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Abstract

The success of Large Language Models (LLMs) has significantly propelled the research of
video understanding. To leverage the strengths of specialist models (i.e., tool) for specific
video tasks, recent video LLMs have focused on integrating specialist models as tool usage
capabilities into their architectures. Existing methods either prompt closed-source LLMs
or employ the instruction tuning paradigm for tool-use finetuning. These methods, how-
ever, assume an established repository of fized tools and struggle to generalize to real-world
environments where tool data is perpetually evolving and streaming in. To this end, we
propose to enhance open-source video LLMs with COntinual. Tool usage (termed COLT),
which automatically acquires tool-use ability in a successive tool stream without suffering
“catastrophic forgetting” of the past learned tools. Specifically, our COLT incorporates a
learnable tool codebook as a tool-specific memory system. Then, relevant tools are dynami-
cally selected based on the similarity between user instructions and tool features within the
codebook. To unleash the tool usage potential of video LLMs, we collect a video-centric tool-
use instruction tuning dataset VideoTool. Extensive experiments on both previous video
LLM benchmarks and the tool-use-specific VideoTool test split demonstrate the state-of-
the-art performance of our proposed COLT.

1 Introduction

Large Language Models (LLMs), e.g., GPT (Achiam et al., [2023; Brown et al., |2020), PaLM (Anil et al.
2023), and LLaMA (Touvron et al. 2023aib), have exhibited remarkable success in understanding user
instructions, aligning with human intents, and generating trustworthy responses. Trained on large-scale cor-
pora and equipped with billions of parameters, these models demonstrate impressive generalization abilities
across a wide range of natural language tasks such as reasoning, summarization, and question answering.
They have fundamentally reshaped the paradigm of natural language understanding by enabling unified
instruction-following interfaces that support various downstream applications, from conversational agents
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‘ + Instruction-following data of video recognition tool-use &0 ‘ + Instruction-following data of video object segmentation tool-use ,/'

b
,o\ Please segment the objects within the video. (b)

é@ As a language model, | don’t have the ability to segment objects in videos.
‘K@’! To segment objects within a video, you can use Object Detection algorithms

The video shows a person using a computer mouse and keyboard on a tiled floor. The
person moves the mouse around and clicks on the keyboard.

@ 1 use the video object segmentation tool to fulfill the request and the results are returned .

1 will employ the action recognition model. According to the recognition results, the person
in the video is seen moving a computer mouse closer to a computer keyboard.
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Figure 1: Our proposed COLT continually learns to invoke tools from tool-stream data without catastrophic
forgetting. Benefiting from tool usage, COLT (a) is adept at dynamic content understanding and (b) supports
flexible generation compared to existing methods Lin et al.| (2023a)); [Li et al|(2023c). The incorrect parts of
responses are marked in red.

to coding assistants. Recently, the research focus has been gradually shifting from pure text-based LLMs
to multi-modal LLMs such as BLIP-2 2023a)), Flamingo (Alayrac et all, [2022), and MiniGPT-
4 (Zhu et al. 2023b), which augment language models with the capability to perceive and reason over
multiple modalities such as vision, audio, and video. By integrating visual encoders with pretrained LLMs,
these models can interpret images or videos and produce context-aware, grounded responses, thus bridging
perception and language understanding. Such a shift extends the role of LLMs from passive text genera-
tors to more general perceptual agents, which has aroused significant research interest within the academic
community and beyond.

Despite the progress in image-based LLMs, advancing LLMs’ capacity to comprehend video data remains
a demanding pursuit. Recent representative efforts such as Video-LLaMA (Zhang et al., 2023a)) and
VideoChat illustrate the potential of video LLMs, yet the field is still in its early stage.
The overwhelming majority of video LLM methods follow the instruction-tuning paradigm. Building upon
open-source LLMs such as Vicuna (Chiang et al. |2023)) and LLaMA (Touvron et all 2023ajjb), they entail
end-to-end training on instruction-tuning datasets generated by GPT models (Achiam et al., |2023} [Brown|
. These methods, however, demonstrate limited ability to comprehend video actions and present
responses with hallucinations (e.g., non-existent “keyboard click” actions). Besides, most of them lack the
capability of any-to-any generation, e.g., video object segmentation in Figure |1 (b).

To alleviate this, agent-based methods such as Assist- prompt @
GPT (Gao et al}, 2023), ToolLLM 2023), v
DoraemonGPT (Yang et al.,2024b)), VideoAgent Instructions  close-source LLMs
2024), and VideoAgent-2 (Wang et all [2024b) upervise
are introduced to advocate the tool-use capabilities of g . %
LLMs. More recently, VITAL (Zhang et al., 2025]) €X-  fixed wning dataset  open-source LLMs
plores reinforcing tool-augmented video reasoning via comtimed
multimodal reinforcement learning on long videos. As @8 _finetune EB
shown in Figure 2] (a), they mostly bootstrap closed-
source LLMs (Achiam et al., 2023; Brown et al., 2020)
to decompose the user instructions into more manage- Figure 2: (a) Agent-based methods bootstrap
able sub-tasks and incorporate external tools to as- closed-source LLMs via delicately designed prompts;
sist. These training-free methods require delicately (b) Instruction tuning with fixed tool-use dataset;
designed prompts and lengthy context windows for in- (c¢) Instruction tuning with stream tool-use dataset
structions (Liu et al.,[2023c). Instead, recent attempts (Ours); (d) Average tool calling accuracy on
like LLaVA-plus (Liu et al.t|2023c|) and ToolLLM VideoTool vs. learned tools. Sequential train-
explore developing tool-specific instruc- ing denotes training on a sequence of tasks indepen-
tion tuning data and elicit the tool-use capabilities of dently.
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open-source LLMs (c.f. Figure 2 (b)). However, these methods typically assume a pre-set repository con-
taining fixed tools, which is difficult to generalize into the real-world scenario where tool data arrives in a
never-ending stream. In such cases, the conventional sequential training, i.e., training on new data with the
pre-trained weights on the previous tool data as initialization, leads to significant catastrophic forgetting of
prior tool-usage knowledge. For example in Figure[2| (d), the tool-call accuracy of sequential training rapidly
decreases as the number of tools learned increases.

