
Published in Transations on Machine Learning Research (07/2022)

Learning to Switch Among Agents in a Team via 2-Layer
Markov Decision Processes

Vahid Balazadeh vahid@cs.toronto.edu
University of Toronto

Abir De abir@cse.iitb.ac.in
Indian Institute of Technology Bombay

Adish Singla adishs@mpi-sws.dot.org
Max Planck Institute for Software Systems

Manuel Gomez Rodriguez manuelgr@mpi-sws.org
Max Planck Institute for Software Systems

Reviewed on OpenReview: https://openreview.net/forum?id=NT9zgedd3I

Abstract

Reinforcement learning agents have been mostly developed and evaluated under the assump-
tion that they will operate in a fully autonomous manner—they will take all actions. In this
work, our goal is to develop algorithms that, by learning to switch control between agents,
allow existing reinforcement learning agents to operate under different automation levels. To
this end, we first formally define the problem of learning to switch control among agents in
a team via a 2-layer Markov decision process. Then, we develop an online learning algorithm
that uses upper confidence bounds on the agents’ policies and the environment’s transition
probabilities to find a sequence of switching policies. The total regret of our algorithm with
respect to the optimal switching policy is sublinear in the number of learning steps and, when-
ever multiple teams of agents operate in a similar environment, our algorithm greatly benefits
from maintaining shared confidence bounds for the environments’ transition probabilities and
it enjoys a better regret bound than problem-agnostic algorithms. Simulation experiments
illustrate our theoretical findings and demonstrate that, by exploiting the specific structure
of the problem, our proposed algorithm is superior to problem-agnostic algorithms.

1 Introduction

In recent years, reinforcement learning (RL) agents have achieved, or even surpassed, human performance in
a variety of computer games by taking decisions autonomously, without human intervention (Mnih et al.,
2015; Silver et al., 2016; 2017; Vinyals et al., 2019). Motivated by these successful stories, there has been
a tremendous excitement on the possibility of using RL agents to operate fully autonomous cyberphysical
systems, especially in the context of autonomous driving. Unfortunately, a number of technical, societal, and
legal challenges have precluded this possibility to become so far a reality.

In this work, we argue that existing RL agents may still enhance the operation of cyberphysical systems
if deployed under lower automation levels. For example, if we let RL agents take some of the actions and
leave the remaining ones to human agents, the resulting performance may be better than the performance
either of them would achieve on their own (Raghu et al., 2019a; De et al., 2020; Wilder et al., 2020). Once
we depart from full automation, we need to address the following question: when should we switch control
between machine and human agents? In this work, we look into this problem from a theoretical perspective
and develop an online algorithm that learns to optimally switch control between multiple agents in a team
automatically. However, to fulfill this goal, we need to address several challenges:

1

https://openreview.net/forum?id=NT9zgedd3I

Published in Transations on Machine Learning Research (07/2022)

— Level of automation. In each application, what is considered an appropriate and tolerable load for each agent
may differ (European Parliament, 2006). Therefore, we would like that our algorithms provide mechanisms
to adjust the amount of control for each agent (i.e., level of automation) during a given time period.

— Number of switches. Consider two different switching patterns resulting in the same amount of agent
control and equivalent performance. Then, we would like our algorithms to favor the pattern with the least
number of switches. For example, in a team consisting of human and machine agents, every time a machine
defers (takes) control to (from) a human, there is an additional cognitive load for the human (Brookhuis
et al., 2001).

— Unknown agent policies. The spectrum of human abilities spans a broad range (Macadam, 2003). As a
result, there is a wide variety of potential human policies. Here, we would like that our algorithms learn
personalized switching policies that, over time, adapt to the particular humans (and machines) they are
dealing with.

— Disentangling agents’ policies and environment dynamics. We would like that our algorithms learn to
disentangle the influence of the agents’ policies and the environment dynamics on the switching policies. By
doing so, they could be used to efficiently find multiple personalized switching policies for different teams
of agents operating in similar environments (e.g., multiple semi-autonomous vehicles with different human
drivers).

To tackle the above challenges, we first formally define the problem of learning to switch control among
agents in a team using a 2-layer Markov decision process (Figure 1). Here, the team can be composed of
any number of machines or human agents, and the agents’ policies, as well as the transition probabilities
of the environment, may be unknown. In our formulation, we assume that all agents follow Markovian
policies1, similarly as other theoretical models of human decision making (Townsend et al., 2000; Daw &
Dayan, 2014; McGhan et al., 2015). Under this definition, the problem reduces to finding the switching policy
that provides an optimal trade off between the environmental cost, the amount of agent control, and the
number of switches. Then, we develop an online learning algorithm, which we refer to as UCRL2-MC2, that
uses upper confidence bounds on the agents’ policies and the transition probabilities of the environment
to find a sequence of switching policies whose total regret with respect to the optimal switching policy
is sublinear in the number of learning steps. In addition, we also demonstrate that the same algorithm
can be used to find multiple sequences of switching policies across several independent teams of agents
operating in similar environments, where it greatly benefits from maintaining shared confidence bounds for
the transition probabilities of the environments and enjoys a better regret bound than UCRL2, a very well
known reinforcement learning algorithm that we view as the most natural competitor. Finally, we perform a
variety of simulation experiments in the standard RiverSwim environment as well as an obstacle avoidance
task, where we consider multiple teams of agents (drivers) composed by one human and one machine agent.
Our results illustrate our theoretical findings and demonstrate that, by exploiting the specific structure of the
problem, our proposed algorithm is superior to problem-agnostic alternatives.

Before we proceed further, we would like to point out that, at a broader level, our methodology and theoretical
results are applicable to the problem of switching control between agents following Markovian policies. As
long as the agent policies are Markovian, our results do not distinguish between machine and human agents.
In this context, we view teams of human and machine agents as one potential application of our work, which
we use as a motivating example throughout the paper. However, we would also like to acknowledge that a
practical deployment of our methodology in a real application with human and machine agents would require
considering a wide range of additional practical aspects (e.g., transparency, explainability, and visualization).
Moreover, one may also need to explicitly model the difference in reaction times between human and machine
agents. Finally, there may be scenarios in which it might be beneficial to allow a human operator to switch
control. Such considerations are out of the scope of our work.

1In certain cases, it is possible to convert a non-Markovian human policy into a Markovian one by changing the state representa-
tion (Daw & Dayan, 2014). Addressing the problem of learning to switch control among agents in a team in a semi-Markovian setting is
left as a very interesting venue for future work.

2UCRL2 with Multiple Confidence sets.

2

Published in Transations on Machine Learning Research (07/2022)

2 Related work

One can think of applying existing RL algorithms (Jaksch et al., 2010; Osband et al., 2013; Osband &
Van Roy, 2014; Gopalan & Mannor, 2015), such as UCRL2 or Rmax, to find switching policies. However, these
problem-agnostic algorithms are unable to exploit the specific structure of our problem. More specifically, our
algorithm computes the confidence intervals separately over the agents’ policies and the transition probabilities
of the environment, instead of computing a single confidence interval, as problem-agnostic algorithms do. As
a consequence, our algorithm learns to switch more efficiently across multiple teams of agents, as shown in
Section 6.

