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Abstract
Large-batch training has become a cornerstone
in accelerating the training of deep neural net-
works, yet it poses challenges in optimization and
generalization. Existing optimizers like AdamW
present performance degradation during language
models’ large-batch training, due to the informa-
tion bottleneck in attention layers caused by the
sharp increase of max attention logit. While the
LAMB optimizer partially addresses this issue,
some attention layers still face this issue. The rea-
son is that l2-norm-based trust ratios in LAMB are
less effective in directly influencing the max value
of query/key weights. Furthermore, the weight-
wise trust ratio in LAMB is error-prone as it over-
looks relationships of weight values within rows
or columns. Building on these observations, we
propose a novel optimizer, MERIT, which lever-
ages the max-norm to calculate the trust ratio to
constrain the max attention logit more effectively.
Moreover, we further construct element-wise trust
ratios to provide more robust update scaling by
focusing on local weight structures. Extensive
experiments of large-batch training across vari-
ous sizes of GPT-2 models demonstrate the su-
perior performance of MERIT. Notably, during
the training of GPT-2 Medium, MERIT enables
a 6k batch size without any performance degra-
dation compared to the standard batch size (480)
with 48B training tokens. This work highlights
the importance of considering the max attention
logit and finer-granularity trust ratio in large-batch
training. It successfully improves the training
stability and paves the way for larger batch us-
age, enabling faster development and iteration
of large language models. Code is available at
https://github.com/NUS-HPC-AI-Lab/MERIT/.
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1. Introduction
The advent of large language models has revolutionized
natural language processing, achieving unprecedented per-
formance across a wide range of tasks (Touvron et al., 2023;
Dubey et al., 2024; OpenAI, 2024). However, the increasing
size and complexity of language models always result in a
high time cost for the training. With the growing availability
of powerful GPU clusters and specialized hardware acceler-
ators, large-batch training can dramatically reduce the time
required to train state-of-the-art models, making it possible
to iterate faster and explore more ambitious architectures by
processing more data in parallel.

While large-batch training offers the potential for increased
parallelism and faster convergence, it also introduces com-
plex optimization dynamics that can impede model perfor-
mance and stability (Keskar et al., 2017; Goyal et al., 2018;
Shallue et al., 2019). Training large language models with
large batches typically encounters one main issue: research
has shown that training with large batches often leads to
models performing poorly on unseen data. When using
AdamW optimizer with large batch size, Figure 1 shows
clear performance degradation, requiring additional training
tokens to reach comparable generalization levels.

This paper identifies a crucial problem in large-batch train-
ing of language models: we observe the sharp increase
of max attention logit in attention layers during the train-
ing process using AdamW optimizer (Kingma & Ba, 2017;
Loshchilov & Hutter, 2019). The inflated max attention
logit can result in overly sharp attention distributions, po-
tentially causing the model to focus on specific tokens or
patterns overly, thus hindering its ability to capture overall
information in the data (Zhai et al., 2023).

While LAMB (You et al., 2020) successfully reduces the
max attention logit in the first layer of GPT-2 models (Rad-
ford et al., 2019; Brown et al., 2020) by applying a weight-
wise trust ratio, it faces limitations in further decreasing the
value in the medium layer. The limitation arises from the
lower efficiency of l2 norm than max norm (largest abso-
lute value) in preventing query/key weights from reaching
extremely high values.

Moreover, our analysis reveals that rows and columns in
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Figure 1. For both GPT-2 models, the connection between batch size and the number of steps required to reach a specific validation loss
follows a similar pattern. At first, as the batch size increases, there is a phase of ideal scaling (shown by a dotted line) where doubling the
batch size cuts the necessary steps in half. This is followed by a period where the benefits start to decrease. Eventually, a point is reached
where further increasing the batch size (data parallelism) offers no additional advantage. This final stage represents the upper limit of
large-batch training effectiveness.

large-batch trained weights often share similarities. The ne-
glect of these relationships in the weight-wise ratio method
proposed in LAMB leads to training instability as it fails to
mitigate the negative impact of extreme values from other
rows or columns. Given rows and columns exhibit high sim-
ilarity, it allows for calculating element-wise ratios by con-
sidering the weights within the same rows/columns, while
eliminating influences from other rows/columns. The pro-
posed finer-granularity ratios focus on local weight struc-
tures, resulting in more stable large-batch training for lan-
guage models.

Inspired by these insights, we propose a novel optimizer,
MERIT, introducing max-norm-based trust ratios to pre-
cisely limit the maximum of query/key matrix and finer-
grained ratios for focusing on specific weight structures.
We conduct extensive experiments to evaluate the perfor-
mance of MERIT compared to existing optimizers across
various sizes of GPT-2 models. Our findings demonstrate
the potential of MERIT to enhance large-batch training by
improving convergence properties and generalization per-
formance. This work contributes to the ongoing exploration
of optimization strategies in large-batch training and high-
lights the significance of finer-grained ratio calculation in
designing effective optimizers.

