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Abstract001

Large Language Models (LLMs) have achieved002
remarkable performance across various reason-003
ing tasks, yet post-training is constrained by004
inefficient sample utilization and inflexible dif-005
ficulty samples processing. To address these006
limitations, we propose Customized Curricu-007
lum Learning (CCL), a novel framework with008
two key innovations. First, we introduce model-009
adaptive difficulty definition that customizes010
curriculum datasets based on each model’s in-011
dividual capabilities rather than using prede-012
fined difficulty metrics. Second, we develop013
"Guided Prompting," which dynamically re-014
duces sample difficulty through strategic hints,015
enabling effective utilization of challenging016
samples that would otherwise degrade perfor-017
mance. Comprehensive experiments on su-018
pervised fine-tuning and reinforcement learn-019
ing demonstrate that CCL significantly outper-020
forms uniform training approaches across five021
mathematical reasoning benchmarks, confirm-022
ing its effectiveness across both paradigms in023
enhancing sample utilization and model perfor-024
mance.025

1 Introduction026

Large Language Models (LLMs) have achieved027

breakthrough progress in the field of natural lan-028

guage processing (NLP) in recent years. With029

additional post-training optimization, these mod-030

els have demonstrated exceptional performance on031

complex tasks such as code generation and math-032

ematical reasoning(Guo et al., 2024; Shao et al.,033

2024; Yang et al., 2025; Kavukcuoglu, 2025; Ope-034

nAI, 2024). However, the current post-training035

process for LLMs still faces significant challenges.036

One notable limitation of conventional training is037

the uniform treatment of all examples, ignoring038

their varying difficulty levels or value. Conse-039

quently, challenging or high-quality samples are040

not strategically introduced at optimal points in041

the training process, thereby impeding effective 042

knowledge acquisition and integration. 043

To address this limitation, Bengio et al. (2009) 044

introduced the concept of curriculum learning to 045

model training, inspired by human education’s pro- 046

gression from simple to complex concepts. Sev- 047

eral recent studies have also begun to explore 048

the application of curriculum learning strategies 049

based on heuristic rules to the LLM post-training 050

pipeline. For instance, in logical reasoning task, 051

Xie et al. (2025) measured example difficulty by in- 052

put length to implement progressive training from 053

simpler to more complex instances. Wen et al. 054

(2025b) classified difficult examples as those in- 055

correctly predicted by DeepSeek-R1(DeepSeek-AI 056

et al., 2025),and prioritized these challenging cases 057

during later training stages. Although these rule- 058

based curriculum learning methods improved per- 059

formance to some extent, they nonetheless present 060

certain limitations. 061

First, these predefined difficulty metrics lack pre- 062

cision in measuring actual difficulty levels. As illus- 063

trated in Figure 2, our experiments on the MATH 064

dataset demonstrate that model performance does 065

not consistently decline with increasing prede- 066

fined difficulty levels. Counterintuitively, models 067

achieve higher accuracy on purportedly more diffi- 068

culty Level 5 problems than on Level 4 problems. 069

Second, defining difficulty using a uniform stan- 070

dard proves inadequate, as metrics that effectively 071

gauge difficulty for one model often fail to appro- 072

priately characterize challenge levels for another 073

model. As illustrated in Figure 3, samples that 074

present significant challenges for Qwen2.5-MATH- 075

7B are often solved with ease by DeepSeek-Math- 076

7B-Instruct, and vice versa. To address these limi- 077

tations, we propose a tailored curriculum learning 078

approach that calibrates sample difficulty accord- 079

ing to each model’s individual capabilities, thereby 080

customizing more appropriate training sequences 081

for different models. 082
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Another significant challenge in model training083