In this paper, we propose to enhance open-source video LLMs with COntinuaL. Tool usage (dubbed as
COLT). By “continual”, we mean that video LLMs possess the inherent capacity to learn and automatically
activate tool functionality in a successive tool-stream format. To achieve this, two critical issues arise: 1)
how to build a tool-specific memory to mitigate catastrophic forgetting of past knowledge? One intuitive
idea is to store a few past tool data and replay them with the new tool data for continual training. However,
the requisite memory expands proportionally with the increase in the number of tools, and previous data
may be unavailable due to privacy constraints. Instead, we set up a tool codebook consisting of learnable
prompts to store tool-specific information in a more concise manner; 2) how to exploit relevant tools based
on input user instructions? For tool activation, we compute the cosine similarity between the embedded user
instructions and each prompt within the tool codebook. The highest-response prompts are then selected to
“instruct” the model to invoke appropriate tools.

Although several video LLM benchmarks (Maaz et al., [2023; |Li et al., [2023c) have been proposed, the
community still lacks a benchmark for video-centric tool-use instruction tuning. To this end, we collect
VideoTool to facilitate tool-use capabilities for open-source video LLMs. Specifically, we collect a set of
video specialist models and prompt GPT (Achiam et al., 2023) to generate diverse instructions for tool calls.
Then the tool execution results are used to form the instruction-following dataset. Under our continual
learning setup, COLT can incrementally incorporate newly added tools from a expanding repository, while
mitigating forgetting of previously learned ones.

In summary, our contributions are threefold:

e We proposed COLT, a video LLM with continual tool usage. By maintaining a tool codebook, COLT
incrementally learns new tools without catastrophic forgetting.

¢ A tool-using instruction-following dataset VideoTool is introduced to unlock the potential for tool usage
within video LLMs.

e Experiments on both existing video LLM benchmarks and the VideoTool test split have manifested the
state-of-the-art performance of COLT. For example, on MSRVTT-QA (Chen & Dolan |2011)), our COLT
boosts the previous SOTA method (Li et al., 2023c) by 8.2% on the accuracy of zero-shot video-question

answering.

2 Related Work

Video LLMs. Recent successes of LLMs (Achiam et al., |2023; Anil et al) 2023) have shed light on
the burgeoning proliferation of video LLMs (Lin et al. [2023a} [Maaz et al., 2023} |Gao et all [2023)). The
mainstream video LLMs follow the instruction-tuning paradigm. Building upon open-source LLMs (Chiang
let all [2023} [Touvron et al. [2023a}b), this kind of method adapts the pre-trained video features into LLM
understandable representations via multi-layer perception projector (Lin et al) [2023a Maaz et al., 2023} [Li
et al., 2023d; Munasinghe et al., 2023} [Liu et al., 2024b; Jin et all, 2023} Liu et al., [2023b)), Q-former (Zhang
et al.l2023a; [Li et al., 2023b)), or discretization tokenizer (Jin et al.,2024). These methods, however, fail to
generalize to broader video understanding tasks, which may require flexible input and output formats
et al.,|2023; Zhan et al., [2024). Several methods attempt to achieve this by employing additional functional
modules (Jin et al., 2024; Munasinghe et al., |2023)) (e.g., grounding (Munasinghe et al., |2023)) or diffusion
modules (Jin et al. ), which are not flexible enough to adapt to diverse video understanding needs.
To this end, another stream of agent-based methods (Qin et al., 2023; Yang et al. [2024b; [Fan et al., [2024;
Wang et al., [2024b) is proposed, where multi-modal agents mostly bootstrap closed-source LLM (Achiam
et al 2023; Brown et all, [2020) to decompose solution paths and call external tools. This kind of method
relies heavily on delicately designed prompts and may fail to acquire the usage of a novel tool. Therefore,
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Table 1: Tool repository of the proposed VideoTool including single and compositional tools.

‘ Tool ‘ Specialist Model
Action Recognition (AR) VideoMAE |Tong et al.| (2022)
Dense Video Caption (DVC) PDVC |Wang et al.| (2021)
3 Temporal Action Localization (TAL) InternVideo |Wang et al. (]2022a[)
N Optical Character Recognition (OCR) EasyOCR (JaidedAl, [2023)
E’ Automatic Speech Recognition (ASR) Whisper |Rac ford et al. (]2023[)
@ Video Relation Detection (VRD) VidVRD [Shang et al. (IQOI?[)
Video Object Segmentation (VOS) VisTR [Wang et al.| (2021)
Text-to-Video Generation (T2V) T2V |Khachatryan et al. (]2023D
= AR + ASR VideoMAE + Whisper
g AR + VOS VideoMAE + VisTR

how to implement automatic invocation of related tools in video LLMs under a non-stationary tool stream
remains to be solved. This paper combines the strengths of the above two methodologies to empower video
LLMs with automatic and continual tool-use ability.

Continual Learning. Continual learning (Wang et al., 2024aj Lee et al., 2017 [McCloskey & Cohenl [1989)
refers to the ability to incrementally acquire, update, and accumulate knowledge throughout the model
lifetime without catastrophically forgetting previously learned information. Conceptually, four varieties of
methodologies are posited. Regularization-based approaches (Kirkpatrick et all [2017; [Li & Hoiem, [2017}
[Feng et al., 2022} [Yang et al. 2024a)) strike the balance between the old and new tasks by adding explicit
regularization terms. Architecture-based approaches (Yoon et al.,|2018; Li et al.,2019; |Ke et al., 2020)) isolate
model parameters for different tasks. Rehearsal-based methods (Bonicelli et al., [2022; |(Chen & Chang], [2023;
typically use a memory buffer to store several training samples from previous classes, which
are used to approximate and recover old data distributions. Prompt-based methods (Wang et all 2022¢;
[Smith et all} 2023; Wang et al., |2022b; |Li et al., [2024)) usually construct task-adaptive prompts and select
appropriate prompts during inference. This kind of method is rehearsal-free and thus more computationally
efficient. L2P (Wang et al.l [2022¢) introduces the concept of a prompt pool and selects prompts by a query-
key mechanism. To overcome the separate optimization issue of L2P (Wang et all [2022¢), CODA-Prompt
(Smith et al., [2023) assembles learnable prompts with input-conditioned weights. DualPrompt
2022b) and KC-Prompt (Li et al), 2024) set up prompt pools to respectively encode task-invariant and
task-specific knowledge.

