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Developing deep learning models to analyze histology images has been computationally challenging, as the
massive size of the images causes excessive strain on all parts of the computing pipeline. This paper proposes a
novel deep learning-based methodology for improving the computational efficiency of histology image classi-
fication. The proposed approach is robust when used with images that have reduced input resolution, and it can
be trained effectively with limited labeled data. Moreover, our approach operates at either the tissue- or slide-
level, removing the need for laborious patch-level labeling. Our method uses knowledge distillation to trans-
fer knowledge from a teacher model pre-trained at high resolution to a student model trained on the same images
at a considerably lower resolution. Also, to address the lack of large-scale labeled histology image datasets, we
perform the knowledge distillation in a self-supervised fashion. We evaluate our approach on three distinct
histology image datasets associated with celiac disease, lung adenocarcinoma, and renal cell carcinoma. Our
results on these datasets demonstrate that a combination of knowledge distillation and self-supervision allows
the student model to approach and, in some cases, surpass the teacher model's classification accuracy while being
much more computationally efficient. Additionally, we observe an increase in student classification performance
as the size of the unlabeled dataset increases, indicating that there is potential for this method to scale further
with additional unlabeled data. Our model outperforms the high-resolution teacher model for celiac disease in
accuracy, F1-score, precision, and recall while requiring 4 times fewer computations. For lung adenocarcinoma,
our results at 1.25x magnification are within 1.5% of the results for the teacher model at 10x magnification,
with a reduction in computational cost by a factor of 64. Our model on renal cell carcinoma at 1.25x magni-
fication performs within 1% of the teacher model at 5x magnification while requiring 16 times fewer compu-
tations. Furthermore, our celiac disease outcomes benefit from additional performance scaling with the use of
more unlabeled data. In the case of 0.625x magnification, using unlabeled data improves accuracy by 4% over
the tissue-level baseline. Therefore, our approach can improve the feasibility of deep learning solutions for digital
pathology on standard computational hardware and infrastructures.

infrastructure, including storage capacity, network bandwidth,
computing power, and graphics processing unit (GPU) memory.

1. Introduction

Digital pathology was introduced over 20 years ago to facilitate
viewing and examining high-resolution scans of histology slides. A
digital scanning process produces whole-slide images (WSIs), which can
then be analyzed with computational tools [1,2]. While digital scans
circumvent traditional microscope use, they introduce new computa-
tional challenges. The resulting WSIs can be as large as 150,000 x
150,000 pixels in size and require a large-scale computational

In recent years, computer vision-based deep learning methods have
been developed for digital pathology [3-71]; however, their application
and scope have been limited due to the massive size of WSIs. Fig. 1 il-
lustrates the magnitude of a sample histology image. Even with the most
recent computational advancements, deep learning models for
analyzing WSIs are still not feasible to run on all except the most
expensive hardware and GPUs. These computational constraints for
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analyzing high-resolution WSIs have limited the adoption of deep
learning solutions in digital pathology.

This paper addresses this computational bottleneck by implementing
a deep learning approach designed to operate accurately on lower-
resolution versions of WSIs. This approach aims to lower the resolu-
tion of the input image while minimizing its effect on the classification
performance. By operating on WSIs with a lower resolution, our
approach potentially allows for slides to be scanned at a lower resolu-
tion, reducing scanning time and computational hardware and infra-
structure strain.

Our proposed methodology is a novel approach to make high-
resolution histology image analysis more efficient and feasible on
standard hardware and infrastructure. We seek to prioritize minimizing
the computational cost while ensuring that the classification accuracy is
still acceptable. Specifically, we propose a knowledge distillation-based
method where a teacher model works at a high resolution and a student
model operates at a low resolution. We aim to distill the teacher model's
learned representation knowledge into the student model trained at a
much lower resolution. The knowledge distillation is performed in a self-
supervised fashion on a larger unlabeled dataset from the same domain.
Large, labeled datasets are hard to find in the medical field, leading us to
adopt a self-supervised approach to account for the lack of access to
sizeable, labeled histology image datasets. This knowledge distillation
method can increase the model's performance on lower-resolution im-
ages while simultaneously saving significant amounts of memory and
computation.