stems from the presence of extremely challenging084

examples in the training data. Previous research085

(Yu et al., 2025; Wen et al., 2025a) has demon-086

strated that forcing models to train on examples087

substantially beyond their current capabilities can088

lead to performance degradation. Consequently, a089

conventional approach has been to simply exclude090

such overly difficult samples from the training pro-091

cess to prevent negative impacts on model learning.092

However, this wholesale elimination of challeng-093

ing data is inherently inefficient, as these difficult094

examples often contain valuable information that095

could potentially enhance model performance if096

leveraged appropriately. To overcome this limi-097

tation, we introduce "Guided Prompting," a tech-098

nique that augments input examples with targeted099

hints to dynamically modulate their difficulty dur-100

ing the training process. This method effectively101

prevents performance deterioration while enabling102

the model to extract meaningful patterns from ex-103

amples that would otherwise be discarded, thereby104

significantly improving overall data utilization effi-105

ciency.106

The contributions of this study are summarized107

as follows:108

• We tailored the course dataset based on the109

model’s performance and proposed a novel110

post-training approach called Customized Cur-111

riculum Learning (CCL).112

• We implement "Guided Prompting" for sam-113

ples that significantly exceed current model114

capabilities, effectively controlling sample dif-115

ficulty and substantially improving data uti-116

lization efficiency.117

• We conduct comprehensive experiments118

across two mainstream post-training119

paradigms, namely supervised fine tuning120

and reinforcement learning, demonstrating121

significant performance improvements on our122

specific model.123

2 Related Work124

Curriculum Learning. Bengio et al. (2009) intro-125

duces the concept of curriculum learning, demon-126

strating that models learn more effectively when127

training examples are presented in a progressively128

harder order. Recent approaches in large language129

models build on this concept. Xie et al. (2025) de-130

signs curricula by adjusting task difficulty based131

on logical complexity, enhancing the model’s rea-132

soning abilities. Wen et al. (2025b) treats queries 133

that DeepSeek-R1(DeepSeek-AI et al., 2025) strug- 134

gles with as hard samples, deferring them to later 135

training stages for focused learning. Team et al. 136

(2025) refine training by filtering out noisy samples 137

early, concentrating on high-quality examples for 138

later stages. Huang et al. (2025) apply curriculum 139

learning to retrieval-augmented generation (RAG), 140

ordering tasks based on the number of distractors 141

in retrieved passages. Shi et al. (2025) dynamically 142

selects training samples whose predefined difficulty 143

scores are closest to the model’s current target diffi- 144

culty level, which is adjusted during training based 145

on reward feedback. Unlike these approaches that 146

rely on heuristic rules to define a fixed difficulty 147

hierarchy shared across all models, we propose a 148

customized curriculum learning framework that tai- 149

lors the training sequence to each model’s reason- 150

ing ability, enabling a more adaptive and effective 151

learning process. 152

Model-Adaptive Difficulty Awaring. In the 153

model training process, different types of samples 154

should be treated with varying degrees of emphasis, 155

with difficulty-aware methods serving as a key ap- 156

proach to distinguishing data types. Team (2025); 157

Xie et al. (2024); Lee and Song (2024) employ 158

LLM-generated scoring to assess sample difficulty, 159

while Wen et al. (2025b); Min et al. (2024); Yuan 160

et al. (2025) heuristically treat long-form QA tasks 161

as inherently challenging. Tong et al. (2024); Xue 162

et al. (2025) take a more empirical approach by con- 163

ducting multiple sampling iterations for each query, 164

defining difficulty through incorrect response ratios 165

and allocating more trials to challenging queries 166

during synthesis. Similarly, Ma et al. (2024) im- 167

plements multi-round query sampling but weights 168

samples inversely proportional to accuracy, thereby 169

giving higher weights to samples with lower accu- 170

racy scores. 171

Post Training. Supervised fine-tuning and rein- 172

forcement learning represent the two most preva- 173

lent methods in post-training. Fine-tuning pre- 174

trained models on high-quality datasets with step- 175

by-step solutions markedly enhances problem- 176

solving accuracy(Yue et al., 2023; Yuan et al., 2023; 177

Hwang et al., 2024). Beyond supervised learning, 178

reinforcement-based fine-tuning has been explored 179

to further align LLMs with solution correctness 180

and preferred reasoning styles. Luo et al. (2023); 181

Luong et al. (2024); Yue et al. (2025) optimize pol- 182

icy networks using Proximal Policy Optimization 183

(PPO). In contrast, Shao et al. (2024); DeepSeek- 184
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Figure 1: Overall pipeline of our method. Step 1: For each question in the training set, the model generates
multiple responses and calculates the accuracy on that sample. Based on these accuracy scores, samples are ranked
and organized into curriculum datasets. Step 2: Transforming difficult samples to reduce the answering difficulty
for the model, bringing samples within the model’s solvable range. Step 3: The model undergoes staged training
sequentially on easy, medium, and difficult curriculum datasets, with its performance continuously enhanced.