Borrowing the favorable rehearsal-free merit, our COLT inventively devises a video LLM with the continual
tool-use learning capability. We differ from current prompt-based methods (Wang et all 2022¢} [Smith et al.l
[2023; Wang et al., |2022b; [Li et all 2024) in the following two aspects. Firstly, our focus is on the more
complex task of multi-modal language generation as opposed to the basic image classification task. Secondly,
our COLT employs straight-through (Van Den Oord et al.,|2017; Bengio et al., 2013) gradient estimation to
mitigate the optimization challenges encountered in previous prompt-based approaches (Wang et al.| [2022c}
[Smith et al., [2023; [Wang et al., [2022b} [Li et al., [2024)).

3 Dataset Construction

Dataset Structure. Each instance in VideoTool contains two rounds of conversations between human and
gpt. The first round includes human instructions related to the video content and the LLM responses on
choosing appropriate tools; The second round contains the execution results of the corresponding tools and
the final responses from LLMs. Specifically, we follow (Yao et al., 2022} [Yang et al.| [2023; [Liu et al., 2023c)
to unify the response format of GPT into three fields, including thought, action , and value to mimic a
human-like task-solving procedure.
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Figure 3: An overview of COLT. Stage 1 aligns the visual and textual modalities through the individual
training of the linear projector fs; In stage 2 and stage 3, the prompt within tool codebook P is adaptively
selected according to the cosine similarity with the query feature Hg.

Dataset Construction. This dataset is constructed using GPT-3.5-turbo (Achiam et al., [2023)) with self-
instruction. The involved toolsE] incorporate both video understanding and generation tasks. The prompt
and in-context learning cases are available in supplementary materials. As shown in Table [I} we collect ten
tools including eight single tool and two compositional tool. The tool list can be easily extended using a
similar dataset construction manner. We initially generate 5,000 instruction-following samples for each tool.
We conduct both data format checks and manual verification of semantic meanings to filter out error data.
After a thorough examination, the dataset is partitioned into distinct training and testing splits, adhering
to a proportionality ratio of 9:1. The full statistics of the final VideoTool are summarized in supplementary
materials.

4 Method

Our COLT learns the continual tool usage from the stream instruction-tuning dataset {D!}1_,, each D*
containing triplets of the visual data X%, user instructions X%, and the response sequence X!. For clarity,
we elaborate on the architecture and training strategy for one single dataset D! and the superscripts of X¢,,
X, and X! are omitted.

4.1 Architecture

Visual & Textual Embedding. Following (Lin et al. |2023a)), we adopt LanguageBind vision encoder
(Zhu et al., [2023a)) g(-) to extract visual features. Then, a linear projection layer f5(-) parameterized by &
is applied to compress the visual information into an LLM understandable feature space.

H, = fJ(g(Xv))a (1)

where H, € RP*¢ denotes the visual embeddings, with P and C' respectively representing the patch number
and the feature dimension. For input user instructions X, we adopt the widely used BPE tokenizer (Sennrich
et al., 2016)) to obtain the textual embeddings H,, € R¥*¢, where S is the textual token number.

Tool Codebook & Query Encoder. As shown in Figure[3] we set up a tool codebook P as the tool-specific
memory for continual tool usage. The codebook consists of N learnable tool prompts, i.e., P = {P,,}_, with
P,, € R®*!. For each input user instruction Xq, we aim to retrieve relevant tool prompts from the codebook.
To achieve this, a query encoder fg with parameters 3 is firstly employed to encode user instructions Xgq
into Hq € RE*1. Then, we compute the cosine similarities between the query embedding H, and each tool
prompt P, n € {1,2,---, N}. The tool prompts with the top-K highest similarity scores are selected.

n* = arg tOPkne[l,N] (P;Lr 'Hq)v (2)

1In this paper, we use tool to represent the general skills and specialist model to denote the specific model.
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where n* is the selected tool prompt index. Then each P, is concatenated with the video feature H, and
user instruction features Hy, and fed into LLMs. The hint contained in the codebook helps alleviate the
catastrophic forgetting when facing the tool stream data.

4.2 Training

The proposed COLT adopts a three-stage training methodology, with each stage featuring unique trainable
parameters @ and loss functions.

Stage 1: Video-to-text Alignment. This stage aims to train the projection layer fs parameterized by 4,
which acts as a visual tokenizer to align visual signals with pre-trained LLM word embedding. As shown in
Figure 3] we freeze all the weights except the projection layer in this stage, i.e., trainable parameters 6 = 4.
Given the predicted response sequence X, = {X1, X2 ... XL} of length L, we use the vanilla auto-regressive

language modeling (LM) loss to supervise this stage of training:

L
1 , _
L=Lin= *ZZ; log po (X | Hy, Hw, X"), (3)
where X< is the response tokens before the i-th token.