2. Related work
2.1. Histology image classification

Previously, several methods have been proposed to solve the WSI
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classification problem. Some approaches work by tiling the WSI into
more reasonably sized patches and learning to classify at the patch level
[3-6,8-10]. In some recent works, the patch-level predictions are
aggregated using simple heuristic rules to produce a slide-level predic-
tion [3,4,6,8,9]. These rules are modeled after how pathologists classify
WSIs in clinical practice. In another work, a simple maximum function
was used on patch-based slide heat maps for whole-slide predictions [5].
In [10], the authors use a random forest regression model to combine the
patch-level predictions and produce the final classification. While these
methods achieved reasonable overall performance, their analyses are
fragmented, and they do not incorporate the relevant spatial informa-
tion into the training process. We aim to avoid patch-based processing
since it introduces additional computational overhead that can be
bypassed with tissue- or slide-based analysis methods.

Multiple-instance learning (MIL) has been proposed to address the
slide-level labeling problem [11-16]. MIL is a supervised learning
scheme where data-points, or instances, are grouped into bags. Each bag
is labeled with the class by the instance count of that particular class.
MIL is well-suited towards histology slide classification, as it is designed
to operate on weakly-labeled data. MIL-based methods better account
for the weakly-labeled nature of patches, but they still tend to miss the
holistic slide information.

Recent work has shown that operating at the slide-level is possible by
splitting up the computation into discrete units that can be run on
commodity hardware [17,18]. The overall calculation is equivalent to
the one performed at the slide-level due to the invariance of most layers
in a convolutional neural network. This method analyzes WSIs at the
original high-resolution level to avoid losing larger context and fine
details. Although this approach helps run large neural networks, it still
requires considerable computational resources to analyze WSIs at a high
resolution.

Attention-based processes have also been suggested for WSI analysis.

Fig. 1. A sample WSI intended to show the high resolution and large size of histology images.
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Attention-based mechanisms divide the high-resolution image into large
tiles and simultaneously learn the most critical regions of WSIs for each
class and their labels [19-21]. Although these methods achieve high
classification performance, they demand substantial computational re-
sources to operate on high-resolution images.

2.2. Self-supervised learning

Self-supervised learning is a machine learning scheme that allows
models to learn without explicit labels. Large, unlabeled datasets are
readily accessible in most domains, and self-supervised methods can
assist in improving classification performance without requiring
resource-intensive, manually labeled data. In this scheme, learning oc-
curs using a pre-text task on an inherent attribute of the data. As the pre-
text task operates on an existing data feature, it requires no manual
intervention and can be easily scaled. Proposed pre-text tasks include
colorization [23,73], rotation [24,25], jigsaw puzzle [26], and counting
[27]. Recent studies have explored the invariance of histology images to
affine transformations, but none use self-supervised learning [28,29].
Several other works have proposed self-supervised techniques for his-
tology images exploiting domain-specific pre-text tasks, including slide
magnification prediction [30], nuclei segmentation [31], and spatial
continuity [32]. In contrast, our work introduces a new pre-text task
designed to transfer the knowledge present in models trained on high-
resolution WSIs to ones operating on low-resolution WSIs.

2.3. Knowledge distillation

Knowledge distillation has proven to be a valuable technique for
transferring learned information between distinct models with different
capacities [33,74]. As models and datasets exponentially increase in
size, it is critical to adapt our methods accordingly to support less
powerful devices [35]. Knowledge distillation has been beneficial to
many areas of computer vision such as semantic segmentation [36],
facial recognition [37,38], object detection [39], and classification [40].
Although some prior work has used knowledge distillation for chest X-
rays in the medical domain [41], knowledge distillation has not been
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widely used for histology image analysis.

Initial knowledge distillation studies used neural network output
activations, called logits, to transfer the learned knowledge from a
teacher model to a student model [33,35,74]. FitNet built upon this
knowledge distillation paradigm by suggesting that while the logits are
important, the intermediate activations also encode the model's
knowledge [42]. This method proposed adding a regression term to the
knowledge distillation objective to improve the overall performance of
the student model while reducing the number of parameters. In this
paper, we model our architecture after the FitNet approach to maintain
the spatial correspondence between teacher and student models, as it
represents clinically relevant information. Of note, in contrast to our
approach, previous work in this domain does not include self-
supervision [43]. As we show later in this paper, self-supervision
proves to be a deciding factor in increasing overall classification per-
formance for histology images.

