
Amortized Probabilistic Detection of Communities in Graphs

Yueqi Wang * 1 Yoonho Lee * 2 Pallab Basu 3 Juho Lee 4 Yee Whye Teh 5 6 Liam Paninski 7 Ari Pakman 8

Abstract

Learning community structures in graphs has
broad applications across scientific domains.
While graph neural networks (GNNs) have been
successful in encoding graph structures, existing
GNN-based methods for community detection are
limited by requiring knowledge of the number of
communities in advance, in addition to lacking a
proper probabilistic formulation to handle uncer-
tainty. We propose a simple framework for amor-
tized community detection, which addresses both
of these issues by combining the expressive power
of GNNs with recent methods for amortized clus-
tering. Our models consist of a graph representa-
tion backbone that extracts structural information
and an amortized clustering network that natu-
rally handles variable numbers of clusters. Both
components combine into well-defined models of
the posterior distribution of graph communities
and are jointly optimized given labeled graphs. At
inference time, the models yield parallel samples
from the posterior of community labels, quantify-
ing uncertainty in a principled way. We evaluate
several models from our framework on synthetic
and real datasets, and demonstrate improved per-
formance compared to previous methods.

1. Introduction
Community detection (Fortunato, 2010; Yang et al., 2013)
is a fundamental problem in network analysis with many
applications such as finding communities in social graphs or
functional modules in protein interaction graphs. In machine
learning, community detection is usually treated either as
an unsupervised learning problem, or as posterior inference
when a well-defined generative model is assumed.

*Equal contribution 1Google 2Stanford University 3University
of the Witwatersrand 4KAIST 5Oxford University 6DeepMind
7Culumbia University 8Ben-Gurion University of the Negev. Cor-
respondence to: Ari Pakman <pakman@bgu.ac.il>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

Recent progress in graph neural networks (GNNs) has suc-
cessfully extended the learning capabilities of deep neural
networks to graph-structured data (Bronstein et al., 2017;
Hamilton, 2020; Bronstein et al., 2021). Since community
structures arise in real-world graphs, the classic problem of
community detection can also benefit from the representa-
tion learning of GNNs, and this has been indeed the case for
unsupervised approaches (Wang et al., 2017; Cavallari et al.,
2017; Sun et al., 2019; Jin et al., 2019; Tsitsulin et al., 2020).
However, neural models for community detection still face
significant challenges, as recently reviewed in (Liu et al.,
2020; Jin et al., 2021). A limitation of existing models is the
requirement of a fixed or maximum number of communities,
typically encoded in the size of a softmax output. This is
a long-standing challenge in the field that constrains the
model’s ability to generalize to new datasets with a varying
number of communities. Moreover, the power of GNNs has
not been applied to community detection as posterior infer-
ence, thus making it impossible to estimate the uncertainty
on community assignment or the number of communities in
networks, especially in noisy or ambiguous real-world data.

Training a neural network to learn posterior distributions
is usually referred to as amortized inference (Gershman &
Goodman, 2014). Concretely, denote a graph dataset as x,
the community labels of its N nodes as c1∶N , and assume the
existence of a joint distribution p(x, c1∶N). Amortization
consists in training a neural network that takes as input a
graph x and outputs a distribution over community assign-
ments p(c1∶N ∣x). In exchange for the initial cost of training
a neural model, amortized inference offers several bene-
fits compared to either unsupervised approaches or other
posterior inference methods.

Compared to unsupervised neural models for community
discovery, amortized approaches are more time-efficient at
test time, as they only require a forward pass evaluation on
a pre-trained model, whereas unsupervised models typically
go through an iterative optimization process for every test
example (Wang et al., 2017; Cavallari et al., 2017; Sun et al.,
2019; Jin et al., 2019; Tsitsulin et al., 2020). Moreover, the
generic inductive biases encoded in unsupervised models
might not be optimal for datasets with different structures,
and amortized approaches can help by incorporating prior
knowledge through model training.

1



Amortized Probabilistic Detection of Communities in Graphs

Figure 1: Amortized Community Detection.

Compared to other posterior inference methods, the benefits
of amortization are threefold. First, well-trained models can
produce i.i.d. posterior samples that match the accuracy of
time-consuming Markov chain Monte Carlo (MCMC) meth-
ods at a fraction of the time (Pakman et al., 2020). Second,
MCMC methods, as well as the faster but less accurate vari-
ational methods (Blei et al., 2017), usually require explicit
forms for p(c1∶N) and p(x∣c1∶N) in order to sample or ap-
proximate the posterior p(c1∶N ∣x), while amortization only
requires samples from the joint generative model p(x, c1∶N),
but not the putative model itself. Thus real-world labeled
datasets can be easily incorporated into a probabilistic in-
ference setting without the need to fit a generative model.
Finally, neural models that represent p(c∣x) yield explicit
values for the probability of each sample c, a quantity usu-
ally unavailable in MCMC. Thus when a single community
labeling for a graph is required, one can simply pick the
highest probability sample.

In this work we present an amortized framework for commu-
nity discovery that combines GNNs with improved versions
of amortized clustering architectures that naturally accom-
modate varying cluster numbers (Lee et al., 2019b; Pakman
et al., 2020), as illustrated in Figure 1. Our models are
trained with labeled datasets containing varying numbers
of communities, and yield samples from the posterior over
community labels for test graphs of any size.

2. Related Works
Neural models for community detection. As mentioned
above, almost all previous works on GNN-based commu-
nity detection adopt an unsupervised learning approach. The
only previous supervised learning work addressing this task
is (Chen et al., 2018), which proposed two encodings for
graph nodes specialized for community detection tasks (re-
ferred below as GNN and LGNN). For a fixed number K of
clusters, the models output for each node i a softmax ϕi,c

for c = 1 . . .K. The objective function is

I(θ) = min
π∈SK

∑
i∈D

logϕi,π(ci) , (1)

where D indexes the dataset and SK is the permutation
group over the K labels. Thus apart from fixing a maxi-

mum K in advance, the models incur the cost of evaluating
K! terms, which makes them impractical for K > 8 (see
Figure 7 below). More importantly, treating community dis-
covery as node classification ignores an important inductive
bias of the problem, as explained below in Section 4.

A related supervised learning problem was studied
in (Dwivedi et al., 2020) as a benchmark for GNN archi-
tectures. But the task here is to find the members of each
community given a known initial node for each community,
and is thus not directly comparable with our more difficult
generic setting.

Amortized Clustering. The amortized clustering models
we adopt and extend in this work, reviewed in the next
section, differ from previous works on supervised cluster-
ing (Finley & Joachims, 2005; Al-Harbi & Rayward-Smith,
2006), attention-based clustering (Coward et al., 2020; Ienco
& Interdonato, 2020) and neural network-based clustering
(reviewed in (Du, 2010; Aljalbout et al., 2018; Min et al.,
2018)), as these works focus on learning data features or
similarity metrics as inputs to traditional clustering algo-
rithms, while we instead model the posterior distribution of
a generative model of clusters.

Supervised amortized probabilistic clustering was studied
in (Le et al., 2017; Lee et al., 2019a; Kalra et al., 2020)
for Gaussian mixtures with a fixed or bounded number of
components. In those papers, the outputs of the network are
the mixture parameters. This differs from the models we use
in this work, which instead output the cluster labels of each
data point, and are not restricted to mixtures of Gaussians.

3. Background
3.1. Generative Models of Clusters

Our approach to community discovery is guided by its con-
nection to generative models of clustering (McLachlan &
Basford, 1988). Let us denote the cluster labels as random
variables ci, and assume a generative process

N ∼ p(N)

αi ∼ p(αi), i = 1,2 (2)
c1 . . . cN ∼ p(c1, . . . , cN ∣α1) .