There is a rapidly increasing line of work on learning to defer decisions in the machine learning litera-
ture (Bartlett & Wegkamp, 2008; Cortes et al., 2016; Geifman et al., 2018; Ramaswamy et al., 2018; Geifman
& El-Yaniv, 2019; Liu et al., 2019; Raghu et al., 2019a;b; Thulasidasan et al., 2019; De et al., 2020; 2021;
Mozannar & Sontag, 2020; Wilder et al., 2020; Shekhar et al., 2021). However, previous work has typically
focused on supervised learning. More specifically, it has developed classifiers that learn to defer by considering
the defer action as an additional label value, by training an independent classifier to decide about deferred
decisions, or by reducing the problem to a combinatorial optimization problem. Moreover, except for a few
recent notable exceptions (Raghu et al., 2019a; De et al., 2020; 2021; Mozannar & Sontag, 2020; Wilder et al.,
2020), they do not consider there is a human decision maker who takes a decision whenever the classifiers
defer it. In contrast, we focus on reinforcement learning, and develop algorithms that learn to switch control
between multiple agents, including human agents. Recently, Jacq et al. (2022) introduced a new framework
called lazy-MDPs to decide when to act optimally for reinforcement learning agents. They propose to augment
existing MDPs with a new default action and encourage agents to defer decision-making to default policy
in non-critical states. Though their lazy-MDP is similar to our augmented 2-layer MDP framework, our
approach is designed to switch optimally between possibly multiple agents, each having its own policy.

Our work is also connected to research on understanding switching behavior and switching costs in the
context of human-computer interaction (Czerwinski et al., 2000; Horvitz & Apacible, 2003; Iqbal & Bailey,
2007; Kotowick & Shah, 2018; Janssen et al., 2019), which has been sometimes referred to as “adjustable
autonomy” (Mostafa et al., 2019). At a technical level, our work advances state of the art in adjustable
autonomy by introducing an algorithm with provable guarantees to efficiently find the optimal switching
policy in a setting in which the dynamics of the environment and the agents’ policies are unknown (i.e., there
is uncertainty about them). Moreover, our work also relates to a recent line of research that combines deep
reinforcement learning with opponent modeling to robustly switch between multiple machine policies (Everett
& Roberts, 2018; Zheng et al., 2018). However, this line of research does not consider the presence of human
agents, and there are no theoretical guarantees on the performance of the proposed algorithms.

Furthermore, our work contributes to an extensive body of work on human-machine collaboration (Stone
et al., 2010; Taylor et al., 2011; Walsh et al., 2011; Barrett & Stone, 2012; Macindoe et al., 2012; Torrey &
Taylor, 2013; Nikolaidis et al., 2015; Hadfield-Menell et al., 2016; Nikolaidis et al., 2017; Grover et al., 2018;
Haug et al., 2018; Reddy et al., 2018; Wilson & Daugherty, 2018; Brown & Niekum, 2019; Kamalaruban et al.,
2019; Radanovic et al., 2019; Tschiatschek et al., 2019; Ghosh et al., 2020; Strouse et al., 2021). However,
rather than developing algorithms that learn to switch control between humans and machines, previous work
has predominantly considered settings in which the machine and the human interact with each other.

Finally, one can think of using option framework and the notion of macro-actions and micro-actions to
formulate the problem of learning to switch (Sutton et al., 1999). However, the option framework is designed to
address different levels of temporal abstraction in RL by defining macro-actions that correspond to sub-tasks
(skills). In our problem, each agent is not necessarily optimized to act for a specific task or sub-goal but for
the whole environment/goal. Also, in our problem, we do not necessarily have control over all agents to learn
the optimal policy for each agent, while in the option framework, a primary direction is to learn optimal
options for each sub-task. In other words, even though we can mathematically refer to each agent policy as
an option, they are not conceptually the same.

3

Published in Transations on Machine Learning Research (07/2022)

3 Switching Control Among Agents as a 2-Layer MDP

Given a team of agents D, at each time step t ∈ {1, . . . , L}, our (cyberphysical) system is characterized by a
state st ∈ S, where S is a finite state space, and a control switch dt ∈ D, which determines who takes an
action at ∈ A, where A is a finite action space. In the above, the switch value is given by a (deterministic and
time-varying) switching policy dt = πt(st, dt−1)3. More specifically, if dt = d, the action at is sampled from
the agent d’s policy pd(at | st). Moreover, given a state st and an action at, the state st+1 is sampled from a
transition probability p(st+1 | st, at). Here, we assume that the agents’ policies and the transition probabilities
may be unknown. Finally, given an initial state and switch value (s1, d0) and a trajectory τ = {(st, dt, at)}Lt=1
of states, switch values and actions, we define the total cost c(τ | s1, d0) as:

c(τ | s1, d0) =
L∑
t=1

[ce(st, at) + cc(dt) + cx(dt, dt−1)], (1)

where ce(st, at) is the environment cost of taking action at at state st, cc(dt) is the cost of giving control to
agent dt, cx(dt, dt−1) is the cost of switching from dt−1 to dt, and L is the time horizon4. Then, our goal is
to find the optimal switching policy π∗ = (π∗1 , . . . , π∗L) that minimizes the expected cost, i.e.,

π∗ = argmin
π

E [c(τ | s1, d0)] , (2)

where the expectation is taken over all the trajectories induced by the switching policy given the agents’
policies.

To solve the above problem, one could just resort to problem-agnostic RL algorithms, such as UCRL2 or
Rmax, over a standard Markov decision process (MDP), defined as

M = (S × D,D, P̄ , C̄, L),

where S × D is an augmented state space, the set of actions D is just the switch values, the transition
dynamics P̄ at time t are given by

p(st+1, dt | st, dt−1) = I[πt(st, dt−1) = dt]×
∑
a∈A

p(st+1 | st, a)pdt(a | st), (3)

the immediate cost C̄ at time t is given by

c̄(st, dt−1) = Eat∼ pπt(st,dt−1)(· | st) [ce(st, at)] + cc(πt(st, dt−1)) + cx(πt(st, dt−1), dt−1). (4)

Here, note that, by using conditional expectations, we can compute the average cost of a trajectory, given by
Eq. 1, from the above immediate costs. However, these algorithms would not exploit the structure of the
problem. More specifically, they would not use the observed agents’ actions to improve the estimation of the
transition dynamics over time.

To avoid the above shortcoming, we will resort instead to a 2-layer MDP where taking an action dt in state
(st, dt−1) leads first to an intermediate state (st, at) ∈ S × A with probability pdt(at | st) and immediate
cost cdt(st, dt−1) = cc(dt) + cx(dt, dt−1) and then to a final state (st+1, dt) ∈ S × D with probability
I[πt(st, dt−1) = dt] · p(st+1 | st, at) and immediate cost ce(st, at). More formally, the 2-layer MDP is defined
by the following 8-tuple:

M = (S × D,S ×A,D, PD, P, CD, Ce, L) (5)
where S×D is the final state space, S×A is the intermediate state space, the set of actionsD is the switch values,
the transition dynamics PD and P at time t are given by pdt(at | st) and I[πt(st, dt−1) = dt] · p(st+1 | st, at),
and the immediate costs CD and Ce at time t are given by cdt(st, dt−1) and ce(st, at), respectively.

The above 2-layer MDP will allow us to estimate separately the agents’ policies pd(· | s) and the transition
probability p(· | s, a) of the environment using both the intermediate and final states and design an algorithm
that improves the regret that problem-agnostic RL algorithms achieve in our problem.

3Note that, by making the switching policy dependent on the previous switch value dt−1, we can account for the switching cost.
4The specific choice of environment cost ce(·, ·), control cost cc(·) and switching cost cx(·, ·) is application dependent.