2. Related Work
2.1. Large-batch Training

Scaling up batch sizes during the training of deep neural
networks has been an active area of research, as it allows
for better parallelization across multiple GPUs and reduces
time-to-train. However, naively increasing the batch size
often leads to degraded model performance, a phenomenon
dubbed the “generalization gap”. Several techniques have
been proposed to enable large-batch training without com-
promising accuracy. Goyal et al. (2018) showed that linear
scaling of the learning rate with respect to the batch size
can maintain model quality for batch sizes up to 8K on Ima-
geNet. Other works proposed novel optimization algorithms
like LARS (You et al., 2017) and LAMB (You et al., 2020)
that dynamically adapt layer-wise learning rates based on pa-
rameter norms and momentum. Liu et al. (2022) introduced
a more efficient SAM (Foret et al., 2021) variant for training
Vision Transformers (Dosovitskiy et al., 2021) using large
batches and Luo et al. (2023) explored memory-efficient
optimization techniques for large-batch training of language
models. However, LAMB still presents a large max atten-
tion logit and shows a weight-wise trust ratio calculation
containing some error, leading to large-batch training per-
formance degradation.
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Figure 2. Max attention logit of self-attention layers during the large-batch training of GPT-2 medium model using three optimizers.
(a) Max Attention Logit of first self-attention layer. (b) Max Attention Logit of medium (12th) self-attention layer. A comprehensive
visualization is availabe in Appendix I.

2.2. Max Attention Logit

The relationship between max attention logit and training
stability of transformers has been explored extensively. Re-
searchers have previously documented that Transformer
training fails when the attention logits become large. De-
hghani et al. (2023) addressed the challenge of uncontrolled
growth in attention logits in large-scale transformers by im-
plementing query/key normalization, effectively stabilizing
the training process and preventing the near one-hot atten-
tion distributions typical in models with parameters nearing
8 billion. Wortsman et al. (2024) observed the loss diverges
and training fails when the max attention logit exceeds ap-
proximately 104. Zhai et al. (2023) identified attention
entropy collapse as a common issue in Transformer training
across various domains and tasks and proposed σReparam
to reparameterize the weights of linear layers using spec-
tral normalization and a learned scalar. Nevertheless, the
significant increase in the max attention logit value during
large-batch training remains unexplored and leads to the
poor performance of existing optimizers.

3. Preliminaries
3.1. Max Attention Logit Growth in Large-batch

Training

In the self-attention layer of a Transformer (Vaswani et al.,
2017), attention logits are calculated by combining queries
Qi and keys Ki using the formula zij = ⟨Qi,Kj⟩/

√
dk,

where dk represents the head dimension. These logits are
then processed through a softmax function to generate at-
tention weights to aggregate values Vi. The max attention
logit is defined as the max value among the computed atten-
tion logits, max zij . Dehghani et al. (2023) observed that
the attention logits z became large when using relatively

high learning rates, which they termed as attention logit
growth. Consequently, the attention weights collapse to
one-hot vectors and cause unstable training, a phenomenon
termed attention entropy collapse by Zhai et al. (2023).

In the large-batch training of GPT models, larger learning
rates are needed compared to normal batch sizes, AdamW-
based training consistently presents a similar max attention
logit sharp increase that leads to one-hot-vector attention
output as analyzed in Appendix C, limiting the expression
ability of attention layers. As shown in Figure 2(a), the max
attention logit of the first self-attention layer during large-
batch training with AdamW significantly exceeds the value
observed in small-batch training presented in Figure 11,
leading to training instability and performance degradation.
As a result, AdamW-based large-batching leads to a worse
generalization performance than small batches.

3.2. Trust ratio in LAMB

A distinguishing feature of the LAMB optimizer is its im-
plementation of the “trust ratio”, a mechanism designed
to dynamically adjust the learning rates for each neural
network layer based on their respective weight norms and
update norms. The trust ratio R for particular weights w at
time t is defined as the ratio of the l2-norm of weights to
that of updates u:

R =
∥wt∥

∥ut + λwt∥
(1)

where ut =
mt√
vt+ϵ , ∥·∥ denotes l2-norm and λ is the weight

decay parameter. Since large-batch training employs high
learning rates, LAMB addresses the issue of excessively
large or small gradients/updates by adaptively rescaling LRs
per layer. This ensures that updates remain aligned with the
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scale of the initial weights.

Through the design of trust ratios, LAMB optimizer
achieves a balance that allows it to exploit the computa-
tional benefits of large batch sizes without compromising
the robustness of the model training process. However, the
increment of max attention logit still exists during large-
batch training as presented in Figure 2(b).

4. Algorithm
4.1. Maximum Normalized Ratio

The max attention logit is directly relevant to the max norm
(largest absolute value) in key matrix WK and query ma-
trix WQ, as evidenced by the equation: attention logits
z = XWKW⊤

QX⊤/
√
dk, where X represents the input

sequence to a self-attention layer. Hence, the issue out-
lined in Section 3.1 can be addressed by considering max
norm when developing the trust ratio for training with large
batches. A complete analysis is presented in Appendix D.

However, there is a huge disparity between the max norms
of query and key weights and their corresponding l2 norms
(Appendix E). In this case, l2-norm-based trust ratios cannot
effectively prevent the huge increase of the maximum of
WQ/WK . Thus, LAMB often fails to reduce max attention
logit in the medium self-attention layer further as depicted
by Figure 2(b). We modify the LAMB optimizer using the
max norm instead of the l2 norm when calculating the trust
ratio. Therefore, the proposed method gives larger updates
to extreme values of weights. This helps prevent extreme
values in query and key weights from becoming too large,
limiting spikes in the maximum attention logit.

