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Abstract
In this paper, we present a novel interpretation
of the Weisfeiler-Lehman (WL) distance intro-
duced by (Chen et al., 2022) using concepts from
stochastic processes. The WL distance compares
graphs with node features, has the same discrim-
inative power as the classic Weisfeiler-Lehman
graph isomorphism test and has deep connections
to the Gromov-Wasserstein distance. Our inter-
pretation connects the WL distance to the litera-
ture on distances for stochastic processes, which
also makes the interpretation of the distance more
accessible and intuitive. We further explore the
connections between the WL distance and certain
Message Passing Neural Networks, and discuss
the implications of the WL distance for under-
standing the Lipschitz property and the universal
approximation results for these networks.

1. Introduction
The Weisfeiler-Lehman (WL) test, a classic graph isomor-
phism test (Lehman & Weisfeiler, 1968) which has recently
gained renewed interest as a tool for analyzing Message
Passing Graph Neural Networks (MP-GNNs) (Xu et al.,
2018; Azizian et al., 2020). Recently, Chen et al. (2022)
introduced the Weisfeiler-Lehman (WL) distance between
labeled measure Markov chains (LMMCs). The WL dis-
tance has the same power as the WL test in distinguishing
non-isomorphic graphs and it is more discrimative than a
certain WL based graph kernel (Togninalli et al., 2019).
Moreover, Chen et al. (2022) unveiled interesting connec-
tions between the WL distance and both a certain neural

*Equal contribution 1Department of Computer Science and
Engineering, University of California San Diego, La Jolla, Califor-
nia, USA 2Max Planck Institute for Mathematics in the Sciences,
Leipzig, Saxony, Germany 3Department of Mathematics and De-
partment of Computer Science and Engineering, The Ohio State
University, Columbus, Ohio, USA 4Halıcıoğlu Data Science In-
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network architecture on Markov chains and a variant of the
Gromov-Wasserstein distance (Mémoli, 2011).

Although the WL distance possesses nice theoretical proper-
ties and good empirical performance in graph classification
tasks, the original formulation of the WL distance is com-
plicated and can be hard to decipher. In this work, we
identify a novel characterization of the WL distance using
concepts from stochastic processes. This new character-
ization eventually provides an alternative, more intuitive
reformulation of the WL distance. Via this reformulation,
we further identify connections between the WL distance
and the so-called Causal Optimal Transport (COT), a branch
of the Optimal Transport theory specifically taylored for
comparing stochastic processes (Lassalle, 2018).

Finally, we recall that Chen et al. (2022) introduced a cer-
tain neural network structure, called Markov Chain Neural
Networks (MCNNs), for Markov chains and utilized the
WL distance to explain theoretical properties of MCNNs. It
was mentioned that MCNNs will reduce to a special type
of MP-GNNs when restricted to Markov chains induced
by graphs. In this work, we proceed further along this line
and explicitly clarify how the WL distance can be used to
understand properties of MP-GNNs. In particular, inspired
by the analysis of (Chen et al., 2022; Chuang & Jegelka,
2022), we establish the Lipschitz property and a universal
approximation result for such MP-GNNs.

Related work. Our work builds on recent developments
in graph similarity measures, particularly the WL distance
introduced by (Chen et al., 2022). Another relevant work
is the Tree Mover’s (TM) distance, introduced in (Chuang
& Jegelka, 2022), which compares labeled graphs using
Wasserstein distance and has similar discriminative power
to the WL distance. However, in contrast to the combina-
torial computation tree structure used in the TM distance
(which currently cannot yet handle weighted graphs), the
WL distance benefits from a more flexible Markov chain
formulation. This formulation enables the WL distance
to compare weighted graphs, potentially handle continu-
ous objects, such as heat kernels on Riemannian manifolds,
and facilitates the development of differentiable distances
for comparing labeled graphs, as demonstrated in (Brugère
et al., 2023). Additionally, Toth et al. (2022) introduced
the hypo-elliptic graph Laplacian and a corresponding diffu-
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sion model that captures the evolution of random walks on
graphs. This approach shares similarities with the WL test
and the WL distance by focusing on entire walk trajectories
instead of individual steps. Exploring the relationship be-
tween these concepts in future research would be intriguing.

2. Preliminaries
2.1. Probability measures and Optimal Transport

LetZ be any metric space. We let P(Z) denotes the space of
all Borel probability measures on Z with finite 1-moment1.
We let P◦1(Z) := P(Z) and for each k = 1, . . ., we induc-
tively let P◦(k+1)(Z) := P(P◦k(Z)).

Given any measurable map f : X → Y and a proba-
bility measure α ∈ P(X), we let f#α ∈ P(Y ) denote
the pushforward of α, i.e., for any measurable B ⊆ Y ,
f#α(B) := α(f−1B).

For any probability measures α, β onZ, the (ℓ1) Wasserstein
distance between them is defined as follows:

dW(α, β) := inf
π∈C(α,β)

∫
Z×Z

dZ(z, z
′)π(dz × dz′).

Here C(α, β) denotes the set of all couplings between α and
β, i.e., the set of all probability measure π ∈ P(Z × Z)
such that marginals of π are α and β, respectively.

A note on notation for probability measures. We will
mostly deal with finite sets in this paper. Given a finite set
X and α ∈ P(X), we let α(x) := α({x}) for any x ∈ X .

An alternative description of the Wasserstein distance.
A random variable X with values in a complete and separa-
ble metric space Z is any measurable map from a probability
space (Ω,P) to Z. We let law(X) := X#P denote the law
of X . Now, we define the notion of coupling in terms of
random variables.

Definition 2.1 (Coupling in terms of random variables).
Given two probability measures α, β on a complete and sep-
arable metric space Z, we call any pair of random variables
(X,Y ) : (Ω,P) → Z × Z a coupling between α and β if
law(X) = α and law(Y ) = β.

Of course, given a coupling (X,Y ), one has that
law((X,Y )) ∈ C(α, β). Conversely, note that given any
(measure-theoretical) coupling π ∈ C(α, β), one can al-
ways find a coupling (X,Y ) between α and β such that
law ((X,Y )) = π.

Now, given two probability measures α and β on a metric
space Z, the Wasserstein distance between α and β can be

1This is equivalent to saying that for any α ∈ P(Z) and any
z0 ∈ Z, one has that

∫
Z
dZ(z, z0)α(dz) < ∞.

rewritten using the language of random variables as follows:

dW(α, β) = inf
(X,Y )

E dZ (X,Y ) , (1)

where the infimum is taken over all couplings (X,Y ) be-
tween α and β.

2.2. Markov chains

Let X be a finite set. We denote by mX
• : X → P(X)

a Markov transition kernel on X . Let µX ∈ P(X) be a
stationary distribution w.r.t. mX

• . Then, we call the tuple
X := (X,mX

• , µX) a measure Markov chain (MMC).

Due to the Kolmogorov extension theorem (Kolmogorov &
Bharucha-Reid, 2018) (see also (Durrett, 2019, Theorem
2.1.14)), an equivalent way of describing a measure Markov
chain X := (X,mX

• , µX) is to view it as a probability
measure PX on the path space XN = X × X × · · · , i.e.,
XN = {w = (xi)

∞
i=0 : xi ∈ X}2: If we let Xi : X

N → X
denote the projection map to the i-th component for i ∈ N,
then PX is required to satisfy that

• PX(Xi+1(w) = x′|Xi(w) = x) = mX
x (x′) for any

x, x′ ∈ X and

• (X0)#PX = µX .

AsXi can be viewed as a random variable on the probability
space (XN,PX) with values in X , the second condition can
be also rewritten as law(X0) = µX .

Now given any metric spaceZ, consider any map ℓX : X →
Z. Then, we call the tuple (X , ℓX) a Z-labeled measure
Markov chain ((Z−)LMMC).

2.3. The Weisfeiler-Lehman Distance

In (Chen et al., 2022), a notion of (pseudo-)distance is pro-
posed for labeled measure Markov chains (LMMCs). The
motivation comes from the classical Weisfeiler-Lehman
(WL) graph isomorphism test, which compares two graphs
by iteratively testing whether certain aggregated node-label
summaries of the two input graphs are the same. The
WL distance of (Chen et al., 2022) introduced a measure-
theoretic treatment of the node labels via Markov kernels,
and it essentially “metrized” the WL-test procedure into
a distance measure that is compatible with WL test. We
briefly introduce the concept below; see the original paper
(Chen et al., 2022) for details.

Consider a Z−LMMC (X , ℓX). We recursively define a
sequence of maps l(k)

(X ,ℓX ) : X → P◦k(Z) for k ∈ N. First
of all, we let l(0)(X ,ℓX ) := ℓX . Then,

l(k+1)

(X ,ℓX )
:=
(
l(k)

(X ,ℓX )

)
#
mX

• : X → P◦k(Z).

2Here N denotes the set of all non negative integers.
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Finally, we let

Lk((X , ℓX)) :=
(
l(k)

(X ,ℓX )

)
#
µX ∈ P◦(k+1)(Z).

Now, given two Z−LMMCs (X , ℓX) and (Y, ℓY ) and any
k ∈ N, the Weisfeiler-Lehman distance of depth k is defined
as follows:

d(k)

WL((X , ℓX), (Y, ℓY )) := dW(Lk((X , ℓX)) ,Lk((Y, ℓY ))) .
(2)

3. Reinterpretation of the WL distance
The original definition of the WL distance, while well-suited
for devising a computation algorithm for the distance, is
rather intricate due to its iterative consideration of probabil-
ity measures on spaces P◦k(Z) with increasing complex-
ity. However, a better understanding of the concept can
be achieved by using the language of stochastic processes.
In this section, we will elaborate on two approaches: (1)
using the concept of Markovian couplings, a special type
of couplings between Markov chains, and (2) exploring
the connection between the WL distance and the theory of
causal Optimal Transport (Lassalle, 2018; Backhoff et al.,
2017), a variant of OT specialized for comparing stochastic
processes. These interpretations of the WL distance offer
valuable insights for future research in this field.

3.1. Recall of a characterization of the WL distance

We first recall a characterization of the WL distance from
(Chen et al., 2022). Given any two MMCs X and Y , one can
inductively define the notion of k-step coupling between
mX

• and mY
• as follows:

k = 1: A 1-step coupling between mX
• and mY

• is defined to
be any measurable map

ν(1)

•,• : X × Y → P(X × Y )

such that ν(1)
x,y ∈ C(mX

x ,m
Y
y ) for any x ∈ X and

y ∈ Y .

k ≥ 2: A measurable map ν(k)
•,• : X×Y → P(X×Y ) is called

a k-step coupling between mX
• and mY

• if there exist
a (k − 1)-step coupling ν(k−1)

•,• and a 1-step coupling
ν(1)
•,• such that for any x ∈ X and y ∈ Y , one has

ν(k)

x,y =

∫
X×Y

ν
(k−1)
x′,y′ · ν(1)

x,y(dx
′ × dy′)

Let C(k)(mX
• ,m

Y
• ) denote the collection of all k-step cou-

plings between mX
• and mY

• . Furthermore, for any γ ∈
C(µX , µY ) and any ν(k)

•,• ∈ C(k)(mX
• ,m

Y
• ), denote by

ν(k)

•,• ⊙ γ :=

∫
X×Y

ν(k)

x′,y′ · γ(dx′ × dy′).

