt

Figure 2: The overall framework of FBM-BASE and FBM. A. Firstly, FBM-BASE leverages the
bridge matching framework to learn time-coarsened dynamics from the data distributions ¢gg and ¢; .
B. With the guidance of the intermediate force field Ve, at diffusion time ¢, the marginal distribution

admits p;(X;) o q;(X;) exp(—ke(X;)), thereby the target distribution of FBM is debiased to the
Boltzmann-constrained distribution p1.

Force-guided Bridge Matching Framework In order to learn p; under the bridge matching
framework, our key idea is to construct a new probabilistic path p; based on the existing proba-
bilistic path ¢; from Eq. (3), such that the following condition is satisfied for ¢ € [0, 1]:

pe(Xe) = Zitqt(f(t) oxp(—ker(Xe)), o(-) = e1() = &(-). 7

Here Z,; is the partition function and ¢, is an artificially-designed intermediate potential of the pro-
cess, which should converge to the real MD potential ¢ when ¢ — 0% and ¢ — 1~ for consistency.

Further, we assume pt(f(tpfo, X 1) = qt(it|)20, X 1) as in Eq. (6), thereby the stochastic process
governed by p; shares the same form with Eq. (3), which can be modeled by the following Markov
diffusion process associated with a vector field v':

dX, = v'(Xy, t) dt + odB,. (8)
Therefore, we are able to inference p; if we know how to learn v’ from the dataset. Interestingly,
we prove that v’ (X, t) can be expressed in terms of the vector field v* (X, t) generating ¢; and

the intermediate force field Ve; (Xt) allowing for the Boltzmann constraint, which will be formally
demonstrated in Proposition 3.2. In prior to showing this proposition, we first derive the form of the
intermediate force field below:

Proposition 3.1. Assume that the joint distributions q(ﬁo, X,) and p(ﬁo, )21) satisfy p(ﬁo, X;) o
q(Xo, X1) exp(—k(e(Xo) + (X1))), the intermediate force field Ve, is given by:

Ve (%,) = Eq(io,xl)[%(iﬂfoa)fl)ixp(jk(E(XO) + 8(;’21)))C()§07)21,Xt)]
KE, (%, %12t (Xe| Xo, X1) exp(—k(e(Xo) + £(X1)))]
where we denote C()ZO, X, Xt) = Vlog qt()_it) — Vliog qt(it|)zg, Xl)for brevity.
Proposition 3.2. Given the prerequisites in Proposition 3.1, we have v'(Xy,t) = v*(Xy,t) —

O

2 —
% kVe(Xy) under some mild assumptions.

Estimation of Immediate Force Field However, it is challenging to calculate the intermediate
force field Vst(}_('t) owing to its nontrivial form in Eq. (9). Note that qt(it|)20, Xl) can be di-
rectly calculated by Eq. (6), e(Xo),e(X}) are both known as MD potentials, and the the expec-
tation in the denominator can be estimated with samples during a training mini-batch instead of
the entire data distribution (Lu et al., 2023a). The most challenging part is the computation of
the term V log g; ()Zt) in ()Z'O7 X 1 )Zt) To provide an unbiased estimation of this score, we in-
vestigate its relation with the vector fields. Given Gy, Gy, we first define the conditional score as
st(Xt|)207 X’l) = Vlog qt(Xt|X(], )Z'l) Based on Eq. (6), the closed-form of s; is given by:

Xy = [tX 4 (1 - 1) X] 7L[X'17Xt _XPX‘O] (10)

t(1—t)o? o? '

St(Xt\Xo,Xl): 1—¢ t
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Note that the first term of Eq. (10) has the same form as in the training objective of Eq. (5). Similarly,
we train another network uy to imitate the second term:
X, - X

Lrey = EtNUni(O,l),(go,gl)ND,Xt~qt(-|XO,X1)[H L

—ug(Xs, )%, (11)

where the expectation of g can be expressed as u* (X, ) = B %) [Xf;XO ]. Then we take the

expectation over io, X conditioned on X, in Eqg. (10), yielding:

oo < v* (X, t) — ur(Xy, t
50K K, Ky = L Eert) — "X, 1)

St (Xt) :eq(.’.|ﬁt) o2 .

12)

We present Proposition 3.3 to reveal that s} is identical to the marginal score V log ¢; of interest:

Proposition 3.3. We have Vlog ¢;(X:) = s7(X;), where V1og q; is the score of the Brownian
bridge defined in Eq. (3) and s;(Xy) is the expectation of the conditional score given by Eq. (12).

In practice, V log qt(it) is estimated as (vo (X+.t)—us(X:.1)) /52, by replacing the vector fields with the
learned neural networks vy, ug in Eq. (12). Now, since all quantities related to the intermediate force

field Vgt(it) are commutable, we then train a neural network wg()_it, t) as its unbiased estimator:
e SP(k(E(Xo) + e(X0))C(Ko Xy, X))
(G0,G1),a:(-| X0, X1) KE, %, %7 [0(Xi| X0, X1) exp(—k(e(Xo) +£(X1)))]

Lig=E,

13)
where B denotes the mini-batch size of each training step.

3.4 FULL TRAINING PROCESSES AND INFERENCE

In addition to the aforementioned regression losses, we introduce an auxiliary loss from Yim et al.
(2023), which promotes predictions of pairwise atomic relations. The loss is defined as:

H1D0<6A(D0_D0)H2 ‘. H1D1<6A(D1_D1)H2
> 1D0<6A -N > 1D1<6A -N ’

where Dy, D; € RV*Y denote pairwise distances between all atoms of Gy and Gy, and [A)O7 Dy are

Eaux = (1 - t) .

(14)

defined in the same way based on the estimated starting point X"o = )Zt — tug(ft, t) and terminal
point ):fl =X, + (1 —1t)vg (X}, t). The full loss of FBM-BASE is given by:

Loase = Liwd + Lrev + Aaux * Lauxs 15)
where \,ux is a hyper-parameter to balance the weight of different training objectives.
Empirically, large variances are noticed during training FBM with Eq. (13) when ¢ is close to 0 and

1. To address the issue, we find that the intermediate force field converges to the MD force field Ve
att = 0, 1, which is guaranteed by Proposition 3.4:

Proposition 3.4. Given ¢g = €1 = € and the intermediate force field described in Eq. (9), the
continuity condition lim;_,o+ Ve (Xy) = Ve(Xo), limy_y1- Ver(Xy) = Ve(Xy) holds.

