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A B S T R A C T   

Developing deep learning models to analyze histology images has been computationally challenging, as the 
massive size of the images causes excessive strain on all parts of the computing pipeline. This paper proposes a 
novel deep learning-based methodology for improving the computational efficiency of histology image classi
fication. The proposed approach is robust when used with images that have reduced input resolution, and it can 
be trained effectively with limited labeled data. Moreover, our approach operates at either the tissue- or slide- 
level, removing the need for laborious patch-level labeling. Our method uses knowledge distillation to trans
fer knowledge from a teacher model pre-trained at high resolution to a student model trained on the same images 
at a considerably lower resolution. Also, to address the lack of large-scale labeled histology image datasets, we 
perform the knowledge distillation in a self-supervised fashion. We evaluate our approach on three distinct 
histology image datasets associated with celiac disease, lung adenocarcinoma, and renal cell carcinoma. Our 
results on these datasets demonstrate that a combination of knowledge distillation and self-supervision allows 
the student model to approach and, in some cases, surpass the teacher model's classification accuracy while being 
much more computationally efficient. Additionally, we observe an increase in student classification performance 
as the size of the unlabeled dataset increases, indicating that there is potential for this method to scale further 
with additional unlabeled data. Our model outperforms the high-resolution teacher model for celiac disease in 
accuracy, F1-score, precision, and recall while requiring 4 times fewer computations. For lung adenocarcinoma, 
our results at 1.25× magnification are within 1.5% of the results for the teacher model at 10× magnification, 
with a reduction in computational cost by a factor of 64. Our model on renal cell carcinoma at 1.25× magni
fication performs within 1% of the teacher model at 5× magnification while requiring 16 times fewer compu
tations. Furthermore, our celiac disease outcomes benefit from additional performance scaling with the use of 
more unlabeled data. In the case of 0.625× magnification, using unlabeled data improves accuracy by 4% over 
the tissue-level baseline. Therefore, our approach can improve the feasibility of deep learning solutions for digital 
pathology on standard computational hardware and infrastructures.   

1. Introduction 

Digital pathology was introduced over 20 years ago to facilitate 
viewing and examining high-resolution scans of histology slides. A 
digital scanning process produces whole-slide images (WSIs), which can 
then be analyzed with computational tools [1,2]. While digital scans 
circumvent traditional microscope use, they introduce new computa
tional challenges. The resulting WSIs can be as large as 150,000 ×
150,000 pixels in size and require a large-scale computational 

infrastructure, including storage capacity, network bandwidth, 
computing power, and graphics processing unit (GPU) memory. 

In recent years, computer vision-based deep learning methods have 
been developed for digital pathology [3–7]; however, their application 
and scope have been limited due to the massive size of WSIs. Fig. 1 il
lustrates the magnitude of a sample histology image. Even with the most 
recent computational advancements, deep learning models for 
analyzing WSIs are still not feasible to run on all except the most 
expensive hardware and GPUs. These computational constraints for 
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analyzing high-resolution WSIs have limited the adoption of deep 
learning solutions in digital pathology. 

This paper addresses this computational bottleneck by implementing 
a deep learning approach designed to operate accurately on lower- 
resolution versions of WSIs. This approach aims to lower the resolu
tion of the input image while minimizing its effect on the classification 
performance. By operating on WSIs with a lower resolution, our 
approach potentially allows for slides to be scanned at a lower resolu
tion, reducing scanning time and computational hardware and infra
structure strain. 

Our proposed methodology is a novel approach to make high- 
resolution histology image analysis more efficient and feasible on 
standard hardware and infrastructure. We seek to prioritize minimizing 
the computational cost while ensuring that the classification accuracy is 
still acceptable. Specifically, we propose a knowledge distillation-based 
method where a teacher model works at a high resolution and a student 
model operates at a low resolution. We aim to distill the teacher model's 
learned representation knowledge into the student model trained at a 
much lower resolution. The knowledge distillation is performed in a self- 
supervised fashion on a larger unlabeled dataset from the same domain. 
Large, labeled datasets are hard to find in the medical field, leading us to 
adopt a self-supervised approach to account for the lack of access to 
sizeable, labeled histology image datasets. This knowledge distillation 
method can increase the model's performance on lower-resolution im
ages while simultaneously saving significant amounts of memory and 
computation. 