Stage 2: Tool Codebook Pre-training. In this stage, we pre-train the tool codebook P and the query
encoder fg while keeping the other parts frozen, i.e., the trainable parameters are 8 = {P, 3}. We firstly
select the appropriate tool prompt P« via Eq.equation [2l Then P,- serves as an additional condition for
language modeling as follows:

L
/ _ 1 i <i

Lin=—7 Y logpe(Xy | Hy, Hu, P XT), (4)

i=1
where X! and X3! is as defined in Eq. equation However, directly optimizing £i,; will truncate the
gradients w.r.t the query encoder fg due to the non-derivable arg topk operation in Eq. equation Therefore,
we resort to the straight-through estimator (Van Den Oord et al.l [2017; [Bengio et al. |2013)) to approximate

the gradient computation and define the overall loss function as follows:

L= Lin+ A [lsg[Hw] = Pr |5 +22 [|Hw — sg[Py-]|[5, (5)

Lq Le

where sg[-] stands for the stop-gradient operator that acts as an identity in the forward process and has zero
partial derivatives during backward propagation. L, is the quantisation loss for codebook update by forcing
P towards the user instruction embeddings Hy,, £, is the commitment loss to prevent unrestricted update
of codebook embeddings, A1 and Ay are the balancing weights.

Stage 3: End-to-end Fine-tuning. We keep the vision encoder g(-) frozen and finetune remaining parts
including the projection layer fs, tool codebook P, textual encoder fg and LLM parameterized by ¢, i.e.,
the trainable parameters are 8 = {3, P, 8, ¢}. The training loss is the same as Eq. equation

5 Experiments

5.1 Experimental Settings

Training Datasets. In the first stage, we follow Video LLaVA [Lin et al.|(2023a) to use LAION-CC-SBU
image subset |Schuhmann et al. (2021) and the filtered CC3M video dataset |(Changpinyo et al.| (2021) for
video-to-text alignment. For the second and third stage, we use the combined dataset of 665K image-text
instruction data from LLaVA v1.5 |Liu et al. (2023al) and 100K video-text instruction data from Video-
ChatGPT Maaz et al.| (2023). The tool-use instruction data of our collected VideoTool is introduced into
continual training sequentially. To ensure conformity in data formatting, we reformat all the instruction
tuning datasets to the thought-action-value pattern. Refer to supplementary materials for more details.

Implementation Details. For vision encoder g(-), we choose pre-trained LanguageBind [Zhu et al.| (2023a))
with ViT-L/14 [Dosovitskiy et al.| (2020]). The text tokenizer is derived from LLaMA [Touvron et al.| (2023a)
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Table 2: Comparisons with state-of-the-art methods on zero-shot video-question answering.
“Acc." denotes accuracy (%) and “Score" denotes the relative score from 0 to 5 assigned by GPT [Brown
et al.|(2020). The best performance is in bold and the second best is underlined. The backend LLMs include
Vicuna-7B |Chiang et al.| (2023) and LLaMA-7B [Touvron et al.| (2023a).

MSVD-QA MSRVTT-QA ActivityNet-QA

Method LLM
Acc. Score Acc. Score Acc. Score

Video-LLaMA |Zhang et al.| (2023al) Vicuna-7B  51.6 2.5 29.6 1.8 124 1.1
VideoChat |Li et al.| (2023b) Vicuna-7B  56.3 2.8 45.0 2.5 26.5 2.2
Video-ChatGPT [Maaz et al.| (2023]) Vicuna-7B  64.9 3.3 49.3 2.8 35.2 2.7
BT-Adapter |Liu et al.| (2023b)) Vicuna-7B  67.5 3.7 57.0 3.2 45.7 3.2
LLaMA-VID [Li et al.| (2023d) Vicuna-7B  69.7 3.7 57.7 3.2 47.4 3.3
LLaMA-VID [Li et al.| (2023d) Vicuna-13B  70.0 3.7 58.9 3.3 47.5 3.3
Video-LLaVA |Lin et al.| (2023a) Vicuna-7B  70.7 3.9 59.2 3.5 45.3 3.3
Chat-UniVi |[Jin et al.| (2023)) Vicuna-7B  65.0 3.6 54.6 3.1 45.8 3.2
LLaMA-Adapter |Zhang et al|(2023b) LLaMA-7B  54.9 3.1 43.8 2.7 34.2 2.7
VideoChat2 |Li et al.| (2023c) Vicuna-7B  70.0 3.9 54.1 3.3 49.1 3.3
ST-LLM |Liu et al.| (2024b]) Vicuna-7B  74.6 3.9 63.2 34 50.9 3.3
COLT joint (Ours) Vicuna-7B  78.2 4.2 65.1 3.6 54.7 3.8
COLT 5x2 (Ours) Vicuna-7B  75.5 3.9 63.9 3.5 52.5 3.5
COLT 10x1 (Ours) Vicuna-7B  74.7 3.9 63.0 3.4 51.2 3.4

with a vocabulary size of 32,000, and Vicuna-7B v1.5|Chiang et al.| (2023) is employed as the large language
model. We uniformly sample 8 frames from each video, and each frame is resized to 224 x 224. We set the
batch size to 256 for the first stage and 128 for the second and third stages. AdamW optimizer is used with
a cosine decay schedule. We set learning rate to 1 x 1074, 1 x 1074, and 1 x 107> for three stage training,
respectively. The balancing weight A\; and Ay in Eq. equation [f] are set to 1 and 0.25. The codebook size
N and selected prompt number K are set to 50 and 3, respectively. COLT is trained on 8 NVIDIA A100
GPUs (80 GB memory each), and the full training process takes approximately 10 hours.

Evaluation Metrics of Tool Continual Learning. We detail the metrics of average accuracy and average
forgetting used in Sec.

Let oy ; € [0,1] denote the tool call accuracy of j-th tool after incrementally training on the & tool data
(j < k). The average accuracy of a specific tool denotes the overall call accuracy during the incremental
learning process. Then the average accuracy at task k is defined as follows.

k
1
AA;c = %;ak’j. (6)

Since average accuracy does not provide any information about the forgetting profile of the continual learning
process, average forgetting is introduced to bridge the gap. For a particular tool, the forgetting measure is
defined as the difference between the maximum tool call accuracy throughout the past learning process and
the current tool call accuracy. In particular, the forgetting for the j-th tool after incrementally training up
to k tool is as follows.

k _ .
= et -1y b7 T R sk "

The average forgetting of k-th tool is computed by normalizing against the number of tools seen previously:
AF, = —=> f}. (8)

We report the average accuracy and average forgetting after the last tool learning.
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Table 3: Comparisons (%) with state-of-the-art methods on MVBench. The tasks include Action
Sequence (AS), Action Prediction (AP), Action Antonym (AA), Fine-grained Action (FA), Unexpected
Action (UA), Object Existence (OE), Object Interaction (OI), Object Shuffle (OS), Moving Direction (MD),
Action Localization (AL), Scene Transition (ST), Action Count (AC), Moving Count (MC), Moving Attribute
(MA), State Change (SC), Fine-grained Pose (FP), Character Order (CO), Egocentric Navigation (EN),
Episodic Reasoning (ER), Counterfactual Inference (CI), and the average of all 20 metrics (AVG). The best
performance is in bold and the second best is underlined.