4

Published in Transations on Machine Learning Research (07/2022)

s, d

s, a1

s, a2

s, am

s′, d′

pd
′ (a1

|s)

pd′(a2|s)

p
d ′(a

m |s) p(
s
′ |s, a

m
)

p(s ′|s, a2)

p(s ′|s, a
1)

Switching Layer Action Layer

Figure 1: Transitions of a 2-layer Markov Decision Process (MDP) from state (s, d) to state (s′, d′) after
seleting agent d′. d′ and d denote the current and previous agents in control. In the first layer (switching
layer), the switching policy chooses agent d′, which takes action w.r.t. its action policy pd′ . Then, in the
action layer, the environment transitions to the next state s′ based on the taken action w.r.t. the transition
probability p.

4 Learning to Switch in a Team of Agents

Since we may not know the agents’ policies nor the transition probabilities, we need to trade off exploitation,
i.e., minimizing the expected cost, and exploration, i.e., learning about the agents’ policies and the transition
probabilities. To this end, we look at the problem from the perspective of episodic learning and proceed as
follows.

We consider K independent subsequent episodes of length L and denote the aggregate length of all episodes
as T = KL. Each of these episodes corresponds to a realization of the same finite horizon 2-layer Markov
decision process, introduced in Section 3, with state spaces S ×A and S × D, set of actions D, true agent
policies P ∗D, true environment transition probability P ∗, and immediate costs CD and Ce. However, since
we do not know the true agent policies and environment transition probabilities, just before each episode k
starts, our goal is to find a switching policy πk with desirable properties in terms of total regret R(T), which
is given by:

R(T) =
K∑
k=1

[
Eτ∼πk,P∗D,P∗ [c(τ | s1, d0)]− Eτ∼π∗,P∗D,P∗ [c(τ | s1, d0)]

]
, (6)

where π∗ is the optimal switching policy under the true agent policies and environment transition probabilities.

To achieve our goal, we apply the principle of optimism in the face of uncertainty, i.e.,

πk = argmin
π

min
PD∈PkD

min
P∈Pk

Eτ∼π,PD,P [c(τ | s1, d0)] (7)

where PkD is a (|S|×|D|×L)-rectangular confidence set, i.e., PkD =×s,d,t
Pk· | d,s,t, and Pk is a (|S|×|A|×L)-

rectangular confidence set, i.e., Pk =×s,a,t
Pk· | s,a,t. Here, note that the confidence sets are constructed

using data gathered during the first k − 1 episodes and allows for time-varying agent policies pd(· | s, t) and
transition probabilities p(· | s, a, t).

5

Published in Transations on Machine Learning Research (07/2022)

However, to solve Eq. 7, we first need to explicitly define the confidence sets. To this end, we first define the
empirical distributions p̂kd(· | s) and p̂k(· | s, a) just before episode k starts as:

p̂kd(a | s) =
{
Nk(s,d,a)
Nk(s,d) if Nk(s, d) 6= 0
1
|A| otherwise,

(8)

p̂k(s′ | s, a) =
{
N ′k(s,a,s′)
N ′
k

(s,a) if N ′k(s, a) 6= 0
1
|S| otherwise,

(9)

where

Nk(s, d) =
k−1∑
l=1

∑
t∈[L]

I(st = s, dt = d in episode l), Nk(s, d, a) =
k−1∑
l=1

∑
t∈[L]

I(st = s, at = a, dt = d in episode l),

N ′k(s, a) =
k−1∑
l=1

∑
t∈[L]

I(st = s, at = a in episode l), N ′k(s, a, s′) =
k−1∑
l=1

∑
t∈[L]

I(st = s, at = a, st+1 = s′ in episode l).

Then, similarly as in Jaksch et al. (2010), we opt for L1 confidence sets5, i.e.,

Pk· | d,s,t(δ) =
{
pd : ||pd(· | s, t)− p̂kd(· | s)||1≤ βkD(s, d, δ)

}
,

Pk· | s,a,t(δ) =
{
p : ||p(· | s, a, t)− p̂k(· | s, a)||1≤ βk(s, a, δ)

}
,

for all d ∈ D, s ∈ S, a ∈ A and t ∈ [L], where δ is a given parameter,

βkD(s, d, δ) =

√√√√2 log
(

(k−1)7L7|S||D|2|A|+1

δ

)
max{1, Nk(s, d)} and βk(s, a, δ) =

√√√√2 log
(

(k−1)7L7|S||A|2|S|+1

δ

)
max{1, Nk(s, a)} .

Next, given the switching policy π and the transition dynamics PD and P , we define the value function as

V πt|PD,P (s, d) = E
[L∑
τ=t

ce(sτ , aτ) + cc(dτ) + cx(dτ , dτ−1) | st = s, dt−1 = d

]
, (10)

where the expectation is taken over all the trajectories induced by the switching policy given the agents’
policies. Then, for each episode k, we define the optimal value function vkt (s, d) as

vkt (s, d) = min
π

min
PD∈PkD(δ)

min
P∈Pk(δ)

V πt|PD,P (s, d). (11)

Then, we are ready to use the following key theorem, which gives a solution to Eq. 7 (proven in Appendix A):
Theorem 1. For any episode k, the optimal value function vkt (s, d) satisfies the following recursive equation:

vkt (s, d) = min
dt∈D

[
cdt(s, d)+ min

pdt∈P
k
· | dt,s,t

∑
a∈A

pdt(a | s, t)×
(
ce(s, a)+ min

p∈Pk· | s,a,t
Es′∼p(· | s,a,t)[vkt+1(s′, dt)]

)]
, (12)

with vkL+1(s, d) = 0 for all s ∈ S and d ∈ D. Moreover, if d∗t is the solution to the minimization problem of
the RHS of the above recursive equation, then πkt (s, d) = d∗t .

The above result readily implies that, just before each episode k starts, we can find the optimal switching
policy πk = (πk1 , . . . , πkL) using dynamic programming, starting with vL+1(s, d) = 0 for all s ∈ S and d ∈ D.
Moreover, similarly as in Strehl & Littman (2008), we can solve the inner minimization problems in Eq. 12
analytically using Lemma 7 in Appendix B. To this end, we first find the optimal p(· | s, a, t) for all and a ∈ A

5This choice will result into a sequence of switching policies with desirable properties in terms of total regret.

6

Published in Transations on Machine Learning Research (07/2022)

ALGORITHM 1: UCRL2-MC
1: Cost functions CD and Ce, δ
2: {Nk, N ′k} ← InitializeCounts()
3: for k = 1, . . . ,K do
4: {p̂kd}, p̂k ← UpdateDistribution({Nk, N ′k})
5: PkD,Pk ← UpdateConfidenceSets({p̂kd}, p̂k, δ)
6: πk ← GetOptimal(PkD,Pk, CD, Ce),
7: (s1, d0)← InitializeConditions()
8: for t = 1, . . . , L do
9: dt ← πkt (st, dt−1)

10: at ∼ pdt(·|st)
11: st+1 ∼ P (·|st, at)
12: N ← UpdateCounts((st, dt, at, st+1), {Nk, N ′k})
13: end for
14: end for
15: Return πK

and then we find the optimal pdt(· | s, t) for all dt ∈ D. Algorithm 1 summarizes the whole procedure, which
we refer to as UCRL2-MC.