It is shown in (Chen et al., 2022) that ν(k)
•,•⊙γ ∈ C(µX , µY ).

We then let C(k)(µX , µY ) denote the collection of all such
couplings. Then, it turns out the WL distance can be charac-
terized as follows3.

Theorem 3.1 ((Chen et al., 2022, Theorem A.7)). Given
k ∈ N and any two Z-LMMCs (X , ℓX) and (Y, ℓY ), one
has that

d(k)

WL((X , ℓX), (Y, ℓY )) = inf
γ(k)∈C(k)(µX ,µY )

Eγ(k)dZ(ℓX(X0), ℓY (Y0)).

3.2. Markovian couplings and a stochastic process
interpretation of the WL distance

Readers familiar with stochastic processes may recognize
the construction of k-step couplings in the previous section.
In fact, we observe that these couplings can essentially be
derived from the so-called Markovian couplings (which we
will introduce later). Based on this observation, in this sec-
tion, we provide a clean and intuitive interpretation of the
WL distance as a variant of the Wasserstein distance be-
tween distributions of paths by highlighting this connection.

Recall that any measure Markov chain (X,mX
• , µX) can

be equivalently described as a probability measure PX

on the path space XN such that (X0)#PX = µX and
PX(Xi+1 = x′|Xi = x) = mX

x (x′) for any x, x′ ∈ X .
In this way, given any two MMCs X = (X,mX

• , µX)
and Y = (Y,mY

• , µX), one can consider couplings P ∈
C(PX ,PY ) ⊆ P(XN × Y N) between their corresponding
path distributions PX and PY , respectively. There is a canon-
ical identification between XN × Y N and (X × Y )N send-
ing ((xj)j∈N, (yj)j∈N) to (xj , yj)j∈N. Then, P can be also
considered as a probability measure on (X × Y )N, i.e., a
distribution of paths inside the space X × Y . As this dis-
tribution is a coupling between two Markov chains, it is
natural to also impose the Markov property on such cou-
plings. This naturally leads to the following definition of
Markovian couplings which helps to provide an intuitive
characterization of the WL distance. We first introduce
some notation. For any i ∈ N, we let Xi : X

N × Y N → X
sending ((xj)j∈N, (yj)j∈N) to xi and we similarly define
Yi. Now, we introduce the notion of Markovian couplings.

Definition 3.2 (Markovian couplings). A coupling P ∈
C(PX ,PY ) is called a Markovian coupling, if the following
conditions are satisfied:

1. The sequence {(Xi, Yi)}i∈N, regarded as random vari-
ables valued in X × Y on the probability measure space
(XN×Y N,P), satisfies the Markov property, i.e., for any

3In Theorem A.7 of (Chen et al., 2022), it is assumed that
the measures equipped in LMMCs are stationary with respect to
their corresponding Markov kernels. However, we note that the
statement in Theorem A.7 still holds if we remove the requirement
measures to be stationary.
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i ∈ N, x0, . . . , xi ∈ X and y0, . . . , yi ∈ Y , one has that

P
(
(Xi, Yi) = (xi, yi)|{(Xj , Yj) = (xj , yj)}0≤j≤i−1

)
= P

(
(Xi, Yi) = (xi, yi)|(Xi−1, Yi−1) = (xi−1, yi−1)

)
.

2. For any i ∈ N, x ∈ X and y ∈ Y , if we construct a
probability measure (νi+1)x,y ∈ P(X × Y ) as follows

(νi+1)x,y(x
′, y′) :=

P
(
(Xi+1, Yi+1) = (x′, y′)|(Xi, Yi) = (x, y)

)
∀ x′ ∈ X , y′ ∈ Y , then (νi+1)x,y ∈ C(mX

x ,m
Y
y ). i.e.,

(νi+1)•,• is a 1-step coupling between mX
• and mY

• .4

We let CM(PX ,PY ) denote the collection of all Markovian
couplings between PX and PY .

In short, a Markovian coupling of two Markov chains PX

and PY is a time-inhomogeneous Markov chain on a state
space X × Y that is the product of the state spaces of the
two chains and whose transition kernel at each time step is
a coupling between the transition kernels of the two chains;
see Figure 1 for an illustration.
Remark 3.3 (Initial distribution). Note that coupling P ∈
C(PX ,PY ) satisfies that (X0, Y0)#P ∈ C(µX , µY ). Hence,
any Markovian coupling also starts with an initial distribu-
tion which is itself a coupling between the initial distribu-
tions of the two Markov chains.

X

Y

Figure 1: A Markovian coupling between X and Y is a
Markov chain in the product space X × Y so that its pro-
jections on to X and Y have the same law as X and Y ,
respectively.

Remark 3.4 (Coupling method). This definition of Marko-
vian coupling is a generalization of a common coupling
technique used for proving convergence of Markov chains
(see for example (Levin & Peres, 2017)). Note that whereas
we define Markovian couplings for two arbitrary Markov
chains, in the context of “coupling technique”, the two
Markov chains involved have the same transition kernels.

4When the event {(Xi, Yi) = (x, y)} is null, the conditional
probability is not defined and hence we simply let (νi+1)x,y be
the product measure mX

x ⊗mY
y ∈ C(mX

x ,mY
y ).

Remark 3.5 (Existence of Markovian couplings). Given tran-
sition kernels (νi+1)•,• for all steps i = 0, . . . and an initial
distribution γ, one can always construct a Markovian cou-
pling via the Kolmogorov extension theorem (Kolmogorov
& Bharucha-Reid, 2018).

As promised at the beginning of this section, below we
provide an intuitive explanation of k-step couplings. See
Appendix A.1 for the proof of this result.

Proposition 3.6. For any coupling γ ∈ C(µX , µY ) and
any k-step coupling ν(k)

•,• ∈ C(k)(mX
• ,m

Y
• ), there exists a

Markovian coupling P ∈ CM(PX ,PY ) such that

law((Xk, Yk)) = ν(k)

•,• ⊙ γ and law((X0, Y0)) = γ.

Conversely, for any Markovian coupling P ∈ CM(PX ,PY ),
γ := law((X0, Y0)) is a coupling between µX and µY

and furthermore, there exists k-step coupling ν(k)
•,• ∈

C(k)
(
mX

• ,m
Y
•
)

such that law((Xk, Yk)) = ν(k)
•,• ⊙ γ.

This proposition implies that any k-step coupling, just as
indicated by the name, is the distribution of two coupled
random walks at exactly step k. The direct implication of
this result is that we provide a characterization of the WL
distance of depth k as follows. We note that the following
theorem is an immediate consequence of Theorem 3.1 and
Proposition 3.6.

Theorem 3.7. For any Z-LMMCs (X , ℓX) and (Y, ℓY ), we
have that

d(k)

WL ((X , ℓX), (Y, ℓY )) = inf
P∈CM(PX ,PY )

EP dZ(ℓX(Xk), ℓY (Yk)).

In this way, we have interpreted the WL distance of depth k
as a variant of the Wasserstein distance between the distri-
butions of paths corresponding to the input Markov chains.
Here the cost between two paths wX ∈ XN and wY ∈ Y N

is given by dZ(ℓX(Xk(wX), ℓY (Yk(wY ))) through the la-
bel functions. Essentially, the WL distance at depth k is
comparing the distribution of the Markov chains at step k;
see Figure 2 for an illustration.

3.2.1. IN TERMS OF THE LANGUAGE OF RANDOM
VARIABLES

A Markov chain can of course be realized on probability
spaces beyond the path space. This flexibility can be use-
ful in situations where some random variables need to be
independent of the Markov chain. We consider this slightly
more generalized setting in this section and reformulate the
definition of Markovian couplings and also Theorem 3.7. It
is worth noting that skipping this section will not impede
understanding of the other parts of the paper.

Note that a common way for describing a measure Markov
chain X = (X,mX

• , µX) is through a sequence of random

4
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1 2 k

X

Y

C(wX , wY ) = dZ(ℓX(Xk), ℓY (Yk))

Figure 2: The WL distance of depth k is almost like
the Wasserstein distance between path distributions where
the cost C(wX , wY ) between paths is given by the dis-
tance between labels of the two random walks at step k:
dZ(ℓX(Xk(wX), ℓY (Yk(wY ))).

variables {Xi : Ω → X}i∈N from some probability space
(Ω,P) such that law(X0) = µX and P(Xi+1 = x′|Xi =
x) = mX

x (x′) for any x, x′ ∈ X . Just to distinguish from
our terminology of measure Markov chains X , we call any
such sequence of random variables as a stochastic real-
ization of the MMC X . In this way, the projection maps
{Xi : (X

N,PX) → X}i∈N on the path space give a con-
crete example of stochastic realization.

We now generalize the Markovian couplings from Defini-
tion 3.2 to the case of general stochastic realizations in a
way similar to Definition 2.1.
Definition 3.8 (Markovian couplings for stochastic real-
izations). Given MMCs X = (X,mX

• , µX) and Y =
(Y,mY

• , µY ), let {Xi}i∈N and {Yi}i∈N be stochastic real-
izations on the same probability space (Ω,P). We call the
sequence of random variables {(Xi, Yi)}i∈N a Markovian
coupling between X and Y , if the following properties hold:

1. The sequence of random variables {(Xi, Yi)}i∈N sat-
isfies the Markov property, i.e., for any i ∈ N,
x0, . . . , xi ∈ X and y0, . . . , yi ∈ Y , one has that

P
(
(Xi, Yi) = (xi, yi)|{(Xj , Yj) = (xj , yj)}0≤j≤i−1

)
= P

(
(Xi, Yi) = (xi, yi)|(Xi−1, Yi−1) = (xi−1, yi−1)

)
.

2. For any i ∈ N, x ∈ X and y ∈ Y , if we construct a
probability measure in P(X × Y ) as follows

(νi+1)x,y(x
′, y′) :=

P
(
(Xi+1, Yi+1) = (x′, y′)|(Xi, Yi) = (x, y)

)
,

then (νi+1)x,y ∈ C(mX
x ,m

Y
y ), i.e., (νi+1)•,• is a 1-step

coupling between mX
• and mY

• .