2. Related work 

2.1. Histology image classification 

Previously, several methods have been proposed to solve the WSI 

classification problem. Some approaches work by tiling the WSI into 
more reasonably sized patches and learning to classify at the patch level 
[3–6,8–10]. In some recent works, the patch-level predictions are 
aggregated using simple heuristic rules to produce a slide-level predic
tion [3,4,6,8,9]. These rules are modeled after how pathologists classify 
WSIs in clinical practice. In another work, a simple maximum function 
was used on patch-based slide heat maps for whole-slide predictions [5]. 
In [10], the authors use a random forest regression model to combine the 
patch-level predictions and produce the final classification. While these 
methods achieved reasonable overall performance, their analyses are 
fragmented, and they do not incorporate the relevant spatial informa
tion into the training process. We aim to avoid patch-based processing 
since it introduces additional computational overhead that can be 
bypassed with tissue- or slide-based analysis methods. 

Multiple-instance learning (MIL) has been proposed to address the 
slide-level labeling problem [11–16]. MIL is a supervised learning 
scheme where data-points, or instances, are grouped into bags. Each bag 
is labeled with the class by the instance count of that particular class. 
MIL is well-suited towards histology slide classification, as it is designed 
to operate on weakly-labeled data. MIL-based methods better account 
for the weakly-labeled nature of patches, but they still tend to miss the 
holistic slide information. 

Recent work has shown that operating at the slide-level is possible by 
splitting up the computation into discrete units that can be run on 
commodity hardware [17,18]. The overall calculation is equivalent to 
the one performed at the slide-level due to the invariance of most layers 
in a convolutional neural network. This method analyzes WSIs at the 
original high-resolution level to avoid losing larger context and fine 
details. Although this approach helps run large neural networks, it still 
requires considerable computational resources to analyze WSIs at a high 
resolution. 

Attention-based processes have also been suggested for WSI analysis. 

1 mm

100 µm

Fig. 1. A sample WSI intended to show the high resolution and large size of histology images.  
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Attention-based mechanisms divide the high-resolution image into large 
tiles and simultaneously learn the most critical regions of WSIs for each 
class and their labels [19–21]. Although these methods achieve high 
classification performance, they demand substantial computational re
sources to operate on high-resolution images. 

2.2. Self-supervised learning 

Self-supervised learning is a machine learning scheme that allows 
models to learn without explicit labels. Large, unlabeled datasets are 
readily accessible in most domains, and self-supervised methods can 
assist in improving classification performance without requiring 
resource-intensive, manually labeled data. In this scheme, learning oc
curs using a pre-text task on an inherent attribute of the data. As the pre- 
text task operates on an existing data feature, it requires no manual 
intervention and can be easily scaled. Proposed pre-text tasks include 
colorization [23,73], rotation [24,25], jigsaw puzzle [26], and counting 
[27]. Recent studies have explored the invariance of histology images to 
affine transformations, but none use self-supervised learning [28,29]. 
Several other works have proposed self-supervised techniques for his
tology images exploiting domain-specific pre-text tasks, including slide 
magnification prediction [30], nuclei segmentation [31], and spatial 
continuity [32]. In contrast, our work introduces a new pre-text task 
designed to transfer the knowledge present in models trained on high- 
resolution WSIs to ones operating on low-resolution WSIs. 

2.3. Knowledge distillation 

Knowledge distillation has proven to be a valuable technique for 
transferring learned information between distinct models with different 
capacities [33,74]. As models and datasets exponentially increase in 
size, it is critical to adapt our methods accordingly to support less 
powerful devices [35]. Knowledge distillation has been beneficial to 
many areas of computer vision such as semantic segmentation [36], 
facial recognition [37,38], object detection [39], and classification [40]. 
Although some prior work has used knowledge distillation for chest X- 
rays in the medical domain [41], knowledge distillation has not been 

widely used for histology image analysis. 
Initial knowledge distillation studies used neural network output 

activations, called logits, to transfer the learned knowledge from a 
teacher model to a student model [33,35,74]. FitNet built upon this 
knowledge distillation paradigm by suggesting that while the logits are 
important, the intermediate activations also encode the model's 
knowledge [42]. This method proposed adding a regression term to the 
knowledge distillation objective to improve the overall performance of 
the student model while reducing the number of parameters. In this 
paper, we model our architecture after the FitNet approach to maintain 
the spatial correspondence between teacher and student models, as it 
represents clinically relevant information. Of note, in contrast to our 
approach, previous work in this domain does not include self- 
supervision [43]. As we show later in this paper, self-supervision 
proves to be a deciding factor in increasing overall classification per
formance for histology images. 