4.2. Element-wise Trust Ratio

To further improve the large-batch training performance of
layer-wise ratios, we devise an element-wise ratio to capture
local weight structures more accurately while maintaining
computational efficiency. Due to the multi-headed self-
attention mechanism and outlier dimension phenomenon
observed throughout the training process of transformers
(Kovaleva et al., 2021; Puccetti et al., 2022), weight values
exhibit similarities within rows/columns as shown in Figure
3. Given this context, weight-wise trust ratios of LAMB will
introduce certain inaccuracies because extreme values in
one row/column can adversely impact the training stability
of other rows/columns.

To address this limitation, we propose a novel approach
that employs an element-wise ratio to leverage the inherent
similarity of weights within the same rows or columns of
the weight matrix. Our method involves calculating ratios
along both rows and columns and then selecting the larger
of these two values for each element.

Specifically, let w ∈ Rn×n and u ∈ Rn×n be the weight
matrix and update matrix separately, with w(i) representing
elements at the i-th row and w(j) representing elements
at the j-th column. We first calculate the row-wise ratio
r for each row r(i) = ∥w(i)∥m/∥u(i)∥m and the column-
wise ratio c for each column c(j) = ∥w(j)∥m/∥u(j)∥m.
Lastly, the final element-wise ratio s is determined by
s(i,j) = max{r(i), c(j)}. This improved approach seeks
to boost the capacity of the optimizer to adjust to specific
weight structures in different parts of the network, leading
to improved convergence and generalization performance
in language models.

4.3. MERIT

Algorithm 1 summarizes our proposed MERIT optimizer.
The design of MERIT comes from two parts: maximum-
normalized trust ratio and element-wise refinement. Finally,
we implement an element-wise clipping mechanism that
limits the max update magnitude to 1 across all parameter
dimensions, which mirrors the update strategy of stochastic
Sign Momentum Gradient Descent (Bernstein et al., 2018),
serving to enhance the overall stability of the large-batch
optimization process. The designs incorporated in MERIT
successfully address the issue of rapidly increasing max at-
tention logits in the middle self-attention layers of language
models, as illustrated in Figure 2(b).

Algorithm 1 MERIT
1: Input: x1 ∈ Rd, learning rate {ηt}Tt=1, parameters

0 < β1, β2 < 1, ϵ > 0,m0 = 0, v0 = 0
2: for t = 1 to T do
3: gt =

1
|Xt|

∑
xt∈Xt

∇ℓ(wt, xt).
4: mt ←− β1mt−1 + (1− β1)gt
5: vt ←− β2vt−1 + (1− β2)g

2
t

6: ut =
mt√
vt+ϵ

7: Weight-wise Ratio bt =
∥wt∥m

∥ut+λwt∥m

8: Row-wise Ratio r
(i)
t =

∥w(i)
t ∥m

∥u(i)
t +λw

(i)
t ∥m

9: Column-wise Ratio c
(j)
t =

∥w(j)
t ∥m

∥u(j)
t +λw

(j)
t ∥m

10: Element-wise Ratio
11: s

(i,j)
t = max{max{r(i)t , c

(j)
t }, bt}

12: wt+1 = wt − ηt · clip(st · (ut + λwt) , 1)
13: end for

4.4. Convergence Analysis

Notation. Let I be the d × d identity matrix, and let
I = [I1, I2, ..., Ih] be its decomposition into column sub-
matrices Ii = d × dh. For w ∈ Rd, let w(i) be the
block of variables corresponding to the columns of Ii i.e.,
w(i) = ITi w ∈ Rdi for i = 1, 2, · · · , h. For any function
f : Rd → R, ∇if(w) denotes the gradient with respect to
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Figure 3. Analysis of GPT-2 small’s first attention layer reveals patterns in query-key weight magnitudes: weights show high similarities
within both rows (arising from multi-headed attention architecture) and columns (due to the outlier dimension phenomenon).

w(i). For vectors u and v ∈ Rd, we use u2 to represent
the element-wise square operation and u/v to represent the
element-wise division operation. We use ∥ · ∥, ∥ · ∥1 and
∥ · ∥m to denote l2-norm, l1-norm and max-norm of a vector
respectively. Consider the following nonconvex stochastic
optimization problems of the form

min
w∈Rd

f(w) := Ex∼P[ℓ(w, x)] +
λ

2
∥w∥2, (2)

where w is model parameters to optimize, ℓ is the loss
function and P is a probability distribution on the unknown
training data X ⊂ Rk.

Assumption 1. The loss function ℓ(u) is Li-smooth with
respect to u(i), which means there exists a non-negative
constant Li, ∀u, v ∈ Rd, and x ∈ X :

|∇iℓ(u, x)−∇iℓ(v, x)| ≤ Li|u(i) − v(i)|, (3)

for all i ∈ [h]. Let L = (L1, · · · , Lh)
T represent the vector

of Lipschitz constants in h dimensions. We use Lavg to
denote

∑
i
Li

h .

Assumption 2. The variance in stochastic gradients is sub-
ject to the following upper bound:

E|∇iℓ(w, x)−∇if(w)|2 ≤ σ2
i for all w ∈ Rd and i ∈ [h]

E|[∇ℓ(w, x)]i − [∇f(w)]i|2 ≤ σ̃2
i for all w ∈ Rd and i ∈ [d],

(4)
and σ = (σ1, · · · , σh)

T and σ̃ = (σ̃1, · · · , σ̃d)
T are used

to denote the vectors of standard deviations of stochastic
gradient per layer and per dimension separately.