Note that the above definition is almost identical to the
definition of Markovian couplings between path distribu-
tion (see Definition 3.2). Hence, it is not surprising that

Theorem 3.7 can be rephrased in terms of stochastic realiza-
tions; see also the similarity between Equation (1) and the
corollary below:
Corollary 3.9. For any Z-LMMCs (X , ℓX) and (Y, ℓY ),
we have that

d(k)

WL ((X , ℓX), (Y, ℓY )) = inf
{(Xi,Yi)}i∈N

E dZ(ℓX(Xk), ℓY (Yk))

where the infimum is taken over all possible Markovian
couplings between X and Y .

3.3. The Connection with Causal Optimal Transport

Finally, we comment that the Markovian coupling character-
ization formula given in the previous section is deeply con-
nected with the notion of Causal Optimal Transport (COT)
(Lassalle, 2018). We elucidate this point in this section.

Note that COT has already found applications in mathe-
matical finance (Glanzer et al., 2019; Backhoff-Veraguas
et al., 2020) and in machine learning (Xu et al., 2020; Xu
& Acciaio, 2022; Klemmer et al., 2022). As COT lies in
the framework of Optimal Transport, multiple Sinkhorn al-
gorithms have been proposed in the literature (Pichler &
Weinhardt, 2022; Eckstein & Pammer, 2022) for accelerat-
ing computations. The connection between the WL distance
and COT that we study in this section may eventually result
in efficient algorithms for computing/approximating the WL
distance. We leave this for future study. Furthermore, we
believe that this connection can also be useful for extend-
ing the WL distance to the case when input LMMCs have
different labeling space Z’s.

We first review some basics of COT. Given two (finite)
spaces X and Y and an integer k ∈ N, consider the product
spaces Xk+1 and Y k+1 (these product spaces are viewed
as spaces of paths in X or Y of length k + 1)5. Let α ∈
P(Xk+1) and β ∈ P(Y k+1). Now we are ready to define
the notion of (bi)causal coupling between α and β.
Definition 3.10 ((bi)causal coupling). A coupling measure
π ∈ C(α, β) is said to be causal from α to β if it satisfies

π((y0, . . . , yl)|(x0, . . . , xk)) = π((y0, . . . , yl)|(x0, . . . , xl))

for all l ∈ {0, . . . , k} and (x0, . . . , xk) ∈ Xk+1. Here,
the notataion π(·|·) denotes conditional probability. This
implies that, at time l and given the past (x0, . . . , xl) of
X , the distribution of yl does not depend on the future
(xl+1, . . . , xk) of X .

Moreover, π is said to be bicausal if it is causal both from α
to β and from β to α. The set of bicausal couplings between
α and β will be denoted by Cbc(α, β).

5The framework of COT can incorporate the setting of both
discrete and continuous paths of finite or infinite length. In this
paper, we will focus on paths of finite length for simplicity and
clarity of our presentation.
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Now, let c : Xk+1 × Y k+1 → R+ be any cost function.
Then, the bicausal OT problem is formulated as follows:

dc(α, β) := inf
π∈Cbc(α,β)

∫
Xk+1×Y k+1

c(x, y)π(dx× dy).

Similarly, one can formulate the causal OT (COT) problem
by considering causal couplings. We use the acronym COT
to refer to both causal and bicausal OT problems.

It turns out that Markovian couplings naturally give rise
to bicausal couplings by restricting paths with infinite
time steps from N to paths with finite time steps. More
precisely, given two MMCs X = (X,mX

• , µX) and
Y = (Y,mY

• , µX), we consider any Markovian coupling
P ∈ CM(PX ,PY ) (cf. Definition 3.2). Then, for any
k ∈ N, we let αk := law((X0, . . . , Xk)) ∈ P(Xk+1)
and let βk := law((Y0, . . . , Yk)) ∈ P(Y k+1). Recall
that here law((X0, . . . , Xk)) := (X0, . . . , Xk)#P and
law((Y0, . . . , Yk)) is similarly defined. In fact, it is easy
to see that αk and βk can be expressed explicitly as follows.

αk((x0, x1, . . . xk)) = mX
xk−1

(xk) · · ·mX
x0
(x1)µX(x0),

βk((y0, y1, . . . yk)) = mY
yk−1

(yk) · · ·mY
y0
(y1)µY (y0).

Now, we further let

πk := law((X0, . . . , Xk, Y0, . . . , Yk)) ∈ P(Xk+1×Y k+1).

Then, we have that

Lemma 3.11. πk is a bicausal coupling between αk and
βk.

Now, we consider the following cost function ck : Xk+1 ×
Y k+1 → R+ defined by

((x0, . . . , xk), (y0, . . . , yk)) 7→ dZ(ℓX(xk), ℓY (yk)) (3)

and state the following theorem.

Theorem 3.12. For any Z-LMMCs (X , ℓX) and (Y, ℓY ),
we have that

d(k)

WL ((X , ℓX), (Y, ℓY )) = dc
k

(αk, βk).

In order to prove Theorem 3.12, we first note that dc
k

can
be recursively computed. For each i = 0, . . . , k, we define
Vi : X

i+1 × Y i+1 → R recursively as follows:

Vk(x0, . . . , xk, y0, . . . , yk) := dZ(ℓX(xk), ℓY (yk)), and
Vi−1(x0, . . . , xi−1, y0, . . . , yi−1) :=

inf
νi∈C(αk

x0,...,xi−1
,βk

y0,...,yi−1
)

Eνi Vi(X0, . . . , Xi−1, Y0, . . . , Yi−1)

where αk
x0,...,xi−1

(resp. βk
y0,...,yi−1

) is the probability mea-
sure on X (resp. Y ) defined as the conditional probabil-

ity measure αk
x0,...,xi−1

(xi) := αk(xi|x0, . . . , xi−1) (resp.
βk
y0,...,yi−1

(yi) := βk(yi|y0, . . . , yi−1))6.

Then, as a direct consequence of Proposition 5.2 in (Back-
hoff et al., 2017), one has the following equality

dc
k

(αk, βk) = inf
γ0∈C(µX ,µY )

∫
X×Y

V0(x0, y0) γ
0(dx0×dy0).

(4)

As we are dealing with Markov chains, it is expected that
Vi(x0, . . . , xi−1, y0, . . . , yi−1) is independent of the past,
i.e., independent of (x0, . . . , xi−2, y0, . . . , yi−2). In order
to show that this is indeed the case, for each i = 0, . . . , k−1,
we define Wi : X × Y → R in a way similar to how we
defined Vi:

Wk(xk, yk) := dZ(ℓX(xk), ℓY (yk)), and
Wi−1(xi−1, yi−1) := inf

νi∈C(αk
xi−1

,βk
yi−1

)
Eνi Wi(Xi, Yi)

for each i = 0, . . . , k − 1 where αk
xi−1

(resp. βk
yi−1

) is
the probability measure on X (resp. Y ) defined as the
conditional probability measure αk

xi−1
(xi) := αk(xi|xi−1)

(resp. βk
yi−1

(yi) := βk(yi|yi−1)).

Lemma 3.13. For all i ∈ {0, . . . , k − 1} and
(x0, . . . , xi, y0, . . . , yi) ∈ Xi+1 × Y i+1, we have the fol-
lowing equality:

Vi(x0, . . . , xi, y0, . . . , yi) =Wi(xi, yi).

Finally, as a direct consequence of Theorem 3.7,
Lemma 3.11, and Lemma 3.13, one can prove Theorem 3.12.
See Appendix A.5 for a complete proof.
Remark 3.14 (Markov chains in the label space). In fact,
one can also transform a Z-LMMC (X , ℓX) into a Markov
chain in the label space Z, if we require that ℓX : X →
Z is injective. In this way, the WL distance can be also
interpreted as solving a COT problem in the label space Z.
See Appendix A.6 for more details.

4. Implications to Message Passing GNNs
In this section, we will provide some results on the use of
the WL distance for studying the universality and the Lip-
schitz property of message passing GNNs. In (Chen et al.,
2022), the authors introduced a neural network framework,

6It might happen that the event (X0, . . . , Xi−1) =
(x0, . . . , xi−1) is null, then the conditional probability is not de-
fined. In this case, we simply let αk

x0,...,xi−1
be any probability

measure on X . We adopt the same convention for βk. An al-
ternative and more rigorous way of dealing with this is to define
αk
x0,...,xi−1

as the disintegration of αk w.r.t. (x0, . . . , xi−1) (cf.
(Ambrosio et al., 2005, Section 5.3)). However, for simplicity of
presentation, we avoid such a definition.
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named Markov chain neural network (MCNN), on the col-
lection of all LMMCs and established that this framework
is universal w.r.t. the WL distance on this collection. It is
briefly touched upon in (Chen et al., 2022) that a MCNN
will reduce to a standard Message Passing Graph Neural
Network (MP-GNN) when the input LMMCs are induced
from labeled graphs. In this section, we will restrict our-
selves to graph induced LMMCs and study properties of
MP-GNNs via the use of the WL distances. In particular,
we show that a special yet common type of MP-GNNs (1)
has the same power as the WL distance in distinguishing
labeled graphs, (2) is Lipschitz w.r.t. change of input labeled
graphs through the lens of the WL distance and (3) satisfies
the universal approximation property, i.e., any continuous
function defined on a compact space of labeled graphs can
be approximated by such MP-GNNs.

4.1. Graph induced LMMCs

We first introduce some terminology related to graphs.
In this paper, we consider finite edge weighted graph
G = (V,E,w : E → (0,∞)) where V denotes the ver-
tex set, E denotes the edge set and w denotes the edge
weight function. For each v ∈ V , we define its degree as
deg(v) :=

∑
v′∈V wvv′ . In order to distinguish between

multiple graphs, we sometimes include the graph symbol G
in subscripts when referring to these notions, such as in the
case of VG or wG. This helps to clarify which graph we are
referring to in cases where multiple graphs are involved.

Now, given a finite edge weighted graph G endowed with a
label function ℓG : V → Z, one can generate a LMMC as
follows. Given q ∈ (0, 1), we associate to the vertex set V
a Markov kernel mG,q

• as follows: for any v ∈ V ,

mG,q
v :=

{
qδv +

1−q
deg(v)

∑
v′∈NG(v) wvv′δv′ , deg(v) > 0;

δv, deg(v) = 0.

For each vertex v ∈ V , we introduce the following modified
notion of degree

deg(v) :=

{
deg(v) deg(v) > 0;

1 deg(v) = 0.
(5)

Based on deg, we introduce the following probability mea-
sure on V : µG :=

∑
v∈V

deg(v)∑
v′∈V deg(v′)

δv. Then for any

q ∈ (0, 1), µG is a stationary distribution w.r.t. the Markov
kernelmG,q

• . Then, we let Xq(G) := (V,mG,q
• , µG) and we

say that the LMMC (Xq(G), ℓG) is induced by the labeled
graph (G, ℓG).