The distribution in (2) is an exchangeable clustering prior
and α1, α2 are hyperparameters. We define the integer ran-
dom variable K as the number of distinct cluster indices ci.
Note that K can take any value K ≤ N , thus allowing for
Bayesian nonparametric priors such as the Chinese Restau-
rant Process (CRP) (see (Rodriguez & Mueller, 2013) for
a review). This framework also encompasses cluster num-
bers K < B for fixed B, such as Mixtures of Finite Mix-
tures (Miller & Harrison, 2018).

Given the cluster labels, standard mixture models assume

2



Amortized Probabilistic Detection of Communities in Graphs

Figure 2: CCP and CCP-Attn. Left: Architecture of the CCP model (Pakman et al., 2020) for clusterwise amortized
clustering. Right: Our proposed modification, CCP-Attn., where the mean aggregations m⃝ used by CCP (see equation (7))
are replaced by Set Transformer attention modules from (Lee et al., 2019a). See Appendix B.4 for details.

N observations x = {xi} generated as

µ1 . . . µK ∼ p(µ1, . . . , µK ∣α2)

xi ∼ p(xi∣µci) for each i = 1 . . .N.
(3)

Here µk controls the distribution of the k-th cluster, e.g. as
the mean and covariance of a Gaussian mixture component.

3.2. Review of Amortized Clustering Models

Given N observations x = {xi}, amortized clustering meth-
ods parameterize and learn a mapping from x to a distri-
bution over the indices {ci}. In this work we consider and
compare three recent amortization models:

1. Pointwise expansion (NCP Model). Given N data
points x = {xi}, we can sequentially expand the posterior
distribution of labels as

p(c1∶N ∣x) = p(c1∣x)p(c2∣c1,x) . . . p(cN ∣c1∶N−1x). (4)

A neural architecture to model these factors, called the Neu-
ral Clustering Process (NCP), was proposed in (Pakman
et al., 2020), and requires O(N) forward evaluations for a
full sample of cluster labels. Note that the range of values
that cn can take is not fixed, since it depends on the pre-
viously assigned labels c1∶n−1. Therefore, the multinomial
distribution p(cn∣c1∶n−1x) is not represented using a stan-
dard softmax output, but a novel ‘variable-input softmax’
introduced in (Pakman et al., 2020).

2. Clusterwise expansion (CCP Model). An equivalent
representation of the cluster labels c1∶N is given by the
collection of K sets s1∶K , where each sk contains the in-
dices of points belonging to cluster k. For example, labels
c1∶6 = (1,1,2,1,2,1) are equivalent to s1 = (1,2,4,6),
s2 = (3,5). Thus we can expand the posterior as

p(s1∶K ∣x) = p(s1∣x)p(s2∣s1,x) . . . p(sK ∣s1∶K−1,x). (5)

with p(c1∶N ∣x) = p(s1∶K ∣x). A neural model for these fac-
tors is the Clusterwise Clustering Process (CCP) (Pakman
et al., 2020) (Figure 2). To sample from p(sk ∣s1∶k−1,x) we
iterate two steps: (i) sample uniformly the first element xa

of sk (called anchor) from the available points, (ii) choose
which points join xa to form sk by sampling from

p(bk ∣xa, s1∶k−1,x) , (6)

where bk ∈ {0,1}
mk is a binary vector associated with

the mk remaining data points {xqi}
mk

i=1 . This distribution
depends both on these remaining points and on the assigned
clusters s1∶k−1 in permutation-symmetric ways, which can
be respectively captured by symmetric encodings of the
form (Zaheer et al., 2017)

U =
1

mk

mk

∑
i=1

u(xqi) , G =
k−1

∑
j=1

g
⎛

⎝

1

∣sj ∣
∑
i∈sj

h(xi)
⎞

⎠
, (7)

where u,h, g are neural networks with vector outputs. More-
over, the binary distribution (6) satisfies a form of condi-
tional exchangeability (Pakman et al., 2020) and can be
represented as

p(bk ∣xa, s1∶k−1,x) ≃ (8)

∫ dzk
mk

∏
i=1

φ(bi∣zk, U,G,xa, xqi)N (zk ∣U,G,xa) .

Here φ(bi = 1∣⋅) is a neural network with a sigmoid out-
put, and the latent variable zk ∈ Rdz is a Gaussian, with
mean and variance parametrized by neural networks with
input (U,G,xa). Since bi’s in (8) are independent given
zk, after sampling zk all the bi’s can be sampled in parallel.
Thus while a full sample of s1∶K has cost O(N), the heavi-
est computational burden, from network evaluations, scales
as O(K), as each factor p(sk ∣s1∶k−1,x) in (5) needs O(1)
forward calls. Probability estimates for each sampled clus-
tering configuration are provided in (Pakman et al., 2020).
The CCP architecture is illustrated in Figure 2, left.

3



Amortized Probabilistic Detection of Communities in Graphs

3. Non-probabilistic clusterwise expansion (DAC Model).
The Deep Amortized Clustering (DAC) (Lee et al., 2019b)
model is based on the expansion (5), but does not fully
preserve the inductive biases of the generative model. In its
simplest version, it learns a binary classifier similar to (6),
but assumes a form

p (bk ∣ x, xa) ≃
mk

∏
i=1

p (bi ∣ xi∶mk
, xa) , (9)

i.e., it ignores previously sampled clusters s1∶k−1 and the
dependencies captured by zk in (8).

All three models are trained with labelled samples (c1∶N ,x)
by optimizing the model likelihood (for NCP and DAC)
or an evidence lower bound (ELBO) thereof (for CCP).
See (Pakman et al., 2020; Lee et al., 2019b) for details.

3.3. Review of Graph Neural Networks

The class of GNNs that we will consider are the widely
used graph convolutional networks (GCNs), which produce
a feature vector hL

i ∈ Rdh associated to each node i in a
graph according to the formula

hℓ+1
i = σ

⎛

⎝
W ℓ

1h
ℓ
i + ∑

j∈Ni

ηℓijW
ℓ
2h

ℓ
j

⎞

⎠
, (10)

hℓ
i ∈ R

dh , W ℓ
1,2 ∈ R

dh×dh , ℓ = 0 . . . L − 1 ,

where Ni is the set of neighbours of node i, and ηℓij =

f ℓ(hℓ
i , h

ℓ
j) is a scalar or vector function (multiplied elemen-

twise) that models the anisotropy of the encoding. Note that
the update equation (10) is independent of the graph size
and is a form of convolution since it shares the same weights
across the graph. Each node requires also an initial input
vector h0

i , which can contain, e.g., node attributes. For re-
cent book-length overviews of this vast topic see (Hamilton,
2020; Bronstein et al., 2021).

4. Amortized Community Detection
4.1. Generative Model of Graphs with Communities

For communities in graphs, we assume community labels
for each node are generated as in the clustering prior (2), fol-
lowed by a generative model of edge data y = {yij}Ni,j=1 (e.g.
direction or strength ), and possibly node features f =
{fi}

N
i=1. For example, a popular generative model (without

node features) is

ϕk1,k2 ∼ p(ϕ∣β) k1 ≤ k2 (11)
yij ∼ Bernoulli(ϕci,cj) , i ≤ j , i, j = 1 . . .N (12)

where k1, k2 = 1 . . .K and the yij’s are binary variables
representing the presence or absence of an edge in the graph.

Both the stochastic block model (SBM) (Holland et al.,
1983) and the single-type Infinite Relational Model (Kemp
et al., 2006; Xu et al., 2006) use variants of the generative
model (11)-(12).

