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Abstract

Binocular 3D human pose estimation (HPE), reconstructing a 3D pose from 2D
poses of two views, offers practical advantages by combining multiview geometry
with the convenience of a monocular setup. However, compared to a multiview
setup, the reduction in the number of cameras increases uncertainty in 3D recon-
struction. To address this issue, we leverage the diffusion model, which has shown
success in monocular 3D HPE by recovering 3D poses from noisy data with high
uncertainty. Yet, the uncertainty distribution of initial 3D poses remains unknown.
Considering that 3D errors stem from 2D errors within geometric constraints, we
recognize that the uncertainties of 3D and 2D are integrated in a binocular configu-
ration, with the initial 2D uncertainty being well-defined. Based on this insight,
we propose Dual-Diffusion specifically for Binocular 3D HPE, simultaneously
denoising the uncertainties in 2D and 3D, and recovering plausible and accurate
results. Additionally, we introduce Z-embedding as an additional condition for
denoising and implement baseline-width-related pose normalization to enhance the
model flexibility for various baseline settings. This is crucial as 3D error influence
factors encompass depth and baseline width. Extensive experiments validate the
effectiveness of our Dual-Diffusion in 2D refinement and 3D estimation. The code
and models are available at https://github.com/sherrywan/Dual-Diffusion.
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Figure 1: Binocular reconstruction has
higher 3D uncertainty compared to multi-
view configurations.

3D human pose estimation (HPE) aims to localize the
3D position of human joints, which has a broad range
of downstream applications [49]. To date, monocular
3D HPE [25, 30, 20, 60, 22, 35, 59, 58] has received a
great deal of attention due to its convenient for practical
applications, while multiview (more than two cameras)
3D HPE [31, 14, 56, 5, 46] has earned popularity due
to its absolute localization under geometric constraints.
However, the pros and cons of these two setups are
“conjugat” to each other, with monocular suffering from
depth ambiguity, while multiview is hindered by strict
scene constraints. Binocular setup [45] offers both ad-
vantages, yet has long been ignored by the community.
This motivates us to focus on the Binocular 3D HPE,
which lifts to a 3D pose from binocular 2D poses.
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Observing the uncertainty range of a 3D point reconstructed under different numbers of cameras,
shown in Fig. 1, it is evident that although binocular setups significantly reduce 3D reconstruction
uncertainty compared to monocular configurations due to geometric constraints, they still have
higher ambiguity compared to multiview setups. In previous works on monocular 3D HPE, to
alleviate ambiguity, human pose priors such as joint angle limits [1] and physical plausibility [54] are
commonly modeled. Nowadays, with advancements in probabilistic methods in machine learning,
many works aim to leverage data to model the distribution of real human poses as a representation of
pose prior, including VAE [23, 29, 48], GAN [47, 7], normalizing flow [19, 50], and diffusion models
[8, 36, 16]. Among these, diffusion models stand out due to their advantages like indirect likelihood
correlation, simple training, and network flexibility [12, 38]. Given the success of diffusion models in
modeling pose priors, can they be cleverly leveraged to reduce uncertainty in binocular 3D HPE?

The diffusion model [11] comprises two processes: the forward diffusion process, which perturbs the
real data to a diffused distribution; and the reverse denoising process, which denoises the noisy data
to match the real distribution. In monocular 3D HPE, the diffusion model is employed to recover 3D
poses from noisy data sampled from random noise [34, 12] or from an initial 3D pose distribution
with high uncertainty [8]. The first category is excluded due to high time consumption, as it fails
to leverage geometric constraints [9] to narrow down the search space. The second category starts
from the initial 3D poses with higher uncertainty (estimated by off-the-shelf 3D HPE methods) and
converges to the lower uncertainty distribution representative of more plausible and accurate 3D
poses, which is more efficient. However, the main problem lies in the unknown distribution of the
initial 3D uncertainty. The statistical method is used in [8] to solve it which is unrealistic in practice.
Unlike monocular setups, 3D errors stem from errors in 2D estimation in binocular within a geometric
framework. In other words, 3D uncertainty can be reconstructed from 2D cause they are intrinsically
linked by geometric constraints. Therefore, we propose a diffusion-based method specifically for
binocular 3D HPE, named Dual-Diffusion, capable of simultaneously denoising initial 2D and 3D
uncertainties.

From a diffusion perspective, the uncertainty distribution in initial 2D joints is well-defined, typically
modeled as a Gaussian distribution centered at the ground truth with a specified standard deviation
[26, 51, 40]. However, the uncertainty in initial 3D poses remains unknown. Nevertheless, from a
denoising standpoint, it is preferable to recover poses in 3D space [6, 61] rather than in 2D, given
that human pose priors are inherently 3D. To bridge the gap between diffusion and denoising across
different domains, we leverage geometric projection techniques to couple the 2D plane and 3D
space. The specific modeling of Dual-Diffusion is illustrated in Fig. 2(a). In the forward diffusion
process, noisy 2D binocular poses are generated from ground truth 2D poses by adding noise step-
by-step. Subsequently, Triangulation [9] is used to reconstruct noisy 3D poses, thereby defining the
uncertainty distribution in 3D. During the reverse denoising process, we sample noisy 3D poses and
remove the noise to recover plausible and accurate 3D poses. Reprojection is utilized to estimate the
corresponding 2D poses back, enabling simultaneous denoising in both 2D and 3D spaces.

Reviewing our Dual-Diffusion model, the essential objective of the denoiser network is to remove
the noise of noisy 3D poses under different perturbed distributions. The noise-perturbed level is
determined by the noise addition step t in diffusion and is reflected in the denoiser via timestamp
embedding. While t is directly associated with 2D noise, 3D noise depends not only on 2D factors
but also on 3D depth and the baseline width of the binocular setup. To enable flexible denoising of
3D noisy data under the same t but with varying uncertainties, we introduce 3D depth as an additional
condition, named Z-embedding. Besides, the baseline-width-related normalization (BaseL-norm) is
applied to 3D poses, which allows the model to flexibly adapt to different baseline width settings.

To validate the efficacy of our Dual-Diffusion model in denoising both 2D and 3D poses, we
conducted experiments on the binocular H36M [13] and MHAD [27] datasets, utilizing only 2-view
camera pairs. Our model outperforms the baseline Triangulation and other state-of-the-art methods.
Additionally, we establish the “random-noise” and “2D-Diff” models for comparison, demonstrating
the effectiveness of starting from initial pose distributions and leveraging 3D pose priors.

Our contributions can be summarized as follows:

• Dual-Diffusion Framework. We propose a novel framework, Dual-Diffusion, specifically
designed for binocular 3D HPE. This model simultaneously removes noise from both 2D
and 3D poses by leveraging geometric mapping.
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• Uncertainty Analysis and Denoiser Enhancement. We analyze the relationship between
3D and 2D uncertainties and introduce Z-embedding and BaseL-norm to enhance the
flexibility of the denoiser.