Assumption 3. Gradients are bounded i.e., [∇l(w, x)]i ≤
G for all i ∈ [d], w ∈ Rd and x ∈ X . Note that such
assumptions are typical in the analysis of stochastic first-
order methods.

Due to the usage of element-wise clipping on controlling the
worst-case (largest) update size in all parameter dimensions

to be at most 1, the training stability is improved and we
only need to consider the convergence analysis of weight-
wise maximum-normalized ratio that is the lower bound of
the proposed MERIT, which is noted as MERIT-W. The
following result provides a convergence rate for MERIT-W
in general nonconvex settings. Following the analysis in
(You et al., 2020), we focus on the setting where β1 = 0
and λ = 0.

Theorem 1. Let ηt = η =
√

2(f(w1)−f(w∗))
α2

u∥L∥1dT
for all t ∈ [T ],

b = T , di = d/h for all i ∈ [h], and αl ≤ ∥v∥m ≤ αu

for all v > 0 where αl, αu > 0. Then for wt optimized by
MERIT-W, we have the following bounds:

1. When β2 = 0, we have

(
E

[
1√

2 log(d)
∥∇f(wa)∥1

])2

≤

O

(
(f(w1)− f(w∗))Lavg

T
+
∥σ̃∥21
Tdh

)
,

2. When β2 > 0, we have

E[∥∇f(wa)∥2] ≤

O

(√
2G2 log(d)

h(1− β2)
×[√

2(f(w1)− f(w∗))∥L∥1
T

+
∥σ̃∥1√
Td

])
,

where w∗ represents an optimal solution to the problem
outlined in equation 2 and wa is an iteration uniformly
randomly selected from {w1, · · · , wT }. For a detailed proof
of convergence, please refer to Appendix J.

5



MERIT: Maximum-normalized Element-wise Ratio for Language Model Large-batch Training

Figure 4. Final validation loss. (a) GPT-2 Small (125M, batch size=1K). AdamW: 3.470, LAMB: 3.355, MERIT: 3.280 (b) GPT-2
Medium (355M, batch size=4K). AdamW: 3.172, LAMB: 3.068, MERIT: 2.982. (c) GPT-2 Large (770M, batch size=8K). AdamW:
3.039, LAMB: 2.971, MERIT: 2.897.

5. Experiments
5.1. Setup

Language modeling. We conducted large-batch training
experiments on OpenWebText (Gokaslan & Cohen, 2019),
training autoregressive models from scratch using settings
derived from the Chinchilla scaling law (Hoffmann et al.,
2022). Following standard protocol, we set the context
length of GPT-2 to 1024. Our experiments encompassed
three model sizes: 125M (small), 355M (medium), and
770M (large). Detailed specifications of the model configu-
rations can be found in Appendix A.

Baselines. We compare MERIT with LAMB, the dom-
inantly used optimizer on large-batch training of lan-
guage modeling tasks, Adam with decoupled weight decay
(AdamW), Lion (Chen et al., 2023), and Sophia-G (Liu et al.,
2024). For all models, all learning rates are tuned with grid
search. The weight decay is set to 0.1 for all optimizers for a
fair comparison. We follow Liu et al. (2024) for the settings
of β values: For AdamW: β1 = 0.9 and β2 = 0.95. For
Lion: β1 = 0.95 and β2 = 0.98. For Sophia-G: β1 = 0.92
and β2 = 0.99.

Chinchilla Scaling Law. The Chinchilla scaling law sug-
gests an optimal training regime of approximately 20 train-
ing tokens per parameter for large language models (Anil
et al., 2023; Muennighoff et al., 2023). This principle, de-
rived from Hoffmann et al. (2022)’s comprehensive analysis,
proposes that model performance is maximized when the
number of training tokens scales proportionally with the
number of parameters under a fixed compute budget. Fol-
lowing this established benchmark allows for a fair compar-
ison with other research in the field with limited computing
resources.

Implementation. Following the Chinchilla scaling law, we
use batch size 1K for GPT-2 small with 2B training tokens,
4K for GPT-2 medium with 8B tokens, and 8K for GPT-2
large with 16B tokens for the large-batch training setting.

Our learning rate (LR) follows a cosine schedule, with the
final LR set to 0.1 of the peak LR. We maintain a constant
LR warm-up ratio of 0.02 and apply standard gradient clip-
ping (norm) with a threshold of 1.0. In the case of Sophia-G,
we select 240 examples from each minibatch to compute the
diagonal Gauss-Newton and update the diagonal Hessian
every 10 steps. We implement the algorithms in PyTorch
(Paszke et al., 2019) and train all the models in bfloat16. All
models are trained on H100 GPUs.

Technical details. We mainly evaluate GPT-2 models with
their log perplexity and plot the validation loss curves. The
results from LAMBADA (Paperno et al., 2016), WikiText
(Merity et al., 2017), and SuperGLUE (Wang et al., 2019)
evaluations are also included in our experiments.

5.2. Results

Figure 4 illustrates the validation loss curve on OpenWeb-
Text with the same number of steps. MERIT consistently
achieves lower validation loss than LAMB, AdamW, Lion,
and Sophia-G. As the size of the language model increases,
the performance gap between MERIT and baselines be-
comes larger. Besides, during large-batch training of GPT-2
Large, the performance gap between AdamW and LAMB di-
minishes. In contrast, MERIT demonstrates an increased ad-
vantage over LAMB under this condition. MERIT achieves
a 0.07 lower validation loss on the 123M model (Figure
4 (a)) with the same training tokens, which means a sig-
nificant improvement according to training scaling laws in
this regime (Kaplan et al., 2020; Hoffmann et al., 2022; Liu
et al., 2024).