4.2. Combining GNN with Amortized Clustering

Our proposal in this work, illustrated in Figure 1, is to use a
GNN to map observations y, f to an embedding vector for
each node,

xi = h
L
i (y, fi) , i = 1 . . .N. (13)

We assume these node embeddings are approximate suffi-
cient statistics for the posterior over labels,

p(c1∶N ∣y, f) ≃ p(c1∶N ∣x1∶N) , (14)

and use node embeddings x1∶N as inputs to the amortized
clustering modules reviewed in Section 3.2.

For the initial node features f1∶N as inputs to the GNN
encoder, we choose the method of Laplacian eigenvector
positional encoding (Belkin & Niyogi, 2003; Dwivedi et al.,
2020), which takes the m smallest non-trivial eigenvectors
of the graph Laplacian matrix and encodes the graph posi-
tional information for each node.

Given labeled datasets of the form (c1∶N ,y, f), both neu-
ral network modules (GNN and amortized clustering) are
trained end-to-end by plugging in the objective function
of the amortized model and the GNN-dependent inputs xi.
Thus our proposed framework encourages the GNN to out-
put node features that compactly represent the community
structure, and the amortized clustering module uses such
compact node features to identify communities.

We visualize the progression of label assignments in a graph
with community structure for the two different posterior
expansions of the amortized clustering module. Figure 3
and Figure 4 respectively illustrate the node-wise expansion
used by NCP (eqn. 4) and the community-wise expansion
used by CCP and DAC (eqn. 5). We note that the simplify-
ing assumptions made by DAC about label independence are
similar to those made by models that treat community dis-
covery as classification (such as LGNN (Chen et al., 2018)
or CLUSTER (Dwivedi et al., 2020)).

4.3. Adding Attention to Amortized Clustering

To increase the expressivity of the amortized clustering mod-
els, we added attention modules to the NCP and CCP models
by replacing mean and sum aggregation steps with variants
of multi-head attention (MHA) blocks (Vaswani et al., 2017).
For DAC (Lee et al., 2019b), the original formulation al-
ready has attention modules. More concretely, we used
three MHA-based modules with learnable parameters de-
fined in (Lee et al., 2019a) that act on sets, named Multihead

4



Amortized Probabilistic Detection of Communities in Graphs

1a 1b 2a 2b 2c

Figure 3: Node-wise sampling (NCP Model). 1a-1b: Two nodes have been already assigned to the same community
(c1 = c2 = 1, red triangles) and a randomly selected new node is sampled from p(c3∣c1∶2,x) to choose whether it joins them
(1a, c3 = 1), or creates a new community (1b, c3 = 2, green star). 2a-2c: The previous node started its own community, and
the next random node is sampled from p(c4∣c1∶3,x) to choose whether it joins any of the existing communities (2a, c4 = 1;
2b, c4 = 2) or creates a new community (2c, c4 = 3, blue square). The procedure is repeated until all nodes have are sampled.

1 2 3 4 5 6

Figure 4: Community-wise sampling (CCP and DAC Models). (1) The first element of community s1 (black triangle)
is sampled uniformly, and the available points (grey dots) are queried to join. (2) The first community s1 is formed (red
triangles). (3) The first element of s2 (black square) is sampled uniformly from unassigned points. (4) The second community
s2 is formed (blue squares). (5)-(6) We repeat this procedure until no unassigned points are left. In CCP, the binary queries
are correlated, but become independent conditioned on a latent vector, thus allowing parallel sampling (eq.(8)).

Attention Block (MAB), Pooling by Multihead Attention
(PMA), and Induced Self-Attention Block (ISAB).

We call the amortized models with attention NCP-Attn and
CCP-Attn. Figure 2, right, illustrates how CCP-Attn modi-
fies CCP by replacing the mean operations in equation (7)
by attention modules. For NCP, attention-based aggregation
is harder to incorporate due to the O(N) forward evalua-
tions. Instead, we replaced the h and u functions in (7) with
ISAB self-attention layers across all input points, so that
it is evaluated only once before the O(N) iterations. We
describe the details of the attention modules and their use in
the NCP and CCP architectures in Appendix B.2.

Table 1: Comparison community detection methods. The
column ‘Pr.’ indicates whether the method is probabilistic.
(∗): LGNN takes only one evaluation because it assumes
fixed or maximum K and is not directly comparable.

Method Learning K Constraints Pr. Cost

DMoN (Tsitsulin et al., 2020) Unsupervised Max K ✗ N/A
LGNN/GNN (Chen et al., 2018) Supervised K < 8 ✗ 1∗

GCN-DAC (Lee et al., 2019b) (ours) Supervised Varying K ✗ O(K)
GCN-NCP (Pakman et al., 2020) (ours) Supervised Varying K ✓ O(N)
GCN-CCP (Pakman et al., 2020) (ours) Supervised Varying K ✓ O(K)

Figure 5: General SBM. Left: Observations (N = 222).
Right: Exact community recovery by CCP-Attn.

5. Experiments
We present several experiments to illustrate our frame-
work. Comparisons are made with LGNN/GNN (Chen
et al., 2018), a previous supervised model for community
detection, and DMoN (Tsitsulin et al., 2020), a recent unsu-
pervised neural model for community detection with state-
of-the-art performance compared to other unsupervised ap-
proaches. Table 1 compares all the models we considered.

In the examples below, the reported single estimates from
our NCP and CCP-based models correspond to the maxi-
mum a posteriori (MAP) sample maximizing the probability

5



Amortized Probabilistic Detection of Communities in Graphs

Table 2: Clustering SBM using CCP-Attn with different
input embeddings and GCN encoders. The SBM data
contains 1 ∼ 16 communities. Pos Enc: positional encoding;
Rand Feat: random features.

Input GCN AMI×100 ARI×100 ELBO

Rand Feat. GraphSAGE 57.0±0.5 54.4±0.9 -120±3

Rand Feat. GatedGCN 66.5±1.9 65.5±2.5 -93±2

Pos Enc. GraphSAGE 82.8±0.2 82.1±0.1 -45±0.1

Pos Enc. GatedGCN 89.6±0.4 88.5±0.6 -23±0.4

p(c1∶N ∣x), estimated from multiple GPU-parallelized poste-
rior samples. A default sampling size of 15 is used unless
noted otherwise. We measure similarity between inferred
and true community labels using the Adjusted Mutual In-
formation (AMI) (Vinh et al., 2010) and/or Adjusted Rand
Index (ARI) (Hubert & Arabie, 1985) scores, which take
values in [0,1], with 1 corresponding to perfect matching.
Other metrics are indicated in each case.

To study a generic form of community detection, in
all our examples the data is given by undirected edge
connectivity, and nodes had no attributes. Details of
the neural architectures and experiment setup appear
in the Appendix. Code to reproduce our experiments
is available at https://github.com/aripakman/
amortized_community_detection.

5.1. Datasets

We consider two main types of datasets for evaluating our
community detection models.

General SBM. The SBM generative model is eqs.(11)-
(12) and generated with N ∼ Unif[50,350], c1 . . . cN ∼
CRP(α), p = ϕk1,k2 ∼ Beta(6, 4) for k1 = k2, and
q = ϕk1,k2 ∼ Beta(1, 7) for k1 ≠ k2. Here CRP(α) is a
Chinese Restaurant Process with concentration α = 3.0.
The graphs contain varying (K = 1 ∼ 16) numbers of com-
munities with varied connection probabilities, as illustrated
in Figure 5. The SBM data tests the models’ ability to learn
from a generative model.

Real-world SNAP datasets. The SNAP datasets (Leskovec
& Krevl, 2014) contains real-world networks from social
connections, collaborations, and consumer products. Unlike
the SBM, we lack here an explicit generative model, but that
is not a problem since all we need for training are ground-
truth community labels. We used two SNAP datasets (DBLP,
Youtube) and followed the data preparation of (Yang &
Leskovec, 2015) and (Chen et al., 2018) to extract subgraphs
composed of 2 to 4 non-overlapping communities.