Finally, we let G(Z) denote the collection of all Z-labeled
graphs and given q > 0, let Iq : G(Z) → ML(Z) denote
the map which sends a Z-labeled graph into a Z-LMMC
via the method described above. Let Gq(Z) := Iq(G(Z)) ⊆

ML(Z). Then, for any k ≥ 0, d(k)

WL restricted on Gq(Z)
induces a pseudo-distance, which we denote by d(k)

G,q, on
G(Z). We then call d(k)

G,q the (q-damped) WL distance of
depth k between labeled graphs.

4.2. Message Passing Graph Neural Networks

Given q > 0 we consider the following special type of
k-layer MP-GNNs.

Message Passing: ℓi+1
G (v) :=

q φi+1(ℓ
i
G(v)) +

1−q
deg(v)

∑
v′∈NG(v) wvv′φi+1(ℓ

i
G(v

′))

if deg(v) > 0,

φi+1(ℓ
i
G(v)) if deg(v) = 0

Readout:

h((G, ℓG)) := ψ

(∑
v∈V

deg(v)∑
v′∈V deg(v′)

φk+1(ℓ
k
G(v))

)

where φi : Rdi−1 → Rdi and ψ : Rdk+1 → R are MLPs.
Remark 4.1. Any such MP-GNN h : G(Z) → R arises as
the restriction of a Markov Chain Neural Network (MCNN)
H : ML(Z) → R (see (Chen et al., 2022, Section 4)) to
the collection Gq(Z). For more details, see Appendix B.1.

We use NN q
k(Rd) to denote the collection of all such MP-

GNNs with k layers.

Discriminative Power of MP-GNNs In addition to the
Lipschitz property, we also establish that NN q

k(Rd) has the
same discriminative power as the WL distance.

Proposition 4.2. Given any (G1, ℓG1), (G2, ℓG2) ∈ G(Rd),

1. if d(k)

G,q((G1, ℓG1), (G2, ℓG2)) = 0, then for ev-
ery h ∈ NN q

k(Rd) one has that h((G1, ℓG1
)) =

h((G2, ℓG2
));

2. if d(k)

G,q((G1, ℓG1
), (G2, ℓG2

)) > 0, then there ex-
ists h ∈ NN k(Rd) such that h((G1, ℓG1

)) ̸=
h((G2, ℓG2

)).

Proof. This follows directly from Remark 4.1 and (Chen
et al., 2022, Proposition 4.1).

In fact, we establish a fact stronger than Proposition 4.2
under a setting similar to (but more flexible than) the one
used in (Xu et al., 2018). Choose any countable subset
Z ⊆ Rd and any countable subset P ⊆ R. Let GP (Z)
denote the collection of all Z-labeled weighted graphs so
that their edge weights are contained in P .

Now, we will establish that a very restricted set of MP-
GNNs is sufficient to have the same discriminative power
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as the WL distance and, in this way, we establish a much
stronger result than Proposition 4.2. We let NN q,1

k (Rd)
denote the collection of maps h ∈ NN q

k(Rd) where φi :
Rdi−1 → Rdi satisfies that di = 1 for each i = 1, . . . , k+1
(note d0 = d). Then, we establish the following main result:

Theorem 4.3. For each k ≥ 0, there exists h ∈
NN q,1

k (Rd) such that for any (G1, ℓG1), (G2, ℓG2) ∈
GP (Z), d

(k)

G,q((G1, ℓG1
), (G2, ℓG2

)) > 0 iff h((G1, ℓG1
)) ̸=

h((G2, ℓG2
)).

Notice that whereas in Proposition 4.2 the existence of h
may depend on the choice of labeled graphs, h in Theo-
rem 4.3 is universal for all pairs of labeled graphs. Further-
more, while maps φi involved in intermediate layers of h
in Proposition 4.2 could potentially have large dimensions
(di could be very large), φi can be chosen to have very low
dimension (di = 1) in Theorem 4.3. In this way, the latter
result is stronger than the previous one.
Remark 4.4. (Xu et al., 2018) established a result similar
to Theorem 4.3: for any k ≥ 0, there exists a MP-GNN
h which has the same discriminative power as the k-step
WL test when restricted to the set of graphs whose labels
are from a common countable set. We remark that in order
to show the existence of such h, however, the MP-GNN h
they constructed utilizes aggregation functions defined on
a countable set which may not be able to be continuously
extended to a “continuous” domain such as Rd. In contrast,
each function involved in constructing h ∈ NN q,1

k (Rd) is a
continuous map between Euclidean spaces.

Lipschitz property of MP-GNNs In addition to the study
of zero sets, one can generalize the results above in a quan-
titative manner. More specifically, we establish that the
specific MP-GNNs defined in this section are Lipschitz w.r.t.
the WL distance. This in particular indicates that MP-GNNs
are stable w.r.t. small perturbations of graphs in the sense
of the WL distance.

Theorem 4.5. Given a k-layer MP-GNN h : G(Rd) → R
as described above, assume that φi is Ci-Lipschitz for i =
1, . . . , k + 1 and that ψ is C-Lipschitz. Then, for any two
labeled graphs (G1, ℓG1) and (G2, ℓG2), one has that

|h((G1, ℓG1
))− h((G2, ℓG2

))|
≤ C ·Πk+1

i=1Ci · d(k)

G,q((G1, ℓG1), (G2, ℓG2)) .

Remark 4.6. We note that the WL distance could potentially
be used to study the Lipschitz property of other types of MP-
GNNs. See Appendix B.4 for such a study of a normalized
version of Graph Isomorphism Network.

Universal approximation Based on the Lipschitz prop-
erty, we finally establish the universal approximation prop-
erty of MP-GNNs. For this purpose, we introduce some
notation. Given any k ∈ N and any subset K ⊆

(
G(Rd), d(k)

G,q

)
, we let C(K,R) denote the set of all contin-

uous functions f : K → R. We further let NN q
k(Rd)|K

denote the collection of all functions h|K where h ∈
NN q

k(Rd), i.e.,

NN q
k(R

d)|K :=
{
h|K : h ∈ NN q

k(R
d)
}
.

Then, we state our main result as follows.

Theorem 4.7 (Universal approximation of k-layer
MP-GNNs). Given q > 0 and any k ∈ N, let
K ⊆

(
G(Rd), d(k)

G,q

)
be any compact subspace. Then,

NN q
k(Rd)|K = C(K,R).

The theorem above follows directly from the universal ap-
proximation result for MCNNs (Chen et al., 2022, Theorem
4.3); see Appendix B.5 for the proof.

5. Conclusion and Future Directions
In this paper, we further investigate the WL distance, pro-
posed in (Chen et al., 2022), for comparing LMMCs and
establish that the WL distance of depth k can be seen as a
variant of the ℓ1-Wasserstein distance comparing distribu-
tions of trajectories from random walks on the label space.
We further identify connections between the WL distance
and causal optimal transport (COT), suggesting potential ap-
plications in computing/approximating COT distances and
extending the WL distance to handle different label spaces.
These avenues offer interesting future research directions.

Given that the WL distance is compatible with the WL-
graph isomorphism test, which has been connected to the
expressiveness of message-passing graph neural networks
(MP-GNNs) (Xu et al., 2018; Azizian et al., 2020), it is
natural to equip the space of graphs with a (pseudo-)metric
structure induced by the WL distance. As already observed
in (Chen et al., 2022) and further detailed in this paper,
MP-GNN can universally approximate continuous functions
defined on the space of graphs w.r.t. the WL distance. In fact,
a more refined result is obtained (Theorem 4.7) which shows
universal approximation result for the family of k-layer MP-
GNNs. Furthermore, similar to the work of (Chuang &
Jegelka, 2022), we show that the WL distance can also be
used to study stability and Lipschitz property of sub-families
of MP-GNNs. We also remark that the WL distance can
serve as a suitable choice of metric for the space of graphs to
study questions such as the generalization power of message
passing GNNs as done in (Chuang & Jegelka, 2022).
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A. Details from Section 3
A.1. Proof of Proposition 3.6

To facilitate the proof below, we consider the canonical identification ι : (X × Y )N → XN × Y N sending (xj , yj)j∈N to
((xj)j∈N, (yj)j∈N). This is obviously a homeomorphism given the product topology. By slight abuse of notation, we let
Xi denote both the projection map Xi : X

N × Y N → X to the i-th component for i ∈ N and also the projection map
Xi ◦ ι : (X × Y )N → X . We adopt a similar convention for Yi.

For any k-step coupling γ(k) ∈ C(k)(µX , µY ), there exist γ ∈ C(µX , µY ) and (νi)•,• ∈ C(1)
(
mX

• ,m
Y
•
)

for i = 1, . . . , k
such that

γ(k) =

∫
X×Y

· · ·
∫

X×Y

(νk)xk−1,yk−1
(νk−1)xk−2,yk−2

(dxk−1 × dyk−1) · · · (ν1)x0,y0
(dx1 × dy1)γ(dx0 × dy0).

We further let (νi)•,• := (νk)•,• for all i > k. Now, by the Kolmogorov extension theorem, there exists Q ∈ P((X × Y )N)
such that

1. (νi+1)x,y(x
′, y′) = Q

(
(Xi+1, Yi+1) = (x′, y′)|(Xi, Yi) = (x, y)

)
, for any x, x′ ∈ X , y, y′ ∈ Y and any i = 0, . . ..

2. Q((Xi, Yi) ∈ Bi, 0 ≤ i ≤ n) =
∫
B0

γ(dx0× dy0) · · ·
∫
Bn

(νn)xn−1,yn−1(dxn× dyn) for any n ∈ N and any measurable

Bi ⊆ X × Y for i = 0, . . . , n.

Now, we let P := ι#Q ∈ P(XN × Y N). Then, it is straightforward to check that

1. (νi+1)x,y(x
′, y′) = P

(
(Xi+1, Yi+1) = (x′, y′)|(Xi, Yi) = (x, y)

)
, for any x, x′ ∈ X , y, y′ ∈ Y and any i = 0, . . ..

2. P((Xi, Yi) ∈ Bi, 0 ≤ i ≤ n) =
∫
B0

γ(dx0 × dy0) · · ·
∫
Bn

(νn)xn−1,yn−1
(dxn × dyn) for any n ∈ N and any measurable

Bi ⊆ X × Y for i = 0, . . . , n.

In this way, it is easy to check that P ∈ CM(PX ,PY ). Finally, we have that

law((Xk, Yk)) = (Xk, Yk)#P

=

∫
X×Y

· · ·
∫

X×Y

(νk)xk−1,yk−1
(νk−1)xk−2,yk−2

(dxk−1 × dyk−1) · · · (ν1)x0,y0
(dx1 × dy1)γ(dx0 × dy0)

=γ(k).