3. Technical approach
3.1. Overview

There are two main phases and one optional phase to our approach as
follows:

1. Train-a-teacher model at high magnification on the labeled dataset,
as explained in Section 3.2.

2. Train-the-knowledge distillation model on the unlabeled dataset at a
high to a lower magnification, explained in Section 3.3 and shown in
Fig. 2.

3. (Optional) Fine-tune-the-student model using the labeled dataset at a
lower magnification, as explained in Section 3.3.

All implementation details are provided in Appendix B of the Sup-
plementary Material for reproducibility.

Teacher Model

Feature Extractor 90

Classifier

Student Model

Feature Extractor

Classifier

Fig. 2. Overview of the knowledge distillation model. The g(-) block is a resizing function that scales the teacher feature maps to the same size as the corresponding
student ones. The Pixel-wise and Soft losses are combined to produce the total loss for the optimization process.
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3.2. Teacher model

For the teacher model, we used a residual network (ResNet) [44].
ResNet was chosen due to its excellent empirical performance compared
to other deep learning architectures. We used the built-in ResNet
PyTorch implementation [45].

The teacher model input was high-resolution, annotated slides at
10x magnification (1 pm/pixel) for celiac disease and lung adenocar-
cinoma and 5x magnification (2 pm/pixel) for renal cell carcinoma.
While our slides were originally scanned at 20x or 40x magnification,
we used either 5x or 10x magnification in the teacher model to reduce
the runtime to a more reasonable period. We found that the performance
gains above 5x or 10x magnification were marginal with an exponen-
tial increase in runtime. We performed online data augmentation con-
sisting of random perturbations to the color brightness, contrast, hue,
and saturation, horizontal and vertical flips, and rotations. Additionally,
each input was standardized by the mean and standard deviation of the
respective training set across each color channel.

3.3. Knowledge distillation from high-resolution images

Knowledge distillation (also referred to as ‘KD’) is a machine
learning method, where typically, a larger, more complex model
“teaches” a smaller, simpler student model what to learn [33]. The
learning occurs by optimizing over a desired commonality between the
models. We opted to keep the student and teacher model architectures
identical for our approach and instead modified the input resolution. As
input data resolution is a significant factor for efficient and accurate
histology image analysis, we decided that the teacher model should
receive the original high-resolution image as input while the student
model receives a low-resolution input image. For optimizing our
knowledge distillation model, the total loss is the sum of (1) the soft loss
and (2) the pixel map. These loss components are described below, and
an overview of our knowledge distillation approach is shown in Fig. 2.

Lossipar = L0SSsop + LOSSpiver @

To promote classification similarity between the teacher and student
models, we utilized the Kullback-Leibler (KL) Divergence over the out-
puts of the teacher and student models as the loss function [33,46].
Additionally, the loss function is “softened” by adding a temperature T
to the softmax computation. Intuitively, softening the loss function gives
more weight to smaller outputs, thus transferring information that
would have been overpowered by greater values. The soft loss is
computed as follows:

F! F
Loss,on = KL (cs (}) .6 (}) > -T? ©)

_ —
where Fi ., Fy.., and o(-) represent the teacher classifier outputs, stu-
dent classifier outputs, and softmax function, respectively. Note that we
multiply by T?since the gradients will scale inversely to this factor [33].

To ensure that the teacher and student models focus on similar areas,
we compute the mean-squared error over the feature map outputs. We
introduce g1(-) and ga(-) as the max-pooling and bicubic interpolation
operations, respectively. We use max-pooling and bicubic interpolation
for the pixel-wise loss because we found that these two functions provide
the most consistent performance for the loss function when combined, as
shown in the Supplementary Material, Appendix A. The pixel-wise loss is
computed as follows:

1 2 ‘
Losspixel = E.Zk:] 8k <F}c> - F}E

where Ffet and Fy’ are the outputs of the feature extractor in the teacher
and student models, respectively. We require the functions g;(-) and
g2(+) since the size of the teacher feature map outputs are N? times larger

2

3)

Artificial Intelligence In Medicine 119 (2021) 102136

than the student ones, ignoring negligible differences due to rounded
non-integer dimensions in some instances.

3.4. Fine-tuning

After performing the knowledge distillation, we fine-tuned the stu-
dent model weights on the lower resolution training dataset. The goal of
fine-tuning the model is to make minor weight adjustments for maximal
performance on the labeled data without undoing the learning in the
previous layers. To this end, all weights were frozen except the ones in
the fully connected layer. The weights were trained using the Adam
optimization algorithm [47] until convergence. The data augmentations
enumerated in Section 3.2 were applied to the input data. Similar to the
teacher model training, we used the cross-entropy loss to learn ground-
truth labels in this phase. We opted to skip this phase in experiments
where the same training set was used across Phases I and I, as it resulted
in lower classification performance on the validation set due to over-
fitting on the training set.