Model ‘ AVG AS AP AA FA UA OE Ol OS MD AL
InstructBLIP |Dai et al.|(2024) 32.5 20.0 16.5 46.0 245 46.0 51.0 26.0 37.5 22.0 23.0
LLaVA [Liu et al.|(2024a) 36.0 280 395 63.0 305 39.0 53.0 41.0 415 23.0 205

VideoChatGPT [Maaz et al.|(2023) 32.7 23.5 26.0 62.0 225 265 540 280 400 23.0 20.0
VideoLLaMA |Zhang et al.|(2023a) 34.1 27.5 255 51.0 29.0 39.0 48.0 405 38.0 225 225

VideoChat [Li et al.|(2023b) 35.5 335 265 56.0 33.5 405 53.0 405 300 255 270
VideoChat2¢ext |Li et al.|(2023c) 34.7 245 27.0 495 27.0 38.0 53.0 28.0 40.0 255 27.0
VideoChat2 [Li et al.|(2023c) 51.1 66.0 475 83.5 49.5 600 580 71.5 42.5 23.0 23.0
GPT-4V |OpenAI|(2023) 43.5 55.56  63.5 72.0 465 73.5 185 59.0 295 120 40.5
COLT joint (Ours) 53.4 640 65.0 770 445 545 75,5 70.0 340 36.5 33.0
COLT 5x2 (Ours) 51.8 620 61.0 75.0 425 525 745 690 335 350 32.0
COLT 10x1 (Ours) 50.6 60.0 60.5 73.5 420 515 735 685 325 33.0 30.0
Model ‘ AVG ST AC MC MA SC FP CO EN ER CI
InstructBLIP |Dai et al.|(2024) 32.5 46.5 42.5 26,5 405 320 255 30.0 255 305 38.0
LLaVA [Liu et al.|(2024a) 36.0 450 340 205 385 470 250 36.0 27.0 265 420

VideoChatGPT [Maaz et al.|(2023) 32.7 31.0 305 255 395 485 29.0 33.0 295 260 355
VideoLLaMA |Zhang et al.|(2023a) 34.1 43.0 340 225 325 455 325 400 300 21.0 370

VideoChat [Li et al.|(2023b) 35.5 485 350 205 425 46.0 265 41.0 235 235 36.0
VideoChat2¢ext |Li et al.|(2023c) 34.7 385 415 275 325 465 265 360 33.0 32.0 40.0
VideoChat2 |Li et al.|(2023c) 51.1 88.5 390 420 585 440 49.0 36,5 35.0 405 65.5
GPT-4V |OpenAl|(2023) 43.5 835 390 120 225 450 475 52.0 31.0 59.0 110
COLT joint (Ours) 53.4 880 375 53.5 T75.5 355 425 48.0 345 42.0 575
COLT 5x2 (Ours) 51.8 87.0 37.0 525 72.0 33.0 405 480 335 405 55.0
COLT 10x1 (Ours) 50.6 86.0 36.0 515 71.5 31.5 395 475 320 380 54.0

Table 4: Ablations studies on MVBench. (a) training strategies; (b) training losses; (c) prompt se-
lection mechanisms: T-based and V-based denote tool prompt selection based on text and visual features,
respectively; (d) prompt positions.

Stage 2 Stage 3 AVG /[, Le AVG T-based V-based AVG Position AVG

X v 50.4 X v 37.7 X v 45.3 tool-vision-text 51.7

v X 49.2 V¥ X 40.3 v X 51.8 vision-tool-text 51.7

v v 51.8 Vv v 51.8 v (%4 46.4 wvision-text-tool 51.8
(a) (b) (c) (d)

5.2 Comparisons with Video LLMs

We set up three model variants: 1) COLT5 4 receives five successive groups of data and each group contains
data of two tools; 2) COLT1¢x1 is defined similarly; 83) COLT )y, receives all tool data at once and is trained
with all the data collectively. The performance of COLT)giy, is regarded as the upper-bound of the continual
learning counterpart.

Evaluation Benchmarks. Our experiments are carried out on both established video LLM benchmarks
and self-built tool-using datasets: 1) zero-shot video-question answering. We experiment on commonly
used open-ended question-answer datasets: MSVD-QA [Chen & Dolan! (2011), MSRVTT-QA Xu et al.| (2016]),
and ActivityNet-QA [Yu et al.| (2019). Following |Li et al. (2023b)); Lin et al.| (2023a)), we use GPT-assisted
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(a) Comparisons with SOTA methods on test (b) Comparisons (%) with continual learning
split of VideoTool. AR, VRD, and ASR denote ac- methods on VideoTool. AA and AF denote aver-
tion recognition, video relation detection and automatic age accuracy and average forgetting, respectively.

speech recognition, respectively. "Acc." denotes accuracy
(%) and "Score" denotes the GPT-evaluated score.