AI et al. (2025); Yu et al. (2025) replace the critic185

model in PPO and optimize policy networks via186

Group Relative Policy Optimization (GRPO).187

3 Method188

Traditional training approaches treat all samples189

equally, failing to adequately leverage high-quality190

samples, which leads to suboptimal performance.191

To address this limitation, we propose the Cus-192

tomized Curriculum Learning (CCL) training193

framework, which enables models to learn progres-194

sively from easy to difficult samples. By struc-195

turing the training process to prioritize founda-196

tional concepts before advancing to more complex197

samples, CCL enables models to build extremely198

solid foundations during the early stages of train-199

ing, upon which more sophisticated understanding200

can be constructed.201

The CCL training framework consists of three202

key steps. First is curriculum construction. Since203

curriculum learning proceeds in stages across sam-204

ples of varying difficulty, the original dataset must205

be partitioned accordingly. We propose an aptitude-206

based training approach that customizes curricu-207

lum for each model according to its inherent ca-208

pabilities, applying the principle of individualized209

instruction to optimize learning progression. Sec-210

ond is difficult sample adaptation. Due to inher-211

ent model limitations, some samples remain con-212

sistently challenging regardless of the model’s at-213

tempts. Training on such data can actually degrade214

model performance. We identify these problem-215

atic samples and implement a "Guided Prompting" 216

method to reduce the answering difficulty, thereby 217

improving sample utilization efficiency. The fi- 218

nal step is multi-stage training. Utilizing the con- 219

structed and modified curriculum datasets from 220

previous steps, we implement staged supervised 221

fine-tuning and reinforcement learning, enabling 222

the model to gradually adapt to samples of increas- 223

ing difficulty, enhancing training stability and over- 224

all performance, the full algorithm is detailed in 225

Algorithm 1. 226

3.1 Curriculum Construction 227

To implement training in an easy-to-difficult se- 228

quence, we first need to establish metrics for mea- 229

suring sample difficulty, which will then be used to 230

sort and segment the dataset. Ding et al. (2024) di- 231

rectly used the manually annotated difficulty levels 232

in the MATH dataset as the standard for distin- 233

guishing sample complexity. However, this heuris- 234

tic definition has certain limitations. As shown in 235

Figure 2, we selected Qwen2.5-Math-1.5B(Yang 236

et al., 2024), Qwen2.5-Math-7B, and Deepseek- 237

Math-7B(Shao et al., 2024) as baseline models and 238

tested them on the MATH dataset. The results 239

indicate that model performance does not consis- 240

tently decrease as the predefined difficulty level 241

increases (for instance, models achieve higher ac- 242

curacy on level 4 problems than on level 5 prob- 243

lems), suggesting that this heuristic definition lacks 244

precision. Furthermore, Figure 3 demonstrates that 245

defining difficulty using a uniform standard proves 246
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Figure 2: Performance of multiple models on MATH
dataset subsets with predefined difficulty levels. As
predefined difficulty increases from Level 1 to Level
5, model accuracy does not consistently decline but
instead exhibits significant fluctuations, demonstrating
that predefined difficulty standards may not correctly
adapt to all models.

inadequate. Samples that are extremely simple for247

Qwen2.5-Math-1.5B may still challenge Qwen2.5-248

Math-7B, and vice versa, indicating that we cannot249

establish a single unified difficulty measurement250

standard that is suitable for all models.251

To address these two issues, we propose a "teach-252

ing according to aptitude" curriculum construction253

approach, which customizes curriculum datasets254

based on each model’s own performance. Specifi-255

cally, we input all training samples into the model256

for inference and collect the model’s responses257

through sampling. For each problem, the model258

provides N responses, and the model’s accuracy259

rate for that sample is defined as following:260

ACCi =

∑n
j=1 1{Aij = A∗

i }
n

(1)261

where ACCi denotes the accuracy of i-th samples262

Aij denotes the response generated by the model263

for the i-th sample in the j-th sampling iteration,264

and A∗
i denotes the golden answer of i-th samples.265

We define the difficulty level of a sample as the266

inverse of this accuracy rate and sort the samples267

according to their difficulty levels, as shown in Fig-268

ure1 Step 1. Samples that the model can correctly269

answer multiple times are classified as simple sam-270

ples and can be well mastered in the early stages of271

training. Samples that the model repeatedly fails272

to solve are classified as moderate or difficult sam-273

ples, which are reserved for later stages of training274

after the model has acquired the relevant founda-275

tional knowledge in the domain, allowing it to more 276

thoroughly learn these more complex samples. 277

Deepseek (4.7%)
Qwen-7B (12.3%)
Qwen-1.5B (5.8%)
Deepseek  Qwen-7B (17.1%)
Deepseek  Qwen-1.5B (3.1%)
Qwen-7B  Qwen-1.5B (11.5%)
All (19.6%)
None (25.9%)

Figure 3: Visualization of solution correctness patterns
for three mathematical reasoning models: Deepseek-
Math-7B-Instruct (blue), Qwen2.5-Math-7B (red), and
Qwen2.5-Math-1.5B (green). Each colored region rep-
resents a specific answering scenario; for example, the
black region indicates questions all three models an-
swered correctly. Approximately 55% of questions
that are easy for one model prove difficult for another,
demonstrating that using a unified standard to define
sample difficulty across all models is unreasonable.