Therefore, we leverage two separate networks wél), wéz) to learn the boundary force fields:

Lona = B, (g0 01) 00 1%0 20 [[VE(X0) = wg? (X, )2 + [|Ve(X) — wi? (X012 (16)

We construct the network wy in the interpolation form with another network wé?’), similar to Maté &

Fleuret (2023): wy(Xy, t) = (1 — yw Xy, ) + tw(? (Xo, t) + (1 — )wS? (X,, ). The ultimate
loss for training FBM is given by:

Lrpm = List + Lond- (17)
Full Training Processes We first perform training to derive vy and ug under the base loss in

Eq. (15), and then continue the training process to attain wy under the FBM loss in Eq. (17). The
pseudo codes for training FBM-BASE and FBM are in Alg. 1 and Alg. 2, respectively.

7w9()2t7t)||2}7
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Force-guided Inference For inference with FBM, we estimate the vector field v" based on Propo-
sition 3.2, by replacing v* and Ve; with the trained neural networks vy and wy. Force-guided
inference is then performed following the SDE process of Eq. (8), where the diffusion time ¢ is
discretized equidistantly. Additional details and pseudo codes for inference are provided in § D.

4 EXPERIMENTS

Dataset Generation We evaluate FBM on two datasets consisting of small peptides: Alanine-
Dipeptide (AD) that is commonly studied previously and PepMD which is created by us. The AD
dataset contains a simple peptide with only 22 atoms. The initial structure and reference MD tra-
jectories of AD are all obtained from mdshare! without post-processing. As for PepMD, we first
screen valid peptides between 3-10 residues from the sequence data provided by PDB (Berman
et al., 2000). Next, we perform data cleaning according to the following criterion: each peptide
must contain only the 20 natural amino acids, and the number of any type of residue should not
exceed 50% of the sequence length. We then cluster the data with a sequence identity threshold of
60% by MMseqg?2 (Steinegger & Soding, 2017), and randomly sample one peptide from each clus-
ter to obtain a non-redundant dataset. Considering the computing resource constraints, we select
136/14 peptides for constructing the training-validation/test set, respectively. The structures of all
150 peptides are predicted by open-source tools RDKit (rdk) and PDBfixer?, which are sent as
initial states to generate MD trajectories using OpenMM (Eastman et al., 2017) afterwards. Finally,
the peptide pairs for training are then sampled from trajectories in the way depicted in § 3.1. The
MD simulation setups and the statistical details of our curated dataset are both illustrated in § E.1.

Baselines We compare our FBM with the following generative models that learns time-coarsened
dynamics: (i) Timewarp (Klein et al., 2024), the current state-of-the-art model targeting the Boltz-
mann distribution by MCMC resampling, which exhibits superior transferability to unseen peptide
systems. (ii) ITO (Schreiner et al., 2024), a conditional diffusion model that learns multiple time-
resolution dynamics. (iii) Score Dynamics (Hsu et al., 2024), a score-based diffusion model that
learns discrete transitions of the dynamic variables. All models are trained on PepMD from scratch
for fair comparison.

Metrics Following Wang et al. (2024), we evaluate generated conformation ensembles against the
full MD trajectories as to their validity, flexibility, and distributional similarity. We provide brief
descriptions of the metrics in this part and further details are illustrated in § E.2:

 Validity. We regard a molecular conformation as valid when it is governed by certain
physics constraints. Following Lu et al. (2023b), we judge whether a conformation is valid
by the criterion: no bond clashes between any residue pairs and no bond breaks between
adjacent residues, based on coordinates of a-carbons. This metric, named as VAL-CA,
represents the fraction of valid conformations in the full generated conformation ensembles.

Flexibility. The generated structures are further required to exhibit flexibility to capture dy-
namic characteristics. Following Janson et al. (2023), we report the root mean square error
of contact maps between generated conformation ensembles and reference MD trajectories
as a measure of flexibility, termed as CONTACT.

Distributional similarity. We focus on the similarity between the sample distribution and
the Boltzmann distribution. Instead of the costly computation of the Boltzmann density, we
project the molecular conformations onto following low-dimensional feature spaces and
calculate the Jensen-Shannon (JS) distance as a substitute (Lu et al., 2023b): (i) pairwise
distances between a-carbons of residues (PWD); (ii) radius-of-gyration (RG) that measures
the distribution of a-carbons to the center-of-mass; (iii) the time-lagged independent com-
ponents (Pérez-Hernandez et al., 2013) (TIC) based on dihedrals and pairwise distances of
a-carbons, where only the slowest components, TIC 0 and TIC 1, are taken into consider-
ation. For each metric, the mean JS distance along all feature dimensions are reported.

"https://github.com/markovmodel/mdshare
Zhttps://github.com/openmm/pdbfixer
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4.1 METASTABLE STATES EXPLORATION FOR AD

We first investigate how well the generated conformations can travel across different metastable
states of AD. Due to the simple structure of AD with only one peptide bond, some metrics are not
applicable except for TIC and TIC-2D (i.e., the joint distribution of TIC 0 and TIC 1). In particular,
the backbone dihedrals of AD, psi and phi, are commonly considered as two challenging variables
for state transitions. Therefore, we include the similarity measurement of the joint distribution of
psi and phi, i.e. the Ramachandran plot (Ramachandran et al., 1963), denoted as RAM.

In Table 1 we show evaluation results on AD, where models sample in the time-coarsened manner
from the same initial state for a chain length of 103. According to Table 1, FBM outperforms
existing baselines on both RAM and TIC metrics, and with the introduction of physics priors, it
shows considerable improvements in distribution similarity across various feature spaces compared
to FBM-BASE. Although Timewarp surpasses FBM in the TIC-2D metric, we will explain later that
it comes at the cost of generating invalid conformations.

Further, Ramachandran plots of generated ensembles are illustrated in Figure 3, where three known
metastable states are recognized based on MD trajectories and labeled in order. Apparently, ITO and
Score Dynamics fail to capture the dynamics of AD with samples randomly allocated. Moreover,
Timewarp cannot rapidly traverse through metastable states, resulting in a great portion of invalid
samples. Despite both FBM-BASE and FBM show relatively “clean” plots with fewer unreasonable
conformations, FBM pays more attention to high density regions including cluster 2 and cluster 3,
confirming a strong guidance of the intermediate force field to align more closely with thermody-
namic principles.