The scaling law favors MERIT over LAMB. Figure 1
illustrates the number of steps required for GPT-2 models
with varying batch sizes to reach equivalent validation loss
on OpenWebText. The figure reveals a noticeable decline in
generalization performance when training language models
with large batch sizes using AdamW. Importantly, MERIT
enables the use of larger batch sizes without compromis-
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Figure 5. Zero-shot evaluation on LAMBADA and WikiText. With the same number of steps, language models large-batch pre-trained
with MERIT outperform models pre-trained with AdamW and LAMB on both tasks with lower perplexity scores.

Table 1. Comparison of zero-evaluation performance for GPT-2 Small and GPT-2 Medium models under Sophia training settings.

Model ARC ↑ COPA ↑ HelllaSwag ↑ RACE ↑ WIC ↑ Avg ↑
GPT-2 Small (AdamW-Batch Size=480) 43.43 66.00 29.20 29.00 50.16 43.56
GPT-2 Small (MERIT-Batch Size=4k) 45.83 67.00 28.82 27.56 50.16 43.87

GPT-2 Medium (AdamW-Batch Size=480) 49.49 71.00 32.39 30.05 50.00 46.59
GPT-2 Medium (MERIT-Batch Size=6k) 50.38 70.00 32.32 30.33 50.47 46.70

ing performance (1K for GPT-2 small and 4K for GPT-2
medium) than LAMB. Moreover, the performance gap be-
tween MERIT and LAMB, given the same number of train-
ing tokens, widens for 355M parameter models compared
to 125M parameter models.

Zero-shot Evaluation. The enhanced validation loss per-
formance translates to better results in evaluation tasks as
shown in Figure 5. We measure the zero-evaluation perfor-
mance of trained GPT models on LAMBADA and WikiText
using perplexity scores. MERIT successfully obtains lower
perplexity across both tasks compared with AdamW and
LAMB. Our evaluation focuses solely on zero-shot per-
formance for pre-trained GPT-2 models, as demonstrating
in-context learning typically requires GPT models with at
least a billion parameters. Additional evaluation results are
available in Appendix G.

Training Results on Llama. We conducted additional ex-
periments using C-Optim 1 to validate the performance of
the proposed MERIT optimizer in the large-batch training
of Llama models (Dubey et al., 2024). In alignment with
Chinchilla scaling laws, we trained models on 2.6B tokens
from the C4 dataset (Raffel et al., 2023) (batch size=1K)
for GPT-2 small and 8B tokens (batch size=4K) for GPT-2
medium. We maintained the same hyperparameter settings,
specifically a weight decay of 0.1 and beta values of 0.9
and 0.95. Figure 6 demonstrates that MERIT consistently
improves performance across different language model ar-
chitectures in large-batch training scenarios.

1https://github.com/kyleliang919/C-Optim

5.3. Further Analysis

Performance Gap Between Standard Batch Size and
Large Batch Size. We conduct experiments following the
training protocol outlined in Liu et al. (2024), using 48
billion tokens for training. Our study compares MERIT’s
performance with large batches against AdamW’s perfor-
mance with small batches (batch size=480). As illustrated
in Table 1, MERIT demonstrates the ability to increase batch
sizes to 4K for GPT-2 small pre-training and 6K for GPT-2
medium pre-training without compromising generalization
performance. These findings suggest that MERIT enables
language models to utilize larger batch sizes as the model
scale increases.

Curvature of Convergence Point. The curvature of the
convergence point in the loss landscape differs significantly
between small and large batch sizes, impacting model gener-
alization and robustness. Large batch sizes often lead to con-
vergence in sharper minima with higher curvature (Keskar
et al., 2017). While these sharp minima may achieve lower
training loss, they can result in poorer generalization due to
their sensitivity to small changes.

In Figure 7(a), we present the eigenvalue distributions
of Hessian matrices at the convergence points of GPT-2
small models pre-trained using AdamW and MERIT algo-
rithms. The convergence point achieved by MERIT exhibits
a smaller top eigenvalue (12.326) and trace (3444.92) than
AdamW whose top eigenvalue and trace equal 37.231 and
12994.91 respectively, and eigenvalues of MERIT are pre-
dominantly confined to the range [−5, 5]. This reduced
spread of eigenvalues suggests that MERIT converges to an
overall flatter region in the optimization landscape. Such

7



MERIT: Maximum-normalized Element-wise Ratio for Language Model Large-batch Training

Figure 6. Final validation loss. (a) Llama 130M (batch size=1K). AdamW: 3.277, LAMB: 3.265, MERIT: 3.199 (b) Llama 350M (batch
size=4K). AdamW: 3.014, LAMB: 3.001, MERIT: 2.957.

flat regions, characterized by small eigenvalues and trace,
are frequently associated with improved generalization ca-
pabilities in language models.

Figure 7. A graphical representation comparing the eigenvalues
of Hessian matrices at convergence points, contrasting models
pre-trained using AdamW versus MERIT..

Comparison of wall-clock time and computational re-
sources. In Table 2, we present a comparison of the total
computational requirements (measured in TFLOPS) per step
and the actual time taken (wall-clock time) on A100 GPUs.
Following the methodology of Chowdhery et al. (2022), we
report the average time per step (T(step)) and correspond-
ing FLOPS. The data in Table 2 reveals that employing
maximum-normalized and element-wise trust ratio calcu-
lation adds minimal extra computational overhead (1%)
compared to l2-norm-based trust ratio of LAMB. Overall,
the increase in FLOPS is negligible compared to AdamW
and LAMB.

