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Abstract—In image-based robot manipulation tasks with large
observation and action spaces, reinforcement learning struggles
with low sample efficiency, slow training speed, and uncertain
convergence. As an alternative, large pre-trained foundation
models have shown promise in robotic manipulation, particularly
in zero-shot and few-shot applications. However, using these
models directly is unreliable due to limited reasoning capabilities
and challenges in understanding physical and spatial contexts.
This paper introduces ExploRLLM, a novel approach that
leverages the inductive bias of foundation models (e.g. Large
Language Models) to guide exploration in reinforcement learning.
We also exploit these foundation models to reformulate the
action and observation spaces to enhance the training efficiency
in reinforcement learning. Our experiments demonstrate that
guided exploration enables much quicker convergence than
training without it. Additionally, we validate that ExploRLLM
outperforms vanilla foundation model baselines and that the
policy trained in simulation can be applied in real-world settings
without additional training.

I. INTRODUCTION

Foundation models (FMs) [5], which refer to models
trained on large-scale data (e.g. Large Language Models or
Vision-Language Models), have shown significant promise in
robotics. Large Language Models (LLMs) such as GPT-4 [21]
demonstrate the ability to generate human-like commonsense-
aware reasoning in some scenarios. This reasoning ability
has been demonstrated as a zero-shot planner [10], capable
of breaking down complex tasks into detailed step-by-step
plans without additional training. Our paper focuses on pick-
and-place manipulation tasks, a domain where LLMs are
recently employed to provide task-grounding for high-level
planning, executed by pre-trained low-level robot skills [2].
Furthermore, when integrated with Vision-Language Models
(VLMs), LLMs utilize cross-domain knowledge to achieve
robot perception and planning in manipulation tasks [33].
This synergy between LLMs and VLMs is also harnessed
to extract environmental affordances and constraints, forming
a basis for subsequent robotic planning [12]. Despite the
impressive results achieved using FMs, it is important to note
that unpredictable failures of LLM predictions can still result
in robotic errors, and their use does not always ensure success
and they in general do not learn from past experiences [3, 14].

To address these issues, we propose to add residual rein-
forcement learning [13] to affordances recognized by FMs.
Reinforcement Learning (RL), as described in [28], provides
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Fig. 1: Graphical illustration of the ExploRLLM framework.

a powerful framework for learning decision-making and con-
trol policies for robotics [15] through interactions with the
environment. Despite the inherent errors in the information
provided by FMs, RL can adaptively learn to compensate
for those errors through trial and update. A key challenge
in deep RL is the “curse of dimensionality”, where large
observation and action spaces hinder the agent’s ability to
explore and converge efficiently. To overcome this challenge,
we utilize an LLM and a VLM to create a more compact and
effective observation space. Moreover, we introduce an object-
centric residual action space, defining the pick-or-place actions
as positional adjustments relative to the centers of detected
objects.

Although actions generated by the LLM could be sub-
optimal or sometimes lead to failures, we employ these actions
to guide exploration in RL. Previous exploration strategies for
RL (e.g., ϵ-greedy and Boltzmann exploration [28]) explored
the state-action space in a stochastic manner, which focuses on
the exploration-exploitation trade-off. However, these methods
lack guided mechanisms as they do not incorporate prior
knowledge to expedite convergence. Therefore, we utilize the
LLM as a few-shot planner to create actions that act as
exploration steps in RL. This strategy increases the likelihood
of encountering successful states, thereby gathering more
relevant state-action pairs for the off-policy RL agent.

Our method, ExploRLLM, enhances the robot system by in-
corporating reinforcement learning with FMs. This integration
ensures enhanced performance compared to the plan generated
by FMs, compensating for their inherent sub-optimality and
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Fig. 2: Structure of ExploRLLM: a) The LLM reformulates user-provided language commands l with predefined templates
and highlights the important objects of the template into a command vector l̃. In parallel, the VLM detects objects mentioned
in the task and extracts crops centered at bounding box locations. b) RL takes the extracted image crops and object positions
as input and uses the RL agent exploration method or LLM policy programs as exploration actions.

biases. In turn, the FMs aid in accelerating RL training
convergence by reducing the observation spaces and directing
the exploration process. To summarize, our main contributions
are:

1) We propose ExploRLLM, which employs an RL agent
with a) residual action and observation spaces derived
from affordances identified by FMs and b) uses an LLM
to guide exploration.