3.2 Difficult Sample Adaptation 278

Even after constructing curriculum data from easy 279

to difficult as outlined in step 1, there remain sam- 280

ples that the model cannot solve correctly regard- 281

less of how many attempts it makes, due to lim- 282

itations in the model’s inherent capabilities. Yu 283

et al. (2025); Wen et al. (2025a) have demonstrated 284

that training on samples far beyond the model’s 285

current capabilities actually degrades performance, 286

leading to the common practice of discarding such 287

samples. However, we consider direct disposal 288

of this data to be wasteful and propose a "guided 289

prompting" method to transform and reclaim these 290

difficult samples. 291

Similar to how teachers approach difficult con- 292

cepts in education, we apply a pedagogical frame- 293

work to model training. When students encounter 294

obstacles while learning new material, effective 295

teachers don’t skip challenging concepts simply be- 296

cause they exceed the student’s current understand- 297

ing. Instead, they employ progressive, step-by-step 298

guidance to facilitate knowledge absorption. By in- 299

corporating this educational philosophy into model 300

training, we provide the model with hints that guide 301

its solution generation process(Xi et al., 2024; Dou 302

et al., 2025). This significantly reduces the diffi- 303

culty of problem-solving and helps the model better 304
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Algorithm 1 Customized Curriculum Learning for Enhancing Mathematical Reasoning

Require: training dataset D = {(Qi, Ai)} with questions Qi and reference solution Ai

Require: pretrained model π0, accuracy threshold τ , hint ratio α
1: Curriculum Construction:
2: for all question Qi ∈ D do
3: Generate n response {Ai1, . . . , Ain} using model πθ
4: Calculate ACCi =

∑n
j=1 1{Aij=A∗

i }
n , where A∗

i is the golden answer of Qi

5: end for
6: Sort all samples in descending order based on their ACCi values, then partition the dataset D into p

disjoint subsets {D1, D2, ..., Dp}, where the p-th subset Dp contains samples with the lowest ACCi

values, representing the most challenging instances.
7: Difficult Sample Adaptive Processing:
8: for all difficult samples (Qi, Ai) ∈ Dp do
9: Decompose the reference solution Si into a sequence of problem-solving steps {si1, . . . , sik}

10: Gradually provide hints Pi = {si1, . . . , sil} until either the ratio |il|
|ik| reaches α, or the model’s

performance improves to the τ
11: if model’s performance improves to τ then
12: Update question and answer: Qi → [Qi;Pi], Ai → {si(l+1), . . . , sik}
13: else
14: Discard this overly difficult sample (Qi, Ai) that the model still fails to handle effectively even

with hints
15: end if
16: end for
17: Multi-Stage Training Process:
18: for each stage s ∈ {1, . . . , p} do
19: Fine-tune the previous stage’s model πs−1 on current stage dataset Ds:

πs = arg min
(Q,A)∈Ds

L(πs−1)

20: end for
21: Output: Enhanced model πm with improved problem-solving skills

assimilate the current knowledge, as illustrated in305

Figure 1 Step 2.306

Specifically, for a problem Qi with correspond-307

ing reference answer Si, we first decompose Si308

into step-by-step solution components, such that309

Si = {si1, si2, ..., sik}. We then extract a small310

prefix Pi = {si1, si2, ..., sip} from Si to serve as a311

hint, where p is smaller then k. This prefix Pi is312

concatenated with Qi as input to guide the model313

toward generating the correct answer, that is314

yi ∼ πθ(Y |[Qi;Pi]) (2)315

where yi denotes response generated by model θ.316

Through this approach, samples that previously317

exceeded the model’s capabilities are transformed318

into manageable examples. The originally complex319

answer generation task becomes a simpler answer320

completion task, thereby enhancing the model’s321

effective utilization of training samples. 322

3.3 Multi Stage Training 323

After constructing the curriculum dataset and modi- 324

fying the difficult samples, we can utilize this parti- 325

tioned data D = {D1, D2, ..., Dp} for multi stage 326

SFT and multi stage RL, as shown at Figure 1 Step 327

3. For model πθ, dataset Dj has a higher difficulty 328

level than dataset Di, where j>i. 329

3.3.1 Multi Stage SFT 330

Let the pre-trained model be denoted as π0. Based 331

on the number of partitions in the curriculum 332

dataset, multi-stage SFT necessitates m rounds 333

of maximum likelihood optimization. The loss 334

function for the i-th round of optimization can be 335

formally expressed as follows: 336

LSFT = −E(x,y)∼Di
[log(πi−1(y|x))] (3) 337
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3.3.2 Multi Stage RL338