Within the algorithm, the function GetOptimal(·) finds the optimal policy πk using dynamic programming,
as described above, and UpdateDistribution(·) computes Eqs. 8 and 9. Moreover, it is important to notice
that, in lines 8–10, the switching policy πk is actually deployed, the true agents take actions on the true
environment and, as a result, action and state transition data from the true agents and the true environment
is gathered.

Next, the following theorem shows that the sequence of policies {πk}Kk=1 found by Algorithm 1 achieve a
total regret that is sublinear with respect to the number of steps, as defined in Eq. 6 (proven in Appendix A):
Theorem 2. Assume we use Algorithm 1 to find the switching policies πk. Then, with probability at least
1− δ, it holds that

R(T) ≤ ρ1L

√
|A||S||D|T log

(
|S||D|T

δ

)
+ ρ2L|S|

√
|A|T log

(
|S||A|T

δ

)
(13)

where ρ1, ρ2 > 0 are constants.

The above regret bound suggests that our algorithm may achieve higher regret than standard UCRL2 (Jaksch
et al., 2010), one of the most popular problem-agnostic RL algorithms. More specifically, one can readily
show that, if we use UCRL2 to find the switching policies πk (refer to Appendix C), then, with probability at
least 1− δ, it holds that

R(T) ≤ ρL|S|

√
|D|T log

(
|S||D|T

δ

)
(14)

where ρ is a constant. Then, if we omit constant and logarithmic factors and assume the size of the team of
agents is smaller than the size of state space, i.e., |D|< |S|, we have that, for UCRL2, the regret bound is
Õ(L|S|

√
|D|T) while, for UCRL2-MC, it is Õ(L|S|

√
|A|T).

That being said, in practice, we have found that our algorithm achieves comparable regret with respect to
UCRL2, as shown in Figure 4. In addition, after applying our algorithm on a specific team of agents and
environment, we can reuse the confidence intervals over the transition probability p(· | s, a) we have learned
to find the optimal switching policy for a different team of agents operating in a similar environment. In
contrast, after applying UCRL2, we would only have a confidence interval over the conditional probability
defined by Eq. 3, which would be of little use to find the optimal switching policy for a different team of
agents.

In the following section, we will build up on this insight by considering several independent teams of agents
operating in similar environments. We will demonstrate that, whenever we aim to find multiple sequences of

7

Published in Transations on Machine Learning Research (07/2022)

(a) γ0 = no-car (b) γ0 = light (c) γ0 = heavy

Figure 2: Three examples of environment realizations with different initial traffic level γ0.

switching policies for these independent teams, a straightforward variation of UCRL2-MC greatly benefits
from maintaining shared confidence bounds for the transition probabilities of the environments and enjoys a
better regret bound than UCRL2.

Remarks. For ease of exposition, we have assumed that both the machine and human agents follow arbitrary
Markov policies that do not change due to switching. However, our theoretical results still hold if we lift this
assumption—we just need to define the agents’ policies as pd(at|st, dt, dt−1) and construct separate confidence
sets based on the switch values.

5 Learning to Switch Across Multiple Teams of Agents

In this section, rather than finding a sequence of switching policies for a single team of agents, we aim to find
multiple sequences of switching policies across several independent teams operating in similar environments.
We will analyze our algorithm in scenarios where it can maintain shared confidence bounds for the transition
probabilities of the environments across these independent teams. For instance, when the learning algorithm
is deployed in centralized settings, it is possible to collect data across independent teams to maintain shared
confidence intervals on the common parameters (i.e., the environment’s transition probabilities in our problem
setting). This setting fits a variety of real applications, more prominently, think of a car manufacturer
continuously collecting driving data from million of human drivers wishing to learn different switching policies
for each driver to implement a personalized semi-autonomous driving system. Similarly as in the previous
section, we look at the problem from the perspective of episodic learning and proceed as follows.

Given N independent teams of agents {Di}Ni=1, we consider K independent subsequent episodes of length
L per team and denote the aggregate length of all of these episodes as T = KL. For each team of agents
Di, every episode corresponds to a realization of a finite horizon 2-layer Markov decision process with state
spaces S ×A and S × Di, set of actions Di, true agent policies P ∗Di , true environment transition probability
P ∗, and immediate costs CDi and Ce. Here, note that all the teams operate in a similar environment, i.e.,
P ∗ is shared across teams, and, without loss of generality, they share the same costs. Then, our goal is to
find the switching policies πki with desirable properties in terms of total regret R(T,N), which is given by:

R(T,N) =
N∑
i=1

K∑
k=1

[
Eτ∼πk

i
,P∗Di

,P∗ [c(τ | s1, d0)]− Eτ∼π∗
i
,P∗Di

,P∗ [c(τ | s1, d0)]
]

(15)

where π∗i is the optimal switching policy for team i, under the true agent policies and environment transition
probability.

To achieve our goal, we just run N instances of UCRL2-MC (Algorithm 1), each with a different confidence
set PkDi(δ) for the agents’ policies, similarly as in the case of a single team of agents, but with a shared
confidence set Pk(δ) for the environment transition probability. Then, we have the following key corollary,
which readily follows from Theorem 2:

8

Published in Transations on Machine Learning Research (07/2022)

k ≈ 5 k ≈ 500 k ≈ 3000
(a) cx = 0.1, cc(H) = 0.2

k ≈ 5 k ≈ 500 k ≈ 3000
(b) cx = 0, cc(H) = 0

Figure 3: Trajectories induced by the switching policies found by Algorithm 1. The blue and orange
segments indicate machine and human control, respectively. In both panels, we train Algorithm 1 within
the same sequence of episodes, where the initial traffic level of each episode is sampled uniformly from
{no-car, light, heavy}, and show three episodes with different initial traffic levels. The results indicate that,
in the latter episodes, the algorithm has learned to switch to the human driver in heavier traffic levels.

Corollary 3. Assume we use N instances of Algorithm 1 to find the switching policies πki using a shared
confidence set for the environment transition probability. Then, with probability at least 1− δ, it holds that

R(T,N) ≤ ρ1NL

√
|A||S||D|T log

(
|S||D|T

δ

)
+ ρ2L|S|

√
|A|NT log

(
|S||A|T

δ

)
(16)

where ρ1, ρ2 > 0 are constants.

The above results suggests that our algorithm may achieve lower regret than UCRL2 in a scenario with
multiple teams of agents operating in similar environments. This is because, under UCRL2, the confidence
sets for the conditional probability defined by Eq. 3 cannot be shared across teams. More specifically, if we
use N instances of UCLR2 to find the switching policies πki , then, with probability at least 1− δ, it holds that

R(T,N) ≤ ρNL|S|

√
|D|T log

(
|S||D|T

δ

)
where ρ is a constant. Then, if we omit constant and logarithmic factors and assume |Di|< |S| for all
i ∈ [N], we have that, for UCRL2, the regret bound is Õ(NL|S|

√
|D|T) while, for UCRL2-MC, it is

Õ(L|S|
√
|A|TN +NL

√
|A||S||D|T). Importantly, in practice, we have found that UCRL2-MC does achieve

a significant lower regret than UCRL2, as shown in the Figure 5.

6 Experiments

6.1 Obstacle avoidance

We perform a variety of simulations in obstacle avoidance, where teams of agents (drivers) consist of one
human agent (H) and one machine agent (M), i.e., D = {H,M}. We consider a lane driving environment with
three lanes and infinite rows, where the type of each individual cell (i.e., road, car, stone or grass) in row
r is sampled independently at random with a probability that depends on the traffic level γr, which can take
three discrete values, γr ∈ {no-car, light, heavy}. The traffic level of each row γr+1 is sampled at random
with a probability that depends on the traffic level of the previous row γr. The probability of each cell type
based on traffic level, as well as the conditional distribution of traffic levels can be found in Appendix D.