Five Groups Ten Groups

Method AR VRD ASR Method

Acc. Score Acc. Score Acc. Score AAT AF] AAT AF|
VideoLLaVA  47.7  2.89 6.0 082 183  0.77 Sequential 486 353 423 397
VideoChat2 ~ 51.4 313 140  1.36  3.60  0.87 Rehearsal (10/Tool) 529 321 482 363
VideoChat 20.0 231 45 090 2.80 1.28 Rehearsal (30/Tool) 55.2 302 493 355
Videoagent 68.13  3.16 16.7 1.29 1.79  0.83 Rehearsal (50/Tool) 59.3 27.4 50.2 32.7
VITAL 5223 3.09 1528 1.24 198 085 L2P [Wang et al.|(2022c) 72.4 8.3 65.7 124
COLT joint 77.9 3.84 240 175 24.2 1.95 Dual [Wang et al.|(2022b)  75.1 6.9 68.6 7.5
COLT 5x2 748 360 213 148 226  1.50 CODA [Smith et al.[(2023) 76.3 7.0 71.0 7.2
COLT 10x1 73.5 3.48 19.6 1.27 21.9 1.48 COLT (Ours) 79.8 5.8 4.7 6.4

evaluation to assess the model’s capabilities by reporting the accuracy and relative score; 2) MVBench |Li
et al.| (2023c). This benchmark consists of 20 demanding video tasks, each comprising 200 samples presented
as multiple-choice questions. These tasks offer a thorough and unbiased evaluation of a model’s capacity to
comprehend videos. We report the choice accuracy as the metric; 3) VideoTool. We built this dataset to
probe the abilities enabled by tool proficiency. Since most existing video LLMs only support textual outputs,
we select three tools (i.e., action recognition, video relation detection, and automatic speech recognition) and
compare our COLT to state-of-the-art video LLMs|Lin et al.| (2023a); |Li et al.| (2023c;b). The GPT-evaluated
accuracy and scores are reported.

Performance Analysis. The comparison results on zero-shot video-question answering, MVBench, and
VideoTool test split are summarized in Table 2] Table [3] and Table [a] respectively. We can conclude with
the following findings. 1) Both COLT joint and COLT 542 demonstrate superior performance compared to
preceding state-of-the-art methodologies. For example on MSRVTT-QA (c.f. Table , COLT joint remark-
ably surpasses the previous best performing method VideoChat2 |Li et al.| (2023c]) by 8.2% on the metric of
accuracy; 2) On the test set of VideoToolBench (c.f. Table , our COLT consistently outperforms prior
approaches by a clear margin, including both existing video-VQA models and representative tool-based
agents, demonstrating its effectiveness in tool-intensive scenarios; 3) Even with a rather lengthy learning
curve, COLT 1g« still achieves comparable performance with previous SOTA methods; 4) The performance
of COLT 1gx1 is slightly worse than COLT 542, which is consistent with the intuition that tool learning
becomes increasingly challenging when facing a lengthening tool-chain.

5.3 Comparisons with Continual Learning Methods

We additionally compare the proposed COLT with popular continual learning methods on VideoTool test
split to demonstrate the life-long tool-usage learning capability of our method.

Evaluation Metrics. To evaluate how the system retains tool-using knowledge over time, we adapt the
conventional continual learning metric|Wang et al.| (2024a)); |(Chaudhry et al.|(2018]) to our tool-using scenario.
We set up two metrics: 1) average accuracy of a specific tool denotes the overall call accuracy during the
incremental learning process; 2) average forgetting is defined as the mean difference between the maximum
tool call accuracy throughout the past learning process and the current tool call accuracy. A reduction in the
value of average forgetting is indicative of enhanced continual learning capability. Refer to the supplementary
materials for the formula and detailed explanations.

Compared Methods. We set comparison experiments as follows: 1) Sequential training: training on new
data with the pre-trained weights on previous tool data as initialization; 2) Rehearsal training: replay past
tool data (i.e., “buffer”) and combine them with new data. Buffer size is respectively set to 10/30/50 for
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each tool in experiments; 3) Popular continual learning methods including L2P Wang et al.| (2022c), Dual
Wang et al|(2022b), and CODA |Smith et al.| (2023).

Performance Analysis. We conduct experiments in two settings, i.e., five/ten groups with two/one tools
per group. As shown in Table 5B COLT consistently exhibits superior performance in both average ac-
curacy and forgetting across both settings. For example, under the five-group setting, COLT outperforms
CODA [Smith et al.| (2023)) by 3.5% in average accuracy, highlighting its effectiveness in mitigating catas-
trophic forgetting. Notably, despite being given rehearsal buffers of size 10/30/50 per tool, rehearsal-based
methods remain significantly weaker (Table , as they depend on storing and replaying past data and
still struggle with interference across heterogeneous tools. In contrast, COLT achieves stronger retention
without accessing old samples, demonstrating that its codebook-based tool memory provides a more stable
and efficient continual-learning mechanism than rehearsal.

5.4 Ablation Studies

We conduct extensive ablation studies to provide more insights into our proposed COLT. The experiments
are conducted on MVBench |Li et al.| (2023c) with the continual learning model variant COLT 5.

Ablation on Training Strategies. Our COLT adopts a three-stage training pipeline. We conduct abla-
tion studies on the training process by respectively skipping the second and third stages of training. The
comparison results on MVBench |Li et al.| (2023¢c) in Table demonstrate that both stages are crucial to
the final performance, e.g., skipping the second stage leads to a 1.4% drop in average scores.

Ablation on Training Loss. We use the straight-through estimator [Van Den Oord et al.[ (2017); [Bengio
et al.| (2013)) for the training of stage 2 and stage 3 (c.f. Eq. equation [5)), which contains the quantisation
loss £, and commitment loss L. to enables the mutual updates between the selected tool prompts and
query features. The ablation results in Table [4b| underscore the significance of both quantisation loss £, and
commitment loss L.

Ablation on Prompt Selection. Recall that we select the most matched tool prompts based on the
similarity between the textual instruction features and codebook (i.e., text-codebook). Here we ablate on
the prompt selection based on the vision-codebook similarity or the average similarities of both. The results
are listed in Table which showcases that the text-codebook similarity is more reliable. That could be
attributed to the fact it is easier for video LLMs to decide whether to invoke or which specific tool to invoke
from the user instructions instead of the input visual data.