2) We develop the prompting method for LLM-based explo-
ration using hierarchical-language-model-programs and
demonstrate that our exploration method significantly
shortens RL’s convergence time.

3) We show that ExploRLLM achieves better final perfor-
mance than the policies derived solely from the LLM
and VLM by comparing it to several state-of-the-art
baselines. We also show that the ExploRLLM policy can
be transferred to unseen colors, letters, tasks, and real-
world settings without additional training.

II. RELATED WORK

Recently, there has been increasing interest in integrating
robotics and the FMs by either developing robotics foundation
models (e.g., RT-2 [1], PALM-E [6]) or applying pre-trained
FMs to robotics. The application of FMs in robotics primarily
falls into two categories: leveraging FMs for zero-shot or few-
shot plan generation and using FMs to enhance RL training
efficiency. Our work combines both aspects to solve robot
manipulation tasks.

A. Foundation Models for Planning in Robotics
Researchers have demonstrated the ability of LLMs to

create zero-shot or few-shot plans through reasoning capa-
bilities [10, 16]. This ability is essential for devising high-
level plans in the field of robotics. For instance, SayCan [2]
utilizes LLMs to provide high-level planning in robot ma-
nipulation tasks. Additionally, InnerMonologue [11] show-
cased the potential of LLMs in processing feedback sources

and interactively planning, facilitating closed-loop behaviors
without additional training. Additionally, the code completion
features of LLMs have been utilized in creating robot-centric
formulations of LLM-generated programs for robot skills [18]
and task plans [26].

VLMs have been increasingly integrated into robotics. For
example, CLIPort [25] proposed an end-to-end imitation learn-
ing framework that leverages the broad semantic capabilities of
CLIP [22] to interpret language instructions and visual inputs.
Socratic Models [33] integrates LLMs with vision language
model ViLD [8] to utilize cross-domain knowledge to achieve
robot perception and planning for zero-shot manipulation
tasks. VoxPoser [12] deployed a VLM and an LLM to compose
a 3D value map in observation space for a model-based
planning framework to zero-shot synthesize closed-loop robot
trajectories. However, directly applying VLMs and LLMs for
zero-shot tasks does not guarantee success and safety, as the
physical properties of the real world remain challenging for
those FMs. Instead, our work considers the actions generated
by LLMs and VLMs to be exploratory behaviors within an
RL framework.

B. Foundation Models and Reinforcement Learning

Incorporating FMs into RL frameworks has notably im-
proved RL’s effectiveness. In [17], the authors have imple-
mented LLMs as proxy reward functions, demonstrating their
utility in RL. In the context of RL for robotics, LLMs are
also capable of generating reward signals for robot actions
by connecting commonsense reasoning with low-level ac-
tions [31], self-refinement [27] and evolutionary optimization
over reward code to enable complex tasks such as dexterous
manipulation [20]. Regarding exploration, authors in [7] re-
ward RL agents toward human-meaningful intermediate be-
haviors by prompting an LLM. LLMs are also utilized as
an intrinsic reward generator to guide exploration for long
horizon manipulation tasks [29]. Contrary to these studies,



our approach directly employs LLM-generated code policies
to guide exploratory actions rather than focusing on reward
shaping.