At any given time t, we assume that whoever is in control—be it the machine or the human—can take three
different actions A = {left, straight, right}. Action left steers the car to the left of the current lane,

9

Published in Transations on Machine Learning Research (07/2022)

0 5 10 15 20

Episode, k ×103

0

25

50

75
R

eg
re

t,
R

(T
)

×103

UCRL2-MC
UCRL2
Machine
Human

(a) cc(H) = 0.2, cx = 0.1

0 5 10 15 20

Episode, k ×103

0

50

R
eg

re
t,
R

(T
)

×103

UCRL2-MC
UCRL2
Machine
Human

(b) cc(H) = 0, cx = 0

Figure 4: Total regret of the trajectories induced by the switching policies found by Algorithm 1 and those
induced by a variant of UCRL2 in comparison with the trajectories induced by a machine driver and a human
driver in a setting with a single team of agents. In all panels, we run K = 20,000. For Algorithm 1 and the
variant of UCRL2, the regret is sublinear with respect to the number of time steps whereas, for the machine
and the human drivers, the regret is linear.

action right steers it to the right and action straight leaves the car in the current lane. If the car is already
on the leftmost (rightmost) lane when taking action left (right), then the lane remains unchanged. Irrespective
of the action taken, the car always moves forward. The goal of the cyberphysical system is to drive the car
from an initial state in time t = 1 until the end of the episode t = L with the minimum total amount of cost.
In our experiments, we set L = 10. Figure 2 shows three examples of environment realizations.

State space. To evaluate the switching policies found by Algorithm 1, we experiment with a sensor-based
state space, where the state values are the type of the current cell and the three cells the car can move into
in the next time step, as well as the current traffic level—we assume the agents (be it a human or a machine)
can measure the traffic level. For example, assume at time t the traffic is light, the car is on a road cell and,
if it moves forward left, it hits a stone, if it moves forward straight, it hits a car, and, if it moves forward
right, it drives over grass, then its state value is st = (light, road, stone, car, grass). Moreover, if the car
is on the leftmost (rightmost) lane, then we set the value of the third (fifth) dimension in st to ∅. Therefore,
under this state representation, the resulting MDP has ∼3× 54 states.

Cost and human/machine policies. We consider a state-dependent environment cost ce(st, at) = ce(st)
that depends on the type of the cell the car is on at state st, i.e., ce(st) = 0 if the type of the current cell is
road, ce(st) = 2 if it is grass, ce(st) = 4 if it is stone and ce(st) = 10 if it is car. Moreover, in all simulations,
we use a machine policy that has been trained using a standard RL algorithm on environment realizations
with γ0 = no-car. In other words, the machine policy is trained to perform well under a low traffic level.
Moreover, we consider all the humans pick which action to take (left, straight or right) according to a
noisy estimate of the environment cost of the three cells that the car can move into in the next time step.
More specifically, each human model H computes a noisy estimate of the cost ĉe(s) = ce(s) + εs of each of
the three cells the car can move into, where εs ∼ N(0, σH), and picks the action that moves the car to the
cell with the lowest noisy estimate6. As a result, human drivers are generally more reliable than the machine
under high traffic levels, however, the machine is more reliable than humans under low traffic level, where its
policy is near-optimal (See Appendix E for a comparison of the human and machine performance). Finally,
we consider that only the car driven by our system moves in the environment.

6.1.1 Results

First, we focus on a single team of one machine M and one human model H, with σH = 2, and use Algorithm 1
to find a sequence of switching policies with sublinear regret. At the beginning of each episode, the initial
traffic level γ0 is sampled uniformly at random.

6Note that, in our theoretical results, we have no assumption other than the Markov property regarding the human policy.

10

Published in Transations on Machine Learning Research (07/2022)

0 2 4

Episode, k ×103

0

20

40

60
R

eg
re

t,
R

(T
)

×103

UCRL2-MC
UCRL2

(a) cc(H) = 0.2, cx = 0.1

0 2 4

Episode, k ×103

0

20

40

R
eg

re
t,
R

(T
)

×103

UCRL2-MC
UCRL2

(b) cc(H) = 0, cx = 0

Figure 5: Total regret of the trajectories induced by the switching policies found by N instances of Algorithm 1
and those induced by N instances of a variant of UCRL2 in a setting with N team of agents. In both panels,
each instance of Algorithm 1 shares the same confidence set for the environment transition probabilities and
we run K = 5000 episodes. The sequence of policies found by Algorithm 1 outperform those found by the
variant of UCRL2 in terms of total regret, in agreement with Corollary 3.

We look at the trajectories induced by the switching policies found by our algorithm across different episodes
for different values of the switching cost cx and cost of human control cc(H)7. Figure 3 summarizes the results,
which show that, in the latter episodes, the algorithm has learned to rely on the machine (blue segments)
whenever the traffic level is low and switches to the human driver when the traffic level increases. Moreover,
whenever the amount of human control and number of switches is not penalized (i.e., cx = cc(H) = 0), the
algorithm switches to the human more frequently whenever the traffic level is high to reduce the environment
cost. See Appendix F for a comparison of human control rate in environments with different initial traffic
levels.

In addition, we compare the performance achieved by Algorithm 1 with three baselines: (i) a variant of
UCRL2 (Jaksch et al., 2010) adapted to our finite horizon setting (see Appendix C), (ii) a human agent, and
(iii) a machine agent. As a measure of performance, we use the total regret, as defined in Eq. 6. Figure 4
summarizes the results for two different values of switching cost cx and cost of human control cc(H). The
results show that both our algorithm and UCRL2 achieve sublinear regret with respect to the number of
time steps and their performance is comparable in agreement with Theorem 2. In contrast, whenever the
human or the machine drive on their own, they suffer linear regret, due to a lack of exploration.

Next, we consider N = 10 independent teams of agents, {Di}Ni=1, operating in a similar lane driving
environment. Each team Di is composed of a different human model Hi, with σHi sampled uniformly from
(0, 4), and the same machine driver M. Then, to find a sequence of switching policies for each of the teams,
we run N instances of Algorithm 1 with shared confidence set for the environment transition probabilities.

We compare the performance of our algorithm against the same variant of UCRL2 used in the experiments
with a single team of agents in terms of the total regret defined in Eq. 15. Here, note that the variant of
UCRL2 does not maintain a shared confidence set for the environment transition probabilities across teams
but instead creates a confidence set for the conditional probability defined by Eq. 3 for each team. Figure 5
summarizes the results for a sequence for different values of the switching cost cx and cost of human control
cc(H), which shows that, in agreement with Corollary 3, our method outperforms UCRL2 significantly.

6.2 RiverSwim

In addition to the obstacle avoidance task, we consider the standard task of RiverSwim (Strehl & Littman,
2008). The MDP states and transition probabilities are shown in Figure 6. The cost of taking action in
states s2 to s5 equals 1, while 0.995 and 0 for states s1 and s6, respectively. Each episode ends after L = 20

7Here, we assume the cost of machine control cc(M) = 0.

11

Published in Transations on Machine Learning Research (07/2022)

Figure 6: RiverSwim. Continuous (dashed) arrows show the transitions after taking actions right (left).
The optimal policy is to always take action right.