5.2. GNN Encoders and Input Node Features

To find an effective GNN encoder, we considered two
GCN variants: (i) the isotropic GraphSAGE (Hamilton
et al., 2017) (with ηℓij = 1 in (10)) and (ii) the anisotropic
GatedGCN (Bresson & Laurent, 2018), shown to per-
form well on node classification benchmarks (Dwivedi
et al., 2020). As input features of the nodes we used a
20-dimensional Laplacian eigenvector positional encoding
(Belkin & Niyogi, 2003; Dwivedi et al., 2020), and com-
pared it with a baseline of 20-dimensional random vector
sampled fromN (0,1). Using the CCP-Attn amortized clus-
tering model and training on the SBM dataset, we show in
Table 2 that GatedGCN and positional encoding consistently
perform better than GraphSAGE and random input features,
and we use them for other experiments below.

5.3. Performance on SBM and SNAP datasets

Table 3 summarizes the results of amortized community
detection on the general SBM and SNAP datasets. Since
DMoN and LGNN require hard-coding a fixed K in the neu-
ral architectures, we experimented with different K values
higher or equal to the maximum number of communities.

1 5 15 100
Number of Posterior Samples

0.0

0.5

1.0

1.5

2.0

In
fe

re
nc

e 
Ti

m
e 

(s
ec

)

DBLP
GCN-CCP-Attn
GCN-CCP
GCN-NCP-Attn
GCN-NCP

1 5 15 100
Number of Posterior Samples

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

YouTube

1 5 15 100
Number of Posterior Samples

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

AM
I

DBLP

1 5 15 100
Number of Posterior Samples

60

65

70

75

80

YouTube

Figure 6: Inference time and AMI scores as a function of
the number of posterior samples. Results for two SNAP
datasets with K = 2 ∼ 4. Top: CCP is faster than NCP
not only for changing N or K, but also as a function of
the number of posterior samples. Bottom: AMI scores.
Note that when the model includes attention, the clustering
quality improves with more samples; this trend is weaker or
absent without attention. Each point is the mean of 4 runs.

6

https://github.com/aripakman/amortized_community_detection
https://github.com/aripakman/amortized_community_detection


Amortized Probabilistic Detection of Communities in Graphs

Table 3: Clustering performance on synthetic SBM and real-world SNAP datasets. Each dataset contains either fixed or
varying numbers of communities as denoted by K. For models that require fixing a maximum K, results for different K
values are shown. The AMI and ARI scores are multiplied by 100. Times are in the unit of seconds. Means and standard
deviations of metrics are from 3 − 6 independently trained models (DMoN was run once on each dataset). The standard
deviation of inference time is small and thus omitted. OOM: out-of memory.

SBM (K = 1 ∼ 16) DBLP (K = 3) DBLP (K = 2 ∼ 4) Youtube (K = 3) Youtube (K = 2 ∼ 4)

Model Max K AMI ARI Time AMI ARI AMI ARI Time AMI ARI AMI ARI Time

DMoN (Tsitsulin et al., 2020) 16 60.0 46.7 12.1 52.8 33.4 39.7 25.3 10.7 40.6 18.2 32.4 14.8 11.4
4 - - - 54.6 47.1 45.1 36.5 10.0 50.2 43.0 40.2 29.3 10.1

LGNN (Chen et al., 2018) 7 OOM OOM OOM - - 54.2±2.1 51.2±2.3 0.44 - - 68.7±0.7 71.3±1.1 0.28
4 - - - - - 52.7±2.2 49.4±2.3 0.42 - - 68.4±1.4 71.3±1.1 0.27
3 - - - 66.8±1.3 62.7±1.6 - - - 76.7±0.8 78.4±0.8 - - -

GNN (Chen et al., 2018) 7 76.2±0.9 75.9±1.2 0.15 - - 51.5±2.5 48.4±2.5 0.035 - - 67.3±3.8 69.5±4.0 0.033
4 - - - - - 55.4±3.3 52.2±4.1 0.036 - - 67.5±1.2 69.7±1.4 0.033
3 - - - 66.3±1.7 62.7±1.7 - - - 76.2±2.6 78.0±2.0 - - -

GCN-NCP - 89.6±0.2 88.3±0.3 0.88 74.3±2.1 71.0±2.1 54.8±0.3 51.0±0.3 0.54 84.5±0.9 84.6±0.9 64.7±3.4 64.2±3.3 0.43
GCN-NCP-Attn - 89.9±0.4 88.9±0.6 1.0 82.1±0.6 78.7±0.5 56.4±2.1 52.4±2.0 0.47 84.3±0.9 84.5±1.0 69.2±4.1 68.9±4.3 0.43

GCN-DAC - 87.1±0.1 87.1±0.1 0.16 79.2±1.4 74.4±1.8 60.3±0.7 55.9±0.8 0.073 82.6±0.5 82.6±0.6 73.7±1.3 73.5±1.5 0.081
GCN-CCP - 88.8±0.5 87.3±0.7 0.3 82.1±0.5 78.6±0.6 62.4±3.7 57.6±3.4 0.12 83.7±0.8 83.8±0.7 76.2±1.9 76.2±2.1 0.13
GCN-CCP-Attn - 89.6±0.4 88.5±0.6 0.59 89.2±0.4 79.7±0.5 65.3±1.2 59.7±1.8 0.22 85.5±0.3 85.7±0.4 79.2±0.4 79.3±0.4 0.22

The result shows that combining GCN with amortized clus-
tering (e.g. GCN-CCP) learns more accurate community
discovery than LGNN/GNN (Chen et al., 2018) in terms of
AMI and ARI, and that adding attention modules to CCP
gives rise to the best-performing model GCN-CCP-Attn.

2 4 6 8 10 12 14 16
Number of Communities

10 1

100

101

102

Tr
ai

ni
ng

 T
im

e
Pe

r I
te

ra
tio

n 
(s

ec
)

LGNN
GNN
GCN-NCP
GCN-NCP-Attn
GCN-DAC
GCN-CCP
GCN-CCP-Attn

Figure 7: Training times of amortized models. Per-
iteration training time as a function of the number of com-
munities. The models are trained on the same GPU with
batch size of 1 on a SBM dataset with 160 nodes and varying
numbers of equal-size communities (p = 0.3, q = 0.1).

In the SBM dataset with 1 ∼ 16 communities, both GCN-
NCP and GCN-CCP models achieved similarly good per-
formance, and GCN-NCP outperforms by an small margin.
Due to the O(K!) loss function, LGNN/GNN can only
train on graphs with up to 7 communities, thus cannot learn
community detection at K ≥ 8.

The real-world SNAP datasets are composed of subgraphs
with either fixed (K = 3) or varying (K = 2 ∼ 4) numbers
of communities. On all SNAP benchmarks, GCN-CCP pro-
vides consistently higher AMI and ARI than other models,
and GCN-CCP-Attn further improves performance by a sig-
nificantly margin. We attribute this performance gain on

SNAP datasets to the expressive power of attention.

5.4. Time Measures and MAP Estimates

Table 3 illustrates the benefits of amortization at test time, as
our models run more than 10x faster than the unsupervised
model (DMoN). The training time (5∼10 hrs) is worth if the
number of test examples is on the order of thousands.

Figure 6, top, shows that CCP models scale better than NCP
as a function of not only the number of data points, but
also the number of posterior samples. Figure 6, bottom,
shows that for models with attention, the clustering quality
improves with more samples, indicating a better fit of the
learned probabilistic model to the data distribution.