Based on the constructed curriculum dataset, we339

introduce multi-stage reinforcement learning to en-340

hance the model’s generalizability. DeepSeek-AI341

et al. (2025) has demonstrated that reinforcement342

learning can be performed directly without super-343

vised fine-tuning, known as DeepSeek-R1-Zero,344

which can also achieve excellent performance on345

reasoning tasks. We follow this setting to conduct346

our experiments.347

The reward is the source of training signals348

in reinforcement learning and determines the op-349

timization direction of the entire reinforcement350

learning process. To effectively train reason-351

ing models through reinforcement learning, fol-352

lowing the setup in (DeepSeek-AI et al., 2025),353

we adopt a rule-based reward function that in-354

cludes two types of rewards. The first is the for-355

mat reward, which measures whether the model356

outputs according to our required format. If357

the response contains special tokens such as358

"<think>,</think>,<answer>,</answer>", it is con-359

sidered that the format is correct, formally repre-360

sented as follows:361

rformat =

{
1.0 format is correct
0.0 others

(4)362

The second type is the accuracy reward, which mea-363

sures whether the model’s final prediction is correct.364

We extract the model’s prediction from the gener-365

ated response according to the rules and compare366

it with the golden answer, formally represented as367

follows:368

raccuracy =

{
1.0 prediction is correct
0.0 others

(5)369

The final reward r equals the sum of both, that is370

r = rformat + raccuracy.371

We employ Group Relative Policy Optimiza-372

tion (GRPO) as our policy learning algorithm(Shao373

et al., 2024). The GRPO algorithm generates mul-374

tiple candidate responses O for each question Q,375

where O = {o1, o2, ..., oG}. These different re-376

sponses to the same question form a group, and377

the reward of each response in this group is used378

to calculate the advantage Ai of that sample, as379

follows:380

Ai =
ri −maen({r1, r2, ..., rG})

std({r1, r2, ..., rG})
(6)381

GRPO adopts a clipped objective, together with a 382

directly imposed KL penalty term: 383

LGRPO = E(x)∼D[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(min(ri,t(θ)Ai, 384

clip(ri,t(θ), 1− ϵ, 1 + ϵ)Ai)− βDKL(πθ||πref ))], 385

(7) 386

where 387

ri,t(θ) =
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
(8) 388

4 Experiments 389

4.1 Datasets 390

Train. Following the experimental setting of 391

(Zeng et al., 2025), we selected the MATH 392

dataset(Hendrycks et al., 2021) and extracted sam- 393

ples from level 3 to level 5 as training data, com- 394

prising a total of 9, 255 instances. To adapt our pro- 395

posed CCL framework for creating a customized 396

curriculum dataset for the model, we first needed to 397

differentiate these samples based on their difficulty 398

levels according to the model’s performance on 399

them. After completing inference on all samples, 400

we ranked them according to the model’s accuracy 401

rate. Samples with higher accuracy rates were cate- 402

gorized as simple data for use in the early stages of 403

model training, while samples with lower accuracy 404

rates were designated as difficult data for later train- 405

ing stages. See Appendix A.1 for more detailed 406

descriptions. Additionally, the data was processed 407

into a conversational format. The prompts used 408

in the SFT and GRPO processes can be found at 409

Appendix C. 410

Test. We use five benchmark datasets to assess 411

the model’s performance across different levels 412

of difficulty and mathematical reasoning. MATH 413

500(Lightman et al., 2023), is a subset of the 414

MATH dataset, containing 500 representative prob- 415

lems designed to test a model’s general mathemat- 416

ical capability. OlympiadBench (He et al., 2024) 417

includes a collection of problems from Olympiad- 418

level mathematics and physics competitions. Min- 419

erva Math (Lewkowycz et al., 2022) is a curated 420

set of undergraduate-level math problems that as- 421

sess complex mathematical reasoning and symbolic 422

manipulation. AMC 23 and AIME 24 include prob- 423

lems from the 2023 American Mathematics Compe- 424

titions and the 2024 American Invitational Mathe- 425
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Model Method Learning
Strategy