III. PROBLEM FORMULATION

This study aims to improve the effectiveness of RL agents
engaged in robotic pick-and-place tasks. For such manipula-
tion tasks, each episode is initiated with a goal described in
a linguistic term, represented by l. The agent, at every time
step t, perceives an observation ot, consisting of an overhead
RGB-D image and the state of the end effector. In other
tabletop manipulation tasks (e.g., Transporter [32]), the action
space is structured as a pick-and-place primitive, denoted as
{Ppick,Pplace}, where each action contains a position for
pick and a position for place in top-down view coordinate.
Our method, however, simplifies the action space to a single
motion primitive: either pick or place. This simplification aims
to make the RL challenge more tractable. The Pick-or-Place
action primitive is defined as a tuple containing the primitive
index prim (0 for pick, 1 for place) and a top-down view
position, expressed as P , at = {primt,Pt}. At each time
step, the agent receives a reward r from the environment
comprising a dense reward component, denoted as rd, and
an external sparse reward component, referred to as rs.

IV. FRAMEWORK: EXPLORLLM

Our method utilizes FMs to enhance RL training through
the extraction of objects for observation spaces (Sec.IV-A),
the creation of an object-centric action space (Sec.IV-B),
and the direction of exploration based on guidance from
LLMs (Sec.IV-C).

A. Observation Spaces based on Foundation Models

Our methodology leverages the strengths of LLMs and
VLMs to extract the observation space used for the RL frame-
work, as depicted in Figure 2. LLMs reformulate user-provided
language commands into predefined templates and highlight
the objects within these templates to form an interpreted com-
mand vector l̃. For example, it identifies the “picked object” in
a template like “put [picked object] on [placed object]”. It is
important to note that, within a given task setting, the number
and category of objects do not change. Utilizing VLMs as
open-vocabulary object detectors, our system identifies and
encloses objects relevant to the task within bounding boxes
from image in raw observation space ot, represented by their
locations Pvlm = {Pvlm1

,Pvlm2
, ...}. RGB-D visual inputs

are segmented into crops based on bounding box positions,
denoted as Ivlm = {Ivlm1 , Ivlm2 , ...}. This method improves
the system’s robustness to detection inaccuracies and varying
object shapes. The interpreted commands l̃, the positional
data Pvlm and the image patches Ivlm are then integrated into
the reformulated RL observation st.

B. Residual Action Spaces

As the VLM already extracts each object’s position
Pt

vlm[i
t], the action space is converted into an object-centric

Algorithm 1 Exploration strategy πEXPL

Input: state st, instruction l̃, LLM policies πLLM
H , πLLM

L

Parameter: threshold ϵ
Output: action ãt

1: Sample a random number j from U(0, 1)
2: if j ≤ ϵ then
3: Run LLM generated high level action policy πLLM

H

At = (primt, it) = πLLM
H (st, l̃)

4: Run LLM generated low level action policy πLLM
L

Pt
res = πLLM

L (st,At)
ãt = (primt, it,Pt

res)
5: else
6: Run the reinforcement learning policy πRL

ãt = πRL(st)
7: end if
8: return action ãt

residual action space, as shown in Figure 2. The reformulated
action space consists of a primitive index prim, an object
index i and a residual position Pres, expressed as ãt =
{primt, it,Pt

res}, where Pt = Pt
vlm[i

t] + Pt
res. For example,

consider the task of picking the letter ‘O’, where Pt
vlm[i

t]
denotes the center of the bounding box. In this case, a residual
action Pt

res is needed to prevent failures due to the empty
center of the object.

C. LLM-based Exploration in RL

Traditional deep RL algorithms (e.g., SAC [9], PPO [24])
do not inherently ensure frequent visits to high-value states in
high-dimensional state-action spaces, which becomes particu-
larly challenging in vision-based tabletop manipulation tasks.
In such cases, the RL agent may struggle to achieve favorable
outcomes when successful results are infrequent. By utilizing
the planning capabilities of LLMs and the perception capabili-
ties of VLMs, we can leverage the rich prior knowledge within
these FMs to direct the exploration process more effectively.