• Benchmark Performance. Our method achieves superior performance on the evaluated
benchmarks, demonstrating effectiveness.

2 Related Work

Binocular and Multiview 3D HPE. Binocular 3D HPE aims to estimate 3D poses from single-
frame 2D poses captured from two perspectives. This task has been sparsely studied. RSB-Pose
[45] utilizes stereo volume features to enhance binocular coherence in 2D poses and employs a
spatial Transformer for 3D pose refinement. While the Transformer excels at establishing correlations
between nodes, its ability to effectively identify and denoise incorrect joints is uncertain. Given the
geometric constraints shared in multiview setups, we review multiview 3D HPE methods, typically
involving two stages: 1) estimating 2D poses from images, and 2) lifting these to 3D poses using
geometric constraints, with Triangulation [9] being the most common approach. Existing methods
can be categorized into two stages of improvement. The first category [32, 10, 33, 46] enhances
2D poses using 3D-aware features from multiview fusion. The second category [3, 31, 14, 5, 15]
focuses on lifting 2D poses to 3D. Explicit pose priors, such as bone length, are incorporated into the
lifting process using Pictorial Structure Models [3, 31] or closed-form Structural Triangulation [5].
Some methods [14, 15] treat lifting as a 3D regression task using volume representations, implicitly
considering pose coherence. However, these approaches either rely on limited explicit pose priors or
involve computationally intensive 3D convolutions. Actually, due to geometric constraints, the 3D
poses reconstructed from initial 2D poses in multiview are generally reliable, with limited studies
focusing on 2D-3D lifting. Recognizing that the primary challenge in binocular setups is increased 3D
uncertainty, this work specifically focuses on the 2D-3D lifting process. Hence, we review monocular
3D HPE methods for additional insights.

Monocular 3D HPE. Monocular 3D HPE methods can be categorized into one-stage and two-stage
approaches. One-stage methods [30, 43, 62, 42] directly regress the 3D pose from the image, relying
on extensive datasets and complex network architectures. Two-stage [25, 18, 4] first estimate the 2D
pose using a 2D detector, then lift it to 3D through deep network mapping. Considering the joints are
connected within a skeleton, Graph Convolutional Networks (GCNs) [57, 2, 60] and Transformer
architectures [35, 55, 53, 41, 59] are introduced to establish correlations between joints during the
lifting process. However, despite establishing joint relationships, monocular methods still suffer from
inherent depth ambiguity, which utilizes temporal consistency or poses priors to overcome.

Pose Priors in 3D HPE. Since our task involves single-frame pose estimation, we primarily review
works focusing on modeling pose priors in monocular 3D HPE. Previous approaches explore explicit
pose priors, such as joint angle limits [1], physical plausibility [54], or defined pose models [21].
However, explicit priors, despite their interpretability, may not be comprehensive. With advancements
in image generation, probabilistic methods capable of modeling data distributions gain attention.
VAE [23, 29, 48] encodes poses into a latent space following a normal distribution, then decodes them
back to the original pose. However, inference through recurrently optimizing latent parameters can be
time-consuming. Normalizing flows [19, 50] use invertible transformations to map latent features to
3D poses, aiding inference, but with complex network architectures. Generative adversarial networks
(GANs) [47, 7] learn pose distributions by distinguishing fake and real poses, but face challenges in
training. The diffusion models [11, 38, 39] gain popularity due to its network flexibility and training
simplicity. It learns data distribution by iteratively removing noise which is incrementally added
to real data until a fully diffused noise distribution is achieved. Several methods [6, 12, 36, 34, 61]
condition the 3D pose distribution on estimated 2D points. However, directly applying this framework
to binocular 3D HPE disregards geometric constraints, acquiring more diffusion and denoising steps.
Another approach [8] treats initial 3D poses as containing high uncertainty and accurate 3D poses
as maintaining low uncertainty, and employs the diffusion model to denoise noisy 3d pose from an
initial high-uncertainty distribution to a more accurate result under a certain distribution. However,
the initial distribution of 3D poses is unknown which is estimated statistically in [8]. Considering
geometric constraints in binocular configuration, the initial 3D pose distribution can be derived from
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Figure 2: Overview of Dual-Diffusion Method. (a) Modeling: In the forward diffusion process,
noise is added to the ground truth binocular 2D poses u0 for T steps, aligning with the distribution of
initial estimated 2D poses. During the reverse denoising process, noisy 3D poses are progressively
denoised to plausible poses. Geometric mapping is employed to connect 2D and 3D domains. (b)
Inference: The initial 3D pose yT , reconstructed from binocular 2D poses uT , is denoised to ỹ0. Then
ỹ0 is reprojected to the denoised 2D poses ũ0. The entire denoising process iterates for K times.

the initial 2D distribution which is more straightforward. Therefore, we propose the Dual-Diffusion
model to denoise both 2D and 3D poses, specifically for binocular 3D HPE.

3 Method

We propose Dual-Diffusion to simultaneously optimize 2D poses and 3D poses, addressing the high
uncertainty issue in binocular 3D HPE. The modeling framework is illustrated in Fig. 2(a). Starting
with the initial 2D poses estimated by the off-the-shelf 2D detector, which are considered as the
diffused data, we apply a diffusion model to denoise it. However, the denoising is applied to the
3D pose rather than the 2D pose, given the inherently 3D nature of pose priors. The geometric
projection relationship is leveraged to bridge the gap and enable dual-denoising of 2D and 3D space.
In the subsequent sections, we first briefly introduce the diffusion models and then describe our
Dual-Diffusion model in detail.

3.1 Revisiting Diffusion Models

Diffusion models [11, 38] are a type of probabilistic method that can recover data that satisfy the
underlying distribution pdata(x) from noisy data. It comprises two processes: the forward diffusion
process and the reverse denoising process. During the forward process, the real data x0 is diffused by
a Gaussian noise step-by-step over T steps under a Markov chain. The formulation can be written as:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)

where the variance schedule βt determines the perturbed level of the noisy data xt. Using the notation
αt := 1− βt and ᾱt :=

∏T
t=1 αt, xt can be sampled from x0 skipping timestamps 1 : t− 1:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) and xt =

√
ᾱtx0 +

√
1− ᾱtϵt, ϵt ∼ N (0, I). (2)

When T is large enough, xT ∼ N (0, I) can be satisfied. Hence, the reverse process starts at samples
from N (0, I), and the purpose is to recover x0 ∼ pdata(x). According to ELBO [17], the target
max logpθ(x0) can be simplified to minimize the KL divergence between the reverse conditional
distribution pθ(xt−1|xt) and the posterior of the diffusion q(xt−1|xt, x0) which is formulated as:

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI), β̃t :=
1− ᾱt−1

1− ᾱt
, (3)
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where µ̃t is a linear combination of xt and x0. The reverse conditional distribution can be ensured
in Gaussian form pθ(xt−1|xt) ∼ N (xt−1;µθ(xt, t),Σθ(xt, t) if βt are small. Thus, the key to KL
divergence is the L2 distance between µθ and µ̃t, which drives the denoiser network to learn µθ to
predict µ̃t. According to Eq. 2, the loss of the denoiser training is finally simplified to:

Lθ = Et,x0,ϵt [∥ϵt − ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵt, t)∥2]. (4)

The essential of the denoiser is to predict the noise ϵt at any perturbed level t added to the real data,
and then can recover the x0.