3.5. Gradient accumulation

We used gradient accumulation to account for the large and variable
sizes of the slides. Gradient accumulation computes the forward and
backward pass changes for each input, but it does not update the model
weights until all mini-batch backward passes are complete. While
gradient accumulation does not affect most layers, batch normalization
layers are affected, as they require operation on a mini-batch to work
correctly. In our model, instead of batch normalization, we used group
normalization, which has more consistent performance across varying
mini-batch sizes [75] due to its independence from the mini-batch
dimension. This modification allows the model to learn properly with
gradient accumulation.

4. Experimental setup
4.1. Datasets

We performed our experiments on three independent datasets. One
dataset was collected from The Cancer Genome Atlas (TCGA) database
[49], and the other two datasets were collected at Dartmouth-Hitchcock
Medical Center (DHMC), a tertiary academic medical center in New
Hampshire, USA. The slides from both TCGA and DHMC were
hematoxylin-eosin stained formalin-fixed paraffin-embedded. All slides
were digitized at either 20x or 40 x magnification. Every downsampling
was obtained directly from the original image to avoid any potential
artifacts caused by a composition of downsamplings.

Additionally, we chose to leave the slides at their variable, native
resolutions to avoid introducing bias through standardizing the sizes. To
generate the required low-resolution WSIs, we used the Lanczos filter to
create several downsampled versions of each image [50]. We use the
notation nx magnification relative to the original magnification. For
example, an originally 20x slide downsampled four times in both height
and width dimensions would have n = 20/4 = 5 and be denoted 5x. We
provide image dimension summary statistics for the celiac disease (CD),
lung adenocarcinoma (LUAD), and renal cell carcinoma (RCC) datasets
in Table 1.

This study and the use of human participant data in this project were
approved by the Dartmouth-Hitchcock Health Institutional Review
Board (IRB) with a waiver of informed consent. The conducted research
reported in this article is in accordance with this approved Dartmouth-
Hitchcock Health IRB protocol and the World Medical Association
Declaration of Helsinki on Ethical Principles for Medical Research
involving Human Subjects.
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Table 1
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Summary of image resolutions and dimensions for each dataset. The image height and width values are in pixels.

Median Maximum Interquartile range
Dataset Resolution Height Width Height Width Height Width
CD 10x (1 pm/pixel) 1934 1550 11,880 6408 1454-2494 1170-2016
LUAD 10x (1 pm/pixel) 1267 1428 12,780 19,702 817-2062 922-2239
RCC 5x (2 pm/pixel) 7152 8424 16,832 19,304 4358-8908 4946-11,268

4.2. Celiac disease dataset

Celiac disease (CD) is a disorder that is estimated to impact 1% of the
population worldwide [51,52]. Diagnosing and treating CD is clinically
significant, as undiagnosed CD is associated with a higher risk of death
[51,52]. A duodenal biopsy is considered the gold standard for CD
diagnosis [53]. A pathologist examines these biopsies under a micro-
scope to identify the histologic features associated with CD.

Our CD dataset comprises 1364 patients distributed across the
normal, non-specific duodenitis, and celiac sprue classes. Each patient
had one or more WSIs consisting of one or more tissues. A gastrointes-
tinal pathologist diagnosed each slide as either normal, non-specific
duodenitis, or celiac sprue.

The CD slides contained significant amounts of white space back-
ground. Hence, as a pre-processing step, we used the tissueloc [54] code
repository to find approximate bounding boxes around the relevant re-
gions of the slide using a combination of image morphological opera-
tions. This tissue finding process aids in reducing the computational
burden while simultaneously removing the clinically unimportant
background regions.

We partitioned the dataset into a labeled set and an unlabeled
auxiliary set. The auxiliary dataset (AD) is obtained by ignoring the la-
bels. Our labeled dataset is comprised of 300 patients distributed uni-
formly across the normal, non-specific duodenitis, and celiac sprue
classes. A 70% training, 15% validation, and 15% testing split was
produced by randomly partitioning the patients. In Table 2, we show the
tissue counts for all datasets.