QK-Norm VS MERIT. QK-Norm (Dehghani et al., 2023)
was developed to mitigate training instabilities encountered
when scaling Vision Transformer (ViT) models to unprece-
dented sizes with higher learning rates. This technique ap-
plies Layer Normalization to the query and key vectors prior

Table 2. Wall-clock time and TFLOPS.

Optimizer Model Size T(step) TFLOPS

AdamW 770M 242.50s 43.91
LAMB 770M 243.51s 43.73
MERIT 770M 245.46s 43.38

AdamW 355M 57.69s 44.05
LAMB 355M 57.93s 43.86
MERIT 355M 58.50s 43.43

to the attention computation in the transformer architecture.
However, as illustrated in Figure 8(b), while QK-Norm en-
ables larger learning rates for AdamW in GPT-2 models, it
negatively leads to performance degradation in large-batch
training. A potential explanation for this discrepancy is
that QK-Norm aims to stabilize attention computations and
inadvertently restricts information flow within the attention
layers of language models, which becomes more obvious in
large-batch training with much fewer optimization steps.

Figure 8. QK-Norm leads to performance degradation although
improving the feasible learning rates of GPT-2 models pre-training
without divergence.
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5.4. Ablation Study

Ablation 1: Element-wise Clipping. Figure 9 reveals that
MERIT, even without element-wise clipping, still outper-
forms AdamW and LAMB in terms of convergence, albeit
with a less pronounced improvement. This finding suggests
that when we apply the element-wise trust ratio without
clipping, certain elements undergo unexpectedly large up-
date steps, which can adversely affect the language model
performance. These results underscore the importance of
element-wise update clipping in large-batch training scenar-
ios, where update magnitudes tend to be larger compared to
standard training conditions. For visualization of element-
wise clipping ratios during GPT-2 small training, please
refer to Appendix H.

Ablation 2: Weight-wise Ratio Bound. The implemen-
tation of a weight-wise trust ratio as a lower bound for
element-wise ratios aims to mitigate excessively small up-
dates during large-batch training of language models. As
illustrated in Figure 9, the application of this lower bound
significantly enhances generalization performance, high-
lighting the importance of balanced updates across different
elements. The bounding ratio is given in Appendix K.

Ablation 3: Element-wise Ratio. Element-wise trust ra-
tio calculations enhance the generalization capability of
language models by providing more robust ratio estimates
focusing on local weight structures for individual weight
elements. Figure 9 demonstrates the advancement of using
an element-wise ratio.

Figure 9. Three ablations present obvious performance degrada-
tions, which validates the necessity of all three design choices.

Ablation 4: Norm Choice. To investigate the impact of the
norm choice in the trust ratio computation, we conducted an
ablation study where we replaced the weight-wise l2-norm
with the max-norm, resulting in the maxLAMB optimizer.
This variant excludes the element-wise ratio and clipping
components used in MERIT. Results in Table 3 on GPT-2
small and medium show that maxLAMB marginally im-
proves over LAMB but underperforms MERIT, confirming

that MERIT’s gains stem from its combined use of element-
wise trust ratio and clipping rather than max-norm alone.
Appendix K further supports this by demonstrating the criti-
cal role of element-wise operations in early training.

Table 3. Validation loss comparison across optimizers (AdamW,
LAMB, maxLAMB, and MERIT) on GPT-2 small and medium.
MERIT achieves the lowest validation loss, demonstrating the ef-
fectiveness of its element-wise trust ratio and clipping mechanism.

Optimizer GPT-2 Small GPT-2 Medium

AdamW 3.470 3.172
LAMB 3.355 3.068

maxLAMB 3.304 3.040
MERIT 3.280 2.982

6. Conclusion
Accelerating the pre-training of language models heavily
relies on large batch techniques. In this study, we present
the MERIT optimizer, which integrates max norm and local
weight information to compute trust ratios. When applied
to the large-batch training of GPT models, MERIT enables
larger batch size usage than LAMB and AdamW, while
maintaining comparable generalization performance.
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A. Models and Hyperparamters Configuration

Table 4. Model Configurations and Peak Learning Rate Under Chinchilla Scaling Law.

Model Size d model n head depth Lion lr Sophia-G lr AdamW lr LAMB lr MERIT lr

Small 125M 768 12 12 1e-4 1e-4 1e-3 1e-2 9e-3
Medium 355M 1024 16 24 8e-5 1e-4 4e-3 1e-2 9e-3

Large 770M 1280 20 36 8e-5 2e-4 2e-3 8e-3 6e-3

In our study, we examine three GPT-2 variants: small, medium, and large, as described by (Radford et al., 2019). The
specific configurations for these models are outlined in Table A. We utilize the nanoGPT framework 2 as our codebase.
Consistent with nanoGPT’s approach, we implement GELU activation functions and omit bias and Dropout (Srivastava
et al., 2014) during the pre-training phase.

The GPT-2 models undergo training using the OpenWebText corpus (Gokaslan & Cohen, 2019). We process the text using
the GPT-2 tokenizer (Radford et al., 2019). For data organization, we adopt the train-validation split provided by nanoGPT.
The training dataset comprises 9 billion tokens, while the validation set contains 4.4 million tokens.