3.2 Dual Diffusion

Starting from N (0, I) is highly time-consuming due to the high diffusion of noise. [8] suggests that
the 3D pose yT predicted by the off-the-shelf methods is a kind of noisy data under the distribution
with high uncertainty YT , and diffusion models can be used to reduce uncertainty to generate the
accurate result y0. Starting from YT with limited diffusion is more efficient. The major problem
is that the 3D pose initial uncertainty is unknown, which is solved by the statistical method in [8].
However, if the uncertainty of the 3D pose follows a Gaussian distribution is still confusing. And
the statistical results can be easily influenced by the models and training dataset, posing challenges
in practical applications. In this work, considering the binocular geometry framework, we design
an elegant method to build uncertainty distribution of initial 3D poses from 2D uncertainty, and
conversely, to achieve 2D denoising by denoising 3D poses, which we name Dual-Diffusion.

Forward Dual Diffusion process gradually adds noise to ground truth binocular 2D poses u0 =
{u0,v} ∈ RJ×4 in a Markov chain. Here, J is the number of joints and v ∈ 0, 1 indicates the left and
the right perspectives. The diffusion domain is localized in 2D based on two reasonable assumptions:
1) the uncertainty distribution of initial 2D poses is known, and 2) it is in Gaussian form. We predict
the initial 2D poses using a 2D detector. The training objective of this detector is to predict heatmaps
of 2D joints whose supervision is a Gaussian distribution centered at the ground truth with a fixed
standard deviation σT . The maturity of 2D detectors ensures the quality of the heatmap generation.
Therefore, the initially predicted binocular 2D poses can be treated as the noisy data following the
Gaussian distribution N (0, σT

2I) around the ground truth 2D poses u0. This indicates that the
diffusion target at T step should satisfy the distribution UT ∼ N (u0, σT

2I). The formulation to
create the diffused 2D poses can be written as:

ut = u0 +
√
(1− ᾱt)ϵt, ϵt ∼ N (0, σT

2I). (5)

Here, x0 and xt in Eq. 2 are replaced by u0 − u0 and ut − u0 correspondingly to maintain the
distribution consistency of ϵt. When t = T , uT ∼ UT is satisfied. The diffusion is transmitted to
3D space by Triangulation [9], which is a geometric tool to reconstruct 3D poses y ∈ RJ×3 from
binocular 2D poses using camera parameters. The diffused 3D poses can be generated by:

yt = Tri(ut,0, ut,1), (6)

where Tri represents the closed-form solver using Linear Triangulation. Up to now, the uncertainty
distribution of initial 2D poses is determined. Although the initial uncertainty distribution YT in 3D
has not yet been formulated, it can be reconstructed by sampling from noisy 2D poses.

Reverse Dual Denoising should recover accurate binocular 2D poses u0 from the estimated 2D
poses uT according to the definition in diffusion models. However, we argue that 3D poses inherently
exhibit a more constrained distribution compared to 2D poses. 2D poses may be various under
different camera parameters and perspectives. Hence, we modify the denoising network to recover
the original 3D poses y0. As above, the denoising is transmitted to the 2D plane by Reprojection,
given the camera extrinsic and intrinsic matrix. Then the noise ϵt added to 2D poses in Eq. 5 can be
predicted. However, taking into account the depth ambiguity problem in the correspondence between
3D and 2D noises, the denoiser objective in Eq. 4 is adjusted to predict the original data rather than
noise, as stated:

Lθ = Et,u0,0,u0,1
[
∑
v

∥u0,v −Rpjv(yθ)∥2], yθ = fθ(yt, t), (7)

where Rpjv is the Reprojection from v perspective, and fθ represents the denoiser network.
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Z-embedding Condition. Even though the denoising formulation of diffusion modeling is to
denoise the 2D noisy poses, the essential task of the denoiser focuses on removing noise from the 3D
noisy poses under t perturbed level. We leverage the geometric and experiment analyses to explore
the relationship between 3D and 2D uncertainty (details in Appendix A). Our findings reveal that the
3D uncertainty range is not only influenced by the 2D uncertainty range but also relative to the depth
z of the 3D point and the baseline width of the binocular setting. However, the diffused data in the
fixed t shares the same perturbed level, as defined in Eq. 2. To facilitate our denoiser to learn the
noise within different uncertainty but under the same timestamp t, we introduce the zt, the absolute
depth of root joint of 3D poses yt, as an additional condition. This is based on the assumption that
the zt is close to the ground truth z because of the initial results with limited diffused. The denoiser is
modified as:

yθ = fθ(yt, zt, t). (8)

Baseline-width-related Pose Normalization. The depth z affects the noise along the x-axis, y-axis,
and z-axis, while the baseline width only affects the noise on the z-axis. Considering the baseline
width of binocular cameras will be changed in practical application. We propose a simple method to
normalize and denormalize the 3D poses under different baseline width settings:

z̄t = Bzt, zθ = z̄θ/B, (9)
where zθ shares the same definition with zt, B is a scalar representing the baseline width, and z̄ is the
normalized z. Through normalization and denormalization, the input to the denoiser is baseline width
independent, but the 3D pose estimation results are not affected.

Inference. During the inference process, shown in Fig. 2(b), the initial binocular 2D poses uT

estimated by a 2D detector are the input to our Dual-Diffusion model. Subsequently, the initial 3D
pose yT is reconstructed and normalized, then fed into the denoiser to generate the plausible and
accurate 3D pose ỹ0, along with their corresponding binocular 2D poses ũ0. These poses ũ0 are then
diffused to ut using the DDIM strategy [37] for input to the next denoinsing. After iterative denoising
for K times. The final 3D pose ỹ0 and 2D poses ũ0 are estimated. It should be noted that the 3D
pose is converted to a root-relative format before being processed by the denoiser and then converted
back afterward. For the experiments described below, we set T = 25 and K = 1 according to the
ablation study in Sec. 4.3 and Appendix D.3. The denoiser follows a GCN-Transformer structure.
Detailed architecture and training information can be found in Appendix B.