Ablation on Tool Prompt Position. We ablate on the insertion position of the tool prompt. We’ve listed
three options, including tool-vision-text, vision-tool-text, and vision-texrt-tool, demonstrating placing the tool
feature before/between/after the vision and text features, respectively. The findings in Table indicate
that the performance is insensitive with regard to the tool prompt position.

Ablation on hyper-parameters. We conduct ablation studies on the codebook size N and the number
of selected prompts K. The comparison results are listed in Figure As shown, the average performance
is positively correlated with the codebook size IV and reaches saturation at 7' = 50. The optimal results are
achieved when setting K = 3.

Visualizations of performance vs. continually introduced tasks. To intuitively show the impact of
incrementally introducing tools, we show the phased zero-shot video-question answering performance under
different training strategies. Specifically, we report the accuracy score on MSVD-QA dataset in Figure As
shown, equipping video LLMs with dense video caption tools leads to the significant performance boost for all
four training strategies. Besides, our proposed COLT shows better learning stability, i.e., less forgetfulness
when faced with new tool data.

6 Limitations

While COLT demonstrates strong continual tool-use capabilities, several limitations remain. First, VideoTool
is primarily GPT-generated, which may introduce distribution biases and limit the dataset’s real-world

10



Published in Transactions on Machine Learning Research (01/2026)

761
N 20 30 40 50 60
75 COLT (Ours)
AVG 48.4 50.9 51.4 51.8 51.8
P
g 744
g
2
73
Rehearsal Training (50/Tool)
K 1 2 3 4 5
721
Sequential Training AVG 508 516 51.8 51.3  51.3
714
AR pVC gAL OCR SR yRD yOS Tl\lAS?@rOC:‘SW\—D\]C
Continually Introduced Tools
(i) Accuracy of zero-shot video-question answer- (ii) Ablations on hyper-parameters including the
ing on MSVD wvs. continually introduced tasks. codebook size N and the number of selected prompt K.

The specific tool name for each abbreviation is available
in Table

diversity compared with fully human-curated corpora. Second, the current dataset focuses mainly on single-
tool and simple multi-tool compositions, which do not fully capture the complexity, interdependence, and
noise present in real-world tool ecosystems, where tool chains may be substantially longer and more intricate.
Future work includes extending VideoTool to more diverse and human-in-the-loop scenarios, scaling COLT to
larger and more complex tool vocabularies, and exploring reinforcement learning or other adaptive strategies
to support dynamic and automatic tool composition.

7 Conclusions

In this work, we present COLT, which continually learns new tool-using knowledge in a data-stream scenario
for general-purpose video understanding. To achieve this, we propose a learnable tool codebook where the
specific tool is retrieved and activated according to the similarities with the user instructions. Due to the
absence of a video-centric tool-using instruction-tuning dataset within the community, we devised VideoTool
to address this deficiency and foster the exploration of tool-using capacities of video LLMs. Experimental
results indicate that our proposed COLT adeptly invokes the necessary tools with precision, thereby achieving
state-of-the-art performance on widely used benchmarks and the proposed VideoTool test split.

Broader Impact Statement

The ability of our COLT to continually learn new tool usage without catastrophic forgetting may support
the development of personalized video LLMs. Data within specific domains or pertaining to particular users
can be incrementally fine-tuned, leading to an ever-evolving and personalized intelligent assistant. However,
there also exists the risk that the model could be exploited for malicious purposes. Besides, it may raise
privacy concerns, especially if it is deployed in surveillance systems or social media platforms.
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A Appendix

The outline of the appendix is as follows:

¢ Dataset Details
Dataset Structure of VideoTool
Prompt for Curating VideoTool

— Instruction Tuning Dataset Reformat
— Quality Control of VideoTool

o Illustrations of Tool Selection

o Experimental Results

¢ Qualitative Results

A.1 Dataset Details

Dataset Structure of VideoTool. Each instance in VideoTool contains two rounds of conversation
between human and gpt. The response of gpt includes three fields of thought, action and value. One
example is available in Table [6]

Prompt for Curating VideoTool. We collect VideoTool by self-instruct GPT-3.5-turbo. The prompt
and in-context learning cases are shown in Table [7]

Instruction Tuning Dataset Reformat. In the second and third stage of COLT training, we reformat the
instruction tuning dataset from LLaVA v1.5 (Liu et al.,2023a)) and Video-ChatGPT (Maaz et al., [2023)) into
the thought-action-value pattern for the data format conformity. Specifically, the thought is generated
by GPT indicating that the question can be answered without invoking any tools:

The questions can be answered by the information in the context, without need
any external tools.

The action is an empty list while value is the original response.

Quality Control of VideoTool: To ensure the reliability and integrity of the proposed dataset, we conduct
quality control from two primary aspects: data format checks and of semantic meaning checks. The format
check entails verifying whether the generated data adheres to a predefined structure, specifically confirming
that each entry corresponds to a two-round conversation and that the responses from the GPT model contain
essential components such as thought/action/value keys. Furthermore, this phase involves confirming the
consistency of tool names used throughout the dataset. Manual checks on semantic meanings are conducted
to validate the contextual relevance and accuracy of the generated content, ensuring that it aligns with the
intended purpose of the dataset and maintains coherence within the conversations.
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Table 6: Dataset structure of VideoTool.

An example of VideoTool dataset

First Round of Conwversation

Human Please segment the objects in the video.

GPT <thoughts>
Request a process of video object segmentation based on the user’s prompt.
<actions>
[{*API_name’: ‘video-object-segmentation’, ‘API_params’: {}}]
<values>
Sure thing! T’ll initiate a object segmentation model to fulfill your request.
Please wait while the processing takes place.

Second Round of Conwversation

Human You have successfully completed the process of video captioning and object
segmentation.

GPT <thoughts>
I have successfully completed the process of video object segmentation. Now,
it is time to update the user.
<actions>
[
<value>
The objects have been segmented. You can now review the results.

Table 7: System prompts and in-context learning examples for the generation of VideoTool.