The LLM-based exploration strategy, denoted as πEXPL

in Algorithm 1, draws inspiration from the ϵ-greedy strategy.
Specifically, during the rollout collection at each timestep, the
off-policy RL agent employs the LLM-based exploration tech-
nique if a sampled random variable falls below the threshold
ϵ. Otherwise, the action is selected according to the current
RL agent’s policy, πRL, as detailed in Algorithm 1.

For the creation of plans in robotic manipulation tasks, prior
research often prompts LLMs on every step to generate plans.
However, this method of frequent LLM invocation during the
training phase is highly resource-intensive, incurring signifi-
cant time and financial costs due to the numerous iterations
required to train a single RL agent. Code as Policy (CaP) [18]
shows that LLMs are proficient at devising policy by gener-
ating robot-centric formulation programs. Drawing inspiration
from CaP, our methodology employs the LLM to hierarchically
generate language model programs, which are then executed
iteratively during the training phase as exploratory actions,
enhancing efficiency and resource utilization.



[Task Description]

A robot wants to pick up this letter with a suction gripper shown in the first Figure. The Second 

Image is a top-down view of a block with the shape of the [letter V]. We want you to design a function 

to sample the pick position in 2D to make a stable pick for the robot.

[You should do]

Finish function: generate_pick_probability_map(img, threshold=100), img is the input image and 

threshold is a threshold from 0 to 255.

1. Assuming the input image size is [28,28]

2. Detect the letter, position, and orientation of the letter

3. Based on the position and orientation of the letter, draw a 2D probability map [28,28] for the robot 

to sample the pick position in python 

[Rules]
1. You can use only Python library (numpy, opencv), input of the function is the image of the picked 
object and the image of the placed object. Some threshold parameters are allowed and can be an 
optional input of the function, for example: the threshold of the grey scale.
2. Do not always use the center of mass as the pick position, you should consider the shape of the 
letter. For example, get the contour of the letter and assign a higher probability to the area inside the 
contour area.
3. provide only 1 Python function with a brief explanation, you cannot use undefined functions in your 
code.

Image 1:

Environment Visualization

[Give 6 candidates python code completing this template]

    import cv2

    import numpy as np

    def generate_pick_probability_map(img, threshold=100):

        # you should finish

        return prob_map

[candidates]

#1 #2 #3 #4 #5 #6

Image 2: 

VLM generate crop

VLM label: Blue Letter V

(a) A prompt example that combines the task de-
scription, VLM scene description, and image. It then
generates code policy candidates for low-level skills.

Execution result  
(affordance map for 
Letters O, R and V)

# candidate 5

# 6# 5# 4# 3# 2# 1raw image

(b) LLM-generated python code and affordance heatmaps
for unseen objects.

LLM

Prompt

C
a

n
d

id
a
te 1

C
a

n
d

id
a
te 2

C
a

n
d

id
a
te 3

. . .

. . .

. . .

Evaluation

Candidate i

C
a

n
d

id
a
te n

(c) Evaluation phase

Fig. 3: The LLM generates low-level policy code.

The hierarchical language model programs include both
high-level πLLM

H and low-level πLLM
L policy code programs.

A high-level plan primarily involves selecting robot action
primitives and the objects to interact with based on the current
state of the robot and the objects.

In contrast to high-level tasks, instructing low-level actions
poses a more significant challenge because high-level states
and actions are more accessible and can be represented as
language. When dealing with low-level actions, the complexity
of the state becomes considerably more intricate, particularly
for image-based problems. Therefore, instead of a determinis-
tic code policy, we instruct the LLM to produce a code policy
πLLM
L for generating an affordance map according to the input

image. The low-level exploration behavior is derived from a
stochastic policy that relies on the values within this affordance
map. Although the code generated by LLMs lacks guaranteed
feasibility and accuracy in robot environments, these models
can generate potentially useful policy candidates, with the one
exhibiting the highest success rate being selected as shown in
Figure 3c.

V. IMPLEMENTATION

The main components for implementation of ExploRLLM
are RL agent, VLM-based object detection and code policy
generation by LLM.