MATH
500

Minerva
Math

Olympiad
Bench AIME24 AMC23 Average

Qwen2.5-Math-1.5B

SFT
Uniform 48.60 18.00 12.60 0.00 27.50 21.34

CCL 48.00 23.50 12.90 0.00 27.50 22.38

GRPO
Uniform 51.80 18.40 21.00 10.00 22.50 24.74

CCL 72.60 31.60 32.70 13.30 42.50 38.54

Qwen2.5-Math-7B

SFT
Uniform 68.80 16.50 18.40 0.00 22.50 25.24

CCL 63.00 21.00 18.70 3.30 45.00 30.20

GRPO
Uniform 74.20 33.50 33.90 10.00 62.50 42.82

CCL 76.60 38.20 38.20 13.30 60.00 45.26

Table 1: Evaluation results of different learning strategies on Math Datasets

matics Examination, respectively. Additionally, the426

data was processed into a conversational format.427

4.2 Models428

To effectively validate the efficacy of our CCL429

method across foundation models of varying ca-430

pabilities, we selected two different-sized models431

for our experiments: Qwen2.5-MATH-1.5B(Yang432

et al., 2024) and Qwen2.5-MATH-7B.433

4.3 Training Setup434

We conducted our experiments using 8 NVIDIA435

A100 GPUs for the SFT experiments within the436

Llama-Factory framework(Zheng et al., 2024) and437

for the GRPO experiments within Hugging Face’s438

Open R1 framework(Face, 2025). See Appendix439

A.2 for more detailed descriptions.440

4.4 Evaluation Setup441

We evaluated our models using the evaluation script442

from (Zeng et al., 2025). See Appendix B for more443

detailed descriptions.444

4.5 Main Results445

We implemented various strategies and training446

methods across multiple models of different scales447

and conducted extensive experiments on test sets448

of varying difficulty levels. As shown in Table 1,449

compared to uniform training that treats all data450

equally, our CCL strategy demonstrates significant451

advantages by customizing curriculum datasets and452

adopting an easy-to-hard training approach, yield-453

ing substantial performance improvements across454

multiple experimental settings.455

Our CCL learning strategy demonstrates both456

method compatibility and model scalability. When457

SFT (1.5B) GRPO (1.5B) SFT (7B) GRPO (7B)
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Figure 4: Comparison of model performance after train-
ing with data partitioned using different sample diffi-
culty definition methods and across various data mixing
strategies.

applied to different-sized models under SFT set- 458

tings, CCL improved performance by 1.04% and 459

4.96% for Qwen2.5-Math-1.5B and Qwen2.5- 460

Math-7B respectively. Under GRPO settings, the 461

improvements were 13.80% and 2.44% for the 462

same models. Notably, our CCL training strategy 463

yielded consistent performance gains across all test 464

subsets, demonstrating its significant enhancement 465

of model generalization capabilities. Appendix D 466

also presents the overall performance changes of 467

the CCL method on the test set during the multi- 468

stage training process. 469

4.6 Ablation Study 470

To evaluate the effectiveness of our method’s com- 471

ponents, we perform ablation studies on three key 472

aspects: sample difficulty definition, difficult sam- 473

ple processing, and data mixing strategies. These 474

studies isolate each design choice’s contribution to 475

model performance and training stability. 476
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4.6.1 Sample Difficulty Definition477

Previous researches have relied on predefined dif-478

ficulty labels from the MATH dataset to construct479

curriculum learning data. However, we propose480

that a more effective approach is to customize dif-481

ficulty labels based on each model’s actual perfor-482

mance on samples before constructing curriculum483

datasets. We conducted comparative experiments484

using both approaches to partition training data.485

As shown in Figure 4, our customized difficulty486

definition yields superior performance across mod-487

els of varying sizes and different post-training meth-488

ods, demonstrating consistent advantages over the489

predefined difficulty categorization. This empiri-490

cally validates that difficulty labels tailored to spe-491

cific model capabilities lead to more effective cur-492

riculum learning than predefined difficulty metrics.493

Model Size Processing Strategy Avg.

1.5B

Retaining Difficult Samples 26.36

Discarding Difficult Samples 37.46

Adapting Difficult Samples 38.54

7B

Retaining Difficult Samples 41.34

Discarding Difficult Samples 44.86

Adapting Difficult Samples 45.26

Table 2: Comparison of model performance across three
difficult sample processing methods