3. Technical approach 

3.1. Overview 

There are two main phases and one optional phase to our approach as 
follows:  

1. Train-a-teacher model at high magnification on the labeled dataset, 
as explained in Section 3.2.  

2. Train-the-knowledge distillation model on the unlabeled dataset at a 
high to a lower magnification, explained in Section 3.3 and shown in 
Fig. 2.  

3. (Optional) Fine-tune-the-student model using the labeled dataset at a 
lower magnification, as explained in Section 3.3. 

All implementation details are provided in Appendix B of the Sup
plementary Material for reproducibility. 

g(•)

W

H

H / N 

W / N 

Pixel-wise Loss Soft Loss

Feature Extractor Classifier

Feature Extractor

Teacher Model

Student Model

Classifier

Fig. 2. Overview of the knowledge distillation model. The g(⋅) block is a resizing function that scales the teacher feature maps to the same size as the corresponding 
student ones. The Pixel-wise and Soft losses are combined to produce the total loss for the optimization process. 
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3.2. Teacher model 

For the teacher model, we used a residual network (ResNet) [44]. 
ResNet was chosen due to its excellent empirical performance compared 
to other deep learning architectures. We used the built-in ResNet 
PyTorch implementation [45]. 

The teacher model input was high-resolution, annotated slides at 
10× magnification (1 μm/pixel) for celiac disease and lung adenocar
cinoma and 5× magnification (2 μm/pixel) for renal cell carcinoma. 
While our slides were originally scanned at 20× or 40× magnification, 
we used either 5× or 10× magnification in the teacher model to reduce 
the runtime to a more reasonable period. We found that the performance 
gains above 5× or 10× magnification were marginal with an exponen
tial increase in runtime. We performed online data augmentation con
sisting of random perturbations to the color brightness, contrast, hue, 
and saturation, horizontal and vertical flips, and rotations. Additionally, 
each input was standardized by the mean and standard deviation of the 
respective training set across each color channel. 

3.3. Knowledge distillation from high-resolution images 

Knowledge distillation (also referred to as ‘KD’) is a machine 
learning method, where typically, a larger, more complex model 
“teaches” a smaller, simpler student model what to learn [33]. The 
learning occurs by optimizing over a desired commonality between the 
models. We opted to keep the student and teacher model architectures 
identical for our approach and instead modified the input resolution. As 
input data resolution is a significant factor for efficient and accurate 
histology image analysis, we decided that the teacher model should 
receive the original high-resolution image as input while the student 
model receives a low-resolution input image. For optimizing our 
knowledge distillation model, the total loss is the sum of (1) the soft loss 
and (2) the pixel map. These loss components are described below, and 
an overview of our knowledge distillation approach is shown in Fig. 2. 

Losstotal = Losssoft + Losspixel (1) 

To promote classification similarity between the teacher and student 
models, we utilized the Kullback-Leibler (KL) Divergence over the out
puts of the teacher and student models as the loss function [33,46]. 
Additionally, the loss function is “softened” by adding a temperature T 
to the softmax computation. Intuitively, softening the loss function gives 
more weight to smaller outputs, thus transferring information that 
would have been overpowered by greater values. The soft loss is 
computed as follows: 

Losssoft = KL

(

σ
(

Ft
class
̅̅ →

T

)

,σ
(

Fs
class
̅̅ →

T

))

⋅T2 (2)  

where Ft
class
̅̅ →

, Fs
class
̅̅ →

, and σ(⋅) represent the teacher classifier outputs, stu
dent classifier outputs, and softmax function, respectively. Note that we 
multiply by T2since the gradients will scale inversely to this factor [33]. 

To ensure that the teacher and student models focus on similar areas, 
we compute the mean-squared error over the feature map outputs. We 
introduce g1(⋅) and g2(⋅) as the max-pooling and bicubic interpolation 
operations, respectively. We use max-pooling and bicubic interpolation 
for the pixel-wise loss because we found that these two functions provide 
the most consistent performance for the loss function when combined, as 
shown in the Supplementary Material, Appendix A. The pixel-wise loss is 
computed as follows: 
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where Ffe
t and Ffe

s are the outputs of the feature extractor in the teacher 
and student models, respectively. We require the functions g1(⋅) and 
g2(⋅) since the size of the teacher feature map outputs are N2 times larger 

than the student ones, ignoring negligible differences due to rounded 
non-integer dimensions in some instances. 