Table 1: Results on alanine dipeptide. Values of each metric are averaged over three independent
runs. The best result for each metric is shown in bold and the second best is underlined.

JS DISTANCE (J)
RAM TIC TIC-2D
TIMEWARP 0.722 0.546  0.719

MODELS

ITO 0.740 0.696  0.833
SD 0.731 0.673  0.807
FBM-BASE 0.727 0.533  0.749
FBM 0.711 0.525 0.733
FBM-base FBM _ Timewarp
3 2 (K3 l 2 @ 2
1 1 1
“Phi Phi o
ITO SD

e
{

Phi Phi

Figure 3: Ramachandran plots of alanine dipeptide with conformation ensembles generated by mod-
els. The initial state is indicated with the red cross. Contours represent the kernel densities estimated
by the MD trajectory and the generated conformations are shown in scatter.
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4.2 TRANSFERABILITY TO UNSEEN PEPTIDES OF PEPMD

We then explore the transferability of models to unseen peptides with various sequence lengths of
PepMD. We use all metrics in § 4 for evaluation and the results on 14 test peptides of PepMD
are demonstrated in Table 2, where all samples are generated for a chain length of 10%. We find
Timewarp achieves a good performance on distributional similarity and flexibility, yet at the cost of
only a small portion of valid samples. In contrast, our FBM showcases superiority across all metrics
and achieves significant improvement on the validity of generated conformations in particular. It
indicate that by introducing the force guidance, the generated ensembles of FBM better comply
with the underlying Boltzmann distribution. Additional experimental results can be found in § F.

Table 2: Results on the test set of PepMD. Values of each metric are first averaged over 3 independent
runs for each peptide and then shown in mean/std of all 14 test peptides. The best result for each
metric is shown in bold and the second best is underlined.

JS DISTANCE (])

MODELS VAL-CA (1) CONTACT ({)
PWD RG TIC TIC-2D

TIMEWARP  0.575/0.082 0.561/0.124  0.633/0.069  0.804/0.025  0.115/0.121 0.197/0.128

ITO 0.833/0.000 0.829/0.012 0.789/0.067 0.833/0.000  0.001/0.000 0.940/0.081

SD 0.823/0.030 0.818/0.041 0.773/0.032  0.832/0.001  0.006/0.016 0.824/0.095

FBM-BASE  0.576/0.066 0.560/0.153 0.639/0.061 0.807/0.020  0.367/0.173  0.208/0.142

FBM 0.573/0.064  0.542/0.140 0.631/0.077 0.801/0.032 0.616/0.188  0.188/0.127

For better understanding, we provide the visualization of comprehensive metrics on the test peptide
1e28:C (TAFTIPSI) in Figure 4. In Figure 4(a), we show that the samples generated by FBM exhibit
a more pronounced clustering in regions with high reference densities, though all compared methods
inevitably generate samples in low-density regions. Figure 4(b) demonstrates that FBM accurately
captures the peak of the distribution of the radius-of-gyration, with a discrepancy of less than 0.3A
in the right tail of the distribution. FBM and MD also show a close match in terms of the contact rate
from Figure 4(c). Finally, according to Figure 4(d), we emphasize that FBM generates dominantly
more valid conformations during the inference step compared to all baselines.
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Figure 4: The visualization of comprehensive metrics on peptide 1e28:C. a. Plots of the slowest two
TIC components analyzed by feature projections. b. The distribution of the radius-of-gyration. c.
The residue contact map, where the data in the lower and upper triangle are obtained from FBM and
MD, respectively. d. Cumulated valid conformations during inference over 3 independent runs.
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In Figure 5, we conduct further comparisons with MD on conformation transitions over time. We
first explore the ability of FBM to recover equilibrium conformations, which is measured by the
lowest sample C,-RMSD to each cluster center (Wang et al., 2024). Reference structures and se-
lected samples of FBM with the lowest C',-RMSD for 3 clusters of peptide 1¢28:C are provided in
Figure 5(a). The RMSD values of all pairs are below 24, showing a good recovery of representa-
tive conformations. In Figure 5(b), we provide the C,-RMSD values along trajectories compared
with the initial state of peptide 1e28:C. Note that, since MD performs local energy minimization
on the initial state before simulation, the starting point of its curve is not at the origin. We show
that FBM gradually guides the peptide toward equilibrium, reaching a stable RMSD level similar to
MD at around 70 ns. In contrast, FBM-BASE reaches a biased equilibrium at an early stage, while
Timewarp exhibits excessive fluctuations over time. In Figure 5(c), we report the effective-sample-
size per second of wall-clock time (ESS/s) (Klein et al., 2024) over the entire test set, where FBM
achieves an efficiency improvement of around 10 times relative to MD based on the median values.

Az:z; b2 ;

— MD

L - | e
Yo ) '
| 0 20 4_0 60 80 100
-V‘ %/ Time (ns)
Ny (o —
’.}« VR ' &
) W \ ( 30
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) ¢ A
AN > K o
\" Y 10
o o R 5 —
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Figure 5: Comparisons between FBM and MD on conformation transitions over time. a. Com-
parison between the reference equilibrium conformations (blue) and the selected samples of FBM
(yellow) of peptide 1e28:C. C,-RMSD values are reported below each cluster. b. C,-RMSD val-
ues along trajectories compared with the initial state of peptide 1e28:C over 3 independent runs. c.
The effective sample size per second measured on the test set. All specific values are converted to
multiples of the median value of MD, which is shown as the blue dashed line for reference.

5 CONCLUSION AND FUTURE WORK

In this work, we present a novel generative model called FBM for time-coarsened dynamics in a
full-atom fashion. We first leverage the bridge matching framework to construct the baseline model
FBM-BASE for learning dynamics from the data distribution. Based on FBM-BASE, we further
introduce physics priors and interpolate a well-designed intermediate force field, which is theo-
retically guaranteed to target the Boltzmann-constrained distribution via directly inference without
extra steps. Experiments on alanine dipeptide and our curated dataset PepMD showcase superiority
of FBM on comprehensive metrics and demonstrate transferability to unseen peptide systems.