Figure 7 reports per-iteration training time. The steep time
increase w.r.t. K limits LGNN/GNN to graphs with less
than 8 communities. The moderate growth w.r.t K of
DAC/CCP/NCP illlustrates the benefits of our architectures.

5.5. Recovery Thresholds in Log-Degree SBM

We consider next symmetric SBMs with K communities of
equal size. The connection probability is p = a log(N)/N
within and q = b log(N)/N between communities. The
expected degree of a node is known to be O(logN). This is
an interesting regime, since for large N it was shown using
information-theoretic arguments that the maximum likeli-
hood estimate of the ci’s recovers exactly the community
structure with high probability for ∣

√
a −
√
b∣ >
√
K and

fails for ∣
√
a −
√
b∣ <
√
K (Abbe et al., 2015; Mossel et al.,

2014; Abbe & Sandon, 2015a;b).

We trained GCN-CCP and GCN-CCP+Attn networks with
samples generated with K ∈ {2,3,4}, N ∈ [300,600] and

7



Amortized Probabilistic Detection of Communities in Graphs

2

4

6

8

10

b

K = 2 CCP

0.0

0.2

0.4

0.6

0.8

1.0

2

4

6

8

10

b

K = 2 CCP Attn

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30
a

2

4

6

8

10

b

K = 4 CCP

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30
a

2

4

6

8

10

b

K = 4 CCP Attn

0.0

0.2

0.4

0.6

0.8

1.0

Observations True/CCP-Attn

Observations True/CCP-Attn

Figure 8: Log-degree symmetric SBM. Each network in this family has K communities of equal size N/K, as illustrated in
the right. The connection probability is p = a log(N)/N within each community and q = b log(N)/N between communities.
Left: Dashed red curves indicate the threshold ∣

√
a −
√
b∣ =
√
K, which separates regions of possible/impossible recovery

with high probability using maximum-likelihood at large N (Abbe et al., 2015; Mossel et al., 2014; Abbe & Sandon, 2015a;b).
Left above: Mean AMIs over 40 test datasets with N = 300,K = 2. The mean AMI averaged over the recoverable regions is
0.970 for GCN-CCP and 0.997 for GCN-CCP+Attn. Left below: Similar for mean of 10 datasets with N = 600,K = 4.
The mean AMI averaged over the recoverable regions is 0.858 for GCN-CCP and 0.942 for GCN-CCP+Attn. Note that
the advantage of GCN-CCP-Attn over GCN-CCP is more prominent for higher K, and that the thresholds are crossed in
our finite N case. Right: Examples of observed adjacency matrices and successful exact recovery by GCN-CCP-Attn, for
N = 300, K = 2, a = 15, b = 5 (above), and N = 600, K = 4, a = 15, b = 4 (below).

(a, b) sampled uniformly from [1,30] × [1,10]. Figure 8
shows mean test AMI scores and examples of exact recovery.
Note in particular that improvement due to the presence of
the attention modules is more prominent as K increases.

5.6. Uncertainty quantification

An advantage of our fully probabilistic model is the ability to
quantify the uncertainty of inferred quantities. We illustrate
this in Figure 10 (Appendix), which shows the mean and
and standard deviation of the number of clusters K in a
family of SBM models (see details in the Figure’s caption).

5.7. Calibration

In order to probe how well calibrated the learned poste-
rior distributions are, we calculated the expected calibration
error (ECE) metric (Guo et al., 2017) for classification ap-
plied to the prediction of the number of clusters K. ECE
is defined as ECE = ∑

M
m=1

∣Bm∣

n
∣acc (Bm) − conf (Bm)∣,

where n is the number of samples and each Bm is one of M
equally spaced bins, where Bm is the set of indices whose
confidence is inside the interval Im = (m−1M

, m
M
]. In Ta-

ble 4, we compare the ECE for two of our models. We
sampled 15 community assignments from the posterior of

each trained model and used the distribution of predictions
to measure confidence. As expected, the CCP model per-
forms better than DAC, since its architecture encodes the
correct probabilistic inductive biases.

Table 4: Expected Calibration Error on SNAP datasets.
Means and st. dev. of ECE from 5 independent runs.

DBLP Youtube

GCN-DAC 0.7406±0.1325 0.7932±0.0716

GCN-CCP 0.1579±0.0295 0.1804±0.0286

6. Conclusion
We have introduced a novel framework for efficiently de-
tecting community structures in graph data, building on
recent advances in graph neural networks and amortized
clustering. Our experiments have shown that our proposed
method outperforms previous methods for community de-
tection on many benchmarks. Possible future directions
include incorporating new combinations of attention mod-
ules, learning SBMs in the weak recovery regime (Abbe,
2018), and dealing with overlapping communities.

8



Amortized Probabilistic Detection of Communities in Graphs

References
Abbe, E. Community Detection and Stochastic Block Mod-

els. Foundations and Trends® in Communications and
Information Theory, 14(1-2):1–162, 2018.

Abbe, E. and Sandon, C. Community detection in gen-
eral stochastic block models: Fundamental limits and
efficient algorithms for recovery. In 2015 IEEE 56th An-
nual Symposium on Foundations of Computer Science,
pp. 670–688. IEEE, 2015a.

Abbe, E. and Sandon, C. Recovering communities in the
general stochastic block model without knowing the pa-
rameters. In Advances in neural information processing
systems, pp. 676–684, 2015b.

Abbe, E., Bandeira, A. S., and Hall, G. Exact recovery
in the stochastic block model. IEEE Transactions on
Information Theory, 62(1):471–487, 2015.

Al-Harbi, S. H. and Rayward-Smith, V. J. Adapting k-
means for supervised clustering. Applied Intelligence, 24
(3):219–226, 2006.

Aljalbout, E., Golkov, V., Siddiqui, Y., and Cremers, D.
Clustering with Deep Learning: Taxonomy and New
Methods. arXiv preprint arXiv:1801.07648, 2018.

Belkin, M. and Niyogi, P. Laplacian eigenmaps for di-
mensionality reduction and data representation. Neural
computation, 15(6):1373–1396, 2003.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional inference: A review for statisticians. Journal of
the American statistical Association, 112(518):859–877,
2017.

Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2018.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković,
P. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021.

Cavallari, S., Zheng, V. W., Cai, H., Chang, K. C.-C., and
Cambria, E. Learning community embedding with com-
munity detection and node embedding on graphs. In
Proceedings of the 2017 ACM on Conference on Informa-
tion and Knowledge Management, pp. 377–386, 2017.

Chen, Z., Li, L., and Bruna, J. Supervised community de-
tection with line graph neural networks. In International
Conference on Learning Representations, 2018.

Coward, S., Visse-Martindale, E., and Ramesh, C. Attention-
based clustering: Learning a kernel from context. arXiv
preprint arXiv:2010.01040, 2020.

Du, K.-L. Clustering: A neural network approach. Neural
networks, 23(1):89–107, 2010.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. arXiv
preprint arXiv:2003.00982, 2020.

Finley, T. and Joachims, T. Supervised clustering with
support vector machines. In Proceedings of the 22nd
international conference on Machine learning, pp. 217–
224, 2005.

Fortunato, S. Community detection in graphs. Physics
reports, 486(3-5):75–174, 2010.

Gershman, S. and Goodman, N. Amortized inference in
probabilistic reasoning. In Proceedings of the annual
meeting of the cognitive science society, volume 36, 2014.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
Calibration of Modern Neural Networks. In International
Conference on Machine Learning, pp. 1321–1330, 2017.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neu-
ral Information Processing Systems 30, pp. 1024–1034,
2017.

Hamilton, W. L. Graph representation learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning,
14(3):1–159, 2020.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic
blockmodels: First steps. Social networks, 5(2):109–137,
1983.