3.4. Fine-tuning 

After performing the knowledge distillation, we fine-tuned the stu
dent model weights on the lower resolution training dataset. The goal of 
fine-tuning the model is to make minor weight adjustments for maximal 
performance on the labeled data without undoing the learning in the 
previous layers. To this end, all weights were frozen except the ones in 
the fully connected layer. The weights were trained using the Adam 
optimization algorithm [47] until convergence. The data augmentations 
enumerated in Section 3.2 were applied to the input data. Similar to the 
teacher model training, we used the cross-entropy loss to learn ground- 
truth labels in this phase. We opted to skip this phase in experiments 
where the same training set was used across Phases I and II, as it resulted 
in lower classification performance on the validation set due to over
fitting on the training set. 

3.5. Gradient accumulation 

We used gradient accumulation to account for the large and variable 
sizes of the slides. Gradient accumulation computes the forward and 
backward pass changes for each input, but it does not update the model 
weights until all mini-batch backward passes are complete. While 
gradient accumulation does not affect most layers, batch normalization 
layers are affected, as they require operation on a mini-batch to work 
correctly. In our model, instead of batch normalization, we used group 
normalization, which has more consistent performance across varying 
mini-batch sizes [75] due to its independence from the mini-batch 
dimension. This modification allows the model to learn properly with 
gradient accumulation. 

4. Experimental setup 

4.1. Datasets 

We performed our experiments on three independent datasets. One 
dataset was collected from The Cancer Genome Atlas (TCGA) database 
[49], and the other two datasets were collected at Dartmouth-Hitchcock 
Medical Center (DHMC), a tertiary academic medical center in New 
Hampshire, USA. The slides from both TCGA and DHMC were 
hematoxylin-eosin stained formalin-fixed paraffin-embedded. All slides 
were digitized at either 20× or 40× magnification. Every downsampling 
was obtained directly from the original image to avoid any potential 
artifacts caused by a composition of downsamplings. 

Additionally, we chose to leave the slides at their variable, native 
resolutions to avoid introducing bias through standardizing the sizes. To 
generate the required low-resolution WSIs, we used the Lanczos filter to 
create several downsampled versions of each image [50]. We use the 
notation n× magnification relative to the original magnification. For 
example, an originally 20× slide downsampled four times in both height 
and width dimensions would have n = 20/4 = 5 and be denoted 5×. We 
provide image dimension summary statistics for the celiac disease (CD), 
lung adenocarcinoma (LUAD), and renal cell carcinoma (RCC) datasets 
in Table 1. 

This study and the use of human participant data in this project were 
approved by the Dartmouth-Hitchcock Health Institutional Review 
Board (IRB) with a waiver of informed consent. The conducted research 
reported in this article is in accordance with this approved Dartmouth- 
Hitchcock Health IRB protocol and the World Medical Association 
Declaration of Helsinki on Ethical Principles for Medical Research 
involving Human Subjects. 
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4.2. Celiac disease dataset 

Celiac disease (CD) is a disorder that is estimated to impact 1% of the 
population worldwide [51,52]. Diagnosing and treating CD is clinically 
significant, as undiagnosed CD is associated with a higher risk of death 
[51,52]. A duodenal biopsy is considered the gold standard for CD 
diagnosis [53]. A pathologist examines these biopsies under a micro
scope to identify the histologic features associated with CD. 

Our CD dataset comprises 1364 patients distributed across the 
normal, non-specific duodenitis, and celiac sprue classes. Each patient 
had one or more WSIs consisting of one or more tissues. A gastrointes
tinal pathologist diagnosed each slide as either normal, non-specific 
duodenitis, or celiac sprue. 

The CD slides contained significant amounts of white space back
ground. Hence, as a pre-processing step, we used the tissueloc [54] code 
repository to find approximate bounding boxes around the relevant re
gions of the slide using a combination of image morphological opera
tions. This tissue finding process aids in reducing the computational 
burden while simultaneously removing the clinically unimportant 
background regions. 

We partitioned the dataset into a labeled set and an unlabeled 
auxiliary set. The auxiliary dataset (AD) is obtained by ignoring the la
bels. Our labeled dataset is comprised of 300 patients distributed uni
formly across the normal, non-specific duodenitis, and celiac sprue 
classes. A 70% training, 15% validation, and 15% testing split was 
produced by randomly partitioning the patients. In Table 2, we show the 
tissue counts for all datasets. 

We randomly sampled from the CD slides not used in any training, 
validation, or testing datasets for self-supervision. To explore the effects 
of unlabeled dataset size, we created two auxiliary datasets, ADv1 and 
ADv2, such that ADv1⊂ADv2. ADv1 and ADv2 are comprised of 300 and 
1004 patients, respectively. Experimenting with two unlabeled datasets 
allowed us to demonstrate the efficacy of our method as the dataset size 
scales. We also sampled an additional 20 patients from each class to use 
as a proxy development dataset for hyperparameter tuning. The 60-pa
tient development dataset was intended to validate the self-supervision 
process and remained independent from the test set used for evaluation. 
The distribution for these datasets for self-supervised learning is shown 
in Table 2. 