1) Reinforcement learning agent: We use the Soft Actor-
Critic (SAC) algorithms with modifications in the collecting
rollout phase, detailed in Algorithm 1. Other implementation
aspects remain consistent with the standard SAC approach
in stable-baselines3 [23]. Figure 4 illustrates the network
architecture for RL. We employ two convolutional layers to
transform every image patch into a vector x ∈ Rn×d, where n
is the number of objects captured by VLM and d signifies the
dimension of each patch as encoded by the CNN. The vector
is subsequently concatenated with the position, robot gripper
state, and the extracted episodic language goal l̃ to form a
new vector x′ ∈ Rn×d′

, where d′ denotes the dimension
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Fig. 4: ExploRLLM RL architecture and action space.

of each patch’s vector following encoding and concatenation.
The self-attention layer is used to transform vector x′. It is
linearly transformed to query Q ∈ Rn×d′

, key K ∈ Rn×d′

and values V ∈ Rn×d′
. Then the self-attention module is

applied as: Attention(Q,K,V ) = Softmax
(

QKT

√
dk

)
V . The

output features from this layer then go into a two-layer MLP.
The aforementioned structure is consistently utilized across all
actor and critic networks.

2) VLM detection: Utilizing an open-vocabulary object
detector ViLD [8], objects in the environment can be identified
by given specific labels. However, implementing this model
online during training is time-consuming, so ViLD is utilized
solely in the evaluation phase. In the training phase, the
ground truth in the simulation is used to determine the center
positions of the bounding boxes. It is important to note that
ViLD’s position detection in real-world scenarios is not always
flawless. To simulate this imperfection, noise following a
Gaussian distribution with a standard deviation equivalent to
half the radius of the image crop is applied to the ground truth
positions.

3) Code policy generation by LLM: The policy code for
executing high-level behavior is obtained using a few-shot
prompt in GPT-4 [21]. This prompt includes a list of available
robot motion primitives to demonstrate the robot’s actions. A



custom API is also provided to aid the LLM in reasoning,
such as determining whether an object is held in the robot’s
gripper or understanding the relationships between different
objects. Following the approach demonstrated by [18], where
LLMs have been shown capable of generating novel policy
codes with example codes and commands, our prompt also
includes these examples. They are designed to guide the LLM
in formulating plans and conducting geometric reasoning for
our specific task scenarios.

For low-level exploration actions, we employ GPT4 with
Vision [21], which generates code using prompts that combine
example images with language descriptions, enriching the
context with visual information, as shown in Figure 3. The
provided example images include a depiction of the envi-
ronmental setup featuring the robot, a simulated background,
objects, and a specific example of image patches inside VLM
bounding boxes. The prompt describes the requirements and
guidelines, enabling generated code to create a probability
affordance heatmap for the specified image patch, utilizing
external libraries like OpenCV and NumPy.

However, as indicated in Figure 3b, there are instances
where the generated affordance map may not be optimal. For
example, the optimal pick position for the letter ‘O’ should
be at its rim, whereas the heatmap suggests the center. To
address those sub-optimum problems, we adopt a stochastic
policy based on the affordance map rather than a deterministic
policy that selects the point of highest affordance. Given
that RL evolves through rewards obtained from environmental
interactions, the sub-optimality in exploration policy can be
identified and rectified through learning. This approach also
offers the potential to provide counter-examples during the
phase of replay buffer collection.

VI. EXPERIMENTAL SETUPS

For experiments, we used a simulation and real-world setup
of different tabletop pick-and-place tasks.

A. Simulation Setup

The proposed method is trained and evaluated in a simulated
tabletop pick-and-place task, as depicted in Figure 5. Similar
to [32] and [25], all simulated experiments are based on a
Universal Robot UR5e with a suction gripper, and the input
observation is a top-down RGB-D image.