We randomly sampled from the CD slides not used in any training,
validation, or testing datasets for self-supervision. To explore the effects
of unlabeled dataset size, we created two auxiliary datasets, ADv1 and
ADv2, such that ADvlcADv2. ADv1 and ADv2 are comprised of 300 and
1004 patients, respectively. Experimenting with two unlabeled datasets
allowed us to demonstrate the efficacy of our method as the dataset size
scales. We also sampled an additional 20 patients from each class to use
as a proxy development dataset for hyperparameter tuning. The 60-pa-
tient development dataset was intended to validate the self-supervision
process and remained independent from the test set used for evaluation.
The distribution for these datasets for self-supervised learning is shown
in Table 2.

4.3. Lung adenocarcinoma dataset

Lung cancer is the leading cause of cancer death in the United States
[76]. Of all histologic subtypes, lung adenocarcinoma (LUAD) is the
most common pattern [56], and its rates continue to increase [57]. The
World Health Organization identifies five predominant histologic
pattern subtypes: lepidic, acinar, papillary, micropapillary, and solid for

Table 2

lung adenocarcinoma [58]. The classification of lung adenocarcinoma
subtypes on histology slides has proven to be particularly challenging, as
over 80% of cases contain mixtures of multiple patterns [59,60].

Our LUAD dataset was randomly split into two sets, with 235 slides
for training and 34 slides for testing. A thoracic pathologist annotated
both the training and testing sets for predominant subtypes, where every
annotated tissue region contains only one pattern. Each slide in the
training and testing set consists of at least one annotated tissue region.
Some training and testing slides contained benign lung tissue, which we
excluded as it is not related to the cancer subtypes. Given the consid-
erably smaller size of this dataset compared to the CD dataset, we did not
perform any experiments on varying unlabeled dataset sizes and used
the entire training set for all analyses. No hyperparameter tuning was
performed for this model, and we used the same configuration as the CD
equivalent. The distribution of the LUAD data is presented in Table 3 for
both training and testing sets.

4.4. Renal cell carcinoma dataset

Kidney cancer is one of the most common cancers worldwide [61].
Renal cell carcinoma (RCC) accounts for 90% of all kidney cancer di-
agnoses [61,62]. The major RCC subtypes are clear cell, papillary, and
chromophobe in order of decreasing incidence [63]. It is critical to
identify these histologic subtypes effectively as RCC incidence has been
increasing over the past few decades and subtypes require different
treatment strategies [64,65].

Our RCC dataset was randomly split into two sets, with 617 slides for
training and 265 slides for testing. Renal pathologists classified all slides
into one of the subtypes. Additionally, each slide may consist of more
than one tissue. Like the CD dataset, we utilized the tissueloc [54] li-
brary to remove the significant white space background. We performed
neither unlabeled dataset experimentation nor hyperparameter tuning
and used the pre-determined hyperparameters from our CD experi-
ments. The counts for all datasets and classes are shown in Table 4.

Table 3
Distribution of the LUAD tissues for all datasets used in the model. The counts
correspond to the annotations provided by the pathologist.

Class Training Testing
Lepidic 514 81
Acinar 691 124
Papillary 43 9
Micropapillary 411 55
Solid 424 36

Distribution of the CD tissues for all datasets used in the model. The class counts for the self-supervised datasets ADv1 and ADv2 are only provided as a reference, and

this class information was not used in the self-supervision process.

Supervised Self-supervised
Class Training Validation Testing ADv1 ADv2 Development
Normal 1182 253 241 4774 16,661 441
Non-specific duodenitis 2202 390 469 130 265 583
Celiac sprue 2524 524 529 416 1799 921
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Table 4
Distribution of the RCC tissues for all datasets used in the model. The counts
correspond to the slide-level classifications provided by the pathologists.

Class Training Testing
Chromophobe 90 42
Papillary 312 128
Clear cell 432 194

4.5. Implementation details

We evaluated all models on the labeled test set corresponding to each
training dataset. No data augmentation was applied to the test sets
beyond standardizing the color channels by the mean and standard
deviation of the respective labeled training sets. To evaluate our clas-
sification performance, we used accuracy, Fl-score, precision, and
recall. These metrics were computed in a one-vs.-rest fashion for each
class. We computed the mean value for each metric by macro-averaging
over all classes. The 95% confidence intervals (CIs) were produced using
bootstrapping on the test set for 10,000 iterations. We calculate each
model's computational cost by counting the billions of floating-point
operations (GFLOPS) for a forward pass of that model. Using the num-
ber of GFLOPS allows us to evaluate the performance gains while also
considering the computational cost. All experiments were performed on
either a single NVIDIA Titan RTX or Quadro RTX 8000 GPU.