4.6.2 Difficult Sample Processing494

At this part, we conduct an ablation study to test495

whether continuous training on excessively diffi-496

cult samples degrades model performance. We497

compare three difficult sample processing meth-498

ods using GRPO: (1) retaining difficult samples,499

(2) discarding difficult samples, and (3) applying500

our "Guided Prompting" approach to adapt difficult501

samples with strategic hints. Results in Table 2 con-502

firm that learning from overly challenging samples503

indeed harms model performance. Discarding diffi-504

cult samples outperforms retaining them, validat-505

ing this hypothesis. This effect is more severe for506

weaker models like Qwen2.5-Math-1.5B, which en-507

counter more unsolvable samples and suffer greater508

performance degradation.509

Rather than waste valuable data through direct510

removal, our "Guided Prompting" method repur-511

poses difficult samples by providing hints that bring512

problems within the model’s solvable range. Exper-513

imental results demonstrate this approach success- 514

fully recovers difficult samples while substantially 515

improving model performance, establishing it as 516

the optimal strategy for enhancing mathematical 517

reasoning capabilities. 518

4.6.3 Data Mixing Strategy 519

Just as students need to periodically review pre- 520

viously mastered knowledge during their learning 521

process, we believe that models undergoing staged 522

curriculum learning require similar reinforcement 523

of previously acquired content. Therefore, we de- 524

sign two distinct data mixing strategies for compar- 525

ative analysis. The first approach, termed "Naive 526

Curriculum," provides models with samples cor- 527

responding only to the current difficulty level at 528

each training stage. The second approach, called 529

"Curriculum Review," incorporates a small propor- 530

tion of easier samples during later training stages, 531

allowing the model to revisit previously learned 532

material. 533

Experimental results in Figure 4 demonstrate 534

that Curriculum Review data mixing strategy 535

achieves superior performance, confirming that pro- 536

viding models with previously learned content dur- 537

ing later training stages is crucial for preventing 538

catastrophic forgetting. This finding underscores 539

the importance of maintaining access to founda- 540

tional knowledge throughout the curriculum learn- 541

ing process. 542

5 Conclusions 543

In conclusion, we presented Customized Curricu- 544

lum Learning (CCL), a novel post-training frame- 545

work that systematically constructs model-adaptive 546

curriculum sequences and transforms difficult sam- 547

ples through guided prompting to enhance large 548

language models’ mathematical reasoning capabili- 549

ties. Our comprehensive experiments demonstrated 550

that models trained with CCL significantly out- 551

perform those using uniform training approaches 552

across multiple mathematical reasoning bench- 553

marks, with consistent improvements observed 554

in both supervised fine-tuning and reinforcement 555

learning paradigms. By effectively integrating cur- 556

riculum learning into large language model train- 557

ing through model-specific difficulty customization 558

and guided prompting, our work substantially im- 559

proves sample utilization and model performance, 560

advancing more effective training methodologies 561

for large-scale language models. 562

8



Limitations563

Despite the promising results of our work, sev-564

eral limitations warrant acknowledgment. While565

our study focuses on mathematical reasoning, we566

see great potential in extending the CCL frame-567

work to other domains such as logical reasoning,568

code generation, and natural language inference,569

allowing us to further investigate its generaliz-570

ability across diverse task types. Furthermore,571

although our current study applies CCL within572

specific post-training paradigms, such as super-573

vised fine-tuning and GRPO, we recognize that574

combining CCL with other post-training strate-575

gies—like PPO and broader reinforcement learning576

techniques—remains an open direction. Exploring577

these combinations may further reveal the full po-578

tential of the CCL framework in enhancing model579

learning dynamics.580
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A Training Details779