4 Experiments

Dual-Diffusion aims to reconstruct 3D pose from binocular 2D poses estimated from one off-the-
shelf 2D detector. We refer to it as “Dual-Duffison-2D POSE DETECTOR” in tables. The baseline
method for comparison is the Triangulation [9] (Tri), referred to as “Tri-2D POSE DETECTOR”. The
experiments are conducted on two benchmarks: 1) the short-baseline binocular benchmark, MHAD
Berkeley dataset [27], and 2) the wide-baseline benchmark, H36M dataset [13]. MHAD [27] is a
multi-modal dataset that encompasses 11 actions performed by 12 subjects. We choose the binocular
camera pairs (1− 3, 2− 4) in the L1 quad camera, with approximate 200mm baseline width. H36M
[13] is one of the most popular datasets for 3D HPE. To simulate the binocular setup, the camera
pairs (1− 3, 2− 4) are selected, with about 3000mm baseline width. Mean Per Joint Position Error
(MPJPE) is used to assess the accuracy, while Bone Length error (BL) and Symmetry error (Sym) are
employed to evaluate the plausibility of 3D poses. Joint Detection Rate (JDR) is applied to assess 2D
poses. The details of the metric and implementation can be found in Appendix C.

4.1 Comparison on MHAD

There are few methods designed particularly for binocular 3D HPE, except RSB-Pose [45]. We
reproduce the state-of-the-art multiview 3D HPE methods and fine-tune them in binocular datasets,
including TPPT [24], Epipolar_Tri [10], Algebraic_Tri [14] and AdaFuse [56]. Among them, RSB-
Pose [45] utilizes Triangulation to lift 3D pose and refine it with Pose Transformer, Algebraic_Tri
[14] employs a weighted Triangulation to reconstruct 3D pose. Other methods focus on estimating
the 2D poses from fused features in a geometric or an attention mechanism based on the backbone
ResNet [51], but the 3D pose is lifted solely through Triangulation. We use “METHOD NAME*” in
tables to indicate the methods that primarily focus on improving multiview 2D pose estimation.
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Table 1: Quantitative Comparison on MHAD. Scale is the resolution of image input to the 2D pose
detector. The best results are highlighted in bold, and the second results are underlined. The results
of the baseline comparison are in light blue , while the results of Dual-Diffusion are in dark blue .

Method Venue 2D Pose Detector Scale MPJPE ↓
(mm)

BL ↓
(mm)

Sym ↓
(mm)

JDR ↑
(%)

TPPT [24] ECCV’22 TPPT* 256 209.03 134.05 248.93 -
RSB-Pose50 [45] arXiv’23 RSB-Pose50* 256 32.10 10.21 12.13 96.62
Epipolar_Tri [10] CVPR’20 Epipolar_Tri* 256 90.73 33.67 34.21 -
Dual-Diffusion-Epi Epipolar_Tri* 256 76.42 14.31↓ 27.02 6.65↓ 26.42 7.79↓ -
Tri-ViTPose NeurIPS’22 ViTPose [52] 256 70.84 42.55 48.43 95.83
Dual-Diffusion-ViT ViTPose [52] 256 61.02 9.82↓ 37.90 4.65↓ 30.09 18.34↓ 95.88 0.05↑
Tri-ResNet50 ResNet50 [51] 256 60.04 23.68 36.65 95.95
Dual-Diffusion-ResNet50 ResNet50 [51] 256 54.51 5.53↓ 18.09 5.59↓ 24.64 12.01↓ 98.86 2.91↑
Tri-RSB50 RSB-Pose50* 256 35.40 11.36 14.25 96.62
Dual-Diffusion-RSB50 RSB-Pose50* 256 30.96 4.44↓ 9.60 1.76↓ 11.53 2.72↓ 98.94 2.32↑
Algebraic-Tri [14] ICCV’19 ResNet152 [51] 384 51.69 27.11 45.69 95.95
RSB-Pose152 [45] arXiv’23 RSB-Pose152* 384 29.33 8.70 9.94 97.40
AdaFuse [56] IJCV’20 AdaFuse* 384 70.27 36.07 30.08 83.46
Dual-Diffusion-Ada AdaFuse* 256 53.77 16.50↓ 24.59 11.48↓ 23.19 6.89↓ 95.37 11.91↑
Tri-ResNet152 ResNet152 [51] 384 48.26 19.22 27.73 95.95
Dual-Diffusion-ResNet152 ResNet152 [51] 384 43.57 4.69↓ 16.20 3.02↓ 14.91 12.82↓ 97.26 1.31↑
Tri-RSB152 RSB-Pose152* 384 29.78 9.84 11.61 97.40
Dual-Diffusion-RSB152 RSB-Pose152* 384 27.76 2.02↓ 7.56 2.28↓ 9.83 1.78↓ 99.20 1.80↑

To evaluate the performance of our Dual-Diffusion in 2D-3D lifting, we employ state-of-the-art
binocular or multiview models as 2D detectors. Results are shown in Table 1. Our method generates
more accurate and plausible 3D poses compared to the baseline. For instance, based on the 2D poses
generated by ResNet50, Dual-Diffusion reduces the MPJPE by 5.53mm (a 9.2% error reduction),
and the BL and Sym by 5.59mm (23.6%) and 12.01mm (32.8%) respectively. This improvement
is consistently observed with the 2D poses generated by RSB-Pose50* as well. When the image
resolution increases to 384, the 2D poses estimated are more accurate. Our method still outperforms
the baseline with 2.02mm (6.8%) in MPJPE, 2.28mm (23.2%) in BL and 1.78mm (15.3%) in
Sym using the RSB-Pose152* 2D detector. Additionally, Dual-Diffusion generates more accurate
2D results, with increases of 2.32% and 1.80% compared to the initial results of 2D detectors
RSB-Pose50* and RSB-Pose152*, respectively. The performance enhancement demonstrates our
Dual-Diffusion can simultaneously denoise both 2D and 3D noisy poses and generate more accurate
and plausible results. Regardless of the input resolution, our method consistently achieves the best
results across all four metrics. This demonstrates the effectiveness of our approach in short-baseline
binocular 3D HPE, making it promising for practical applications.

4.2 Comparison on H36M

Table 2: Quantitative Comparison on H36M. Params is the number of
model parameters excluding the backbone.

Method Scale Params
(M)

MPJPE ↓
(mm)

BL ↓
(mm)

Sym ↓
(mm)

JDR ↑
(%)

TPPT [24] 256 9.70 40.72 22.49 25.44 -
RSB-Pose50 [45] 256 9.25 35.01 14.16 13.54 94.82
Epipolar_Tri [10] 256 0.08 41.22 20.39 20.18 -
Dual-Diffusion-Epi 256 0.74 37.03 4.19↓ 16.90 3.49↓ 18.08 2.10↓ -
Tri-ViTPose 256 - 41.49 18.09 20.75 93.33
Dual-Diffusion-ViT 256 0.74 35.20 6.29↓ 16.02 2.07↓ 19.66 1.09↓ 95.772.44↑
Tri-RSB50 256 - 38.13 17.26 16.82 94.82
Dual-Diff-RSB50 256 0.74 33.17 4.96↓ 12.29 4.97↓ 11.75 5.07↓ 94.91 0.09↑
Algebraic-Tri [14] 384 10.88 31.24 13.52 13.59 95.81
RSB-Pose152 [45] 384 9.25 30.07 13.33 12.86 95.93
AdaFuse [56] 384 1.02 30.27 15.23 14.36 94.25
Dual-Diffusion-Ada 384 0.74 29.17 1.10↓ 13.85 1.38↓ 13.57 0.79↓ 96.06 1.81↑
Tri-RSB152 384 - 30.54 13.65 13.42 95.93
Dual-Diff-RSB152 384 0.74 28.67 1.87↓ 12.06 1.59↓ 12.35 1.07↓ 95.97 0.04↑