Our task setting draws inspiration from the “Pick the
[pick color] box and place it in the [place color] bowl” task
described in [25]. Considering that picking at the center of
the bounding box, as generated by the VLMs, is sufficiently
accurate for a block, we have increased the challenge by
substituting the blocks with various objects (such as letters).
We assess our method across two tasks: a short-horizon (SH)
task, “Pick the [pick letter] and place it in the [place color]
bowl” and a long-horizon (LH) task, “Put all letters in the bowl
of the corresponding color”. In the short-horizon task, each
episode begins with three letters and three bowls randomly
placed on the table, with the objects for the pick-and-place
action randomly chosen to create language commands. This

(a) Short-horizon: Place [pick letter]
in the [place color] bowl

(b) Long-horizon: Put all letters in
bowls of matching colors

Fig. 5: Simulation environment settings

task is completed only when the robot accurately places the
selected letter in the specified bowl. For the long-horizon task,
both letters and bowls are randomly arranged on the table
at the beginning of each episode. This task is considered
complete only when each letter is correctly placed in a bowl
whose color matches the letters.

B. Real-world Setup

We validated our approach on a Franka-Emika Panda robot
equipped with a Schmalz suction gripper and a RealSense
D405 RGB-D camera, as shown in Figure 8a, implementing
our policy and code in the EAGERx [30] framework.

Given the potential risks to hardware and the time-intensive
nature of direct training, we completed training in simula-
tion, with real-robot applications limited to evaluation. Object
recognition used ViLD for bounding box identification based
on object names. To simulate real-world conditions more
accurately, we introduce noise to the bounding box center’s
position during the training phase in the simulation, mimicking
the positional uncertainty inherent in VLM detection. We
enhanced simulation realism by introducing noise to bounding
box positions and image inputs, simulating VLM detection
uncertainty and camera noise, including lighting variations.

VII. RESULTS

We conducted a series of experiments to evaluate our
approach. We assess the impact of LLM-guided exploration
on training speed (SecVII-A), compare the success rate of
ExploRLLM against foundation models alone (SecVII-B), and
examine the generalization capabilities of our method in novel
scenarios (SecVII-C). We also deployed ExploRLLM in the
real-world setting without further training (SecVII-D).

A. LLM-based Exploration Behavior Performance

In our experiment, we investigated how varying the fre-
quency of LLM-based exploration affects training conver-
gence, with ϵ ∈ {0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9}, as shown in
Figure 6. An ϵ of 0 implies a pure Soft Actor-Critic method.
We conducted training with six random seeds per frequency
to evaluate the mean and variance in performance, starting
each session with a 20,000-step warm-up phase without LLM
exploration, given no significant policy improvements were
observed in this initial phase. Post-warm-up results, depicted



TABLE I: Comparison of success and error rates of our method against baselines during 50 evaluation episodes with both seen
and unseen colors. Evaluation includes different tasks: short-horizon (SH) and long-horizon (LH) and different initialization
methods: no overlapping between objects (NO) and allowed overlapping (AO). For the ExploRLLM policy, the standard
deviations of 6 seeds are included to show the stability of the training process.

Method Overall success rate Low-level error rate
SH NO SH AO LH NO LH AO SH NO SH AO LH NO LH AO

ExploRLLM (20%) 0.86±0.05 0.80±0.06 0.70±0.11 0.54±0.09 0.14±0.05 0.20±0.06 0.18±0.10 0.22±0.9
ExploRLLM (0%) 0.56±0.40 0.48±0.36 – – 0.32±0.24 0.42±0.30 – –

CaP∗ 0.60 0.48 0.38 0.30 0.38 0.52 0.42 0.48
Socratic Models + CLIPort 0.78 0.64 0.50 0.36 0.22 0.28 0.22 0.28
Inner Monologue + CLIPort 0.82 0.72 0.58 0.42 0.18 0.26 0.20 0.24
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(a) Short-horizon task: Pick the [pick letter] and place it in the [place
color] bowl.
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(b) Long-horizon task: Put all letters in the bowl of the corresponding
color.