3 4 5 6 7 8 9 10
Number of Teams

0.0

0.2

0.4

R
eg

re
tR

at
io

(a)

0.0 2.5 5.0 7.5 10.0

Episode, k ×103

0

100

200

R
eg

re
t,
R

(T
)

×103

UCRL2-MC
UCRL2

(b)

Figure 7: (a) Ratio of UCRL2-MC regret to UCRL2 for different number of teams. (b) Total regret of the
trajectories induced by the switching policies found by UCRL2-MC and those induced by UCRL2 in a setting
with N = 100 team of agents.

steps. We set the switching cost and cost of agent control to zero for all the simulations in this section, i.e.,
cx(·, ·) = cc(·) = 0. The set D consists of agents that choose action right with some probability value p,
which may differ for different agents. In the following part, we investigate the effect of increasing the number
of teams on the regret bound in the multiple teams of agents setting. See Appendix G for more simulations
to study the impact of action size and number of agents in each team on the total regret.

6.2.1 Results

We consider N independent teams of agents, each consisting of two agents with the probability p and 1− p of
choosing action right, where p is chosen uniformly at random for each team. We run the simulations for
N = {3, 4, · · · , 10} teams of agents. For each N , we run both UCRL2-MC and UCRL2 for 20,000 episodes
and repeat each experiment 5 times. Figure 7 (a) summarizes our results, showing the advantage of the shared
confidence bounds on the environment transition probabilities in our algorithm against its problem-agnostic
version. To better illustrate the performance of UCRL2-MC, we also run an experiment with N = 100 teams
of agents for 10,000 episodes and compare the total regret of our algorithm to UCRL2. Figure 7 (b) shows
that our algorithm significantly outperforms UCRL2.

7 Conclusions and Future Work

We have formally defined the problem of learning to switch control among agents in a team via a 2-layer
Markov decision process and then developed UCRL2-MC, an online learning algorithm with desirable provable
guarantees. Moreover, we have performed a variety of simulation experiments on the standard RiverSwim
task and obstacle avoidance to illustrate our theoretical results and demonstrate that, by exploiting the
specific structure of the problem, our proposed algorithm is superior to problem-agnostic algorithms.

Our work opens up many interesting avenues for future work. For example, we have assumed that the agents’
policies are fixed. However, there are reasons to believe that simultaneously optimizing the agents’ policies
and the switching policy may lead to superior performance (De et al., 2020; 2021; Wilder et al., 2020; Wu
et al., 2020). In our work, we have assumed that the state space is discrete and the horizon in finite. It

12

Published in Transations on Machine Learning Research (07/2022)

would be very interesting to lift these assumptions and develop approximate value iteration methods to solve
the learning to switch problem. Finally, it would be interesting to evaluate our algorithm using real human
agents in a variety of tasks.

Acknowledgments. Gomez-Rodriguez acknowledges support from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 945719).

References
Samuel Barrett and Peter Stone. An analysis framework for ad hoc teamwork tasks. In Proceedings of the
11th International Conference on Autonomous Agents and Multiagent Systems-Volume 1, pp. 357–364,
2012.

P. Bartlett and M. Wegkamp. Classification with a reject option using a hinge loss. JMLR, 2008.

K. Brookhuis, D. De Waard, and W. Janssen. Behavioural impacts of advanced driver assistance systems–an
overview. European Journal of Transport and Infrastructure Research, 1(3), 2001.

Daniel S Brown and Scott Niekum. Machine teaching for inverse reinforcement learning: Algorithms and
applications. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 7749–7758,
2019.

C. Cortes, G. DeSalvo, and M. Mohri. Learning with rejection. In ALT, 2016.

Mary Czerwinski, Edward Cutrell, and Eric Horvitz. Instant messaging and interruption: Influence of task
type on performance. In OZCHI 2000 conference proceedings, volume 356, pp. 361–367, 2000.

Nathaniel D. Daw and Peter Dayan. The algorithmic anatomy of model-based evaluation. Philosophical
Transactions of the Royal Society B: Biological Sciences, 369(1655):20130478, 2014.

A. De, P. Koley, N. Ganguly, and M. Gomez-Rodriguez. Regression under human assistance. In AAAI, 2020.

Abir De, Nastaran Okati, Ali Zarezade, and Manuel Gomez-Rodriguez. Classification under human assistance.
In AAAI, 2021.

European Parliament. Regulation (EC) No 561/2006. http://data.europa.eu/eli/reg/2006/561/2015-03-02,
2006.

R. Everett and S. Roberts. Learning against non-stationary agents with opponent modelling and deep
reinforcement learning. In 2018 AAAI Spring Symposium Series, 2018.

Y. Geifman and R. El-Yaniv. Selectivenet: A deep neural network with an integrated reject option. arXiv
preprint arXiv:1901.09192, 2019.

Y. Geifman, G. Uziel, and R. El-Yaniv. Bias-reduced uncertainty estimation for deep neural classifiers. In
ICLR, 2018.

A. Ghosh, S. Tschiatschek, H. Mahdavi, and A. Singla. Towards deployment of robust cooperative ai agents:
An algorithmic framework for learning adaptive policies. In AAMAS, 2020.

Aditya Gopalan and Shie Mannor. Thompson sampling for learning parameterized markov decision processes.
In Conference on Learning Theory, pp. 861–898, 2015.

A. Grover, M. Al-Shedivat, J. Gupta, Y. Burda, and H. Edwards. Learning policy representations in
multiagent systems. In ICML, 2018.

D. Hadfield-Menell, S. Russell, P. Abbeel, and A. Dragan. Cooperative inverse reinforcement learning. In
NIPS, 2016.

L. Haug, S. Tschiatschek, and A. Singla. Teaching inverse reinforcement learners via features and demonstra-
tions. In NeurIPS, 2018.

13

Published in Transations on Machine Learning Research (07/2022)

Eric Horvitz and Johnson Apacible. Learning and reasoning about interruption. In Proceedings of the 5th
international conference on Multimodal interfaces, pp. 20–27, 2003.

Shamsi T Iqbal and Brian P Bailey. Understanding and developing models for detecting and differentiating
breakpoints during interactive tasks. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pp. 697–706, 2007.

Alexis Jacq, Johan Ferret, Olivier Pietquin, and Matthieu Geist. Lazy-mdps: Towards interpretable
reinforcement learning by learning when to act. In AAMAS, 2022.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning. Journal of
Machine Learning Research, 2010.

Christian P Janssen, Shamsi T Iqbal, Andrew L Kun, and Stella F Donker. Interrupted by my car?
implications of interruption and interleaving research for automated vehicles. International Journal of
Human-Computer Studies, 130:221–233, 2019.

Parameswaran Kamalaruban, Rati Devidze, Volkan Cevher, and Adish Singla. Interactive teaching algorithms
for inverse reinforcement learning. In IJCAI, 2019.

Kyle Kotowick and Julie Shah. Modality switching for mitigation of sensory adaptation and habituation in
personal navigation systems. In 23rd International Conference on Intelligent User Interfaces, pp. 115–127,
2018.

Z. Liu, Z. Wang, P. Liang, R. Salakhutdinov, L. Morency, and M. Ueda. Deep gamblers: Learning to abstain
with portfolio theory. In NeurIPS, 2019.

C. Macadam. Understanding and modeling the human driver. Vehicle system dynamics, 40(1-3):101–134,
2003.

O. Macindoe, L. Kaelbling, and T. Lozano-Pérez. Pomcop: Belief space planning for sidekicks in cooperative
games. In AIIDE, 2012.