As the first attempt to incorporate the intermediate force field to bridge matching for full-atom time-
coarsened dynamics, our method has considerable room for improvement. Firstly, our experiments
have been conducted on small peptides with fewer than 10 residues. Further exploration on more
complex molecular systems (e.g., proteins) is warranted. Secondly, since the training labels for FBM
depend on the marginal score calculations provided by FBM-BASE, we have to adopt a two-stage
training process rather than an end-to-end one, which increases the training overhead. Lastly, the
transitions between metastable states are still not fast enough, resulting in unreasonable conforma-
tions along the generated paths. Therefore, methods for rapid and jump-like state transition are of
great importance.
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APPENDIX

A REPRODUCIBILITY

Our source code and the curated dataset PepMD are all available at https://anonymous.
4open.science/r/FBM-4373.

B PROOFS OF PROPOSITIONS
Proof of Proposition 3.1. Given the joint distributions of random variables ﬁo and X, following
densities qq, q1 and pg, p; satisfy:

L 1 .

p(Xo,Xy) = Zq(io,xl)exp(—k(e(io) +e(X1))), (18)

where Z is the partition function to ensure f f p(ﬁo, Xl) dﬁo d)_il = 1. It is easy to verify that the
condition holds when XO and )_il are independent variables.

Therefore, the marginal density p; is given by:

pe(R) = / / (XKoo, X1)p(Ko, Xy) dXg X, (19)
_ // qt(f{thmXl)q(ﬁo,il)e’{p(_k(‘f(izo) X)) i%,a%, Qo)
://qt(io,i 1R (Xy) SRR Z°)+€(X D) 4%, %, 1)
= Qt(x't)eq(.,.Xt)[exp(k(E(XZO) +eXa))y (22)

where in the first equality we use the assumption that probability paths p; and ¢; share the same

conditional distribution given X()7 Xl. Considering the assumption that p; admits the Boltzmann-
constrained form as in Eq. (7), we can easily derive the formula for the intermediate potential:

—

1 ~ = 1 Z
e(Xe) = ——10gE |z, x, %, [exp(—k(e(Xo) + £(X1)))] + - log Z (23)

k k

Take the gradient of Eq. (23) with regard to X, the intermediate force field is given by:
Ve (f( ) = i) eXp(_k(g(XO) +5(X1)))V%(X07X1\Xt) dXo Xm
t(A¢) = — = =
KE,, . %, lexp(—k(e(Xo) +£(X1)))]

where we assume that the integrals and gradients can be commuted. The numerator of Eq. (24) can
be further expanded by:

) (24)

// exp Xo) +€( )))Vqt(XO,X1|Xt)dXO dX1 (25)
-/ / exp(—k(e(Xo) + £(X1))au(Ro, X1 [K0) ¥ log a0(Ko, X1 K1) dXo dX, 26)
Lo o X, X0, X1)¢(X0,X1) .o o
= [ p(reRe) + (R (Ko, X K 1o LEEIVIE ) 15, 0%,
Qt(Xt)
(27)
=B, .1z, lexp(—k((Xo) +£(X1)))(Vlog q: (X[ Xo, X1)) — Viog ¢:(X,))]. (28)
Substitute the numerator back into Eq. (24) and the conclusion holds. ]
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Proof of Proposition 3.2. Similar to the definition of v*(Xy, t) and u* (X, t) under the probability
path ¢;, we define v'(X, t) and «’ (X, t) under the probability path p; accordingly, which have the
following form:

X, - X,

X, — X,
Pt(‘v“it)[ 11—t

U’(Xt,t) =K pt(.7.|)‘{t)[ /

], u'(X¢,t) = E ]. (29)

Further, the marginal scores of probability paths ¢, p; at diffusion time ¢ (termed as s} and s
respectively) are connected based on Eq. (7) as follows:
Considering the linkage between scores and vector fields in Eq. (12), we obtain:

V(X t) - (X t) v (X t) —ur (X, t)
2 2

—kVe, (Xy) = (31)

(2 g

—

= S0 Rart) = " (K1) = (0 (Rest) — (K, )] (32)

Now we expand the term v" — v* in the form of integral:
. o 1 . Lo Lo L
V(X t) — v (X t) = ﬁ// X, (o, Xi[X) = a0(Xo, X1 X)) aXodXy. (33)

For convenience, we define:

F(Xo, X1, X, 1) = pu(Xo, X1 Xs) — 0:(Xo, X1 [Xy) (34
_ pe(Xe|Xo, X)p(Xo, X1) (K¢ Xo, X1)g(Xo, X1) (35)
pe(Xt) a(X+)
XX, X1)¢(Xo,X1) , Z - - .
= @O0 X000 X % (o) + (Rr) — 2u(Ka))) 1),
at(X+t)

(36)

Denote g(X, X, t) = Ik f(Xo,X, Xy, t)dXo, Eq. (33) can be rewritten by first integrating over
Xoi
. . 1 Lo .
V&t =0 Ret) = 1 [ Xo(R Ko aX, 37)

Similarly, we can define h(}_i, X, t)=/[ f(}_i, X, Xy, t) dX;, then v’ — u* admits the form:

— —

u' (Xe, t) — ut(Xy, t) = %/X’h(ﬁ,f{t,t) aX. (38)

To establish the equality between v' — v* and u’ — u* for solving Eq. (31), we further investigate
the intrinsic relationship between functions ¢ and h.

Since Langevin dynamics (Langevin, 1908) in a conservative field can be considered to reach a
stationary distribution after some time and satisfy the detailed balance (Bussi & Parrinello, 2007),
which means 1(Xo)T(X1|Xo) = u(X1)T(Xo|X1) for any states Xo, Xy, where () denotes
the equilibrium probability and T'(-|-) denotes the Markov transition probability. In particular, we
assume that with a sufficiently large number of non-redundant data pairs selected from long MD
trajectories, our data distribution inherits the property, namely q(io, )21) = q(il, )_io). Therefore,
we have:

(X)) = / / 00X Ko, X1)q(Xo, K1) dXo dX, (39)
= / / q1—¢(Xe| X1, Xo)g(X1, Xo) dX; dXo (40)
= Q17t(it)a (41)
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where in the second equality we use the property qt(it|io7 Xl) = ql,t(ﬁt|}21, XO), which can
be verified based on Eq. (6). Similarly, we can derive €, = £;_; from Eq. (23), thereby implying
pr = p1—¢ and Zy = Zy_;. Then the following equation holds based on Eq. (36):

f(XOaXhXtat):f(ilaXO;Xtvl_t)' (42)
Taking all the above into consideration, an important observation is:
WX, Xy, t) = g(X, X, 1 - 1) (43)
On the other hand, when ¢ approaches 1, the limit of function g is given by:
lim g(i, X, t) 44)
t—1-
. 2o o Z , ” , "
= lim — /5(Xt —X)q(Xo, X)[ZE exp(—k(e(Xo) + e(X) — ,(Xy))) — 1]dX (45)
t—1— qt(Xt) A
L / X X)[Zle (—ke(Xo)) —1]dX (46)
= > q\Ao, — eXp(— 0)) — 0
a1(X) Z
1 — 1 — — — — —
= ——7; exp(ke(X)) / Eq(XO,X) exp(—k(e(Xp) +&(X)))dXo — 1 47)
q1(X)
1 — — — —
= ——7; exp(ke(X)) /p(XO7X) dXg—1 (48)
71(X)
1 - _
= — 71 exp(ke(X))p1(X) —1 =0, (49)
q1(X)

where in the third and fourth equality we use the relationship between the marginal distribution and
the joint distribution, and in the fifth equality we apply Eq. (7).

Here we suppose the function g is separable with respect to the time variable ¢. Formally, there exist
functions ¢ and I' such that the following identity holds:

9(X, Xy, 1) = ()X, Xy). (50)
Given lim;_, - g(X,ﬁt,t) = 0, we prescribe «(t) = 1 — t for convenience, then we have
h(X,X;,t) = tT'(X, X;) and subsequently we can derive the closed-form of v’ based on Eq. (37)
and 38 by:
. . 1 [ o o o .
W (X t) -t (X t) = -5 /Xh(X,Xt,t) ax (51)
=— / XrX,X,)dx (52)
1 . L. L
- /X(l _)r(X, X,) dX (53)
= —(v'(Xe,t) = 0" (X4, 1)), (54)
which implies v/ (X, t) = v*(Xy, t) — %kVet(f{t) according to Eq. (31). O
Proof of Proposition 3.3. From the definition of s} in Eq. (12), the following equation holds:
s71(Xy) = B cx0lV log q:(X¢[Xo, X1)] (55)
= / V log q:(X+|Xo, X1)q: (Xo, X1|X¢) dXg dX; (56)
]. — — — — — — —
— o [ VaRilKo Xi)a(%o, %) dXo dX (57)
q+(X4)
1 — — — — — — —
= fv//%(xt\xo,xl)lﬂxmxl)dXo dX; (58)
q:(X4)
V(X -
= VX)) _ Glog,(Xy), (59)
q:(X4)
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where in the second equality we use the Bayesian rule of probability, q(ﬁ(], Xl) denotes the joint
distribution of random variables ﬁo, )_il following qg, q1. Furthermore, the third equality is justified
by assuming the integrands satisfy the regularity conditions of the Leibniz Rule. [
Proof of Proposition 3.4. We first check whether the continuity condition holds when ¢ — 0. Note
that under this condition, the density ¢;(Xo, X1|X;) involves into the Dirac mass §(X; — X;) at
point Xy, subsequently we have:

[[ exp(—k(e(Xo) + £(X1)))d(X; — Xo) dX dX,

lim Ve, (X;) = — lim - : e Akl (60)
t—0+ t—0+ kffexp(—k( (Xo) +E(X ))) ( Xo) dXpdX;
_ oy VS ek (Xo) + sg 1)))o ( Xg)dﬁodfil 6
10t k [ exp(—k(e(X¢) + ( 1)) dX4
_ V [ exp(— ( (Xy) +e(X 1))) )
ot k [ exp(—k(e(Xs) +2(X1))) d
— _ lim M = Ve(Xo). (63)

20+ kexp(—ke(X,))

The case when ¢ approaches 1 is completely symmetrical and will not be elaborated further. Thus
we have proven that the intermediate force field converges to the MD force field when ¢ approaches
Oand 1.

C MODEL ARCHITECTURE

In this work, we leverage the powerful TorchMD—-NET (Pelaez et al., 2024) as the backbone model
to process molecular graphs, which intrinsically satisfies SO(3)-equivariance with the equivariant
transformer (Tholke & Fabritiis, 2022) component. To adapt to our task setup, the inputs include not
only the Cartesian coordinates X and atom embeddings Z, but also a one-dimensional continuous
diffusion time ¢. TorchMD-NET will then output SO(3)-equivariant vectors V € RN*3%H and
node representations H € RV>*#  Formally, we have:

V,H = TorchMD-NET (X, Z, t). (64)

To streamline the model, we only add lightweight output heads to a single TorchMD-NET module
for the baseline model as well as FBM. For the baseline model, we use two separate two-layer Feed-
Forward Networks (FFN) with no shared weights to transform the node representations into weights

of vectors, which are then multiplied by V to obtain the final representation:
vg(X,t),us(X,t) =V x FEN(H) € RN*3, (65)

where the dimensions of hidden and output layers of FFN are all H and we use SiLLU (Dong et al.,
2017) for activation layers. Further, we construct the networks ay, 39,9 of FBM in the same way,
while the only difference is that we add one LayerNorm (Ba et al., 2016) before the FFN layer due
to the variance in scale of different targets.

D TRAINING AND INFERENCE DETAILS

In this section, we provide additional details and pseudo codes for training and inference of the
baseline bridge matching model FBM-BASE and the force-guided bridge matching model FBM.

D.1 NORMALIZATION OF ENERGIES AND FORCES

In practice, we found that the unnormalized potential function is numerically unstable and its vari-
ance is positively correlated with the number of atoms /N. For stable training, we need to perform
certain pre-processing steps. Specifically, for potentials in kJ/mo1, we divide by 3NN to obtain the
average potential energy per degree of freedom for the entire molecule, where IV varies with differ-
ent peptides. For force fields in kJ/ (mol-nm), due to their relatively stable values across different
molecular systems, we empirically multiply by the constant 0.002 for normalization.
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D.2 GUIDANCE STRENGTH 7

Similar to Wang et al. (2024), we introduce the guidance strength 7 for better approximation of the
Boltzmann distribution. Formally, for any positive constant > 0, we can define a new probability
path based on ¢;:

. 1 = 2 .

pi(Xe) = - a(Xo) exp(~ ke (X)) eo = 21 . (66)
t

The only difference with Eq. (7) is the constant 27/52 in the exponential term, which can be inter-

preted as how well the probability path p; is guided by energies and forces. According to Proposi-

tion 3.2, it can be easily deduced that the vector field v’ (X, t) which generates p; has the following

form:

V(X t) = v (X, t) — - ke (Xy). (67)

Thus practically, we regard 7 as a hyperparameter during inference and enhance the similarity be-
tween p; and the Boltzmann distribution by selecting the proper guidance strength 7.