4.5.1. Teacher model

We trained the teacher model on high-resolution input images at
10x magnification for CD and LUAD, and 5x for RCC. The He initiali-
zation scheme [66] was used to initialize the weights. We utilized the
Adam optimization algorithm [47] for 100 epochs of training with a
learning rate of 0.001. The Adam optimizer minimized the cross-entropy
loss function with respect to the ground-truth slide labels.

4.5.2. Baseline

All baseline models were trained on a specified magnification from
randomly initialized weights using the He initialization scheme [66]. We
used the same ResNet architecture as the teacher model for these
baselines.

4.5.3. KD

Our knowledge distillation (KD) approach consists of a teacher
model described above and a student model of the same ResNet archi-
tecture. We initialize the student model using the He initialization
scheme [66] and the teacher model using the saved weights. The teacher
model weights are frozen and only the student model weights are
updated during this phase. In contrast to the standard ResNet architec-
ture, we use both the final convolutional and fully connected layer
outputs as our unlabeled hints and feature recognition knowledge,
respectively. We use the labeled training and validation sets for the
distillation and ignore the labels in the self-supervised part of our
approach. As explained in Section 3.4, we do not apply fine-tuning for
these experiments as it contributes to overfitting according to our vali-
dation set.

4.5.4. KD (AD)

The knowledge distillation approach using the auxiliary datasets in
this paper is similar to stock distillation [33]. The main difference is that
we utilized unlabeled auxiliary datasets for self-supervised learning
instead of using a labeled dataset.

5. Results
In Table 5, we present the results of the teacher model trained from

scratch at 10x magnification for the CD and LUAD test sets, and at 5x
magnification for the RCC test set.
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Table 5

Results and the corresponding 95% Cls for the teacher model as percentages. The
above results were obtained on the respective test sets, detailed in Sections 4.2,
4.3, and 4.4.

CD LUAD RCC
Accuracy 87.06 (85.65-88.48) 94.51 (92.77-96.20) 90.16 (87.62-92.57)
F1-Score 75.44 (72.31-78.51) 80.43 (70.86-88.17) 80.09 (74.02-85.64)
Precision 75.62 (72.55-78.66) 80.41 (70.55-89.56) 78.54 (72.75-84.13)
Recall 77.15 (74.19-80.06) 81.67 (71.20-90.43) 85.19 (80.07-89.70)

We present the results of our proposed approach for all tested mag-
nifications in Tables 6, 7, and 8. The performance and computational
costs of our models are shown in Fig. 3. Additionally, we provide Grad-
CAM++ visualizations in the Supplementary Material, Appendix C, to
show that our method identifies clinically relevant features [67].

6. Discussion

As presented in Table 6, our KD method outperforms the baseline
metrics in all trials for celiac disease. The lung adenocarcinoma results
in Table 7 show that our approach improves performance for 0.625x
(16 pm/pixel), 1.25x (8 pm/pixel), and 2.5x (4 pm/pixel) and is equal
to the baseline performance for 5x (2 pm/pixel) input images. This
outcome is consistent with our 5x results on the CD dataset without the
AD self-supervision phase. As shown in Table 8, our method provides a
benefit on all magnifications for renal cell carcinoma but decreases in
performance at 2.5x magnification compared to 1.25x magnification.
This result is consistent with the CD KD results without the auxiliary
dataset.

While adding more data helped increase CD classification accuracy
at 0.625x magnification by over 4%, this performance benefit narrowed
as the magnification increased further. This trend can be seen in Fig. 3,
where the test set accuracy curves approach each other as the compu-
tational cost grows. Most importantly, our method outperforms the
baseline at 10x magnification for the distillation approaches on the
auxiliary dataset. This performance gain comes with at least a 4-factor
reduction in computational cost.