In this chapter, we will provide a detailed descrip-780

tion of the construction of curriculum datasets in781

the multi-stage training process, while also pre-782

senting a comprehensive overview of the hyperpa-783

rameters utilized during both training and testing784

procedures.785

A.1 Constructing Dataset786

In the process of constructing the curriculum787

dataset, we need to feed all training set samples788

into the pre-trained model for inference and evalu-789

ate the model’s accuracy on each sample. To ensure790

that the evaluation results are as reliable as possible791

while not causing excessive computational over-792

head, for each question in the dataset, we use the793

VLLM framework to generate 16 responses from794

the model, extract predictions from these responses795

using appropriate scripts, and compare them with796

golden answers to determine the correctness of the797

generations. To fully harness the model’s potential,798

we did not adopt a greedy decoding strategy to gen-799

erate responses, but instead set the temperature to800

0.7, generating responses through sampling.801

After calculating the model’s accuracy on the802

samples through the above steps, we sort the sam-803

ples and divide them into 3 equal parts according804

to quantity. The top 1/3 with the highest accuracy805

are classified as simple samples, used for the first806

stage of model training. The bottom 1/3 with the807

lowest accuracy are classified as difficult samples,808

used for the final stage of model training.809

In addition, for particularly challenging samples,810

we employed a "Guided Prompting" approach to811

reduce the difficulty for the model. Specifically, we812

first collected reference answers for these difficult813

samples, then segmented these reference answers814

into step-by-step reasoning processes, as illustrated815

in Figure 5. Finally, we selected a small portion of816

the prefix combined with the original question as817

input to assist the model in solving problems more818

effectively.819

A.2 Training HyperParameters820

SFT. We conducted our experiments using bf16 pre-821

cision under the DeepSpeed framework with zero-2822

configuration. We set per_device_train_batch_size823

to 1 and gradient_accumulation_steps to 4, employ-824

ing a cosine lr_scheduler with warmup set to 0.1825

and max length set to 2048. For the Qwen2.5-Math-826

1.5B model, we used a learning rate of 5e− 6 and827

trained for 3 epochs. For the Qwen2.5-Math-7B 828

model, we used a learning rate of 1e−5 and trained 829

for 3 epochs. 830

GRPO. We conducted our experiments using 831

bf16 precision under the DeepSpeed frame- 832

work with zero-2 configuration. We set 833

per_device_train_batch_size to 16 and gradi- 834

ent_accumulation_steps to 8, employing a cosine 835

lr_scheduler with warmup set to 0.1 and beta to 836

0.04, num_generations to 7, max_prompt_lengtht 837

to 512 and max_completion_length 1024. For the 838

Qwen2.5-Math-1.5B model, we used a learning 839

rate of 3e − 6 and trained for 6 epochs. For the 840

Qwen2.5-Math-7B model, we used a learning rate 841

of 3e− 6 and trained for 4 epochs. 842

B Evaluation Details 843

During the testing process, to ensure the stability 844

of test results, all methods employed a greedy de- 845

coding strategy with top_p set to 0.95, and used 846

"</answer>" as a stop word to truncate the gener- 847

ated content. 848

C Prompt Details 849

During both training and testing processes, the data 850

was processed into a conversational format. Fig- 851

ure 7 and Figure 6 demonstrate the prompts we 852

used during the SFT and GRPO processes respec- 853

tively. After training the models using their re- 854

spective methods, we employed the corresponding 855

prompts during testing as well. Additionally, dur- 856

ing the GRPO training process, besides adding the 857

User’s description, we also appended part of the 858

Assistant’s content prefixed with the special token 859

"<think>". This approach helps the model quickly 860

learn format compliance during the reinforcement 861

learning process, greatly enhancing the stability of 862

the model’s reinforcement learning. 863

D Result Details 864

In this section, we demonstrate the overall perfor- 865

mance changes on the test set when applying CCL 866

to Qwen2.5-Math-1.5B and Qwen2.5-Math-7B us- 867

ing supervised fine-tuning and reinforcement learn- 868

ing methods for multi-stage training. As shown in 869

Figure 8, our CCL method continuously improves 870

in performance as training iterations progress. 871
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Problem
Let n be the smallest positive integer that satisfies the following conditions:
n divided by 2 is a perfect square
n divided by 3 is a perfect cube
n divided by 5 is a perfect fifth power
How many divisors of n are NOT multiples of 10?

Solution
The first condition implies that the power of each prime factor of $n$ must be an even power 
(excluding $2$, which must be an odd power). The second condition implies that the power of each 
prime factor of $n$ must be divisible by $3$ (excluding $3$, which must leave a residue of $1$ 
upon division by $3$). The third condition implies that the power of each prime factor of $n$ must 
be divisible by $5$ (excluding $5$, which must leave a residue of $1$ upon division by 
$5$).\nClearly, to minimize $n$, we want to just use the prime factors $2,3,5$. The power of $2$ 
must be divisible by $3,5$, and $2^{15}$ works. Similarly, the powers of $3$ and $5$ must be $10$ 
and $6$, respectively, both of which leave a residue of $1$ upon division. Thus, we need the 
number of factors of $2^{15} \\cdot 3^{10} \\cdot 5^{6}$ which are not multiples of 
$10$.\nApplying the complement principle, there are a total of $(15+1)(10+1)(6+1) = 1232$ 
factors. We can draw a bijection between the number of divisors of $2^{15} \\cdot 3^{10} \\cdot 
5^{6}$ that are divisible by $10$ and the number of divisors of $2^{14} \\cdot 3^{10} \\cdot 5^{5}$ 
(as each of these divisors, when multiplied by 10, will provide a factor of the original number that is 
divisible by 10). There are $(14+1)(10+1)(5+1) = 990$. The answer is $1232-990 = \\boxed{242}$.

Step 1
The first condition implies that the power of each prime factor of $n$ must be an even power 
(excluding $2$, which must be an odd power).
Step 2
The second condition implies that the power of each prime factor of $n$ must be divisible by $3$ 
(excluding $3$, which must leave a residue of $1$ upon division by $3$).
Step 3
The third condition implies that the power of each prime factor of $n$ must be divisible by $5$ 
(excluding $5$, which must leave a residue of $1$ upon division by $5$).
Step 4
Clearly, to minimize $n$, we want to just use the prime factors $2,3,5$.
Step 5
The power of $2$ must be divisible by $3,5$, and $2^{15}$ works.
Step 6
Similarly, the powers of $3$ and $5$ must be $10$ and $6$, respectively, both of which leave a 
residue of $1$ upon division.
Step 7
Thus, we need the number of factors of $2^{15} \cdot 3^{10} \cdot 5^{6}$ which are not multiples 
of $10$.
Step 8
Applying the complement principle, there are a total of $(15+1)(10+1)(6+1) = 1232$ factors.
Step 9
We can draw a bijection between the number of divisors of $2^{15} \cdot 3^{10} \cdot 5^{6}$ that 
are divisible by $10$ and the number of divisors of $2^{14} \cdot 3^{10} \cdot 5^{5}$ (as each of 
these divisors, when multiplied by 10, will provide a factor of the original number that is divisible 
by 10).
Step 10
There are $(14+1)(10+1)(5+1) = 990$.
Step 11
The answer is $1232-990 = \boxed{242}$.

Case Study

Figure 5: Decomposition of reference answers into step-by-step solution.
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GRPO Prompt

You are a helpful AI Assistant that provides well-reasoned and detailed responses. 
You first think about the reasoning process as an internal monologue and then 
provide the user with the answer. 
Respond in the following format: 
<think> 
reasoning process here 
</think> 
<answer>
answer here 
</answer>
User:
{Problem}
Assistant:
Let me solve this step by step.
<think>

GRPO Prompt

Figure 6: Prompt Used in GRPO.

Figure 7: Prompt Used in SFT.
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Figure 8: Performance Across Training Stages Using CCL.
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