D.3 REFINEMENT WITH CONSTRAINED ENERGY MINIMIZATION

We utilize the discrete form of the SDE process in Eq. (4) for inference with 1" SDE steps, and
the full conformation ensembles are generated in an autoregressive way, where the output from the
previous step serves as the input for the next step. However, in the autoregressive fashion, errors
at each inference step will accumulate, leading to out-of-distribution problem. Here we introduce
an additional energy minimization procedure using OpenMM (Eastman et al., 2017) for refinement,
which is performed for each generated conformation before sent to the next inference step. Note
that we aim for the refinement to affect only the minor details (e.g., X-H bonds) without altering
the overall conformation; therefore, independent harmonic constraints are further applied on all
heavy atoms with spring constant of 10 kcal/mol-A2 and the tolerance of 2.39 kcal/mol-A2 without
maximal step limits (Wang et al., 2024).

D.4 ALGORITHMS FOR TRAINING AND INFERENCE

We provide pseudo codes for training and inference with our models FBM-BASE and FBM in Algo-
rithm 1,2,3 respectively.

Algorithm 1 Training with FBM-BASE

—

1: Input: peptide pairs (Go, G1) in a batch B, vector field networks u(X, t), v(Xy, t)
2: for training iterations do
3: ¢t~ TUni(0,1)
Xi~qr(Xe| Xo, X1)
Xy X; — tug(Xp, 1), X1 < Xp + (1 — t)vp( Xy, t)
(Dy, Dy, D,, bl) + pairwise interatomic distances of ()20, X], X, Xl)
Liwd & 5 2gy 6, 1Fr=X0/a-) — ve( X, 1)|[?
Lrev % Zgo,g1 ||(Xt_XO)/t - u@(Xt7 t)||2
. 1 115, <64 (Po—Do)l|* 15, c6a(D1—D1)|?
9: Lanx Fzgo,gl(l_t) ’ XO:1DO<GA*N +i- 21:1D1<6A7N
10: Lyase ¢ Liwd + Lrev +0.25 - Loux
11:  min Lpace
12: end for

® RS9k

D.5 HYPERPARAMETERS

The hyperparameters we choose are listed in Table 3.
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Algorithm 2 Training with FBM
1: Input: peptide pairs (Go,G1) of one molecular system in a batch B, baseline model
vg(Xy, 1), ug(Xy,t) in § 3.2 with frozen parameters, MD potentials £(X), (X ), MD force
fields Ve(X,), Ve(X)), force field networks ag (X, t), 8o (Xy, t), 70 (X, t)

2: for training iterations do

3:  t~Uni(0,1)

4 Ko~ qi(Xiel Xo, X1)

50 s (X)) + (a(Xest) —ug(Xst) )/o?

6: C(X'O,)Zl,)ft)  s7(X) - Vog q:(X:| Xo, X1)

7 M £Yg a6 g (X Xo, X1) exp(—k(e(X0) +£(X1)))

8 w(X,t) « (1—1t)-detach(ap(Xy,t)) +t-detach(Be(X;, 1)) + (1 —t) - v9( Xy, 1)
9:  Lig + l}}’ Zg G |[exp(—k(e(Xo)+e(X1)))¢(Xo0. X1, X0) /km — wg(ft,t)\|2

10: Lond < § Xg, 0, IVe(Xo) = aa(Xe, )| + [|Ve(X1) — Bo (X, )]

11:  LreMm <+ Lig + Lbna
12: min EFBM
13: end for

Algorithm 3 Autoregressive inference with FBM/FBM-BASE

1: Input: Initial state Gy, chain length L, discrete SDE step 1", guidance strength 7, baseline model
v(X¢,t) in § 3.2, FBM model w(X, t) in § 3.3, model type ¢ €{FBM-BASE, FBM}
2: C+1]

3 A« Ur

4: forl < 1to L do

5:  for ¢ in linspace(0,1 — A, T') do

6: e ~N(0,1)

7: if c = FBM then .
8: (Xt, ) %Ug(Xt, ) nkTUg(Xt,t)
9: else .

10: (Xt,t) (—U@(Xt,t)

11: end if

12: Xt+A <—Xt+’l} (Xt, )A—‘r\/iO’E
13:  end for .

14 X!« energy - minim(X;)

15: X() — Xl

16: C«+Cu X1

17: end for

18: Output C'

E EXPERIMENTAL DETAILS

E.1 DATASET DETAILS

As mentioned in § 4, all peptides of PepMD are simulated using OpenMM (Eastman et al., 2017).
The parameters we used for MD simulations are listed in Table 4 and the statistical information of
PepMD is shown in Table 5.

Additionally, all 14 peptides of our test set are listed below with the format {pdb-id}:{chain-id},
including 1hhg:C, 1k8d:P, 1k83:M, 1bz9:C, 1i7u:C, 1gxc:B, 1ar8:0, 2xa7:P, 1e28:C, 1gy3:F, 1n73:1,
1fpr:B, laze:B, 1qj6:1.

E.2 DETAILS ON EVALUATION METRICS

In this part, we provide details for computing the evaluation metrics in § 4.
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Table 3: Hyperparameter choice of FBM-BASE and FBM.

Hyperparameters Values
Network
Hidden dimension H of FBM-BASE 128
Hidden dimension H of FBM 176
RBF dimension 32
Number of attention heads 8
Number of layers 6
Cutoff threshold 7y 5.0A
Training
Learning rate Se-4
Optimizer Adam
Warm up steps 1,000
Warm up scheduler LamdalR
Training scheduler ReduceLRonPlateau(factor=0.8, patience=5, min_lr=1e-7)
Batch size of FBM-BASE 16
Batch size of FBM 10
SDE noise scale o 0.2
Inference
SDE steps T' [25,30]
Guidance strength 1 of FBM [0.04,0.05,0.06,0.07,0.08]

Table 4: MD simulation setups using OpenMM.