Hubert, L. and Arabie, P. Comparing Partitions. Journal of
Classification, 1985.

Ienco, D. and Interdonato, R. Deep multivariate time series
embedding clustering via attentive-gated autoencoder. In
Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pp. 318–329. Springer, 2020.

Jin, D., Li, B., Jiao, P., He, D., and Shan, H. Community
detection via joint graph convolutional network embed-
ding in attribute network. In International Conference on
Artificial Neural Networks, pp. 594–606. Springer, 2019.

Jin, D., Yu, Z., Jiao, P., Pan, S., Yu, P. S., and Zhang, W.
A survey of community detection approaches: From
statistical modeling to deep learning. arXiv preprint
arXiv:2101.01669, 2021.

9



Amortized Probabilistic Detection of Communities in Graphs

Kalra, S., Adnan, M., Taylor, G., and Tizhoosh, H. R. Learn-
ing permutation invariant representations using memory
networks. European Conference on Computer Vision, pp.
677–693, 2020.

Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T.,
and Ueda, N. Learning systems of concepts with an
infinite relational model. In AAAI, volume 3, pp. 5, 2006.

Le, T. A., Baydin, A. G., and Wood, F. Inference compila-
tion and universal probabilistic programming. Artificial
Intelligence and Statistics, pp. 1338–1348, 2017.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh,
Y. W. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International
Conference on Machine Learning, 2019a.

Lee, J., Lee, Y., and Teh, Y. W. Deep Amortized Clustering.
arXiv:1909.13433, 2019b.

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

Liu, F., Xue, S., Wu, J., Zhou, C., Hu, W., Paris, C., Nepal,
S., Yang, J., and Yu, P. S. Deep learning for community
detection: Progress, challenges and opportunities. IJCAI,
2020.

McLachlan, G. J. and Basford, K. E. Mixture models: Infer-
ence and applications to clustering, volume 84. Marcel
Dekker, 1988.

Miller, J. W. and Harrison, M. T. Mixture models with a
prior on the number of components. Journal of the Amer-
ican Statistical Association, 113(521):340–356, 2018.

Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., and Long,
J. A survey of clustering with deep learning: From the
perspective of network architecture. IEEE Access, 6:
39501–39514, 2018.

Mossel, E., Neeman, J., and Sly, A. Consistency thresh-
olds for binary symmetric block models. arXiv preprint
arXiv:1407.1591, 3(5), 2014.

Pakman, A., Wang, Y., Mitelut, C., Lee, J., and Paninski, L.
Neural Clustering Processes. In International Conference
on Machine Learning, 2020.

Rodriguez, A. and Mueller, P. Nonparametric Bayesian
Inference. NSF-CBMS Regional Conference Series in
Probability and Statistics, 9:i–110, 2013.

Sun, F.-Y., Qu, M., Hoffmann, J., Huang, C.-W., and Tang,
J. vgraph: A generative model for joint community de-
tection and node representation learning. NeurIPS, 2019.

Tsitsulin, A., Palowitch, J., Perozzi, B., and Müller, E.
Graph clustering with graph neural networks. arXiv
preprint arXiv:2006.16904, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, 2017.

Vinh, N. X., Epps, J., and Bailey, J. Information theoretic
measures for clusterings comparison: Variants, proper-
ties, normalization and correction for chance. Journal of
Machine Learning Research, 11(Oct):2837–2854, 2010.

Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., and Yang, S.
Community preserving network embedding. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
2017.

Xu, Z., Tresp, V., Yu, K., and Kriegel, H.-P. Learning infi-
nite hidden relational models. Uncertainity in Artificial
Intelligence, 2006.

Yang, J. and Leskovec, J. Defining and evaluating network
communities based on ground-truth. Knowledge and
Information Systems, 42(1):181–213, 2015.

Yang, J., McAuley, J., and Leskovec, J. Community detec-
tion in networks with node attributes. In 2013 IEEE 13th
international conference on data mining, pp. 1151–1156.
IEEE, 2013.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Póczos, B.,
Salakhutdinov, R., and Smola, A. J. Deep sets. In Ad-
vances in neural information processing systems, 2017.

10

http://snap.stanford.edu/data
http://snap.stanford.edu/data


Amortized Probabilistic Detection of Communities in Graphs

A. Experimental Details
A.1. General SBM Dataset

The SBM dataset with K = 1 ∼ 16 communities are created according to the generative model in Section 5.1. Communities
with less than 5 nodes are removed from the resulting graphs. The train, validation and test sets contain 20000, 1000, and
1000 graphs, respectively.

A.2. SNAP Datasets

The SNAP dataset (Leskovec & Krevl, 2014) is distributed under the BSD license, which means that it is free for both
academic and commercial use. In each SNAP dataset of real-world graphs, we use the top 5000 high quality communities
chosen according to an average of six scoring functions in (Yang & Leskovec, 2015). We randomly split these into 3000 train,
500 validation and 1500 test communities, and extracted subgraphs composed of multiple non-overlapping communities
from each split to form the train, validation and test sets. For the 3-community experiments, we find triplets of communities
C1,C2,C3 such that they form a connected graph, and that no nodes belong to multiple communities. We filtered for
graph size and community imbalance to ensure each pair of communities satisfies 20 < ∣C1 ∪C2∣ < 500, ∣C1∣ < 20∣C2∣,
and ∣C2∣ < 20∣C1∣. For the experiments with 2 ∼ 4 SNAP communities, we first created a community graph in which each
node represents a community, and an edge exists between a pair of nodes if the two corresponding communities are not
overlapping and satisfy the size/imbalance constraints above. We then extracted subgraphs from the each SNAP dataset by
finding cliques of size 2-4 in the community graph. The dataset statistics is shown in Table 5. For datasets with more than
1000 graphs in the test set, the test set is randomly subsetted to 1000 graphs for faster evaluation.

Dataset Train/Val/Test Networks ∣V ∣ ∣E∣

DBLP (K = 3) 3929/28/696 65 406
DBLP (K = 2 ∼ 4) 3222/166/1000 100 542
Youtube (K = 3) 8670/1683/1000 100 442
Youtube (K = 2 ∼ 4) 22141/2687/1000 122 559

Table 5: SNAP dataset statistics.

A.3. Model Training and Inference

All proposed models are implemented in PyTorch and trained with a batch size of 16. The number of training iterations
is 5000 for the 3-community SNAP dataset, and 10000 for the SNAP dataset with 2 ∼ 4 communities and the general
SBM dataset. The learning rate is 0.0001 for GCN-CCP, GCN-DAC, GCN-CCP-Attn, and 0.00005 for GCN-NCP and
GCN-NCP-Attn.

For DMoN (Tsitsulin et al., 2020)1 and LGNN/GNN (Chen et al., 2018)2, we used the official implementations with default
parameters unless otherwise noted. The DMoN model has a hidden dimension of 512 and is optimized for 1000 iterations.
The LGNN/GNN models are trained for the same amount of iterations as our proposed methods on SNAP datasets, and
twice amount of iterations on the SBM dataset.

All run time measurements are made on Nvidia P100 GPUs.

B. Network Architectures
B.1. Graph Convolutional Networks (GCN)

GCN is a class of message-passing GNN that updates the representation of each node based on local neighborhood
information.