In Table 2, the com-
parison is conducted
on H36M [13]. Even
though the uncertainty
of initial 3D poses in the
wide-baseline binocular
is reduced compared to
the short-baseline setup
[45], our Dual-Diffusion
still outperforms the
baseline and achieves
the best results across
all metrics. Based on
the RSB-Pose50* 2D
detector, Dual-Diffusion
achieves an error reduction of 13.0%, 28.8%, 30.1% and 0.09% in MPJPE, BL, Sym of 3D poses
and JDR of 2D poses, respectively. Even at 384 resolution, where other methods demonstrate
effectiveness with about 30mm MPJPE results, our model still outperforms them by at least 1.87mm
in MPJPE, achieving a result of 28.67mm. It is demonstrated that Dual-Diffusion can enhance
3D poses under wide-baseline binocular configurations, showcasing its generalization capabilities.
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Table 3: Impact of Each Module. Experiments are conducted on MHAD with 2D poses estimated
from RSB-Pose152*. The first row is the result generated by Tri.

Dual-Diff Z-embedding BaseL-norm Params ↓
(M)

MACs ↓
(G)

MPJPE ↓
(mm)

BL ↓
(mm)

Sym ↓
(mm)

✗ ✗ ✗ - - 29.78 9.84 11.61
✓ ✗ ✗ 0.74 0.42 28.20 1.58↓ 8.81 1.03↓ 11.23 0.38↓
✓ ✓ ✗ 0.74 0.42 27.91 1.78↓ 7.85 1.99↓ 10.12 1.49↓
✓ ✓ ✓ 0.74 0.42 27.76 2.02↓ 7.56 2.28↓ 9.83 1.78↓

Table 4: Impact of BaseL-norm. The results
are MPJPE of 3D poses generated with 2D
poses estimated from ResNet50.

Baseline width
(mm) Tri Dual-Diff

✗ BaseL-norm ✓ BaseL-norm
100 92.57 103.87 88.32
300 54.36 62.13 51.26

Table 5: Comparison of Diffusion Models in
MPJPE. The 2D poses are estimated from RSB-
Pose152*. T is the overall diffusion steps.

T (K=1) 25 50 75 100 125
random-noise 328.82 270.51 234.41 135.72 70.19

2D-Diff 29.40 29.55 28.81 31.09 29.25
Dual-Diff 28.20 28.31 28.17 28.19 28.25

Additionally, Dual-Diffusion requires only 0.74 million parameters, significantly fewer than other
methods. This demonstrates that the effectiveness of pose refinement in our method does not rely on
a large number of parameters, but rather on the dual diffusion modeling and training.

4.3 Ablation Study

The ablation experiments are conducted on MHAD, as the high uncertainty issue is more pronounced
in short-baseline setups compared to wide-baseline ones [45].

Impact of Each Module. We first investigate the improvements provided by the pure Dual-
Diffusion model described in Sec.3.2, denoted as “Dual-Diff” in the tables. Then, two additional
modules, Z-embedding and BaseL-norm, are assessed. As depicted in Table3, the pure Dual-Diff
significantly enhances the accuracy of 3D poses, achieving a 5.3% reduction in MPJPE and a 10.5%
reduction in BL, indicative of its capability to generate more precise and plausible 3D poses. With the
incorporation of Z-embedding as an additional condition, there are further 10.9% and 9.9% relative
improvements in BL and Sym. It is worth noting that subjects often perform actions while tilting
towards the camera rather than facing it, leading to differences in the depth of joints on the left
and right sides, resulting in variations in their 3D uncertainty regions. Z-embedding is specifically
designed to enhance the adaptability of the denoiser to different perturbed noise levels at the same time
t, as demonstrated by the significant enhancement in Sym. Finally, the addition of the BaseL-norm
brings slight improvements in three metrics. Additionally, the computational cost is limited.

Zero-Shot 2D-3D Lifting. The purpose of BaseL-norm is to enhance the flexibility of the Dual-
Diffusion to various baseline width settings. To evaluate this, we adapt two additional camera pairs
(1− 2, 1− 4) on MHAD, representing binocular baseline width of 100mm and 300mm, and conduct
zero-shot 2D-3D lifting on them. Firstly, we employ ResNet50 to detect 2D poses. Then, the
denoiser trained on 200mm-baseline training dataset is directly utilized to generate 3D poses on
100mm-baseline and 300mm-baseline testing sets without fine-tuning. The results are presented in
Table 4. Without BaseL-norm, the accuracy even worsens. But with BaseL-norm, there are 4.25mm
and 3.1mm reductions in MPJPE for two settings, respectively. The improvement illustrates the
zero-shot adaptability of the BaseL-norm module to various baseline widths, which is beneficial for
further application in practice.

Efficiency of the Uncertainty Distribution Initialization. We use the initialized uncertainty distri-
bution as the target distribution for diffusion instead of random noise. To evaluate its efficiency, we
establish a baseline diffusion model that generates 3D poses by denoising random noise conditioned
on 2D binocular poses, referred to as “random-noise”. To mitigate the effect of camera projection
matrices Pv, we translate 2D keypoints to 3D-aware vectors by P−1

v . The comparison results are
shown in Table 5. Under the same inference iteration K = 1, across the diffusion steps from 25 to
125, the random-noise consistently yields inferior results, while Dual-Diff achieves promising results
even with T = 25. A smaller T indicates a reduced time cost of training and inference.
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Table 6: Validation of 3D Uncertainty Distribution Modeling. The results are MPJPE of 3D poses
denoised by the denoiser trained with the MHAD training set.

2D Pose Detector Dataset 3D Pose MPJPE (mm) 2D Pose Detector Dataset 3D Pose MPJPE (mm)

ResNet152 [51]
training estimated 15.93

RSB-Pose152* [45]
training estimated 10.96

GT+noise 17.07 GT+noise 11.95

testing estimated 43.57 testing estimated 27.76
GT+noise 17.51 GT+noise 12.46

Table 7: Comparison of Uncertainty Reconstructing and Uncertainty Statistics. The 2D poses
are estimated form ResNet152.