Property Value

Forcefield AMBER-14

Integrator LangevinMiddlelntegrator
Integration time step ~ 1fs

Frame spacing 1ps

Friction coefficient ~ 1.0ps™!

Temperature 300K

Electrostatics NoCutoff

Constraints HBonds

Flexibility Following Janson et al. (2023), we compute the contact rates between residues as a
measure of structural flexibility. For each residue pair 7,5 (1 < ¢ < j < R) of a peptide with R
residues, the contact rate (i, j) of residue 4, j is defined as follows:

L
. 1
r(i,j) = i3 Z Lo, (i) <104 (68)
1=1

where d;(i,j) denotes the Euclidean distance between a-carbons of residue 7, j of conformation
l. Now we compute the root mean square error of contact maps between generated conformation
ensembles and reference MD trajectories:

CONTACT:\/R(RQ_I) ST (1 (0,9) — rer(is )2 (©9)

1<i<j<R

Validity We assess the structural validity by checking for bond breaks between adjacent residues
and bond clashes between any residue pairs. The same as in Wang et al. (2024), bond clash occurs
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Table 5: Dataset statistics.

Dataset name PepMD

Training set simulation time ~ 100ns
Test set simulation time 100ns
MD integration time step At 1fs

coarsened predition time 7 0.5 x 108fs
# Clusters 2480
# Training peptides 136

# Training pairs per peptide 2 x 103
# Validation pairs per peptide 4 x 102
# Test peptides 14

when the distance between a-carbons of any residue pair is less than the threshold d¢jasn = 3.01&,
and bond break occurs when the distance between adjacent a-carbons is greater than the threshold

Obreak = 4.19A. Then the metric VAL-CA is assessed by the fraction of conformations without
bond break and bond clash.

Distributional Similarity Similar to Lu et al. (2023b), we project peptide conformations onto the
following three low-dimensional feature space: (i) Pairwise Distance (PWD) between a-carbons
excluding residue pairs within an offset of 3. (ii) Radius of gyration (RG) which computes the
geometric mean of the distances from a-carbons to the center-of-mass. (iii) Time-lagged Inde-
pendent Components (TIC), where we featurize structures using backbone dihedrals v, ¢, w and
pairwise distances between a-carbons (Klein et al., 2024), then TIC analysis is performed using
Deeptime (Hoffmann et al., 2021). Only the slowest components, TIC 0 and TIC 1, are taken
for further evaluation (Pérez-Hernandez et al., 2013). (iv) the joint distribution of TIC 0 and TIC
1, termed as TIC-2D. (v) Specifically for the evaluation on AD, the joint distribution of backbone
dihedrals ¢ and ¢, namely the Ramachandran plot (Ramachandran et al., 1963), is taken into con-
sideration (RAM).

Afterwards we compute the Jensen-Shannon (JS) distance between generated samples and reference
MD trajectories on the projection space. Features are discretized with 50 bins based on the reference
ensembles, and a pseudo count le-6 is added for numerical stability. For each feature space, we
report the mean distance along all dimensions.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 ABLATION STUDY

In Table 6 we provide ablation results of SDE steps 7" and the guidance strength 7 on test peptides
of PepMD. A clear pattern is that when 7' is fixed, the greater the guidance strength 7, the more
likely it is to generate reasonable conformations, which demonstrates a strong correlation between
the intermediate force field and real interatomic constraints of molecular systems.
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Table 6: Ablation results of SDE steps 7" and the guidance strength 7 on the test set of PepMD.
Values of each metric are first averaged over 3 independent runs for each peptide and then shown in
mean/std of all 14 test peptides.

JS DISTANCE ()
Hyperparameters WD RG TIC TICaD VAL-CA (1) CONTACT ({)
T =25n1=0.04 0.586/0.059 0.540/0.143 0.640/0.056 0.809/0.020 0.559/0.190  0.195/0.115
T =25n7=0.05 0.578/0.069 0.550/0.151 0.639/0.075 0.805/0.027 0.606/0.192  0.179/0.132
T =25n1=0.06 0.573/0.064 0.542/0.140 0.631/0.077 0.801/0.032 0.616/0.188  0.188/0.127
T =25,n7=0.07 0.585/0.084 0.548/0.177 0.644/0.089 0.800/0.044 0.647/0.182  0.201/0.135
T =25n1=0.08 0.573/0.064 0.577/0.144 0.638/0.079 0.804/0.033 0.675/0.169  0.200/0.111
T =30,n=0.04 0.585/0.074 0.587/0.151 0.644/0.077 0.804/0.029  0.553/0.208  0.208/0.131
T =30,7=0.05 0.582/0.066 0.542/0.162 0.640/0.088 0.806/0.035 0.615/0.183  0.217/0.130
T =30,7=0.06 0.596/0.085 0.591/0.139 0.637/0.089 0.803/0.041 0.604/0.205  0.231/0.116
T =30,7=0.07 0.576/0.059 0.590/0.120 0.649/0.074 0.806/0.023  0.655/0.180  0.182/0.116
T =30,7=0.08 0.590/0.077 0.575/0.151 0.614/0.101 0.789/0.065 0.661/0.176  0.208/0.116

F.2 PEPMD ADDITIONAL RESULTS

In Figure 6, we provide the comparison of different methods for free energy projections on the
slowest two TIC components for test peptides 1n73:1 (GHRP), 1gxc:B (RHFDTYLIRR) and 1qj6:1
(DFEEIPEEYL) from PepMD. Note that, due to the discrepancies in the prediction time interval and
the number of samples, there may be certain systematic errors compared with the MD simulation
data. Compared to the baselines, FBM presents more accurate depictions of the molecular free
energy landscape in most cases. We also found that for peptides with fewer residues (e.g., the
tetrapeptide 1n73:I), FBM often achieves higher accuracy. This condition aligns with the scaling
law, suggesting that accurate molecular dynamics simulations for more complex molecules may
require larger training datasets and more parameters.