For the other direction, given a Markovian coupling P ∈ CM(PX ,PY ), we let

(νi+1)x,y(x
′, y′) := P

(
(Xi+1, Yi+1) = (x′, y′)|(Xi, Yi) = (x, y)

)
for any i ∈ N, x, x′ ∈ X and y, y′ ∈ Y .7 Then, by definition of the Markovian coupling, (νi+1)•,• is a 1-step coupling
between mX

• and mY
• for each i = 0, 1, . . .. Let γ := law((X0, Y0)) ∈ C(µX , µY ). Then, if we let

ν(k)

x0,y0
:=

∫
X×Y

· · ·
∫

X×Y

(νk)xk−1,yk−1
(νk−1)xk−2,yk−2

(dxk−1 × dyk−1) · · · (ν1)x0,y0
(dx1 × dy1)

for any x0 ∈ X and y0 ∈ Y , then ν(k)
•,• ∈ C(k)

(
mX

• ,m
Y
•
)

and thus

law((Xk, Yk)) = (Xk, Yk)#P = ν(k)

•,• ⊙ γ.

7Recall from Definition 3.2 that when the event {(Xi, Yi) = (x, y)} is null, we let (νi+1)x,y := mX
x ⊗mY

y .
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A.2. Proof of Theorem 3.7

Fix an arbitrary k-step coupling γ(k) = ν(k)
•,• ⊙ γ ∈ C(k)(µX , µY ). Then, by Proposition 3.6, there exists a Markovian

coupling P ∈ CM(PX ,PY ) such that

law((Xk, Yk)) = γ(k) and law((X0, Y0)) = γ.

This implies that∫
X×Y

dZ(ℓX(x), ℓY (y))γ
(k)(dx× dy) =

∫
X×Y

dZ(ℓX(x), ℓY (y))(Xk, Yk)#P(dx× dy)

=

∫
XN×Y N

dZ(ℓX(Xk(wX)), ℓY (Yk(wY )))P(dwX × dwY )

≥ inf
P∈CM(PX ,PY )

∫
XN×Y N

dZ(ℓX(Xk(wX)), ℓY (Yk(wY )))P(dwX × dwY ).

Since γ(k) is arbitrary, we have that

inf
γ(k)∈C(k)(µX ,µY )

∫
X×Y

dZ(ℓX(x), ℓY (y))γ
(k)(dx× dy)

≥ inf
P∈CM(PX ,PY )

∫
XN×Y N

dZ(ℓX(Xk(wX)), ℓY (Yk(wY )))P(dwX × dwY ).

Conversely, fix an arbitrary Markovian coupling P ∈ CM(PX ,PY ). Then, by Proposition 3.6, γ(k) := law((Xk, Yk)) is a
k-step coupling between µX and µY . Therefore,∫

XN×Y N
dZ(ℓX(Xk(wX)), ℓY (Yk(wY )))P(dwX × dwY ) =

∫
X×Y

dZ(ℓX(x), ℓY (y))γ
(k)(dx× dy)

≥ inf
γ(k)∈C(k)(µX ,µY )

∫
X×Y

dZ(ℓX(x), ℓY (y))γ
(k)(dx× dy).

Since P is arbitrary,

inf
γ(k)∈C(k)(µX ,µY )

∫
X×Y

dZ(ℓX(x), ℓY (y))γ
(k)(dx× dy)

≤ inf
P∈CM(PX ,PY )

∫
XN×Y N

dZ(ℓX(Xk(wX)), ℓY (Yk(wY )))P(dwX × dwY ).

Finally, by Theorem 3.1, one can conclude that

d(k)

WL((X , ℓX), (Y, ℓY )) = inf
γ(k)∈C(k)(µX ,µY )

∫
X×Y

dZ(ℓX(x), ℓY (y))γ
(k)(dx× dy)

= inf
P∈CM(PX ,PY )

∫
XN×Y N

dZ(ℓX(Xk(wX)), ℓY (Yk(wY )))P(dwX × dwY ).

A.3. Proof of Lemma 3.11

Note that it is easy to check that πk is indeed a coupling measure between αk and βk from the definition. Hence, we only

11
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need to verify the bicausality of πk. Observe that

πk((y0, . . . , yl)|(x0, . . . , xk))
= P

(
Y0 = y0, . . . , Yl = yl|X0 = x0, . . . , Xk = xk

)
=

P
(
X0 = x0, . . . , Xk = xk, Y0 = y0, . . . , Yl = yl

)
P
(
X0 = x0, . . . , Xk = xk

)
=

P
(
Xl+1 = xl+1, . . . , Xk = xk|X0 = x0, . . . , Xl = xl, Y0 = y0, . . . , Yl = yl

)
P
(
Xl+1 = xl+1, . . . , Xk = xk|X0 = x0, . . . , Xl = xl

)
×

P
(
X0 = x0, . . . , Xl = xl, Y0 = y0, . . . , Yl = yl

)
P
(
X0 = x0, . . . , Xl = xl

) .

Moreover, since P is a Markovian coupling, it is easy to check that

P
(
Xl+1 = xl+1, . . . , Xk = xk|X0 = x0, . . . , Xl = xl, Y0 = y0, . . . , Yl = yl

)
= P

(
Xk = xk|X0 = x0, . . . , Xk−1 = xk−1, Y0 = y0, . . . , Yl = yl

)
× P

(
Xk−1 = xk−1|X0 = x0, . . . , Xk−2 = xk−2, Y0 = y0, . . . , Yl = yl

)
· · · × P

(
Xl+1 = xl+1|X0 = x0, . . . , Xl = xl, Y0 = y0, . . . , Yl = yl

)
= mX

xl
(xl+1) · · ·mX

xk−1
(xk)

= P
(
Xl+1 = xl+1, . . . , Xk = xk|X0 = x0, . . . , Xl = xl

)
.

Therefore, one can conclude that

πk((y0, . . . , yl)|(x0, . . . , xk)) =
P
(
X0 = x0, . . . , Xl = xl, Y0 = y0, . . . , Yl = yl

)
P
(
X0 = x0, . . . , Xl = xl

)
= πk((y0, . . . , yl)|(x0, . . . , xl)).

This implies that πk is causal from αk to βk. In a similar way, one can also prove that πk is causal from βk to αk. This
completes the proof.

A.4. Proof of Lemma 3.13

The proof is by (backward) induction. First, observe that αk
x0,...,xi−1

= αk
xi−1

= mX
xi−1

and βk
y0,...,yi−1

= βk
yi−1

= mY
yi−1

since both of αk and βk are Markovian. The remaining steps are straightforward, so we omit it.

A.5. Proof of Theorem 3.12

First, fix an arbitrary Markovian coupling P ∈ CM(PX ,PY ). Then, by Lemma 3.11, we know that πk :=
law((X0, . . . , Xk, Y0, . . . , Yk)) ∈ P(Xk+1 × Y k+1) is a bicausal coupling between αk and βk. Therefore,∫

XN×Y N
dZ(ℓX(Xk(wX)), ℓY (Yk(wY )))P(dwX × dwY ) =

∫
Xk+1×Y k+1

ck(x, y)πk(dx× dy) ≥ dc
k

(αk, βk).

Since the Markovian coupling P is chosen arbitrarily, by Theorem 3.7, we have d(k)

WL ((X , ℓX), (Y, ℓY )) ≥ dc
k

(αk, βk).

Now, let us prove the other direction. By Equation (4) and Lemma 3.13, one can choose an optimal coupling γ0 ∈ C(µX , µY )
such that

dc
k

(αk, βk) =

∫
X×Y

W0(x0, y0) γ
0(dx0 × dy0).

Next, for arbitrary (x0, y0) ∈ X × Y , one can choose an optimal coupling ν1x0,y0
∈ C(mX

x0
,mY

y0
) such that

W0(x0, y0) =

∫
X×Y

W1(x1, y1) γ
1
x0,y0

(dx1 × dy1).

12
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This implies that ν1•,• is a 1-step coupling between mX
• and mY

• . We repeat this process inductively. Then, we have the
following 1-step couplings ν1•,•, ν

2
•,•, . . . , ν

k
•,• between mX

• and mY
• such that

Wi−1(xi−1, yi−1) =

∫
X×Y

Wi(xi, yi) ν
i
xi−1,yi−1

(dxi × dyi)

for all (xi−1, yi−1) ∈ X × Y . Now, the following equality holds:

dc
k

(αk, βk) =

∫
X×Y

· · ·
∫
X×Y

dZ(ℓX(xk), ℓY (yk)) ν
k
xk−1,yk−1

(dxk × dyk) · · · ν1x0,y0
(dx1 × dy1)γ

0(dx0 × dy0).

Also, recall that there exists a Markovian coupling induced by γ0 and these 1-step couplings ν1•,•, ν
2
•,•, . . . , ν

k
•,• by

employing Kolmogorov extension theorem (cf. Remark 3.5). Therefore, again by Theorem 3.7, we have dc
k

(αk, βk) ≥
d(k)

WL ((X , ℓX), (Y, ℓY )). This completes the proof.

A.6. The WL distance as COT in the label space Z

In Theorem 3.12 we are considering a special COT problem where the two involved state spaces for stochastic processes are
different. We note that in the literature, most of the time COT is considering stochastic processes on the same state space. In
this section, we then provide an alternative characterization of the WL distance in terms of COT on a same state space under
certain conditions.

Given a Z-LMMC (X , ℓX), if we require that ℓX : X → Z is injective, then (X , ℓX) induces a MMC on Z:

mℓX
z :=

{
(ℓX)#m

X
x , ∃x ∈ X such that ℓX(x) = z

δz, otherwise

We further let µℓX := (ℓX)#µX (note, however, µℓX may not be fully supported on Z).

Now, given any two Z-LMMCs (X , ℓX) and (Y, ℓY ) and k ∈ N, if we assume that ℓX and ℓY are injective, then these two
LMMCs induce two Markov chains on the same state space Z. It is natural to wonder whether one can characterize the
WL distance of depth k via a COT problem on Z. Recall notation αk ∈ P(Xk+1) and βk ∈ P(Y k+1) from Section 3.3.
We now let αk

Z := (ℓk+1
X )#α

k ∈ P(Zk+1) and βk
Z := (ℓk+1

Y )#β
k ∈ P(Zk+1). Here ℓk+1

X : Xk+1 → Zk+1 denotes
the self product of ℓX , and ℓk+1

Y is similarly defined. Finally, we consider the cost dkZ : Zk+1 × Zk+1 → R defined by
dkZ((z0, . . . , zk), (z

′
0, . . . , z

′
k)) := dZ(zk, z

′
k). Note that dkZ ◦ (ℓk+1

X × ℓk+1
Y ) = ck, where ck is defined through Equation (3).

Then, we have the following result:

Theorem A.1. For any Z-LMMCs (X , ℓX) and (Y, ℓY ), if we assume that ℓX and ℓY are injective, then we have that

d(k)

WL ((X , ℓX), (Y, ℓY )) = dd
k
Z
(
αk
Z , β

k
Z

)
.