Prompts for GPT-3.5-turbo to generate instruction-tuning dataset:

You are an AT assistant and you receive a set of conversations in json string format, the content of which
is used as data for instruction finetune. Your task is to rephrase the dialogue to generate a new example.
Note to give it in standard json format. DO NOT modify the “from" and “actions" parts. Only modify
the “value" and “thoughts" part.

In-context learning examples:

non non

{"from": "human", "value": "Transcribe the audio content from the provided video.", "actions": [|}, {"from":
"gpt", "thoughts": "I need to find an ASR model and initiate the transcription process as per the user’s
request.”, "actions": [{"API_name": "asr", "API_params": {}}], "value": "Certainly! I'll employ an Auto-
matic Speech Recognition (ASR) model. Please wait while the ASR model processes the video"}, {"from":
"human", "value": "asr output: You have used an ASR model to transcribe the audio content from the
provided video based on my original request.", "actions": [|}, {"from": "gpt", "thoughts": "Now that the
ASR model has processed the video, I can update the user on the transcription results.", "actions": [,
"value": "The ASR transcription you requested has been completed. Here is the transcribed text for your
reference."}

A.2 lllustrations of Tool Selection

Figure [5] shows the full pipeline of our tool selection mechanism.

A.3 Experimental Results

In Sec. we employ an additional CLIP-initialized encoder fg to extract query feature Hg. Then in
Eq. equation @ the appropriate tool prompt is selected based on the cosine similarity with Hy. Here we
conduct the ablation study which directly uses the encoded LLM features Hy, for similarity computation. The
comparison results in Table@ demonstrate that the introduced CLIP feature Hgq leads to better performance.
In addition, we further analyze how tool-use training and the codebook mechanism affect general video
understanding beyond tool-centric benchmarks. As reported in Table [§] removing VideoToolBench data
results in performance close to standard video-VQA models, while discarding the codebook causes substantial
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Figure 5: Illustration of the tool selection mechanism based on cosine similarity. Given the query embedding
h, and a tool codebook {p1,...,pn}, we first compute the cosine similarities between h, and each tool
prompt p;. The most relevant tools are then selected (e.g., via top-K) and concatenated with the visual/text
embeddings before being fed into the large language model.

MSVD-QA MSRVTT-QA  ActivityNet-QA
Acc. T Scoret Acc. t Score? Acc. T Score?

COLT (w/o VideoToolBench)  70.9 3.8 58.9 3.4 45.4 3.2
COLT (w/o Codebook) 52.3 3.3 427 30 337 29
COLT-joint 78.2 4.2 65.1 3.6 54.7 3.8

Method

Table 8: Controlled ablations on standard VQA benchmarks to disentangle the effects of tool-use training
(VideoToolBench) and the codebook mechanism.

degradation across all benchmarks. These results suggest that the codebook plays a critical role in preserving
and reusing tool-related knowledge, enabling COLT to transfer tool-use behaviors to standard VQA tasks
rather than merely memorizing tool traces.

Table 9: Ablations of the query feature source for tool prompt selection.

Query Feature Source AVG
LLM feature Hy, 47.4
CLIP feature Hq 51.8

A.4 Qualitative Results

We present additional qualitative results on MVBench , zero-shot video-question answering
(Chen & Dolan| 2011} [Xu et all, 2016; [Yu et al) [2019), and VideoTool test split in Figure [6] Figure [7} and
Figure [§] respectively. Notably, our COLT precisely captures dynamic video information and generate more
reasonable responses.
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Figure 6: Qualitative results on MVBench.
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The video shows a young girl playing with a dog in a yard.
Overall, the video shows a young girl playing in a field with a dog.
Based on the video, it can be observed that a man is playing with a dog in a field.

The video shows a dog a girl down a hill, and the girl is unable to stop herself.

The video shows a man standing outside, holding a bottle of green liquid and
a glass. He then proceeds to pour the liquid into the glass and drinks it.

The video shows a man in a blue shirt and tie standing in front of a black box. He is
holding a sword and swinging it around in a circular motion.

The video shows a man using a sword to break a bottle of water. He then pours the
water into a bottle and drinks it.

The video shows a man attempting to . He swings the sword
at the bottle, but it doesn't break. He then tries again, and this time the bottle breaks.

The video showcases a man playing the guitar in a serene garden setting. The man is
seen standing under a pergola, surrounded by lush greenery and a brick path.

The video shows a squirrel walking on a path in a park. The squirrel is carrying a cup
of coffee in its mouth and is walking towards a bush.

The video shows a squirrel playing with a cup and then running away.
The video shows a squirrel with a yogurt cup stuck in its head, which is the main

focus of the video. The squirrel is seen walking around the area, and the camera
captures its movements.

4 9 T, O0\:
R User Instruction (58 Video LLava 9 VideoChat & VideoChat2 COLT (Ours)

Figure 7: Qualitative results on zero-shot video-question answering.
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The video shows two red pandas playing with each other. The first panda is seen
eating bamboo from a tree while the second panda is playing with a stick

I'm sorry, but | cannot detect visual relations in the given video as it is not clear
what the question is asking

The answer is a triplet of visual relations.

The video shows a red panda walking past another red panda, which can be
represented as a relation triplet of "

| want to identify the movements captured in this video. Can you analyze it and
provide me with the results?

Sure, | can analyze the video and provide you with the movements captured in it.

Based on my observations, the video shows a group of people gathered in a room
for a meeting.

Based on the video, it can be observed that the man is speaking and gesturing with
his hands. He is also seen standing and walking around.

Sure, | can analyze the video and provide you with the results. The video shows a
group of people . The players are standing in a circle and
taking turns to play the game.

The video shows a diagram with arrows and text, and a person speaking to the
camera. The person is explaining the diagram.

I'm sorry, but the provided video does not contain any spoken content.

I'm sorry, but | cannot provide a transcription of the spoken content from the video
as it is not available in the given text.

The video shows a network trained using examples resulting from a strong attack
can be expected to be also robust against weaker attacks.

: P Faen A0\
R User Instruction {5l video LLava 9 VideoChat & VideoChat2 6y cour (ours)

Figure 8: Qualitative results on the test split of VideoTool.
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