4.3. Lung adenocarcinoma dataset 

Lung cancer is the leading cause of cancer death in the United States 
[76]. Of all histologic subtypes, lung adenocarcinoma (LUAD) is the 
most common pattern [56], and its rates continue to increase [57]. The 
World Health Organization identifies five predominant histologic 
pattern subtypes: lepidic, acinar, papillary, micropapillary, and solid for 

lung adenocarcinoma [58]. The classification of lung adenocarcinoma 
subtypes on histology slides has proven to be particularly challenging, as 
over 80% of cases contain mixtures of multiple patterns [59,60]. 

Our LUAD dataset was randomly split into two sets, with 235 slides 
for training and 34 slides for testing. A thoracic pathologist annotated 
both the training and testing sets for predominant subtypes, where every 
annotated tissue region contains only one pattern. Each slide in the 
training and testing set consists of at least one annotated tissue region. 
Some training and testing slides contained benign lung tissue, which we 
excluded as it is not related to the cancer subtypes. Given the consid
erably smaller size of this dataset compared to the CD dataset, we did not 
perform any experiments on varying unlabeled dataset sizes and used 
the entire training set for all analyses. No hyperparameter tuning was 
performed for this model, and we used the same configuration as the CD 
equivalent. The distribution of the LUAD data is presented in Table 3 for 
both training and testing sets. 

4.4. Renal cell carcinoma dataset 

Kidney cancer is one of the most common cancers worldwide [61]. 
Renal cell carcinoma (RCC) accounts for 90% of all kidney cancer di
agnoses [61,62]. The major RCC subtypes are clear cell, papillary, and 
chromophobe in order of decreasing incidence [63]. It is critical to 
identify these histologic subtypes effectively as RCC incidence has been 
increasing over the past few decades and subtypes require different 
treatment strategies [64,65]. 

Our RCC dataset was randomly split into two sets, with 617 slides for 
training and 265 slides for testing. Renal pathologists classified all slides 
into one of the subtypes. Additionally, each slide may consist of more 
than one tissue. Like the CD dataset, we utilized the tissueloc [54] li
brary to remove the significant white space background. We performed 
neither unlabeled dataset experimentation nor hyperparameter tuning 
and used the pre-determined hyperparameters from our CD experi
ments. The counts for all datasets and classes are shown in Table 4. 

Table 1 
Summary of image resolutions and dimensions for each dataset. The image height and width values are in pixels.  

Dataset Resolution 

Median Maximum Interquartile range 

Height Width Height Width Height Width 

CD 10× (1 μm/pixel)  1934  1550 11,880 6408 1454–2494 1170–2016 
LUAD 10× (1 μm/pixel)  1267  1428 12,780 19,702 817–2062 922–2239 
RCC 5× (2 μm/pixel)  7152  8424 16,832 19,304 4358–8908 4946–11,268  

Table 2 
Distribution of the CD tissues for all datasets used in the model. The class counts for the self-supervised datasets ADv1 and ADv2 are only provided as a reference, and 
this class information was not used in the self-supervision process.  

Class 

Supervised Self-supervised 

Training Validation Testing ADv1 ADv2 Development 

Normal  1182  253  241  4774 16,661  441 
Non-specific duodenitis  2202  390  469  130 265  583 
Celiac sprue  2524  524  529  416 1799  921  

Table 3 
Distribution of the LUAD tissues for all datasets used in the model. The counts 
correspond to the annotations provided by the pathologist.  

Class Training Testing 

Lepidic  514  81 
Acinar  691  124 
Papillary  43  9 
Micropapillary  411  55 
Solid  424  36  
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4.5. Implementation details 

We evaluated all models on the labeled test set corresponding to each 
training dataset. No data augmentation was applied to the test sets 
beyond standardizing the color channels by the mean and standard 
deviation of the respective labeled training sets. To evaluate our clas
sification performance, we used accuracy, F1-score, precision, and 
recall. These metrics were computed in a one-vs.-rest fashion for each 
class. We computed the mean value for each metric by macro-averaging 
over all classes. The 95% confidence intervals (CIs) were produced using 
bootstrapping on the test set for 10,000 iterations. We calculate each 
model's computational cost by counting the billions of floating-point 
operations (GFLOPS) for a forward pass of that model. Using the num
ber of GFLOPS allows us to evaluate the performance gains while also 
considering the computational cost. All experiments were performed on 
either a single NVIDIA Titan RTX or Quadro RTX 8000 GPU. 