For the proof of Theorem A.1, we establish the following lemma.

Lemma A.2. (ℓk+1
X × ℓk+1

Y )# induces a surjective map from Cbc(αk, βk) to Cbc(αk
Z , β

k
Z).

Given this lemma, and by the fact that dkZ ◦ (ℓk+1
X × ℓk+1

Y ) = ck, it is easy to check that dc
k

(αk, βk) = dd
k
Z

(
αk
Z , β

k
Z

)
.

Hence, by emplyoing Theorem 3.12, we conclude our proof of Theorem A.1.

Finally, we provide a proof of Lemma A.2.

Proof of Lemma A.2. Fix an arbitrary πk ∈ Cbc(αk, βk). Let πk
Z := (ℓk+1

X × ℓk+1
Y )#π

k. Then, it is easy to check that πk
Z

is indeed a bicausal coupling between αk
Z and βk

Z , so we omit the proof.

Next, fix an arbitrary πk
Z ∈ Cbc(αk

Z , β
k
Z). Now, let us define a probability measure πk on Xk+1 × Y k+1 in the following

way:
πk((x0, . . . , xk), (y0, . . . , yk)) := πk

Z((ℓX(x0), . . . , ℓX(xk)), (ℓY (y0), . . . , ℓY (yk)))

for all ((x0, . . . , xk), (y0, . . . , yk)) ∈ Xk+1 × Y k+1. First of all, observe that

πk
Z((z0, . . . , zk), (z

′
0, . . . , z

′
k)) = 0

13
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if zi /∈ ℓX(X) for some i ∈ {0, . . . , k} or z′j /∈ ℓY (Y ) for some j ∈ {0, . . . , k} since πk
Z is a coupling measure between

αk
Z and βk

Z . This implies that indeed πk is a coupling measure between αk and βk. Furthermore, since ℓX and ℓY are
injective, it is easy to check that πk

Z = (ℓk+1
X × ℓk+1

Y )#π
k. Finally, note that

πk((y0, . . . , yl)|(x0, . . . , xk)) = πk
Z((ℓY (y0), . . . , ℓY (yl))|(ℓX(x0), . . . , ℓX(xk)))

= πk
Z((ℓY (y0), . . . , ℓY (yl))|(ℓX(x0), . . . , ℓX(xl))) (∵ πk

Z is bicausal)

= πk((y0, . . . , yl)|(x0, . . . , xl))

for all l ∈ {0, . . . , k}, (y0, . . . , yl) ∈ Y l+1, and (x0, . . . , xk) ∈ Xk+1. Hence, πk is causal from αk to βk. In a similar way
one can also prove that πk is causal from βk to αk, too. This completes the proof.

B. Details from Section 4
B.1. Details about Markov chain neural networks (MCNNs)

We first briefly recall the definition of MCNNs from (Chen et al., 2022).

Given any Lipschitz map φ : Ri → Rj , define the map qφ : P(Ri) → Rj by sending α to
∫
Ri φ(x)α(dx).

One layer of MCNN We define one layer of MCNN as follows: Fφ : ML(Ri) → ML(Rj) sends (X , ℓX : X → Ri) to
(X , ℓφX : X → Rj) where ℓφX(x) := qφ((ℓX)#m

X
x ) for each x ∈ X .

Readout layer We define a readout layer for MCNN as follows: we first let Sφ : ML(Ri) → Rj be defined via
(X , ℓX) 7→ qφ((ℓX)#µX); then we consider any Lipschitz ψ : Rj → R and call ψ ◦ Sφ : ML(Ri) → R a readout layer.

k-layer MCNNs Now, a k-layer MCNN is defined as follows. Given a sequence of MLPs φi : Rdi−1 → Rdi for
i = 1, . . . , k + 1 and a MLP ψ : Rdk+1 → R, the map of the following form is called a k-layer MCNN:

H := ψ ◦ Sφk+1
◦ Fφk

◦ · · · ◦ Fφ1
: ML(Rd) → R.

We let NN k(Rd) denote the collection of all k-layer MCNNs.

MCNNs are MP-GNNs Now, we show how MCNNs reduce to MP-GNNs when restricted to graph induced LMMCs.
Let h : G(Rd) → R be a k-layer MP-GNN as defined in Section 4.2. Let φi : Rdi−1 → Rdi for i = 1, . . . , k + 1 and
ψ : Rdk+1 → R be the maps involved in defining h. Then, we consider the following k-layer MCNN:

H := ψ ◦ Sφk+1
◦ Fφk

◦ · · · ◦ Fφ1 : ML(Rd) → R.

We now carry out calculations for the first layer given a graph induced LMMC as input. Let (G, ℓG) ∈ G(Rd). Consider
the corresponding LMMC (Xq(G), ℓG) defined in Section 4.1. Then, by applying H to (Xq(G), ℓG), one has that for any
v ∈ V (without loss of generality, we assume deg(v) > 0),

ℓφ1

G (v) = qφ1
((ℓG)#m

G,q
v ) = qφ1

qδℓG(v) +
1− q

deg(v)

∑
v′∈NG(v)

wvv′δℓG(v′)


=

∫
Rd

φ1(v
′′)

qδℓG(v) +
1− q

deg(v)

∑
v′∈NG(v)

wvv′δℓG(v′)

 (dv′′)

= qφ1(ℓG(v)) +
1− q

deg(v)

∑
v′∈NG(v)

wvv′φ1(ℓG(v
′)).

Hence the label map ℓφ1

G : V → Rd1 agrees with the one ℓ1G obtained via the message passing rule specified in Section 4.2.
In this way, it is straightforward to verify that any MP-GNN defined in Section 4.2 is a restriction of an MCNN to the
collection of graph induced LMMCs Gq(Rd), i.e.,

h = H ◦ Iq. (6)

Here recall that Iq : G(Rd) → ML(Rd) sends a labeled graph to a LMMC and Iq has image Gq(Rd).

14
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Universal approximation property of MCNNs Given any k ∈ N and any subset K ⊆
(
G(Rd), d(k)

G,q

)
, we let NN q

k(Rd)|K
denote the collection of restrictions of functions h ∈ NN k(Rd) to K, i.e.,

NN k(Rd)|K :=
{
h|K : h ∈ NN k(Rd)

}
.

The following theorem is a slight variant of (Chen et al., 2022, Theorem 4.3): Notice that d(k)

WL is a pseudo-distance on
ML(Rd). Hence in (Chen et al., 2022, Theorem 4.3), all pseudometric spaces are first transformed to metric spaces by
identifying points at 0 distance (cf. (Burago et al., 2001, Proposition 1.1.5)). In the following result, we remove this subtlety
and deal with the pseudo-distance topology directly.

Theorem B.1. For any k ∈ N and any compact subset K ⊆
(
ML(Rd), d(k)

WL

)
, one has that NN k(Rd)|K = C(K,R).

Proof. We let ML
k (Rd) denote the space obtained by identifying points at 0 distance (w.r.t d(k)

WL) in ML(Rd). Then, d(k)

WL

become a metric on ML
k (Rd). Let Q denote this identification map (also called the quotient map):

Q :
(
ML(Rd), d(k)

WL

)
→
(
ML

k (Rd), d(k)

WL

)
. (7)

Let KQ := Q(K). Then, KQ is compact in ML
k (Rd). Consider the map Qc : C(KQ,R) → C(K,R) defined by sending fQ

to fQ ◦Q. It is easy to check that Qc is an isometric embedding w.r.t. the sup metrics on C(KQ,R) and C(K,R). It is easy
to check that Qc has its isometric inverse (Qc)

−1 : C(K,R) → C(KQ,R) defined as follows, which is also an isometric
embedding: for any f ∈ C(K,R), we let fQ : KQ → R be defined such that for any equivalence class [(X , ℓX)] ∈ KQ,
fQ([(X , ℓX)]) := f((X , ℓX)) (it is obvious that fQ does not depend on the choice of the representative (X , ℓX).). Hence,
Qc gives rise to an isometry from C(KQ,R) to C(K,R).

Now, by (Chen et al., 2022, Theorem 4.3), one has that

Qc (NN k(Rd)|K) = C(KQ,R).

Since Qc is an isometry, we have that NN k(Rd)|K = C(K,R).

B.2. Proof of Theorem 4.3

The proof of the theorem is based on the following several lemmas.

Lemma B.2. We let PS := {
∑n

i=1 pi : p1, . . . , pn ∈ P} denote the collection of finite sums of elements in P . Then, for a
fixed q ∈ (0, 1), let

Q :={1} ∪

{
deg(v)∑

v′∈V deg(v′)
: G has edge weights in P, v ∈ V

}

∪
{
mq + s

(1− q)

deg(v)
: G has edge weights in P, v ∈ V is such that deg(v) > 0,m ∈ N, s ∈ PS

}
.

Then, Q is a countable set.

Proof. Note that PS is still a countable set. Since graphs have edge weights from a countable set P , every deg(v) (and
deg(v)) encountered in the definition above is from a countable set. Hence, Q is countable.

Lemma B.3. Consider the union

CP (Z) :=
⋃

(G,ℓG)∈GP (Z)

(
{(ℓG)#µG} ∪

{
(ℓG)#m

G,q
v : v ∈ V

})
⊆ P(Rd)

Then, CP (Z) is a countable subset of P(Rd).
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Proof. Every probability measure α ∈ CP (Z) can be expressed as

α =
∑
z∈Z

α(z)δz, where α(z) is a sum of finitely many elements in Q.

Then, by the fact that both Z and Q are countable (cf. Lemma B.2), we have that CP (Z) is countable.

Recall notation from Appendix B.1. Then, we have that

Lemma B.4. Fix any d ∈ N. Then, for any Lipschitz φ : Rd → R, any countable subset Z ⊆ Rd and any countable subset
P ⊆ R, there exists a countable subset Z ′ ⊆ R such that

Fφ(GP (Z)) ⊆ GP (Z
′) and Sφ(GP (Z)) ⊆ Z ′. (8)

Proof. Let Z ′ := qφ(CP (Z)) ⊆ R. Since CP (Z) is countable, Z ′ is also countable. It is obvious that Z ′ satisfies
Equation (8) which concludes the proof.

Lemma B.5. For any countable subset C ⊆ P(Rd), there exists a Lipschitz function φ : Rd → R such that the restriction
of qφ : P(Rd) → R to C is injective.

Proof. Consider the following vector space:

Lip0(Rd) := {f : Rd → R| f is Lipschitz and f(0) = 0}.