Our training setup employs distributed data-parallel processing with gradient accumulation, allowing for batch sizes of 1K,
4K, and 8K. All model variants are trained using bfloat16 precision. The 125M and 355M parameter models are trained on
systems equipped with two H100 GPUs, whereas the 770M parameter models require machines with eight H100 GPUs.

B. Limitations
Comprehensive downstream task assessment. We evaluate large-batch pre-trained models on 7 downstream tasks, which
provides valuable but limited insights. A truly comprehensive assessment of language models remains an open research
challenge. Our evaluation is further constrained by the modest size of the models studied, which lack advanced capabilities
like in-context learning and complex reasoning capability. These limitations indicate the need for caution when extrapolating
our findings to larger, more capable models.

Cross-domain applicability and generalization. Our study focuses on large language model optimization. However, a
truly versatile optimizer should perform well across various domains such as computer vision, reinforcement learning, and
multimodal tasks. Due to computational constraints, we have not evaluated the large-batch training performance of our
optimizer in these areas. Future work should investigate its efficacy across diverse machine learning paradigms to fully
assess its generalizability and potential impact.

Scaling up to larger language models and datasets. MERIT has shown promising scalability up to 770M parameter
models trained on OpenWebText. While there are no fundamental barriers to scaling further, our comparison with AdamW
and LAMB on more extensive models and datasets is constrained by resource limitations. Based on observed improvements
in scaling laws and enhanced pre-training stability, we anticipate MERIT to outperform AdamW and LAMB in large-batch
training scenarios with larger language models. However, empirical validation of this hypothesis awaits future work with
access to greater computational resources.

C. Relation between learning rate and attention logits

W
(t+1)
Q = W

(t)
Q − η∇WQ

L, W
(t+1)
K = W

(t)
K − η∇WK

L

Q
(t+1)
i = XiW

(t+1)
Q = Xi(W

(t)
Q − η∇WQ

L) = XiW
(t)
Q − ηXi∇WQ

L,

K
(t+1)
j = XjW

(t+1)
K = Xj(W

(t)
K − η∇WK

L) = XjW
(t)
K − ηXj∇WK

L

2https://github.com/karpathy/nanoGPT
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Logits(t+1)
ij =

Q
(t+1)
i · (K(t+1)

j )⊤
√
dk

=
Q

(t)
i · (K

(t)
j )⊤

√
dk

− η
Q

(t)
i · (Xj∇WK

L)T√
dk

− η
(Xi∇WQ

L) ·K(t)T
j√

dk
+ η2

(Xi∇WQ
L) · (Xj∇WK

L)T
√
dk

Assuming that the gradients∇WQ
L and ∇WK

L are not dependent on η (which is typical in gradient descent), the change in
the max attention logit is linearly proportional to η because η2 terms are negligible compared to η terms:

Max Logit(t+1) ≈ Max Logit(t) − η · C +O(η2) ∝ η

D. Influence of Max Norm On Max Attention Logit
Given:

||WQ||m = MQ and ||WK ||m = MK

Each element in WQ and WK satisfies:

0 ≤ |WQ,i,j | ≤MQ and 0 ≤ |WK,i,j | ≤MK

Each element in Q and K can be bounded as:

Qi,k =

n∑
m=1

Xi,mWQ,m,k ≤
n∑

m=1

|Xi,m|MQ = MQ

n∑
m=1

|Xi,m| = MQ · CX

Similarly,
Kj,k ≤MK · CX

where CX =
∑n

m=1 |Xi,m| is a constant representing the sum of absolute values in the input embeddings for a token and n
is the hidden size. The attention logit is:

Logiti,j =

d∑
k=1

Qi,kKj,k/
√
d ≤

d∑
k=1

(MQ · CX)(MK · CX)/
√
d =
√
d ·MQMKC2

X

Therefore,
Logiti,j ≤

√
d ·MQMKC2

X .

Moreover, In decoder-only model implementations, each layer includes LayerNorm(Ba et al., 2016), which normalizes X to
follow a Gaussian distribution. This normalization effectively establishes upper bounds CX on X’s values.

Thus,

Logiti,j ≤
√
d ·MQMKC2

X = O(dn2 ·MQMK).

This proof demonstrates that controlling the max norm of WQ and WK effectively constrains the upper bound of the max
attention logit, which is crucial for large-batch training stability.
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E. Huge Difference between l2 Norm and Max Norm

Figure 10. Relative ratios between max and l2 norm of WK/WQ ∈ R1024×1024 in GPT-2 medium. Ratio is calculated as (∥W∥ −
∥W∥m)/∥W∥, in which ∥ · ∥ and ∥ · ∥m denote l2-norm and max norm.

Figure 10 illustrates the relative ratio between l2 norm and maximum norm for query and key weights across different layers
(Layer 1 and Layer 12) during 2K training steps. The ratios consistently remain high, hovering around 0.99-0.996, which
reveals a critical insight: the gap between l2 norm and max norm is huge. When optimizing using only l2 norm, the weight
updates affect all parameters globally but fail to constrain the max value of query/key weight matrix.

F. Max attention logit in small-batch training
Figure 11 shows the distribution of max attention logits in small-batch (512) training of the GPT-2 medium model using
the same chinchilla scaling law setting. Notably, these max attention logits are significantly lower than those observed in
large-batch training scenarios. This reduction suggests that the attention outputs are more evenly distributed, which typically
leads to improved training convergence and generalization performance.