Setting Method MPJPE (mm) Setting Method MPJPE (mm)
training in small-dataset Tri 40.39 training in large-dataset Tri 38.17

and Dual-Diff 39.11 and Dual-Diff 35.23
testing in large-dataset DiffPose [8] 54.12 testing in small-dataset DiffPose [8] 40.62

Moreover, there remains some ambiguity regarding whether the initial uncertainty distribution of
the 3D estimation is effectively modeled. To investigate this, we perform denoising on simulated
noisy 3D poses. Specifically, we first calculate the error between the 3D estimation and the 3D GT
along each axis in the MHAD training set, storing this as the noise set. Then, we add noise sampled
randomly from this set to the 3D GT along each axis. Finally, we use the denoiser to refine both the
“GT + noise” and “estimated” 3D poses, comparing the MPJPE results. The hypothesis is that if the
3D uncertainty is well-modeled, the performance in refining both estimated 3D poses and simulated
3D poses should be similar. As shown in Table 6, regardless of the 2d pose detector, the accuracy of
denoised “GT+noise” in both training and testing sets is all close to the “estimated” in the training
set, demonstrating that the 3D uncertainty distribution is well-modeled.

Uncertainty Reconstructing v.s. Uncertainty Statistics. We argue that reconstructing 3D pose
uncertainty from 2D pose uncertainty is a more practical approach. As discussed in Appendix A, the
depth uncertainty of a 3D point increases with greater depth. Consequently, the statistical approach
in DiffPose [8] tends to constrain the model to a narrow depth range, while Dual-Diffusion leverages
more reliable 2D results. To evaluate this, we divide the MHAD into two subsets: large-dataset and
small-dataset, based on the average depth of 3D poses and compare Dual-Diffusion with DiffPose.
The results are illustrated in Table 7. Compared to the Triangulation baseline, performance improves
with Dual-Diffusion but decreases with DiffPose. DiffPose suffers from the change of 3D poses
uncertainty distribution while our Dual-Diffusion remains stable. This stability is due to the fact that
Dual-Diffusion models the diffusion target using 2D uncertainty, which is significantly more stable
than 3D uncertainty. The comparison of the stability in uncertainty between 2D poses and 3D poses
can be found in Appendix D.3.

Figure 3: Dual-Diff (red) v.s. 2D-
Diff (blue) under various T and
K = 25.

3D Pose Priors v.s. 2D Pose Priors. We argue that 3D pose
priors are more easily captured compared to 2D pose priors be-
cause 2D poses vary under different perspectives. To validate
this, we establish a diffusion model directly for denoising 2D
poses, named “2D-Diff”, and then reconstruct 3D poses. As
shown in Table 5, Dual-Diff consistently outperforms 2D-Diff
in terms of 3D pose accuracy. Furthermore, we compare the
plausibility of 3D poses. As illustrated in Fig. 3, Dual-Diff ex-
ceeds 2D-Diff in both BL and Sym. These results collectively
demonstrate the necessity of denoising in the 3D domain.

4.4 Visulization

Dual-Diffusion Denoises the Binocular 2D Poses. To understand the denoising process of binocu-
lar 2D poses, we conduct a simulation experiment. First, we gradually add noise to the ground truth
2D poses over T = 25 steps and generate the final noisy 2D poses. Then, we set the reverse iteration
K = 25 to recurrently denoise the noisy poses. Fig. 4 illustrates the absolute distance between noisy
data and the ground truth at each step t in diffusion and each iteration k in denoising. The noise
added to the joint during the diffusion process is incrementally removed during the denoising process.
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(a) diffusion (b) denoising

Figure 4: Step-wise errors of binocular 2D joints, (u, v)left and (u, v)right, during the diffusion and
denoising processes. The joint analyzed is the right knee.

(a) H36M (b) MHAD

Triangulation RSB-Pose Ours Triangulation RSB-Pose Ours

Figure 5: Qualitative Comparison with Triangulation and RSB-Pose in 3D Pose Estimation.
2D poses are estimated by RSB-Pose152*. The gray skeleton is the ground truth, while the black
represents the estimates. Red and blue points correspond to joints on the right and left sides,
respectively. Yellow arrows indicate parts of significant improvement achieved by our method.

Dual-Diffusion Denoises the 3D Poses. We provide a qualitative comparison with Tri-RSB152 and
RSB-Pose152 in Fig. 5. Our Dual-Diffusion achieves more accurate 3D poses, particularly in cases
of self-occlusion. For instance, in the 3rd row of the 1st column, the right hip is occluded, resulting
in an inaccurate 3D pose using baseline Triangulation. Dual-Diffusion effectively corrects the 3D
pose. This highlights our method’s ability to denoise noisy 3D poses. Additionally, when baseline
results are poor, such as in the 1st row of the 2nd column, RSB-Pose can only partially correct some
joints, whereas our method corrects the entire right skeleton. More visualization is in Appendix D.4.

5 Conclusion and Discussion

This work introduces a novel framework, Dual-Diffusion, to reconstruct 3D poses from 2D poses
estimated by off-the-shelf 2D pose detectors in a binocular configuration. Dual-Diffusion simulta-
neously denoises initial 2D and 3D poses within a single diffusion model. The diffusion process
operates on 2D poses, while the denoising process occurs in 3D space, utilizing geometric mapping
to connect the 2D and 3D domains. Comparisons with state-of-the-art methods demonstrate that
our approach effectively denoises both 2D and 3D poses, yielding superior results and making it
particularly suitable for binocular 3D HPE, especially in short-baseline configurations.

Discussion. We further extend the applicability of Dual-Diffusion to multiview settings, as shown
in the Appendix D.2. The observed performance improvements validate the scalability of our method.
Additionally, we incorporate 3D supervision (see Appendix D.3), revealing further advantages
that will be explored in future work. However, we also acknowledge two main limitations of our
method. Firstly, while simulation experiments are conducted to validate our hypothesis regarding
3D uncertainty factors (see Appendix A.2 for details), computing the boundary points of the 3D
uncertainty region to explore it may lack rigor. We plan to leverage an algebraic approach to derive
the range of the 3D uncertainty caused by 2D errors in future work. Secondly, our denoising network
takes the root-relative 3D pose as input, neglecting optimization of the root joint. Although the root
joint is finally refined (see Appendix D.1), another module to optimize the root joint is preferred.
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A Relationship between 3D and 2D Uncertainty

A.1 Theoretical Analysis

We simplify the relationship between 3D and 2D uncertainty to the relationship between 3D uncer-
tainty range ∆x,∆z,∆z′ with 2D uncertainty range ∆u. We analyze it in the x-o-z cross-section
of 3D space, as shown in Fig. 6. Ol and Or are the optical centers of binocular cameras which are
rectified and their image plane is parallel to the x-axis. The red point H is the ground truth of a 3D
point with depth z. The analysis is based on the hypothesis that the uncertainty range of the estimated
2D point is the same in 2 views with ∆u along the x-axis. The ground truth 2D point is the projection
of H .
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Figure 6: 3D reconstructing uncertainty
range of binocular configuration.