4.5.1. Teacher model 
We trained the teacher model on high-resolution input images at 

10× magnification for CD and LUAD, and 5× for RCC. The He initiali
zation scheme [66] was used to initialize the weights. We utilized the 
Adam optimization algorithm [47] for 100 epochs of training with a 
learning rate of 0.001. The Adam optimizer minimized the cross-entropy 
loss function with respect to the ground-truth slide labels. 

4.5.2. Baseline 
All baseline models were trained on a specified magnification from 

randomly initialized weights using the He initialization scheme [66]. We 
used the same ResNet architecture as the teacher model for these 
baselines. 

4.5.3. KD 
Our knowledge distillation (KD) approach consists of a teacher 

model described above and a student model of the same ResNet archi
tecture. We initialize the student model using the He initialization 
scheme [66] and the teacher model using the saved weights. The teacher 
model weights are frozen and only the student model weights are 
updated during this phase. In contrast to the standard ResNet architec
ture, we use both the final convolutional and fully connected layer 
outputs as our unlabeled hints and feature recognition knowledge, 
respectively. We use the labeled training and validation sets for the 
distillation and ignore the labels in the self-supervised part of our 
approach. As explained in Section 3.4, we do not apply fine-tuning for 
these experiments as it contributes to overfitting according to our vali
dation set. 

4.5.4. KD (AD) 
The knowledge distillation approach using the auxiliary datasets in 

this paper is similar to stock distillation [33]. The main difference is that 
we utilized unlabeled auxiliary datasets for self-supervised learning 
instead of using a labeled dataset. 

5. Results 

In Table 5, we present the results of the teacher model trained from 
scratch at 10× magnification for the CD and LUAD test sets, and at 5×
magnification for the RCC test set. 

We present the results of our proposed approach for all tested mag
nifications in Tables 6, 7, and 8. The performance and computational 
costs of our models are shown in Fig. 3. Additionally, we provide Grad- 
CAM++ visualizations in the Supplementary Material, Appendix C, to 
show that our method identifies clinically relevant features [67]. 

6. Discussion 

As presented in Table 6, our KD method outperforms the baseline 
metrics in all trials for celiac disease. The lung adenocarcinoma results 
in Table 7 show that our approach improves performance for 0.625×
(16 μm/pixel), 1.25× (8 μm/pixel), and 2.5× (4 μm/pixel) and is equal 
to the baseline performance for 5× (2 μm/pixel) input images. This 
outcome is consistent with our 5× results on the CD dataset without the 
AD self-supervision phase. As shown in Table 8, our method provides a 
benefit on all magnifications for renal cell carcinoma but decreases in 
performance at 2.5× magnification compared to 1.25× magnification. 
This result is consistent with the CD KD results without the auxiliary 
dataset. 

While adding more data helped increase CD classification accuracy 
at 0.625× magnification by over 4%, this performance benefit narrowed 
as the magnification increased further. This trend can be seen in Fig. 3, 
where the test set accuracy curves approach each other as the compu
tational cost grows. Most importantly, our method outperforms the 
baseline at 10× magnification for the distillation approaches on the 
auxiliary dataset. This performance gain comes with at least a 4-factor 
reduction in computational cost. 

Using our model to maintain accurate classification performance 
while minimizing computational cost could facilitate scanning histology 
slides at a much lower resolution. According to the Digital Pathology 
Association, scanners cost up to $300,000 depending on the configura
tion [68]. Reducing the scanning resolution could have a two-fold 
benefit, potentially lessening the scan time and scanner cost. To this 
end, histology slides could be scanned at a lower magnification and only 
inspected at higher magnification in challenging cases. In addition, 
storing and analyzing lower resolution WSIs would be less burdensome 
on the computational infrastructure. Instead of investing in complex 
data solutions, pathology laboratories could migrate to cloud-based 
services to manage and analyze smaller datasets using standard 
network bandwidth [69–71]. Using cloud solutions in the medical 
domain is still not widespread. However, our approach could provide a 
viable option for this emerging application. 

There are still some improvement areas for our work, namely eval
uating our model on additional datasets from different institutions. 
While our method was validated on three datasets, two of them are from 
our institution and may contain inherent biases in staining and slide 
preparation. Additionally, with more datasets, we would be able to 
investigate the scaling effects of self-supervised learning beyond the size 
of our existing dataset. The impact of scaling could prove especially 
useful for smaller healthcare facilities that may not have the capabilities 
to collect and label data as required for training a typical deep learning 
model for histology image analysis. In addition to larger datasets, it is 
crucial to explore the efficacy of this methodology on more slides from 
different medical centers and for various diseases to evaluate the 
generalizability of our proposed approach. 