Catharine L. R. McGhan, Ali Nasir, and Ella M. Atkins. Human intent prediction using markov decision
processes. Journal of Aerospace Information Systems, 12(5):393–397, 2015.

V. Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Salama A Mostafa, Mohd Sharifuddin Ahmad, and Aida Mustapha. Adjustable autonomy: a systematic
literature review. Artificial Intelligence Review, 51(2):149–186, 2019.

Hussein Mozannar and David Sontag. Consistent estimators for learning to defer to an expert. In ICML,
2020.

S. Nikolaidis, R. Ramakrishnan, K. Gu, and J. Shah. Efficient model learning from joint-action demonstrations
for human-robot collaborative tasks. In HRI, 2015.

S. Nikolaidis, J. Forlizzi, D. Hsu, J. Shah, and S. Srinivasa. Mathematical models of adaptation in human-robot
collaboration. arXiv preprint arXiv:1707.02586, 2017.

Ian Osband and Benjamin Van Roy. Near-optimal reinforcement learning in factored mdps. In Advances in
Neural Information Processing Systems, pp. 604–612, 2014.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via posterior
sampling. In Advances in Neural Information Processing Systems, pp. 3003–3011, 2013.

Goran Radanovic, Rati Devidze, David C. Parkes, and Adish Singla. Learning to collaborate in markov
decision processes. In ICML, 2019.

M. Raghu, K. Blumer, G. Corrado, J. Kleinberg, Z. Obermeyer, and S. Mullainathan. The algorithmic
automation problem: Prediction, triage, and human effort. arXiv preprint arXiv:1903.12220, 2019a.

14

Published in Transations on Machine Learning Research (07/2022)

M. Raghu, K. Blumer, R. Sayres, Z. Obermeyer, B. Kleinberg, S. Mullainathan, and J. Kleinberg. Direct
uncertainty prediction for medical second opinions. In ICML, 2019b.

H. Ramaswamy, A. Tewari, and S. Agarwal. Consistent algorithms for multiclass classification with an abstain
option. Electronic J. of Statistics, 2018.

Siddharth Reddy, Anca D Dragan, and Sergey Levine. Shared autonomy via deep reinforcement learning.
arXiv preprint arXiv:1802.01744, 2018.

Shubhanshu Shekhar, Mohammad Ghavamzadeh, and Tara Javidi. Active learning for classification with
abstention. IEEE Journal on Selected Areas in Information Theory, 2(2):705–719, 2021.

D. Silver et al. Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484,
2016.

D. Silver et al. Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017.

Peter Stone, Gal A Kaminka, Sarit Kraus, and Jeffrey S Rosenschein. Ad hoc autonomous agent teams:
Collaboration without pre-coordination. In Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

A. Strehl and M. Littman. An analysis of model-based interval estimation for markov decision processes.
Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating with humans
without human data. In Advances in Neural Information Processing Systems, volume 34, 2021.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Matthew E Taylor, Halit Bener Suay, and Sonia Chernova. Integrating reinforcement learning with human
demonstrations of varying ability. In The 10th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pp. 617–624. International Foundation for Autonomous Agents and Multiagent
Systems, 2011.

S. Thulasidasan, T. Bhattacharya, J. Bilmes, G. Chennupati, and J. Mohd-Yusof. Combating label noise in
deep learning using abstention. arXiv preprint arXiv:1905.10964, 2019.

Lisa Torrey and Matthew Taylor. Teaching on a budget: Agents advising agents in reinforcement learning.
In Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems, pp.
1053–1060, 2013.

James T. Townsend, Kam M. Silva, Jesse Spencer-Smith, and Michael J. Wenger. Exploring the relations
between categorization and decision making with regard to realistic face stimuli. Pragmatics & Cognition,
8(1):83–105, 2000.

S. Tschiatschek, A. Ghosh, L. Haug, R. Devidze, and A. Singla. Learner-aware teaching: Inverse reinforcement
learning with preferences and constraints. In NeurIPS, 2019.

O. Vinyals et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, pp. 1–5,
2019.

Thomas J Walsh, Daniel K Hewlett, and Clayton T Morrison. Blending autonomous exploration and
apprenticeship learning. In Advances in Neural Information Processing Systems, pp. 2258–2266, 2011.

Bryan Wilder, Eric Horvitz, and Ece Kamar. Learning to complement humans. In IJCAI, 2020.

H. Wilson and P. Daugherty. Collaborative intelligence: humans and ai are joining forces. Harvard Business
Review, 2018.

15

Published in Transations on Machine Learning Research (07/2022)

Bohan Wu, Jayesh K Gupta, and Mykel Kochenderfer. Model primitives for hierarchical lifelong reinforcement
learning. Autonomous Agents and Multi-Agent Systems, 34(1):1–38, 2020.

Y. Zheng, Z. Meng, J. Hao, Z. Zhang, T. Yang, and C. Fan. A deep bayesian policy reuse approach against
non-stationary agents. In NeurIPS, 2018.

16

Published in Transations on Machine Learning Research (07/2022)

A Proofs

A.1 Proof of Theorem 1

We first define PkD|.,t+ := ×s∈S,d∈D,t′∈{t,...,L}Pk.|d,s,t′ , Pk|.,t+ = ×s∈S,a∈A,t′∈{t,...,L}Pk|s,a,t′ and πt+ =
{πt, . . . , πL}. Next, we get a lower bound the optimistic value function vkt (s, d) as follows:

vkt (s, d)
= min

π
min

PD∈PkD
min
P∈Pk

V πt|PD,P (s, d)

= min
πt+

min
PD∈PkD

min
P∈Pk

V πt|PD,P (s, d)

(i)= min
πt(s,d)

min
pπt(s,d)(.|s,t)∈Pk· |πt(s,d),s,t

min
p(.|s,.,t)∈Pk· | s,·,t

min
π(t+1)+

PD∈PkD | ·,(t+1)+

P∈Pk· | ·,(t+1)+

[
cπt(s,d)(s, d) + Ea∼pπt(s,d)(· | s,t)

(
ce(s, a) + Es′∼p(· | s,a,t)V

π
t+1|PD,P (s′, πt(s, d))

)]

(ii)
≥ min

πt(s,d)
min

pπt(s,d)(.|s,t)∈Pk· |πt(s,d),s,t

min
p(.|s,.,t)∈Pk· | s,·,t

[
cπt(s,d)(s, d)

+Ea∼pπt(s,d)(· | s,t)

(
ce(s, a) + Es′∼p(· | s,a,t)

[
min

π(t+1)+
min

PD∈PkD | ·,(t+1)+

min
P∈Pk

· | ·,(t+1)+

V πt+1|PD,P (s′, πt(s, d))
])]

= min
dt

[
cdt(s, d) + min

pdt (.|s,t)∈Pk·|dt,s,t

∑
a∈A

pdt(a|s, t) ·
(
ce(s, a) + min

p(.|s,a,t)∈Pk· | s,a,t
Es′∼p(· | s,a,t)v

k
t+1(s′, dt)

)]
,

where (i) follows from Lemma 8 and (ii) follows from the fact that mina E[X(a)] ≥ E[minaX(a)]. Next, we
provide an upper bound of the optimistic value function vkt (s, d) as follows:

vkt (s, d)
= min

π
min

PD∈PkD
min
P∈Pk

V πt|PD,P (s, d)