To provide a more comprehensive evaluation, we present the visualization of comprehensive metrics
for the three peptides in Figure 7 similar to that in Figure 4. Note that, the PWD distribution plot of
peptide 1n73:I is not displayed since its residue length is too short for an offset of 3 (Wang et al.,
2024). FBM undoubtedly outperforms all other baselines in stably generating valid conformations
of all three peptides. For the tetrapeptide 1n73:I and decapeptide 1gxc:B, FBM achieves a close
match with MD trajectories in terms of distributions on projected features, residue contact rates and
inter-residue distances. Thrillingly, FBM consistently achieves equilibrium distributions during the
inference of both peptides and aligns quite well with MD trajectories under the C,-RMSD evalu-
ation, showing a good transferability to Out-Of-Distribution (OOD) peptides with different residue
lengths. In contrast, other methods either deviate from the real distribution or exhibit excessive
fluctuations during the generation process.

Meanwhile, we also provide a failure case of FBM, i.e., peptide 1gj6:I in Figure 7(c). For this pep-
tide, the trajectories generated by FBM show significant deviation from the reference distribution.
Based on the residue contact map, we observe that the residues in the peptide are spatially dispersed,
which may hinder the graph neural network from efficiently capturing global dynamics and interac-
tions of the molecule. In such cases, increasing the model parameter size, stacking more layers, and
expanding the dataset are likely to help generate more accurate trajectories.

F.3 A TINY EXPERIMENT ON CHIGNOLIN

To extend FBM on more complex molecular systems, we perform a tiny experiment on Chignolin,
a small protein consisting of 10 residues and 175 atoms. The trajectory data of Chignolin is down-
loaded from figshare?, which was curated by Culubret & Fabritiis (2021). MD simulations were
performed with ACEMD, using CHARMM?22 force field (MacKerell Jr et al., 1998) and TIP3P wa-
ter model (Jorgensen et al., 1983) at 350K temperature, which contains 1,881 water molecules and
two Na™ ions to neutralize the peptide’s negative charge. The dataset consists of 3,744 independent

3https://figshare.com/articles/dataset/Chignolin_Simulations/13858898
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product simulations of 50 ns, for a total aggregate time of 187.2 us. Considering the difference of
MD simulation setups from ours, we need to fine-tune our model on the dataset to align with its
simulation environment.

To be specific, we first randomly select 500/50/3 independent trajectories from the dataset for train-
ing/validation/test and select 200 data pairs for each trajectory with 7 =100 ps. The trained FBM-
BASE model will then be fine-tuned on the training data for 20 epochs, with a relatively low learning
rate of 2e-4. Further, to obtain atomic forces and potentials of molecules for training with FBM,
we use CHARMM36 force field (Best et al., 2012) and implicit solvation of GB-OBC I parame-
ters (Onufriev et al., 2004) on the OpenMM platform. Afterwards, a new FBM model will be trained
for 100 epochs, with the fine-tuned FBM-BASE as the baseline model.

The evaluation results on three test trajectories are shown in Table 7, where the identifiers of these
trajectories in the original dataset are labeled as els44, e59s7 and e3s24, respectively. We find that
FBM significantly outperforms FBM-BASE across multiple comprehensive metrics, showcasing a
strong and stable generation ability for molecular dynamics. Moreover, we provide the visualizations
of various metrics on the test set in Figure 8, where the generated trajectories of FBM shows a close
match to those of MD in most cases, demonstrating its usefulness and scalability to more complex
molecular systems.

Table 7: Evaluation results of FBM on three test trajectories of Chignolin. Values of each metric
are first averaged over 3 independent runs for each peptide and then shown in mean/std of all 14 test
peptides. The best result for each metric is shown in bold and the second best is underlined.

Index Model JS DISTANCE (1)

VAL-CA (1) CONTACT ({)

PWD RG TIC RAM
elsdd FBM 0.315/0.056  0.285/0.080 0.544/0.011 0.509/0.029  0.691/0.041 0.161/0.069
FBM-BASE 0.417/0.069 0.467/0.148 0.554/0.023  0.480/0.013  0.465/0.057  0.249/0.066
5957 FBM 0.395/0.017  0.400/0.034  0.522/0.015 0.443/0.020  0.780/0.012  0.184/0.029
FBM-BASE 0.456/0.026 0.407/0.016 0.526/0.002 0.490/0.017  0.460/0.031 0.219/0.056
3504 FBM 0.305/0.046  0.332/0.089  0.524/0.004 0.519/0.011  0.628/0.010  0.123/0.032

FBM-BASE 0.450/0.086 0.549/0.149 0.527/0.015 0.502/0.019  0.490/0.040  0.278/0.104

G COMPUTING INFRASTRUCTURE

Our models, FBM-BASE and FBM, were trained on 4 NVIDIA GeForce RTX 3090 GPUs within
a week. The inference procedure with baselines and our model were all performed on one single
NVIDIA GeForce RTX 3090 GPU.
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Figure 6: Experiments on PepMD test peptides 1n73:1, 1gxc:B and 1qj6:1 (top, middle and bottom).
Samples were generated in the time-coarsened manner for a chain length of 103, Free energies (i.e.,
the relative log probability) along the first two TIC components of FBM, FBM-BASE and Timewarp
are displayed in the left, middle, and right columns, respectively. The blue solid line represents the
full MD trajectories, while the yellow dashed line represents model-generated samples.
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Figure 7: The visualization of comprehensive metrics on test peptides 1n73:1, 1gxc:B and 1qj6:1
(top, middle and bottom). For each sub-figure of the corresponding peptide: 1. The top-left and
bottom-left plots show the joint distribution of pairwise distances between residues and the distribu-
tion of the radius of gyration, respectively. 2. The top-middle and bottom-middle plots demonstrate
the residue contact map and residue minimum-distance map, respectively. 3. The top-right plot com-
pares the cumulative valid conformations of different methods during inference, with each method
undergoing three independent runs. 4. The bottom-right plot shows the C,,-RMSD relative to the
initial state along trajectories.
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(c) Visualization of evaluations on trajectory e3s24.

Figure 8: The visualization of comprehensive
each sub-figure of the corresponding peptide:
pairwise distances (PWD). 2. The top-middle
map and the residue minimum-distance map,

metrics on three test trajectories of Chignolin. For
1. The top-left plot shows the joint distribution of
and top-right plots demonstrate the residue contact
respectively. 3. The bottom-left and bottom-middle

are Ramachandran plots of MD and FBM, respectively. 4. The bottom-right plot compares the

cumulative valid conformations of different me
three independent runs.

thods during inference, with each method undergoing
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