Table 4 
Distribution of the RCC tissues for all datasets used in the model. The counts 
correspond to the slide-level classifications provided by the pathologists.  

Class Training Testing 

Chromophobe 90 42 
Papillary 312 128 
Clear cell 432 194  

Table 5 
Results and the corresponding 95% CIs for the teacher model as percentages. The 
above results were obtained on the respective test sets, detailed in Sections 4.2, 
4.3, and 4.4.   

CD LUAD RCC 

Accuracy 87.06 (85.65–88.48) 94.51 (92.77–96.20) 90.16 (87.62–92.57) 
F1-Score 75.44 (72.31–78.51) 80.43 (70.86–88.17) 80.09 (74.02–85.64) 
Precision 75.62 (72.55–78.66) 80.41 (70.55–89.56) 78.54 (72.75–84.13) 
Recall 77.15 (74.19–80.06) 81.67 (71.20–90.43) 85.19 (80.07–89.70)  
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Although the trained models can be used on WSIs with lower reso
lutions, our method still requires high-resolution WSIs during training. 
While reducing the computational requirements of the inference stage is 
always beneficial, there is no reduction in cost for training the teacher 
model or the self-supervised and knowledge-distillation models. This 
weakness is an active area of investigation in our future work. One 
possibility is using transfer learning to adapt a pre-trained model to an 
alternative high-resolution histology dataset. A method that utilizes 
transfer learning in this fashion would remove the burden of continu
ously retraining teacher models for each new dataset. Lastly, we plan to 
extend our visualization beyond Grad-CAM++. While Grad-CAM++

provides some insight into the black-box model, it still lacks 

interpretability and crucial information for pathologists to make 
meaningful diagnoses. 

7. Conclusion 

This work demonstrated that knowledge distillation could be applied 
to histology image analysis and further improved by self-supervision. 
We showed that our method both improves performance at signifi
cantly lower computational cost and scales with dataset size. The 
empirical evidence presented proves that it is possible to transfer in
formation learned across magnifications and still produce clinically 
meaningful results. Our approach allows for scanning WSIs at signifi
cantly lower resolution while having little to no classification accuracy 
degradation. Our method also removes a major computational bottle
neck in using deep learning for histology image analysis and opens new 
opportunities for this technology to be integrated into the pathology 

Table 6 
Results for celiac disease baseline and KD approaches as percentages with corresponding 95% CIs. Baseline models were trained from scratch until convergence on the 
corresponding magnification. The KD model without an auxiliary dataset was trained using the labeled dataset. Boldface text indicates the best-performing model for 
each magnification and metric.   

Celiac disease 

Baseline KD KD (ADv1) KD (ADv2) 

mag ¼ 0.625£ (16 μm/pixel) 
Accuracy 79.11 (77.74–80.54) 81.31 (79.91–82.72) 82.55 (81.15–83.97) 83.17 (81.75–84.61) 
F1-Score 55.72 (52.08–59.34) 64.16 (60.92–67.37) 64.95 (61.43–68.45) 66.83 (63.46–70.14) 
Precision 56.20 (52.40–59.96) 64.27 (60.91–67.56) 66.65 (62.94–70.32) 67.21 (63.78–70.52) 
Recall 55.67 (52.17–59.16) 65.13 (62.06–68.20) 64.11 (60.64–67.61) 69.29 (66.06–72.42)  

mag ¼ 1.25£ (8 μm/pixel) 
Accuracy 82.70 (81.23–84.14) 84.03 (82.61–85.47) 84.43 (83.01–85.85) 84.87 (83.40–86.32) 
F1-Score 65.06 (61.55–68.43) 70.49 (67.45–73.55) 69.75 (66.53–72.94) 71.20 (67.89–74.40) 
Precision 65.06 (61.51–68.48) 70.53 (67.39–73.66) 69.32 (66.13–72.51) 71.14 (67.81–74.35) 
Recall 65.22 (61.70–68.63) 71.06 (68.10–74.02) 70.95 (67.72–74.17) 73.56 (70.40–76.61)  

mag ¼ 2.5£ (4 μm/pixel) 
Accuracy 83.71 (82.29–85.17) 85.68 (84.25–87.13) 85.38 (83.94–86.78) 85.83 (84.38–87.27) 
F1-Score 68.32 (64.92–71.66) 73.01 (69.94–76.03) 72.39 (69.21–75.41) 73.56 (70.42–76.64) 
Precision 68.23 (64.77–71.67) 74.74 (71.57–77.90) 72.99 (69.76–76.06) 73.61 (70.44–76.68) 