When equipped with the norm ∥f∥ := supx̸=y
|f(x)−f(y)|

∥x−y∥ , Lip0(Rd) is a Banach space (Weaver, 1995). Consider the
following collection of signed measures D := {α− β : α, β ∈ C and α ̸= β}. Since C is countable, D is also countable.
Each µ ∈ D gives rise to a linear functional ψµ : Lip0(Rd) → R defined by f 7→

∫
Rd f(x)µ(dx). This functional

is well-defined since every probability measure in P(Rd) is assumed to have finite 1-moment (see Section 2.1 for this
assumption on P(Rd)). Moreover, it is easy to check that ψµ is bounded and non-zero. Then, ker(ψµ) is nowhere dense
since it is a proper closed subspace of Lip0(Rd). By Baire category theorem, we have that ∪µ∈D ker(ψµ) ̸= Lip0(Rd).
Then, choose an arbitrary φ ∈ Lip0(Rd)\ ∪µ∈D ker(ψµ) and it follows that qφ|C is injective.

Proof of Theorem 4.3. We let Z0 := Z and C1 := CP (Z0). By Lemma B.5, there exists a Lipschitz map φ1 : Rd → R
such that qφ1

|C1
is injective. By Lemma B.4, there exists a countable subset Z1 ⊆ R such that

Fφ1(GP (Z0)) ⊆ GP (Z1).

Let C2 := CP (Z1). By Lemma B.5 again, there exists a Lipschitz map φ2 : R → R such that qφ2
|C2

is injective. Then,
inductively, for each i = 1, . . . , k, there exist a countable subset Zi ⊆ R and a Lipschitz map φi : R → R so that
qφi is injective when restricted to Ci := CP (Zi−1) and Fφi(GP (Zi−1)) ⊆ GP (Zi). Similarly, there exist a countable
subset S ⊆ R and a Lipschitz map φk+1 : R → R such that qφk+1

is injective when restricted to Ck+1 := CP (Zk) and
Sφk+1

(GP (Zk)) ⊆ S. We then let ψ : R → R denote the identity map and let h := ψ◦Sφk+1
◦Fφk

◦· · ·◦Fφ1
: G(Rd) → R.

Pick any (G1, ℓG1), (G2, ℓG2) ∈ GP (Z). We prove that d(k)

G,q((G1, ℓG1), (G2, ℓG2)) > 0 iff h((G1, ℓG1)) ̸= h((G2, ℓG2)).

For each i = 1, . . . , k, we let (
G1, ℓ

(φ,i)

G1

)
:= Fφi

◦ · · · ◦ Fφ1
((G1, ℓG1

)). (9)

We similarly define
(
G2, ℓ

(φ,i)

G2

)
. Then, we prove that for each i = 1, . . . , k,

∀v1 ∈ VG1 , v2 ∈ VG2 , ℓ
(φ,i)

G1
(v1) = ℓ(φ,i)

G2
(v2) iff l(i)(Xq(G1),ℓG1

)(v1) = l(i)(Xq(G2),ℓG2
)(v2) (10)

Given Equation (10), it is obvious that(
l(k)

(Xq(G1),ℓG1
)

)
#
µG1

̸=
(
l(k)

(Xq(G2),ℓG2
)

)
#
µG2

iff
(
ℓ(φ,k)

G1

)
#
µG1

̸=
(
ℓ(φ,k)

G2

)
#
µG2

.
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Note that
(
ℓ(φ,k)

G1

)
#
µG1

,
(
ℓ(φ,k)

G2

)
#
µG2

∈ Ck+1. Since qφk+1
is injective on Ck+1 and ψ is injective on S, we have

that
(
ℓ(φ,k)

G1

)
#
µG1

̸=
(
ℓ(φ,k)

G2

)
#
µG2

iff h((G1, ℓG1
)) ̸= h((G2, ℓG2

)). Therefore, d(k)

G,q((G1, ℓG1
), (G2, ℓG2

)) > 0 iff
h((G1, ℓG1)) ̸= h((G2, ℓG2)).

To conclude the proof, we prove Equation (10) by induction on i = 1, . . . , k. When i = 1, since
(ℓG1)#m

G1,q
v1 , (ℓG2)#m

G2,q
v2 ∈ C1, ∀v1 ∈ VG1 , v2 ∈ VG2 , by injectivity of qφ1 on C1, we have that

∀v1 ∈ VG1 , v2 ∈ VG2 , (ℓG1)#m
G1,q
v1

= (ℓG2)#m
G2,q
v2 iff qφ1

(
(ℓG1)#m

G1,q
v1

)
= qφ1

(
(ℓG2)#m

G2,q
v2

)
.

Equivalent speaking,

∀v1 ∈ VG1
, v2 ∈ VG2

, l(1)(Xq(G1),ℓG1
)(v1) = l(1)(Xq(G2),ℓG2

)(v2) iff ℓ(φ,1)

G1
(x) = ℓ(φ,1)

G2
(v2).

Now, we assume that Equation (10) holds for some i ≥ 1. For i+ 1, since(
ℓ(φ,i)

G1

)
#
mG1,q

v1 ,
(
ℓ(φ,i)

G2

)
#
mG2,q

v2 ∈ Ci+1, ∀v1 ∈ VG1
, v2 ∈ VG2

,

by injectivity of qφi+1 on Ci+1, we have that ∀v1 ∈ VG1 , v2 ∈ VG2 ,(
ℓ(φ,i)

G1

)
#
mG1,q

v1
=
(
ℓ(φ,i)

G2

)
#
mG2,q

v2 iff qφi+1

((
ℓ(φ,i)

G1

)
#
mG1,q

v1

)
= qφi+1

((
ℓ(φ,i)

G2

)
#
mG2,q

v2

)
.

Equivalent speaking,

∀v1 ∈ VG1
, y ∈ Y,

(
ℓ(φ,i)

G1

)
#
mG1,q

v1
=
(
ℓ(φ,i)

G2

)
#
mG2,q

v2 iff ℓ(φ,i+1)

G1
(x) = ℓ(φ,i+1)

G2
(y).

By the induction assumption, ∀v1 ∈ VG1
, v2 ∈ V2 we have that

ℓ(φ,i)

G1
(v1) = ℓ(φ,i)

G2
(v2) iff l(i)(Xq(G1),ℓG1

)(v1) = l(i)(Xq(G2),ℓG2
)(v2).

This implies that (
ℓ(φ,i)

G1

)
#
mG1,q

v1 =
(
ℓ(φ,i)

G2

)
#
mG2,q

v2

iff
(
l(i)(Xq(G1),ℓG1

)

)
#
mG1,q

v1 =
(
l(i)(Xq(G2),ℓG2

)

)
#
mG2,q

v2

iff l(i+1)

(Xq(G1),ℓG1
)(v1) = l(i+1)

(Xq(G2),ℓG2
)(v2).

Therefore,
ℓ(φ,i+1)

G1
(v1) = ℓ(φ,i+1)

G2
(v2) iff l(i+1)

(Xq(G1),ℓG1
)(v1) = l(i+1)

(Xq(G2),ℓG2
)(v2)

and we thus conclude the proof.

B.3. Proof of Theorem 4.5

We need the following basic fact.

Lemma B.6 ((Chen et al., 2022, Lemma B.4)). For any C-Lipschitz function φ : Ri → Rj , we have that the map
qφ : P(Ri) → Rj is C-Lipschitz.

Recall notations from Appendix B.1. Given a k-layer MCNN H := ψ ◦ Sφk+1
◦ Fφk

◦ · · · ◦ Fφ1 , recall from Equation (6)
that h := H ◦ Iq gives rise to a MP-GNN. For any (G, ℓG) ∈ G(Z), consider its induced LMMC (Xq(G), ℓG). Following
notation in Equation (9) we let (

Xq(G), ℓ
(φ,i)

G

)
:= Fφi

◦ · · · ◦ Fφ1
((Xq(G), ℓG)) (11)

Now, we assume that for i = 1, . . . , k, φi is a Ci-Lipschitz MLP for some Ci > 0. Then, by Lemma B.6, we have that qφi

is a Ci-Lipschitz map for i = 1, . . . , k.
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Then, we prove that

dW

((
ℓ(φ,k)

G1

)
#
µG1

,
(
ℓ(φ,k)

G2

)
#
µG2

)
≤ Πk

i=1Ci · d(k)

G,q((G1, ℓG1
), (G2, ℓG2

)). (12)

Given Equation (12), by Lemma B.6 again and the fact that ψ is C-Lipschitz, one has that

|h((G1, ℓG1
))− h((G2, ℓG2

))| ≤ C ·
∥∥∥qφk+1

((
ℓ(φ,k)

G1

)
#
µG1

)
− qφk+1

((
ℓ(φ,k)

G2

)
#
µG2

)∥∥∥
≤ C · Ck+1dW

((
ℓ(φ,k)

G1

)
#
µG1

,
(
ℓ(φ,k)

G2

)
#
µG2

)
≤ C ·Πk+1

i=1Ci · d(k)

G,q((G1, ℓG1
), (G2, ℓG2

)).

The following proof of Equation (12) is adapted from the proof of (Chen et al., 2022, Equation (19)): it suffices to prove that
for any v1 ∈ VG1 and v2 ∈ VG2 ,∥∥ℓ(φ,k)

G1
(v1)− ℓ(φ,k)

G2
(v2)

∥∥ ≤ Πk
i=1Ci · dW

(
l(k)

(Xq(G1),ℓG1
)(v1), l

(k)

(Xq(G2),ℓG2
)(v2)

)
.

We prove the above inequality by proving the following inequality inductively on j = 1, . . . , k:∥∥ℓ(φ,j)

G1
(v1)− ℓ(φ,j)

G2
(v2)

∥∥ ≤ Πj
i=1Ci · dW

(
l(j)(Xq(G1),ℓG1

)(v1), l
(j)

(Xq(G2),ℓG2
)(v2)

)
. (13)

When j = 1, we have that∥∥ℓ(φ,1)

G1
(v1)− ℓ(φ,1)

G2
(v2)

∥∥ =
∥∥∥qφ1

(
(ℓG1)#m

G1,q
v1

)
− qφj

(
(ℓG2)#m

G2,q
v2

)∥∥∥
≤ C1dW

(
(ℓG1)#m

G1,q
v1 , (ℓG2)#m

G2,q
v2

)
= C1dW

(
l(1)(Xq(G1),ℓG1

)(v1), l
(1)

(Xq(G2),ℓG2
)(v2)

)
.