Fig. 6: Training curve with LLM-based exploration behavior

TABLE II: ExploRLLM training rewards with different ϵ

Explore ϵ (%) SH Task (25k steps) LH Task (75k steps)
0 −0.03± 1.13 −3.22± 0.29
10 0.74± 0.13 −0.73± 0.40
20 0.79± 0.06 −0.42± 0.31
30 0.76± 0.16 −0.23± 0.26
50 0.70± 0.17 −0.40± 0.23
70 −0.29± 0.98 −1.71± 1.38
90 −0.52± 1.12 −2.51± 1.09

Exploration Policy 0.53 -1.2

in Figure 6 and detailed in Table II for short and long-horizon
tasks, demonstrate that ExploRLLM outperforms LLM-only
policies across various exploration frequencies.

In the short-horizon task depicted in Figure 6a, the training
process tends to be unstable without LLM-based exploration
actions, leading to outcomes that can be both a successful
policy or an unconverged one. When the exploration frequency
is within 0 < ϵ ≤ 0.5, the training becomes more stable
and converges more swiftly, with minor variations across
different ϵ settings. However, increasing ϵ beyond 0.5 reduces
the online data proportion, slowing progress and introducing
higher instability into the training process.

For long-horizon tasks, Figure 6b illustrates a clear pattern
where higher frequencies of LLM-based exploration, when
0 < ϵ ≤ 0.5, correlate with faster training speeds. Those
statistics demonstrate that LLM-based exploration is crucial
for a relatively difficult task in obtaining experience close
to the optimal region. This approach effectively mitigates
issues associated with extensive observation and action spaces.
However, akin to the findings in short-horizon tasks, a high

rate of exploration leads to less stable training dynamics and
slower convergence.

B. RL Performance

To evaluate the effectiveness of ExploRLLM, we benchmark
its performance against four baselines: ExploRLLM without
LLM-based exploration policy, CaP-style policy [18] (our
exploration policy), Socratic Models [33], and Inner Mono-
logue [11]. Our implementation of Socratic Models and Inner
Monologue utilizes ViLD [8] as an object detector and GPT-
4 [21] as a multi-step planner. The commands of individual
steps are then executed by a pre-trained CLIPort [25] model
with 500 demonstrations. The key difference between Socratic
Models and Inner Monologue is that Inner Monologue features
a success detector that can identify errors in the previous step.

During the evaluation phase, the spectrum of letter col-
ors includes both seen and unseen colors. The evaluation
encompasses a variety of tasks and initialization methods.

Fig. 7: Applying the single-step agent into zero-shot LLM
planers (e.g., the Socratic Models).



(a) Real robot experiment settings
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"Pick Letter R and 

place on Yellow Bowl"

"Pick Letter O and 
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Long Horizon Tasks 

"Put all letters in the bowl of the corresponding color"

(b) Pick and Place position

Fig. 8: Real robot experiments demonstrate the practical application of ExploRLLM in real-world settings. Initially trained
exclusively in a simulated environment, ExploRLLM, with the help of VLMs, effectively adapts to real-world scenarios. It can
be deployed in both short-horizon and long-horizon tasks.

“NO” indicates scenarios where there is no overlap between
the positions of letters and bowls at the beginning of each
episode, whereas “AO” allows overlaps. These configurations
are designed to evaluate the robustness of each method when
dealing with complex geometric relationships between objects.

For short-horizon tasks, as illustrated in Table I, ExploR-
LLM shows stable performance, unlike versions without the
exploration policy, which sometimes fail to converge and dis-
play significant variance in success rates and low-level errors.
Our method exceeds LLM-generated policies in success rate,
minimizes robot behavior errors, and reduces the gap between
NO and AO scenarios, highlighting our exploration policy’s
effectiveness in correcting FMs’ inaccuracies. In contrast, the
CLIPort-based method struggles with novel scenarios or com-
plex geometric relationships between objects. For long-horizon
tasks, RL agents without LLM-based exploitation failed to
converge. As depicted in Table I, ExploRLLM outperforms
Socratic Models, Inner Monologue, and the policy generated
by LLMs, showcasing superior performance for long-horizon
tasks.