Using our model to maintain accurate classification performance
while minimizing computational cost could facilitate scanning histology
slides at a much lower resolution. According to the Digital Pathology
Association, scanners cost up to $300,000 depending on the configura-
tion [68]. Reducing the scanning resolution could have a two-fold
benefit, potentially lessening the scan time and scanner cost. To this
end, histology slides could be scanned at a lower magnification and only
inspected at higher magnification in challenging cases. In addition,
storing and analyzing lower resolution WSIs would be less burdensome
on the computational infrastructure. Instead of investing in complex
data solutions, pathology laboratories could migrate to cloud-based
services to manage and analyze smaller datasets using standard
network bandwidth [69-71]. Using cloud solutions in the medical
domain is still not widespread. However, our approach could provide a
viable option for this emerging application.

There are still some improvement areas for our work, namely eval-
uating our model on additional datasets from different institutions.
While our method was validated on three datasets, two of them are from
our institution and may contain inherent biases in staining and slide
preparation. Additionally, with more datasets, we would be able to
investigate the scaling effects of self-supervised learning beyond the size
of our existing dataset. The impact of scaling could prove especially
useful for smaller healthcare facilities that may not have the capabilities
to collect and label data as required for training a typical deep learning
model for histology image analysis. In addition to larger datasets, it is
crucial to explore the efficacy of this methodology on more slides from
different medical centers and for various diseases to evaluate the
generalizability of our proposed approach.
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Table 6
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Results for celiac disease baseline and KD approaches as percentages with corresponding 95% CIs. Baseline models were trained from scratch until convergence on the
corresponding magnification. The KD model without an auxiliary dataset was trained using the labeled dataset. Boldface text indicates the best-performing model for

each magnification and metric.

Celiac disease

Baseline

KD

KD (ADv1)

KD (ADv2)

mag = 0.625x (16 pm/pixel)

Accuracy 79.11 (77.74-80.54) 81.31 (79.91-82.72)
F1-Score 55.72 (52.08-59.34) 64.16 (60.92-67.37)
Precision 56.20 (52.40-59.96) 64.27 (60.91-67.56)
Recall 55.67 (52.17-59.16) 65.13 (62.06-68.20)

mag = 1.25x (8 pm/pixel)

Accuracy 82.70 (81.23-84.14) 84.03 (82.61-85.47)
F1-Score 65.06 (61.55-68.43) 70.49 (67.45-73.55)
Precision 65.06 (61.51-68.48) 70.53 (67.39-73.66)
Recall 65.22 (61.70-68.63) 71.06 (68.10-74.02)

mag = 2.5x (4 pm/pixel)

Accuracy 83.71 (82.29-85.17) 85.68 (84.25-87.13)
F1-Score 68.32 (64.92-71.66) 73.01 (69.94-76.03)
Precision 68.23 (64.77-71.67) 74.74 (71.57-77.90)
Recall 68.57 (65.13-71.98) 74.67 (71.99-77.28)

mag = 5X (2 pm/pixel)

82.55 (81.15-83.97)
64.95 (61.43-68.45)
66.65 (62.94-70.32)
64.11 (60.64-67.61)

84.43 (83.01-85.85)
69.75 (66.53-72.94)
69.32 (66.13-72.51)
70.95 (67.72-74.17)

85.38 (83.94-86.78)
72.39 (69.21-75.41)
72.99 (69.76-76.06)
75.67 (72.86-78.34)

86.99 (85.54-88.46)
75.07 (71.89-78.17)
76.46 (73.42-79.44)
78.00 (75.18-80.72)

83.17 (81.75-84.61)
66.83 (63.46-70.14)
67.21 (63.78-70.52)
69.29 (66.06-72.42)

84.87 (83.40-86.32)
71.20 (67.89-74.40)
71.14 (67.81-74.35)
73.56 (70.40-76.61)

85.83 (84.38-87.27)
73.56 (70.42-76.64)
73.61 (70.44-76.68)
76.43 (73.61-79.17)

87.20 (85.78-88.62)
75.86 (72.71-78.92)
76.07 (72.95-79.13)
77.41 (74.41-80.35)

Accuracy 86.15 (84.71-87.61) 85.74 (84.28-87.21)
F1-Score 73.42 (70.15-76.63) 73.27 (70.19-76.33)
Precision 73.44 (70.12-76.68) 75.10 (71.91-78.23)
Recall 73.65 (70.41-76.93) 74.82 (72.16-77.51)

Table 7

Results for lung adenocarcinoma baseline and KD approaches as percentages
with corresponding 95% Cls. Baseline models were trained from scratch until
convergence on the corresponding magnification. Boldface text indicates the
best-performing model for each magnification and metric.