1DMoN: https://github.com/google-research/google-research/tree/master/graph_embedding/
dmon

2LGNN/GNN: https://github.com/zhengdao-chen/GNN4CD

11

https://github.com/google-research/google-research/tree/master/graph_embedding/dmon
https://github.com/google-research/google-research/tree/master/graph_embedding/dmon
https://github.com/zhengdao-chen/GNN4CD


Amortized Probabilistic Detection of Communities in Graphs

GraphSAGE. GraphSAGE (Hamilton et al., 2017) defines a graph convolution operation that updates the features of each
node by integrating the features of both the center and neighboring nodes:

hℓ+1
i = ReLU(U ℓhℓ

i + V
ℓAggregatej∈Ni

{hℓ
j}) , (15)

where hℓ
i is the feature of node i at layer ℓ, Ni is the neighborhood of node i, U ℓ and V ℓ are learnable weight matrices of

the neural network. The neighborhood aggregation function can be a simple mean function, or more complex LSTM and
pooling aggregators. GraphSAGE belongs to isotropic GCNs in which each neighbor node contributes equally to the update
function. We use a 4-layer GraphSAGE GCN with the mean aggregator and batch normalization (BN) for our experiments:

hℓ+1
i = ReLU(BN(U ℓhℓ

i + V
ℓMeanj∈Ni{h

ℓ
j})). (16)

GatedGCN. GatedGCN (Bresson & Laurent, 2018) is an anisotropic GCN that leverages edge gating mechanisms. Each
neighboring node in the graph convolution operation may receive different weights depending on the edge gate. Residual
connections are used between layers for multi-layer GatedGCN. To improve GatedGCN, (Dwivedi et al., 2020) proposed
explicitly updating edge gates across layers:

hℓ+1
i = hℓ

i +ReLU(BN(U
ℓhℓ

i +∑
j→i

eℓij ⊙ V ℓhℓ
j)) , (17)

where h0
i = xi, e

0
ij = 1, and eℓij is the edge gate computed as follows:

eℓij =
σ(êℓij)

∑j′→i σ(ê
ℓ
ij′) + ϵ

, (18)

êℓij = êℓ−1ij +ReLU(BN(A
ℓhℓ−1

i +Bℓhℓ−1
j +Cℓêℓ−1ij )). (19)

We used a 4-layer GatedGCN encoder with hidden dimension of 128 in each layer.

B.2. Attention Modules

Our attention modules are composed of standard Multi-Head Attention (MHA) blocks (Vaswani et al., 2017) , which
take as inputs n query vectors q = (q1 . . . qn)⊺ ∈ Rn×dq , m key vectors k = (k1 . . . km)⊺ ∈ Rm×dk , and m value vectors
v = (v1 . . . vm)

⊺ ∈ Rm×dv , and return n vectors MHA(q,k,v) ∈ Rn×dh. Using the MHA, we follow (Lee et al., 2019a) in
defining three attention modules for functions defined over sets:

• Multihead Attention Block (MAB). Given two sets x = (x1, . . . , xn)
⊺ ∈ Rn×dx and y = (y1, . . . , ym)

⊺ ∈ Rm×dy , we
define

MAB(x,y) = h + FF(h) ∈ Rn×d (20)

where h = xW [h]
q +MHA(x,y,y) ∈ Rn×d, (21)

with W
[h]
q = [W 1

q . . .Wh
q ] ∈ Rdx×d and FF is a feed-forward layer applied to each row of h. Note that in (21), y is

both the key and value set and that FF and MHA have their own trainable parameters.

• Pooling by Multihead Attention (PMA). Given a set x, we create a permutation invariant summary into a small
number of m vectors with

PMAm(x) =MAB(e,x) ∈ Rm×d

where e = (e1, . . . , em) ∈ Rm×d are trainable parameters. This is a weighted pooling of the items in x, where an
attention mechanism determines the weights.

• Induced Self-Attention Block (ISAB). The time complexity of expressing self-interactions in a set via MAB(x,x)
scales as O(n2). To reduce this cost we approximate the full pairwise comparison via a smaller trainable set of inducing
points s = (s1, . . . , sm),

ISAB(x) = MAB(x,MAB(s,x)) ∈ Rn×d

Thus we indirectly compare the pairs in x using s as a bottleneck, with time complexity O(nm). Since PMAm(x) is
invariant under permutations of x’s rows, ISAB is permutation-equivariant. Higher-order interactions are obtained by
stacking multiple ISAB layers.

12



Amortized Probabilistic Detection of Communities in Graphs

B.3. CCP Architecture

The CCP model is implemented as described in (Pakman et al., 2020). The full CCP architecture, including the prior,
likelihood and posterior components, is illustrated in Figure 9. The posterior network is only used in training, thus not
displayed in the diagram of Figure 2 in the main text.

B.3.1. ENCODINGS

In order to parametrize the prior, likelihood and posterior of the CCP model, it is convenient to define first some symmetric
encodings for different subsets of the dataset x at iteration k.

In the main text we used xa to refer to the first element in cluster sk, and xqi to indicate the additional points available to
join sk. Here we use instead xdk

, xai respectively, in order to be consistent with the notation of (Pakman et al., 2020). The
notation xk indicates that the dataset is split into three groups, xk = (xa, xdk

,xs), where

xa= (xa1 . . . xamk
) mk available points for cluster k

xdk
First data point in cluster k

xs = (xs1 . . .xsk−1) Points already assigned to clusters.

Let us also define

ūa = (ū1 . . . ūmk
) = u(x1) . . . u(xmk

) (22)

The encodings we need are:

Definition Encoded Points
Dk = xdk

xdk
, the first point in cluster k

Uk =mean(ūa) xa, all the mk points available to join xdk

U in
k =mean(ūai , i ∈ (1 . . .mk), bi = 1) Points from xa that join cluster k.

Uout
k =mean(ūai , i ∈ (1 . . .mk), bi = 0) Points from xa that do not join cluster k

Gk =
k−1

∑
j=1

g(mean(h(xi), i ∈ sj) All the clusters s1∶k−1.

(23)

B.3.2. PRIOR AND LIKELIHOOD

Having generated k − 1 clusters s1∶k−1, the elements of sk are generated in a process with latent variables dk,zk and joint
distribution.

pθ(sk,zk, dk ∣s1∶k−1,x) = pθ(bk ∣zk,xk)pθ(zk ∣xk)p(dk ∣s1∶k−1) , (24)

where

pθ(bk ∣zk,xk) =
mk

∏
i=1

φ(bi∣zk, U,G,xdk
, xai) . (25)

The priors and likelihood are

p(dk ∣s1∶k−1) = {
1/∣Ik ∣ for dk ∈ Ik ,

0 for dk ∉ Ik , (26)

pθ(zk ∣xk) = N (zk ∣µ(xk), σ(xk)) (27)
φ(bi∣zk, U,G,xdk

, xai) = sigmoid[ρi(zk,xk)] (28)

13



Amortized Probabilistic Detection of Communities in Graphs

where Ik is the set of indices available to become the first element of sk, and we have defined

µ(xk) = µ(Dk, Uk,Gk) (29)
σ(xk) = σ(Dk, Uk,Gk), (30)

ρi(zk,xk) = ρ(zk, xai ,Dk, Uk,Gk) i = 1 . . .mk (31)

where µ,σ, ρ are represented with MLPs. Note that in all the cases the functions depend on encodings in (23) that are
consistent with the permutation symmetries dictated by the conditioning information.

B.3.3. POSTERIOR

To learn the prior and likelihood functions, we introduce

qϕ(zk, dk ∣s1∶k,x) = qϕ(zk ∣bk, dk,xk)qϕ(dk ∣s1∶k,x) (32)

to approximate the intractable posterior. This allows us to train CCP as a conditional variational autoencoder (VAE) (Sohn
et al., 2015).

For the first factor we assume a form

qϕ(zk ∣bk, dk,xk) = N (zk ∣µq(Dk,A
in
k ,Aout

k ,Gk), σq(Dk,A
in
k ,Aout

k ,Gk)) (33)

where µq, σq are MLPs. For the second factor we assume

q(dk ∣s1∶k) = {
1/Nk for dk ∈ sk,

0 for dk ∉ sk. (34)

This approximation is very good in cases of well separated clusters. Since q(dk ∣s1∶k) has no parameters, this avoids the
problem of backpropagation through discrete variables.