We now assume that Equation (13) holds for some j ≥ 1. For j + 1, we have that

Πj+1
i=1Ci · dW

(
l(j+1)

(Xq(G1),ℓG1
)(v1), l

(j+1)

(Xq(G2),ℓG2
)(v2)

)
= Πj+1

i=1Ci · dW
((

l(j)(Xq(G1),ℓG1
)

)
#
mG1,q

v1 ,
(
l(j)(Xq(G2),ℓG2

)

)
#
mG2,q

v2

)
= Cj+1 · inf

γ∈C
(
m

G1,q
v1

,m
G2,q
v2

)
∫

VG1
×VG2

Πj
i=1Ci · dW

(
l(j)(Xq(G1),ℓG1

)(v
′
1), l

(j)

(Xq(G2),ℓG2
)(v

′
2)
)
γ(dv′1 × dv′2)

≥ Cj+1 inf
γ∈C

(
m

G1,q
v1

,m
G2,q
v2

)
∫

VG1
×VG2

∥∥ℓ(φ,j)

G1
(v′1)− ℓ(φ,j)

G2
(v′2)

∥∥ γ(dv′1 × dv′2)

= Cj+1 · dW
((
ℓ(φ,j)

G1

)
#
mG1,q

v1 ,
(
ℓ(φ,j)

G2

)
#
mG2,q

v2

)
≥
∥∥∥qφj+1

((
ℓ(φ,j)

G1

)
#
mG1,q

v1

)
− qφj+1

((
ℓ(φ,j)

G2

)
#
mG2,q

v2

)∥∥∥
=
∥∥ℓ(φ,j+1)

G1
(v1)− ℓ(φ,j+1)

G2
(v2)

∥∥ .
B.4. More on Lipschitz properties

In Section 4.1, we introduced one way of inducing LMMCs from weighted graphs. Below, we introduce a new method for
doing so and hence establish the Lipschitz property of a new type of MP-GNNs closely related to GINs.

Given any ε ≥ 0 and any finite edge weighted graph G = (V,E,w) endowed with a label function ℓG : V → Z, we
generate a LMMC as follows. We associate to the vertex set V a Markov kernel mG,(ε)

• as follows: for any v ∈ V ,

mG,(ε)
v :=

1

deg(v) + 1 + ε

(1 + ε)δv +
∑

v′∈NG(v)

wvv′δv′


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For each vertex v ∈ V , we let degε(v) := deg(v) + 1 + ε. Then, the following probability measure µε
G :=∑

v∈V
degε(v)∑

v′∈V degε(v′)δv is a stationary distribution w.r.t. the Markov kernel mG,(ε)
• . Then, we let X(ε)(G) :=

(V,m
G,(ε)
• , µε

G).

Now, recall that G(Z) denotes the collection of all Z-labeled graphs. Given ε ≥ 0, let I(ε) : G(Z) → ML(Z) denote
the map sending a Z-labeled graph G into a Z-LMMC (X(ε)(G), ℓG). Let G(ε)(Z) := I(ε)(G(Z)) ⊆ ML(Z). Now, for
any k ≥ 0, d(k)

WL restricted on G(ε)(Z) induces a pseudo-distance, which we denote by d(k)

G,(ε), on G(Z). Note the subtle
differences in notation introduced in Section 4.1.

Now, given any ε ≥ 0, we consider the following k-layer “normalized” GIN.

Message Passing: ℓi+1
G (v) = φi+1

 1

deg(v) + 1 + ε

(1 + ε)ℓiG(v) +
∑

v′∈NG(v)

wvv′ℓiG(v
′)


Readout: h((G, ℓG)) := ψ

(∑
v∈V

degε(v)∑
v′∈V degε(v′)

ℓkG(v)

)

where φi : Rdi−1 → Rdi and ψ : Rdk → R are MLPs. Note that the only difference between the above MP-GNN and GIN
is the involvement of normalization terms 1

deg(v)+1+ε and degε(v)∑
v′∈V degε(v′) .

Lipschitz property of normalized GINs Now, we establish that the normalized GINs defined above are Lipschitz w.r.t.
d(k)

G,(ε).

Theorem B.7. Given a k-layer normalized GIN h : G(Rd) → R as described above, assume that φi is Ci-Lipschitz for
i = 1, . . . , k and that ψ is C-Lipschitz. Then, for any two labeled graphs (G1, ℓG1) and (G2, ℓG2), one has that

|h((G1, ℓG1
))− h((G2, ℓG2

))| ≤ C ·Πk
i=1Ci · d(k)

G,(ε)((G1, ℓG1
), (G2, ℓG2

)) .

Proof. The proof is similar to the one for Theorem 4.5.

We first prove that

dW

((
ℓkG1

)
#
µε
G1
,
(
ℓkG2

)
#
µε
G2

)
≤ Πk

i=1Ci · d(k)

G,(ε)((G1, ℓG1), (G2, ℓG2)). (14)

Given Equation (14) and the fact that ψ is C-Lipschitz, one has that

|h((G1, ℓG1))− h((G2, ℓG2))| ≤ C ·

∥∥∥∥∥∑
v∈V

degε(v)∑
v′∈V degε(v′)

ℓkG1
(v)−

∑
v∈V

degε(v)∑
v′∈V degε(v′)

ℓkG2
(v)

∥∥∥∥∥
≤ C · dW

((
ℓkG1

)
#
µε
G1
,
(
ℓkG2

)
#
µε
G2

)
≤ C ·Πk

i=1Ci · d(k)

G,(ε)((G1, ℓG1
), (G2, ℓG2

)),

where the second inequality follows Lemma B.6 by letting φ = idRdk .

To prove Equation (14), it suffices to prove that for any v1 ∈ VG1
and v2 ∈ VG2

,

∥∥ℓkG1
(v1)− ℓkG2

(v2)
∥∥ ≤ Πk

i=1Ci · dW
(
l(k)

(X(ε)(G1),ℓG1
)(v1), l

(k)

(X(ε)(G2),ℓG2
)(v2)

)
.

We prove the above inequality by proving the following inequality inductively on j = 1, . . . , k:∥∥∥ℓjG1
(v1)− ℓjG2

(v2)
∥∥∥ ≤ Πj

i=1Ci · dW
(
l(j)(X(ε)(G1),ℓG1

)(v1), l
(j)

(X(ε)(G2),ℓG2
)(v2)

)
. (15)
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When j = 1, we have that∥∥ℓ1G1
(v1)− ℓ1G2

(v2)
∥∥

≤ C1

∥∥∥∥∥ (1 + ε)ℓG1
(v1) +

∑
v′
1∈NG1

(v1)
wv1v′

1
ℓG1

(v′1)

degεG1
(v1)

−
(1 + ε)ℓG2

(v2) +
∑

v′
2∈NG2

(v2)
wv2v′

2
ℓG2

(v′2)

degεG2
(v2)

∥∥∥∥∥
= C1

∥∥∥qId ((ℓG1
)#m

G1,(ε)
v1

)
− qId

(
(ℓG2

)#m
G2,(ε)
v1

)∥∥∥
≤ C1dW

(
(ℓG1

)#m
G1,(ε)
v1 , (ℓG2

)#m
G2,(ε)
v1

)
= C1dW

(
l(1)(X(ε)(G1),ℓG1

)(v1), l
(1)

(X(ε)(G2),ℓG2
)(v2)

)
.

Here Id : Rd1 → Rd1 is the identity map and thus is 1-Lipschitz.

We now assume that Equation (15) holds for some j ≥ 1. For j + 1, we have that∥∥∥ℓj+1
G1

(v1)− ℓj+1
G2

(v2)
∥∥∥

≤ Cj+1

∥∥∥∥∥ (1 + ε)ℓjG1
(v1) +

∑
v′
1∈NG1

(v1)
wv1v′

1
ℓjG1

(v′1)

degεG1
(v1)

−
(1 + ε)ℓjG2

(v2) +
∑

v′
2∈NG2

(v2)
wv2v′

2
ℓjG2

(v′2)

degεG2
(v2)

∥∥∥∥∥
= Cj+1

∥∥∥qId ((ℓjG1
)#m

G1,(ε)
v1

)
− qId

(
(ℓjG2

)#m
G2,(ε)
v1

)∥∥∥
≤ Cj+1dW

(
(ℓjG1

)#m
G1,(ε)
v1 , (ℓjG2

)#m
G2,(ε)
v1

)
= Cj+1 inf

γ∈C
(
m

G1,(ε)
v1

,m
G2,(ε)
v2

)
∫

VG1
×VG2

∥∥∥ℓjG1
(v′1)− ℓjG2

(v′2)
∥∥∥ γ(dv′1 × dv′2)

≤ Cj+1 · inf
γ∈C

(
m

G1,(ε)
v1

,m
G2,(ε)
v2

)
∫

VG1
×VG2

Πj
i=1Ci · dW

(
l(j)(X(ε)(G1),ℓG1

)(v
′
1), l

(j)

(X(ε)(G2),ℓG2
)(v

′
2)
)
γ(dv′1 × dv′2)

= Πj+1
i=1CidW

(
l(j+1)

(X(ε)(G1),ℓG1
)(v1), l

(j+1)

(X(ε)(G2),ℓG2
)(v2)

)
.

This concludes the proof.

B.5. Proof of Theorem 4.7

Recall the map Iq :
(
G(Rd), d(k)

G,q

)
→
(
Gq(Rd), d(k)

WL

)
. This map is continuous by the definition of d(k)

G,q . Hence Kq := Iq(K)

is compact. Then, we define the map Jq : C(Kq,R) → C(K,R) sending fq to f := fq ◦ Iq .
Claim 1. Jq : C(Kq,R) → C(K,R) is a homeomorphism.

By Theorem B.1, we know that NN k(Rd)|Kq
= C(Kq,R). Here NN k(Rd) denotes the collection of k-layer MCNNs (see

Appendix B.1) and NN k(Rd)|Kq
refers to the collection of restrictions of functions in NN k(Rd) to Kq. By Equation (6),

we have that NN q
k(Rd)|K = Jq(NN k(Rd)|Kq

). Hence, by Claim 1 we have that

NN q
k(Rd)|K = Jq(NN k(Rd)|Kq

) = Jq(C(Kq,R)) = C(K,R).

Proof of Claim 1. We show that, in fact, Jq is an isometry w.r.t. the sup metric on C(Kq,R) and C(K,R). Given continuous
fq, gq : Kq → R, one has that

sup
(Xq(G),ℓG)∈Kq

|fq((Xq(G), ℓG))− gq((Xq(G), ℓG))|

= sup
(Xq(G),ℓG)∈Kq

|f((G, ℓG))− g((G, ℓG))|

= sup
(G,ℓG)∈K

|f((G, ℓG))− g((G, ℓG))|.
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Hence, Jq is an isometric embedding. The inverse (Jq)
−1 of Jq is identified as follows: for any f ∈ C(K,R), we let

fq : Kq → R be defined such that for any (Xq(G), ℓG) ∈ Kq, fq((Xq(G), ℓG)) := f((G, ℓG)) (fq is well-defined: if
(Xq(G1), ℓG1) = (Xq(G2), ℓG2), then d(k)

G,q((G1, ℓG1), (G2, ℓG2)) = 0 and thus f((Xq(G1), ℓG1)) = f((Xq(G2), ℓG2)).).
It is easy to check that (Jq)−1 is the inverse of Jq and is also an isometric embedding. This finishes the proof.
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