Table 8

Results for renal cell carcinoma baseline and KD approaches as percentages with
corresponding 95% ClIs. Baseline models were trained from scratch until
convergence on the corresponding magnification. Boldface text indicates the
best-performing model for each magnification and metric.

Lung adenocarcinoma

Renal cell carcinoma

Baseline

KD

Baseline

KD

mag = 0.625x (16 pm/pixel)

Accuracy 88.00 (86.07-89.95) 89.32 (87.37-91.26)
F1-Score 54.38 (46.12-64.67) 57.75 (49.74-68.32)
Precision 57.75 (45.53-74.19) 60.95 (48.76-77.30)
Recall 55.98 (48.72-64.62) 58.29 (51.06-67.19)

mag = 1.25X (8 pm/pixel)

Accuracy 90.45 (88.52-92.40) 93.29 (91.44-95.09)
F1-Score 67.57 (56.49-77.07) 73.17 (63.03-82.70)
Precision 69.85 (55.79-80.25) 76.28 (62.54-87.58)
Recall 68.32 (58.07-78.98) 73.02 (63.99-83.26)

mag = 2.5x(4 pm/pixel)

Accuracy 93.14 (91.25-94.94) 93.74 (91.94-95.49)
F1-Score 72.84 (64.11-81.28) 71.88 (64.13-81.07)
Precision 72.03 (63.53-81.02) 73.56 (64.22-87.48)
Recall 75.51 (65.39-86.16) 72.69 (65.27-82.38)

mag = 5x(2 pm/pixel)

Accuracy 94.18 (92.40-95.85) 94.18 (92.45-95.85)
F1-Score 75.33 (66.30-84.23) 79.63 (69.80-87.41)
Precision 76.85 (66.27-88.75) 79.75 (69.62-88.88)
Recall 75.45 (66.74-85.65) 82.00 (71.36-90.62)

mag = 0.625x (16 pm/pixel)

Accuracy 82.39 (79.80-85.02) 85.11 (82.45-87.83)
F1-Score 62.21 (55.38-68.97) 66.41 (59.35-73.31)
Precision 61.38 (54.99-67.89) 69.66 (63.31-75.99)
Recall 64.81 (57.33-72.37) 68.68 (61.32-75.66)

mag = 1.25% (8 pm/pixel)

Accuracy 87.44 (84.77-90.06) 89.11 (86.54-91.61)
F1-Score 73.73 (66.99-80.17) 77.10 (70.91-82.99)
Precision 72.38 (65.91-78.88) 75.66 (69.99-81.28)
Recall 76.73 (69.62-83.27) 82.64 (76.48-88.01)

mag = 2.5x(4 pm/pixel)

Accuracy 88.24 (85.72-90.76) 88.39 (85.74-90.92)
F1-Score 75.42 (68.94-81.40) 75.84 (69.57-81.71)
Precision 73.94 (67.87-79.84) 75.34 (69.70-80.85)
Recall 79.78 (73.25-85.74) 81.72 (76.06-86.76)

Although the trained models can be used on WSIs with lower reso-
lutions, our method still requires high-resolution WSIs during training.
While reducing the computational requirements of the inference stage is
always beneficial, there is no reduction in cost for training the teacher
model or the self-supervised and knowledge-distillation models. This
weakness is an active area of investigation in our future work. One
possibility is using transfer learning to adapt a pre-trained model to an
alternative high-resolution histology dataset. A method that utilizes
transfer learning in this fashion would remove the burden of continu-
ously retraining teacher models for each new dataset. Lastly, we plan to
extend our visualization beyond Grad-CAM-++. While Grad-CAM++
provides some insight into the black-box model, it still lacks

interpretability and crucial information for pathologists to make
meaningful diagnoses.

7. Conclusion

This work demonstrated that knowledge distillation could be applied
to histology image analysis and further improved by self-supervision.
We showed that our method both improves performance at signifi-
cantly lower computational cost and scales with dataset size. The
empirical evidence presented proves that it is possible to transfer in-
formation learned across magnifications and still produce clinically
meaningful results. Our approach allows for scanning WSIs at signifi-
cantly lower resolution while having little to no classification accuracy
degradation. Our method also removes a major computational bottle-
neck in using deep learning for histology image analysis and opens new
opportunities for this technology to be integrated into the pathology
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