C. Generalization to Unseen Long-horizon Tasks

Despite our short-horizon agent being specifically trained
for a pre-defined pick-and-place task, our approach maintains
the capability to transfer from short-horizon policy to unseen
long-horizon tasks in similar environmental settings, facilitated
by the incorporation of a zero-shot planner framework, e.g.,
Socratic Models [33]. This framework effectively breaks down
user-provided input into individual action steps, each serving
as a distinct language command for our single-step RL agent,
as illustrated in Figure 7. Following the execution of each
command, the task space is reset, allowing for the subsequent
command to be executed.

Apart from unseen colors, unseen letters are also included
to evaluate the generalization capabilities of unseen scenarios.

TABLE III: Success rate (%) of short-horizon ExploRLLM
with Socratic Models

Task Settings Seen Unseen Color Unseen Letters
Socratic Models + ExploRLLM 74 68 56

Socratic Models + CLIPort 72 50 34

Table III demonstrates that the short-horizon ExploRLLM
adapts to these settings, surpassing earlier Socratic Models
versions. With the help of VLMs, which provide the bounding
boxes and positions, our approach reformulates an observation
space that helps RL to focus on discerning and learning the
physical attributes of objects, which is essential for precise
picking and placing tasks. This strategy effectively minimizes
the potential distraction caused by variations in colors and
shapes.

D. Zero-shot Transfer to the Real Robot

We conducted real-world evaluations of ExploRLLM under
two scenarios: one replicating all letters in the simulation
and another introducing the letter ‘C’, previously absent,
with each scenario tested over 15 episodes. The short-horizon
ExploRLLM achieved a success rate of 66.6% for seen letters
and 53.3% for the scenario with an unseen letter. Meanwhile,
the long-horizon ExploRLLM recorded success rates of 40%
for seen letter scenarios and 33.3% for those including an
unseen letter. Despite the Sim2Real gap, our approach demon-
strates promising outcomes without any additional real-world
training. As the VLM has already extracted the observation
space, the RL agent trained within the simulation environment
encounters fewer distractions from real-world noise. Figure 8
demonstrates the adaptability of our approach in managing
diverse object orientations, understanding logical relationships
between objects, and executing long-horizon tasks within
real-world settings. However, the strategy continues to face



challenges with noise in the color and depth perceptions of
objects in real-world scenarios, which hinders the ability of the
RL agent to manipulate objects. Employing a photorealistic
simulator combined with thorough domain randomization is
expected to enhance performance significantly.

VIII. CONCLUSION AND DISCUSSION

In this work, we presented ExploRLLM, a method that
combines RL with FMs. By utilizing actions informed by
LLMs and VLMs for guiding exploration, we effectively speed
up the convergence of RL, demonstrating the benefits of a
synergistic approach that combines the strengths of both RL
and FMs. We evaluated our proposed method by conducting
experiments involving tabletop manipulation tasks. We demon-
strated its superior success rate by comparing our approach
with policies solely based on LLMs and VLMs. Additionally,
we showcased that the ExploRLLM policy can generalize to
unseen colors, letters, and tasks. Our ablation experiments
included training scenarios with different proportions of LLM-
guide exploration, highlighting their significant impact on
accelerating convergence. Additionally, we explored the ability
to transfer the learned policy from simulation to the real world
without further training, employing real robot experiments to
validate this capability.

At present, our framework is primarily concentrated on
tabletop manipulation tasks. We aim to broaden the scope
of our framework to encompass a wider array of robotic
manipulation applications. Furthermore, while our system is
capable of correcting errors in low-level robotic actions, it
encounters limitations in mitigating certain high-level errors
that are less common in simulations. In the future, we intend
to explore methods for addressing and rectifying these high-
level discrepancies.

We also plan to enhance our method and utilize the In-
teractive Imitation Learning (IIL) paradigm [4] and actively
query the user when the agent’s prediction uncertainty is high,
similar to [19].
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