Point A represents the intersection of the left boundaries of
the 2D uncertainty regions from both viewpoints and serves
as the left boundary along the x-axis in the 3D uncertainty
region. B denotes the intersection of the right boundaries
from both viewpoints, forming the right boundary along
the x-axis in the 3D space. C is the intersection between
the right boundary of the 2D uncertainty region from the
left view and the left boundary of the 2D uncertainty region
from the right view, establishing the lower bound along the
z-axis of 3D uncertainty. Conversely, point D marks the
upper bound along the z-axis.

Uncertainty along the x-axis. To analysis the relation-
ship between ∆x and ∆u, we first prove that line segment
AB is parallel to the image plain. Based on the disparity
formula z = fB/∆d, A and H have the same depth z
since they share the same disparity, and similarly for points
B and H . Therefore, line segment AB passes through H
and is parallel to the image plane. Then, the segment AH
can be derived using similar triangles:

∆x

∆u
=

z

f
. (10)

Uncertainty along the z-axis. We first prove that the midpoint E of OlOr and H lie on the line DC.
Through point C, draw a line parallel to the image plane, intersecting OlD and OrD at points F and
G respectively. Line DC intersects AB and OrOl at points E′ and H ′. According to the properties of
similar triangles, FC = GC. Furthermore, cause △DFC ∼ △DOlE

′ and △DGC ∼ △DOrE
′,

we can deduce that OlE
′ = OrE

′. Similarly, it can be proven that AH ′ = BH ′. Then, the segment
∆z can be derived using similar triangles:

∆z

∆z + z
=

∆x

B/2
. (11)

Combining with Eq. 10, it can be written as:

1

∆z
=

Bf

2z2
1

∆u
− 1

z
(12)

The segment ∆z′ can be derived in the similar way:

1

∆z′
=

Bf

2z2
1

∆u
+

1

z
(13)

We omit the proof of ∆y as it follows the same reasoning as ∆x, given that the standard deviation
along the u-axis and v-axis in a 2D image plane are equivalent. In summary, the factors contributing
to the 3D uncertainty range include the 2D uncertainty range, the depth of the 3D point, and the
baseline width. The 3D depth affects uncertainty along the x-axis, y-axis, and z-axis. The baseline
width only affects the z-axis uncertainty.
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Figure 7: Uncertainty distribution of a 3D point as (a) depth or (b) baseline width changes.

A.2 Experiment Analysis

The analysis above solely relies on the boundary points to explore the relationship between 3D and
2D uncertainty, which is not rigorous. Hence, we conduct the experiments to validate the conclusion.
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Z
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Figure 8: The difference in z-axis un-
certainty distribution between with and
without normalization as baseline width
changes.

We change the point depth from 500mm to 3000mm
with 500mm step to discover the relationship between
3D uncertainty and depth. The binocular 2D points
within a fixed uncertainty range are sampled randomly
and then reconstructed as a 3D point using Triangula-
tion. We sample for 100000 times at each depth and
then analyze the 3D uncertainty range, visualized in
Fig. 7(a). The 3D depth affects the uncertainty of a
3D point along the x-axis, y-axis, and z-axis but with
different relationships. Hence, we add z-embedding
as an additional condition to guide the denoiser. The
experiment investigating the impact of baseline width is
depicted in Fig.7(b). Baseline width solely affects the
uncertainty distribution along the z-axis. As depicted
in Eq.12 and Eq.13, aside from the constant term, we
introduce a normalization factor B to standardize the
error distribution across different baseline widths. The distribution with and without normalization is
illustrated in Fig. 8.

B Denoiser Architecture and Training Details

Denoiser Architecture. The denoiser architecture, illustrated in Fig. 9, is similar to the one
proposed by [8] and essentially follows a GCN-Transformer structure. The 3D pose, represented as
J joint locations, is first input into a GCN layer. The graph for the GCN is defined by the skeleton
connections, which encode the topological features of each joint. Next, five stacked GCN-Attention
modules are used to enhance the global-local perception of the joint features. Each GCN-Attention
module comprises one Attention layer and two GCN layers. Each Attention layer includes a 4-head
self-attention mechanism. Timestamp embedding and Z-embedding are added to each GCN-Attention
module. The embedding schedule is sinusoidal [44]. Finally, the 3D pose is output after passing
through another GCN layer.

Training Details. The training process is depicted in Fig. 9. We first generate diffused data for
training as follows: 1) Initialization: Start with the ground truth 2D poses u0. 2) Noise Addition:
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Figure 9: An overall training process and denoiser architecture for Dual-Diffusion.

Randomly choose a timestamp t ∈ [1, T ], add noise to generate noisy 2D poses ut. 3) Triangulation:
Use triangulation to reconstruct the noisy 3D poses yt. Then we denoise to recover the data through
the denoiser: 1) Denoising 3D Poses: The denoiser takes the noisy 3D poses yt as input and denoises
them to recover original 3D poses ỹ0. BaseL-norm is applied before the denoiser and BaseL-denorm
is applied after. 2) Reprojection: Reproject the denoised 3D poses back to 2D poses ũ0. The training
objective follows the Lθ in Eq. 7 to facilitate the denoiser recovering the original input.

The Dual-Diffusion is implemented by PyTorch [28] using Adam optimizer with learning rate 0.00002
and other parameters are all default. We train our Dual-Diffusion in MHAD [27] for 80 epochs, and
in H36M [13] for 40 epochs, respectively. There is no other schedule for the learning rate employed.
All experiments are conducted on GeForce RTX 2080 Ti.

C More Details of Experiment Implementation

Evaluation Metrics. To evaluate 3D pose accuracy, we utilize Mean Per Joint Position Error
(MPJPE). Besides, we employ two metrics to assess the plausibility of the 3D pose: Bone Length
error (BL), which measures the average distance between the predicted and ground truth bone
lengths; and Symmetry (Sym) [34], which quantifies the average difference between the lengths of
corresponding left and right bones. The Joint Detection Rate (JDR) is applied for 2D pose evaluation
with the detection threshold set at 2.5% of the bounding box width.

Implementation Details. We choose ResNet [51] and RSB-Pose* [45] as our 2D pose detectors
and divide them into two categories with different input image resolutions. To acquire the initial
uncertainty distribution of estimated 2D poses, the methods are distinct for different 2D detector. For
ResNet, the standard deviation are set to 2 and 3 separately for 256 and 384 image resolution, as
the training objective formulating. For RSB-Pose*, we obtain the standard deviation by statistically
analyzing the estimation results on the training set. Because its training objective is MPJPE but not
heatmap. Then, the standard deviation is scaled by image resolution to acquire σT . The diffusion
step T is set to 25, and the reverse step K is set to 1 decided by the ablation study in Sec. 4.3 and
Appendix D.3. To acquire the deterministic results, the reverse sampling is followed to the ODEs
[39].

D More Experiments

D.1 Comparison on MHAD

We compare the per-joint error with the baseline using the same 2D pose detector. The results are
shown in Table 8. Our Dual-Diffusion method surpasses the baseline in most joints, particularly
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Table 8: Quantitative Comparison of Per-Joint Error on MHAD. Scale is the resolution of image
input to the 2D pose detector. The column in green is the root joint.