Recall 68.57 (65.13–71.98) 74.67 (71.99–77.28) 75.67 (72.86–78.34) 76.43 (73.61–79.17)  

mag ¼ 5£ (2 μm/pixel) 
Accuracy 86.15 (84.71–87.61) 85.74 (84.28–87.21) 86.99 (85.54–88.46) 87.20 (85.78–88.62) 

F1-Score 73.42 (70.15–76.63) 73.27 (70.19–76.33) 75.07 (71.89–78.17) 75.86 (72.71–78.92) 
Precision 73.44 (70.12–76.68) 75.10 (71.91–78.23) 76.46 (73.42–79.44) 76.07 (72.95–79.13) 
Recall 73.65 (70.41–76.93) 74.82 (72.16–77.51) 78.00 (75.18–80.72) 77.41 (74.41–80.35)  

Table 7 
Results for lung adenocarcinoma baseline and KD approaches as percentages 
with corresponding 95% CIs. Baseline models were trained from scratch until 
convergence on the corresponding magnification. Boldface text indicates the 
best-performing model for each magnification and metric.   

Lung adenocarcinoma 

Baseline KD 

mag ¼ 0.625£(16 μm/pixel) 
Accuracy 88.00 (86.07–89.95) 89.32 (87.37–91.26) 

F1-Score 54.38 (46.12–64.67) 57.75 (49.74–68.32) 
Precision 57.75 (45.53–74.19) 60.95 (48.76–77.30) 
Recall 55.98 (48.72–64.62) 58.29 (51.06–67.19)  

mag ¼ 1.25£(8 μm/pixel) 
Accuracy 90.45 (88.52–92.40) 93.29 (91.44–95.09) 
F1-Score 67.57 (56.49–77.07) 73.17 (63.03–82.70) 
Precision 69.85 (55.79–80.25) 76.28 (62.54–87.58) 
Recall 68.32 (58.07–78.98) 73.02 (63.99–83.26)  

mag ¼ 2.5£(4 μm/pixel) 
Accuracy 93.14 (91.25–94.94) 93.74 (91.94–95.49) 
F1-Score 72.84 (64.11–81.28) 71.88 (64.13–81.07) 
Precision 72.03 (63.53–81.02) 73.56 (64.22–87.48) 
Recall 75.51 (65.39–86.16) 72.69 (65.27–82.38)  

mag ¼ 5£(2 μm/pixel) 
Accuracy 94.18 (92.40–95.85) 94.18 (92.45–95.85) 
F1-Score 75.33 (66.30–84.23) 79.63 (69.80–87.41) 
Precision 76.85 (66.27–88.75) 79.75 (69.62–88.88) 
Recall 75.45 (66.74–85.65) 82.00 (71.36–90.62)  

Table 8 
Results for renal cell carcinoma baseline and KD approaches as percentages with 
corresponding 95% CIs. Baseline models were trained from scratch until 
convergence on the corresponding magnification. Boldface text indicates the 
best-performing model for each magnification and metric.   

Renal cell carcinoma 

Baseline KD 

mag ¼ 0.625£(16 μm/pixel) 
Accuracy 82.39 (79.80–85.02) 85.11 (82.45–87.83) 
F1-Score 62.21 (55.38–68.97) 66.41 (59.35–73.31) 
Precision 61.38 (54.99–67.89) 69.66 (63.31–75.99) 
Recall 64.81 (57.33–72.37) 68.68 (61.32–75.66)  

mag ¼ 1.25£(8 μm/pixel) 
Accuracy 87.44 (84.77–90.06) 89.11 (86.54–91.61) 
F1-Score 73.73 (66.99–80.17) 77.10 (70.91–82.99) 
Precision 72.38 (65.91–78.88) 75.66 (69.99–81.28) 
Recall 76.73 (69.62–83.27) 82.64 (76.48–88.01)  

mag ¼ 2.5£(4 μm/pixel) 
Accuracy 88.24 (85.72–90.76) 88.39 (85.74–90.92) 
F1-Score 75.42 (68.94–81.40) 75.84 (69.57–81.71) 
Precision 73.94 (67.87–79.84) 75.34 (69.70–80.85) 
Recall 79.78 (73.25–85.74) 81.72 (76.06–86.76)  
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