B.3.4. ELBO

The ELBO that we want to maximize is given by

Ep(x,s1∶K) log pθ(s1∶K ∣x) (35)

= Ep(x,s1∶K)

K

∑
k=1

log
⎡
⎢
⎢
⎢
⎣

Nk

∑
dk=1
∫ dzkpθ(sk,zk, dk ∣s1∶k−1,x)

⎤
⎥
⎥
⎥
⎦

(36)

≥ Ep(x,s1∶K)

K

∑
k=1

Eqϕ(zk,dk ∣s1∶k,x) log [
pθ(sk,zk, dk ∣s1∶k−1,x)

qϕ(zk, dk ∣s1∶k,x)
] (37)

= Ep(x,s1∶K)

K

∑
k=1

Eqϕ(zk,dk ∣s1∶k,x) log [
pθ(bk ∣zk,xk)pθ(zk ∣xk)p(dk ∣s1∶k−1)

qϕ(zk ∣bk, dk,xk)qϕ(dk ∣s1∶k,x)
] (38)

B.4. CCP-Attn Architecture

In CCP-Attn, we replace equation (22) with a ISAB self attention layer among all available points:

(ūdk
, ū1 . . . ūmk

) = ISAB[u(xdk
), u(x1) . . . u(xmk

)] (39)
ūa = (ū1 . . . ūmk

)

and replace the encodings in (23) with attention-based aggregations:

Together, these changes give rise to the CCP-Attn architecture illustrated in Figure 9.

14



Amortized Probabilistic Detection of Communities in Graphs

Figure 9: Full architecture of CCP and CCP-Attn. The diagram illustrates the conditional prior, likelihood and posterior
components of CCP and CCP-Attn. The mean aggregations m⃝ used by CCP (see equation are replaced in CCP-Attn by Set
Transformer attention modules from (Lee et al., 2019a).

Definition Encoded Points
Dk = ūdk

xdk
, the first point in cluster k

Uk = PMA(MAB(ūa, ūd)) xa, all the mk points available to join xdk

Ain
k = PMA(ūai , i ∈ (1 . . .mk), bi = 1) Points from xa that join cluster k.

Aout
k = PMA(ūai , i ∈ (1 . . .mk), bi = 0) Points from xa that do not join cluster k

Gk =
k−1

∑
j=1

g(PMA(h(xi), i ∈ sj) All the clusters s1∶k−1.

(40)

B.4.1. NEURAL NETWORKS IN CCP AND CCP-ATTN

The h, g and u functions are parameterized by 3-layer MLPs. The p, q and φ functions are MLPs with 5, 5, and 4 layers,
respectively. All MLPs have hidden-layer dimensions of 128 and parametric ReLU (PReLU) layers in between linear layers.
Each vector in the equations above has a dimension of 128. In CCP-Attn, the ISAB, MAB, and PMA attention modules
contain 32 inducing points, 4 attention heads, and hidden-layer dimensions of 128.

B.5. NCP and NCP-Attn Architecture

The NCP architecture is described in (Pakman et al., 2020). In NCP, each cluster k is encoded by permutation-invariant
aggregation of data points assigned to that cluster

Hk = ∑
i∶ci=k

h(xi) h ∶ Rdx → Rdh . (41)

15



Amortized Probabilistic Detection of Communities in Graphs

The global representation of the current clustering configuration is given by

G =
K

∑
k=1

g(Hk), g ∶ Rdh → Rdg . (42)

Given n − 1 assigned points x1∶n−1 and their cluster labels c1∶n−1, we want to find the cluster label for the next point xn. At
this point, the unassigned points xn+1∶N are represented by

U =
N

∑
i=n+1

u(xi) , u ∶ Rdx → Rdu . (43)

The probability of the next point xn joining cluster k is modeled by the variable-input softmax function

qθ(cn = k∣c1∶n−1,x) =
ef(Gk,U)

∑
K+1
k′=1 e

f(Gk′ ,U)
. (44)

The h, u, g, f functions in NCP are MLPs with 2, 2, 5, and 5 layers, respectively. The MLPs have hidden-layer dimensions
of 128 and parametric ReLU (PReLU) layers in between linear layers. In NCP-Attn, the h and u functions are replaced by
ISAB attention across all points. The ISAB attention module contains 32 inducing points, 4 attention heads, and hidden-layer
dimensions of 128.

B.6. DAC Architecture

The DAC model is composed of the same neural network backbone as CCP-Attn, and the binary cross entropy loss function
of the Anchored Filtering method in (Lee et al., 2019b).

C. Additional Experiments
Figure 10 illustrates how our Bayesian approach allows quantifying the uncertainty in the number of clusters for a range of
parameters in this model.

0.4 0.5 0.6 0.7 0.8 0.9
[p]

0.05

0.15

0.25

0.35

0.45

[q
]

Mean of K

0.4 0.5 0.6 0.7 0.8 0.9
[p]

0.05

0.15

0.25

0.35

0.45

[q
]

Standard deviation of K

2.5 3.0 3.5 4.0 0.15 0.25 0.35 0.45

Figure 10: Quantifying uncertainty of inference on General SBM. Mean (left) and standard deviation (right) of the inferred
number of clusters K across 500 posterior samples. The model is trained on SBM data generated from N ∼ Unif[50,300],
c1 . . . cN ∼ CRP(0.7), p = ϕk1,k2 ∼ Beta(6, 3) for k1 = k2, and q = ϕk1,k2 ∼ Beta(1, 5) for k1 ≠ k2. The inference is
run on SBM graphs (N = 200, K = 4, equal partition) with varying connection probabilities p = ϕk1=k2 and q = ϕk1≠k2

generated from ϕk1,k2 ∼ Beta(α,β) with α + β = 10. The results are averaged over 100 test examples. As expected, the
standard-deviation is takes minimum values for large mean p and small mean q.

Appendix References
Bresson, X. and Laurent, T. Residual gated graph convnets. arXiv preprint arXiv:1711.07553, 2018.

Chen, Z., Li, L., and Bruna, J. Supervised community detection with line graph neural networks. In International Conference
on Learning Representations, 2018.

16



Amortized Probabilistic Detection of Communities in Graphs

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and Bresson, X. Benchmarking graph neural networks. arXiv preprint
arXiv:2003.00982, 2020.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive representation learning on large graphs. In Advances in Neural
Information Processing Systems 30, pp. 1024–1034, 2017.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh, Y. W. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International Conference on Machine Learning, 2019a.

Lee, J., Lee, Y., and Teh, Y. W. Deep Amortized Clustering. arXiv:1909.13433, 2019b.

Leskovec, J. and Krevl, A. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/
data, June 2014.

Pakman, A., Wang, Y., Mitelut, C., Lee, J., and Paninski, L. Neural Clustering Processes. In International Conference on
Machine Learning, 2020.

Sohn, K., Lee, H., and Yan, X. Learning structured output representation using deep conditional generative models. In
Advances in neural information processing systems, pp. 3483–3491, 2015.

Tsitsulin, A., Palowitch, J., Perozzi, B., and Müller, E. Graph clustering with graph neural networks. arXiv preprint
arXiv:2006.16904, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention is all
you need. In Advances in Neural Information Processing Systems, 2017.

Yang, J. and Leskovec, J. Defining and evaluating network communities based on ground-truth. Knowledge and Information
Systems, 42(1):181–213, 2015.

17

http://snap.stanford.edu/data
http://snap.stanford.edu/data