MPJPE
(mm) Scale Shlder Elbow Wrist Hip Knee Ankle Pelvi Belly Neck Nose Head Avg.

Tri-RSB50 256 29.52 41.76 49.20 25.12 22.56 24.95 103.20 25.19 29.20 27.98 30.68 35.40
Dual-Diffusion-RSB50 256 26.18 39.70 51.80 24.21 21.54 30.54 40.33 23.12 25.11 21.46 26.40 30.96
Tri-RSB152 384 29.06 37.81 48.56 25.02 17.85 23.46 41.54 24.30 25.66 23.35 28.83 29.78
Dual-Diffusion-RSB152 384 26.26 35.95 47.56 23.72 17.09 21.15 31.22 23.07 23.95 22.79 28.09 27.76

Table 9: Applicability to Multiview Settings. The results are MPJPE of 3D poses denoised from the
initial estimated 3D poses using ResNet152 in 2-view, 3-view, and 4-view H36M testing sets.

Method View
Number

MPJPE
(mm)

BL
(mm)

Sym
(mm)

JDR
(%)

View
Number

MPJPE
(mm)

BL
(mm)

Sym
(mm)

JDR
(%)

View
Number

MPJPE
(mm)

BL
(mm)

Sym
(mm)

JDR
(%)

Tri-ResNet152 2 31.51 14.38 16.29 95.81 3 30.13 13.26 15.75 96.46 4 29.93 13.14 14.57 94.96
Dual-DIff-ResNet152 29.15 12.06 13.37 95.92 28.69 11.99 12.42 96..60 28.44 12.22 12.39 95.21

Table 10: Impact of Baseline Width to
Uncertainty.

Baseline width
(mm)

2D MPJPE
(pixel)

3D MPJPE
(mm)

100 3.084 120.37
200 3.079 63.18
300 3.079 54.69

Table 11: Impact of Depth to Uncertainty. The 2D poses
are estimated by ResNet152. STD is the standard deviation.

Dateset 2D MPJPE
(pixel)

3D MPJPE
(mm)

3D MPJPE
STD (mm)

large-dataset 5.26 40.39 1025.88
small-dataset 5.33 38.17 161.88

the root joints and those close to the root. Interestingly, even though the input to the denoiser is the
root-relative 3D pose, the root joint itself is still optimized as highlighted in green. We hypothesize
that this optimization occurs due to the correlation established with the connected joints, which
demonstrates that the pose prior is effectively captured.

D.2 Applicability to Multiview Settings

To evaluate the applicability of Dual-Diffusion in multiview settings, we conduct experiments by
denoising the initially estimated 3D poses using ResNet152 across 2-view, 3-view, and 4-view
configurations of the H36M testing set. The results, as shown in Table 9, demonstrate that Dual-
Diffusion improves performance compared to the Triangulation baseline. However, the degree of
improvement decreases as the number of views increases. This aligns with our explanation that
3D uncertainty is more ambiguous in binocular settings than in 3-view or 4-view setups, where 3D
uncertainty is reduced, making denoising less impactful.

D.3 Ablation Study

Uncertainty Stability Comparison. We conducted a comparison of the stability in uncertainty
between 2D and 3D poses. First, we evaluated the 2D MPJPE and 3D MPJPE estimated by ResNet50
under binocular settings with varying baseline widths, as shown in Table 10. Additionally, we
compared the 2D and 3D uncertainties obtained from ResNet152 across different depths, detailed
in Table 11. The results clearly demonstrate that 2D pose estimation is more robust than 3D pose
estimation.

Table 12: Impact of Inference Iteration Times K.
The results are based on RSB-Pose152*.

K (T=25) 1 2 5 10 20
Dual-Diff 28.20 28.36 28.80 28.97 29.08
2D-Diff 29.40 33.75 35.75 39.15 40.30

Table 13: Impact of Supervision. The experi-
ments are conducted in MHAD, based on RSB-
Pose152*.

Loss MPJPE (mm) BL (mm) Sym (mm)
2D 27.76 7.56 9.83
3D 29.38 8.62 10.57

2D+3D 27.73 7.43 9.43

Impact of the Inference Iteration Time. To
explore the impact of the inference iteration
time K, we denoise the 3D poses for K ∈
{1, 2, 5, 10, 20} iterations and compare the
MPJPE results. When K = 1, we achieve the
best result, as shown in Table 12. Additionally,
our Dual-Diff outperforms the 2D-Diff across
all K, demonstrating the effectiveness of mod-
eling pose priors in the 3D domain.

Impact of Supervision. We implement ex-
periments by using 3D supervision alone and
in combination with 2D supervision to retrain
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Figure 10: Qualitative Comparison on H36M. 2D poses are estimated by RSB-Pose152*. The
gray skeleton is the ground truth, while the black represents the estimates. Red and blue points
correspond to joints on the right and left sides, respectively. Yellow arrows indicate parts of significant
improvement achieved by our method.

Triangulation RSB-Pose Ours Triangulation RSB-Pose Ours

Figure 11: Qualitative Comparison on MHAD. 2D poses are estimated by RSB-Pose152*. The
gray skeleton is the ground truth, while the black represents the estimates. Red and blue points
correspond to joints on the right and left sides, respectively. Yellow arrows indicate parts of significant
improvement achieved by our method.

Dual-Diffusion, based on the RSB152 backbone. As shown in Table 13, adding 3D supervision
additionally enhances 3D accuracy and plausibility. Considering that Dual-Diffusion still has room
for improvement, future work will focus on addressing the limitations discussed in the paper and
exploring additional enhancement methods.

D.4 Visualization

We provide a qualitative comparison with Triangulation and RSB-Pose on H36M and MHAD, as
illustrated in Fig.10 and Fig.11 respectively. Our Dual-Diffusion method noticeably corrects self-
occluded joints in MHAD. In the wide-baseline H36M, although the joints occluded in both views
are minimal, our method still achieves enhancements compared to Triangulation and RSB-Pose.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims are clearly stated in the abstract and the introduction. The contribu-
tions are summarized in the last paragraph in the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the limitations paragraph of Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The assumption about 2D uncertainty distribution of Dual-Diffusion is pro-
vided in Forward Dual Diffusion paragraph of Sec. 3.2. The proof of the relationship
between 3D and 2D uncertainty is provided in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Dual-Diffusion model is clearly described in Sec. 3.2. The training details and
the implementation details are provided in Appendix B and Appendix C respectively.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and models are available at https://github.com/sherrywan/Dual-
Diffusion.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The implementation details are provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The metrics are clearly defined in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The model is implemented by PyTorch and the computation cost is illustrated
in Table 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our Dual-Diffusion is specifically designed for binocular 3D HPE which has
positive societal impacts due to its advantages, which is discussed in the first paragraph of
Sec. 1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original paper and datasets are all cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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