Figure 11. Max attention logit of self-attention layers during the small-batch training of GPT-2 medium model using three optimizers. (a)
Max Attention Logit of first self-attention layer. (b) Max Attention Logit of medium self-attention layer.

G. Zero-shot evaluation on LAMBADA and WikiText
Zero-shot Evaluation. The improved validation loss leads to better downstream task performance, as demonstrated in
Figure 12. When comparing models with equal pre-training steps, the GPT-2 variants trained using MERIT consistently
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outperform those using LAMB and AdamW in zero-shot accuracy across most subtasks.

Figure 12. Zero-shot evaluation on SuperGLUE benchmark. Given an equivalent number of training steps, models that undergo large-batch
pre-training using MERIT exhibit higher accuracy than those pre-trained with AdamW and LAMB on most tasks.

H. Clipping Ratio in GPT-2 Small Large-batch Training
Figure 13 presents the element-wise clipping ratio in GPT-2 small training setting (2B tokens) for the 1st, 6th, and 12th
layers.

The analysis of clipping effects across different layers reveals distinct patterns in gradient update behavior during training.
The input layer (Layer 1) maintains near-zero clipping ratios throughout, suggesting that early-layer gradient updates rarely
require adjustment. In contrast, the middle layer (Layer 6) experiences more substantial clipping, with ratios peaking at
12% during later training stages. The output layer (Layer 12) shows minimal clipping, with ratios reaching only 0.25% at
maximum.

This layered pattern demonstrates that the clipping mechanism primarily influences the middle layers, leaving input and
output layers unaffected. This suggests that the clipping mechanism primarily stabilizes middle layers rather than applying
a uniform constraint across all layers. Most gradient updates maintain their original direction, with the most significant
stabilization occurring in middle layers where feature representations undergo refinement.

Figure 13. Element-wise clipping ratio for different layers of GPT-2 small during large-batch training.

I. Visualization of Max-Attention Logits
Figure 14 presents the max attention logits (MAL) across all layers in the training of GPT-2 medium, observing that MERIT
consistently stabilizes training by mitigating extreme MAL spikes. In shallow layers (1–8), both MERIT and LAMB
effectively reduce the high MAL values seen with AdamW. In mid-depth layers (9–17), MERIT’s max-norm control further
mitigates the MAL spikes present in LAMB. In deeper layers (18–24), MERIT exhibits comparable or marginally higher
MAL values, though these remain significantly lower than in mid-layers and have negligible effects on convergence. These
findings highlight MERIT’s effectiveness in controlling destabilizing attention logits, especially in crucial mid-layers,
facilitating stable large-batch training and better convergence.
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Figure 14. Max attention logit of self-attention layers during the large-batch training of GPT-2 medium using three optimizers of all layers
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J. Convergence Proof of Theorem 1
Proof. We study how MERIT-W converges across different minibatch sizes. To begin, let’s review the update equation of
MERIT-W

w
(i)
t+1 = w

(i)
t − ηt · ∥w(i)

t ∥m
u
(i)
t

∥u(i)
t ∥m

(5)

for all i ∈ [h].

Since the function f is L-smooth, we obtain the following:

f(wt+1) ≤ f(wt) + ⟨∇if(wt), w
(i)
t+1 − w

(i)
t ⟩+

h∑
i=1

Li

2
∥w(i)

t+1 − w
(i)
t ∥2

≤ f(wt)−ηt
h∑

i=1

di∑
j=1

(∥w(i)
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∥u(i)
t ∥m
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︸ ︷︷ ︸
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Lidiα
2
uη

2
t

2
(6)

The above inequality follows from the Lipschitz continuity of the gradient. We bound term T1 in the following manner:

T1 ≤ −ηt
h∑

i=1

di∑
j=1

∥w(i)
t ∥m ×

(
[∇if(wt)]j ×

u
(i,j)
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∥u(i)
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√
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G22 log(di)
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t ))

This follows from the fact that ∥u(i)
t ∥m ≤

√
2 log(di)
1−β2

and
√
vt ≤ G. If β2 = 0, then T1 can be bounded as follows:

T1 ≤ −ηt
h∑
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di∑
j=1

√
1

2 log(di)

(
∥w(i)
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)

The rest of the proof for β2 = 0 is similar to argument for the case β2 > 0, which is shown below.
Taking expectation, we have the following:

E[T1] ≤ −ηt
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+ηt

h∑
i=1

di∑
j=1

E
[
αu|[∇if(wt)]j |1(sign([∇if(wt)]j) ̸= sign(g(i)t,j ))

]
Using the bound on the probability that the signs differ, we get:

E[T1] ≤ −ηtαl

√
h(1− β2)

G22 log(d)
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b
.

Substituting the above bound on T1 in equation 6, we have the following bound:

E[f(wt+1)] ≤ f(wt)− ηtαl
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Summing the above inequality for t = 1 to T and using telescoping sum, we have the following inequality:
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Rearranging the terms of the above inequality, and dividing by ηTαl we have:√
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K. Weight-wise Bounding Ratio Distribution

Figure 15. The trigger ratio of the weight-wise trust ratio lower bound during the large-batch training of GPT-2 Medium.

Figure 15 further demonstrates that this lower bound becomes particularly crucial in the latter stages of training. This
observation indicates that maintaining a minimum update magnitude grows increasingly important as the model nears
convergence.
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