(i)= min
πt

min
pπt(s,d)(.|s,t)∈Pk· |πt(s,d),s,t

min
p(.|s,.,t)∈Pk· | s,·,t

min
π(t+1)+

PD∈PkD | ·,(t+1)+

P∈Pk· | ·,(t+1)+

[
cπt(s,d)(s, d) + Ea∼pπt(s,d)(· | s,t)

(
ce(s, a) + Es′∼p(· | s,a,t)V

π
t+1|PD,P (s′, πt(s, d))

)]

(ii)
≤ min

πt(s,d)
min

pπt(s,d)(.|s,t)∈Pk· |πt(s,d),s,t

min
p(.|s,.,t)∈Pk· | s,·,t

[
cπt(s,d)(s, d) +Ea∼pπt(s,d)(· | s,t)

(
ce(s, a) + Es′∼p(· | s,a,t)V

π∗

t+1|P∗D,P∗
(s′, πt(s, d))

)]
(iii)= min

πt(s,d)
min

pπt(s,d)(.|s,t)∈Pk· |πt(s,d),s,t

min
p(.|s,.,t)∈Pk· | s,·,t

[
cπt(s,d)(s, d) +Ea∼pπt(s,d)(· | s,t)

(
ce(s, a) + Es′∼p(· | s,a,t)v

k
t+1(s′, πt(s, d))

)]
= min

dt

[
cdt(s, d) + min

pdt (.|s,t)∈Pk·|dt,s,t

∑
a∈A

pdt(a|s, t) ·
(
ce(s, a) + min

p(.|s,a,t)∈Pk· | s,a,t
Es′∼p(· | s,a,t)v

k
t+1(s′, dt)

)]
.

17

Published in Transations on Machine Learning Research (07/2022)

Here, (i) follows from Lemma 8, (ii) follows from the fact that:

min
π(t+1)+

PD∈PkD | ·,(t+1)+

P∈Pk· | ·,(t+1)+

[
cπt(s,d)(s, d) + Ea∼pπt(s,d)(· | s,t)

(
ce(s, a) + Es′∼p(· | s,a,t)V

π
t+1|PD,P (s′, πt(s, d))

)]

≤
[
cπt(s,d)(s, d) + Ea∼pπt(s,d)(· | s,t)

(
ce(s, a) + Es′∼p(· | s,a,t)V

π
t+1|PD,P (s′, πt(s, d))

)]
∀π, PD ∈ PkD | ·,(t+1)+ , P ∈ Pk· | ·,(t+1)+ (17)

and if we set π(t+1)+ = {π∗t+1, ..., π
∗
L}, PD = P ∗D ∈ PkD | ·,(t+1)+ and P = P ∗ ∈ Pk| ·,(t+1)+ , where

{π∗t+1, ..., π
∗
L}, P ∗D, P ∗ = argmin

π(t+1)+

PD∈PkD | ·,(t+1)+

P∈Pk· | ·,(t+1)+

V πt+1|PD,P (s′, πt(s, d)), (18)

then equality (iii) holds. Since the upper and lower bounds are the same, we can conclude that the optimistic
value function satisfies Eq. 12, which completes the proof.

A.2 Proof of Theorem 2

In this proof, we assume that ce(s, a) + cc(d) + cx(d, d′) < 1 for all s ∈ S, a ∈ A and d, d′ ∈ D. Throughout
the proof, we will omit the subscripts P ∗D, P ∗ in Vt |P∗D,P∗ and write Vt instead in case of true agent policies
P ∗D and true transition probabilities P ∗. Then, we define the following quantities:

P kD = argmin
PD∈PkD(δ)

min
P∈Pk(δ)

V π
k

1|PD,P (s1, d0), (19)

P k = argmin
P∈Pk(δ)

V π
k

1|PkD,P
(s1, d0), (20)

∆k = V π
k

1 (s1, d0)− V π
∗

1 (s1, d0), (21)

where, recall from Eq. 7 that, πk = argminπ minPD∈PkD ,minP∈Pk V π1|PD,P (s1, d0); and, ∆k indicates the regret
for episode k. Hence, we have

R(T) =
K∑
k=1

∆k =
K∑
k=1

∆kI(P ∗D ∈ PkD ∧ P ∗ ∈ Pk) +
K∑
k=1

∆kI(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk) (22)

Next, we split the analysis into two parts. We first bound
∑K
k=1 ∆kI(P ∗D ∈ PkD ∧ P ∗ ∈ Pk) and then bound∑K

k=1 ∆kI(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk).

— Computing the bound on
∑K
k=1 ∆kI(P ∗D ∈ PkD ∧ P ∗ ∈ Pk)

First, we note that

∆k = V π
k

1 (s1, d0)− V π
∗

1 (s1, d0) ≤ V π
k

1 (s1, d0)− V π
k

1|PkD,Pk
(s1, d0) (23)

This is because

V π
k

1|PkD,Pk
(s1, d0) (i)= min

π
min

PD∈PkD
min
P∈Pk

V π1|PD,P (s1, d0)
(ii)
≤ min

π
V π1|P∗D,P∗

(s1, d0) = V π
∗

1 (s1, d0), (24)

where (i) follows from Eqs. 19, 20, and (ii) holds because of the fact that the true transition probabilities
P ∗D ∈ PkD and P ∗ ∈ Pk. Next, we use Lemma 4 (Appendix B) to bound

∑K
k=1(V πk1 (s1, d0)−V πk1|PkD,Pk

(s1, d0)).

K∑
k=1

(V π
k

1 (s1, d0)− V π
k

1|PkD,Pk
(s1, d0)) ≤

K∑
k=1

LE

[
L∑
t=1

min{1, βkD(st, dt, δ)}+
L∑
t=1

min{1, βk(st, atδ)}
∣∣∣∣s1, d0

]
(25)

18

Published in Transations on Machine Learning Research (07/2022)

Since by assumption, ce(s, a) + cc(d) + cx(d, d′) < 1 for all s ∈ S, a ∈ A and d, d′ ∈ D, the worst-case regret
is bounded by T . Therefore, we have that:

K∑
k=1

∆kI(P ∗D ∈ PkD ∧ P ∗ ∈ Pk) ≤ min
{
T,

K∑
k=1

LE

[
L∑
t=1

min{1, βkD(st, dt, δ)}|s1, d0

]

+
K∑
k=1

LE

[
L∑
t=1

min{1, βk(st, at, δ)}|s1, d0

]}

≤ min
{
T,

K∑
k=1

LE

[
L∑
t=1

min{1, βkD(st, dt, δ)}|s1, d0

]}

+ min
{
T,

K∑
k=1

LE

[
L∑
t=1

min{1, βk(st, at, δ)}|s1, d0

]}
, (26)

where, the last inequality follows from Lemma 9. Now, we aim to bound the first term in the RHS of the
above inequality.

K∑
k=1

LE

[
L∑
t=1

min{1, βkD(st, dt, δ)}|s1, d0

]
(i)= L

K∑
k=1

E

 L∑
t=1

min

1,

√√√√2 log
(

((k−1)L)7|S||D|2|A|+1

δ

)
max{1, Nk(st, dt)}

∣∣∣∣s1, d0

(ii)
≤ L

K∑
k=1

E

 L∑
t=1

min

1,

√√√√2 log
(

(KL)7|S||D|2|A|+1

δ

)
max{1, Nk(st, dt)}

(iii)
≤ 2
√

2L

√
2 log

(
(KL)7|S||D|2|A|+1

δ

)
|S||D|KL

+ 2L2|S||D| (27)

≤ 2
√

2

√
14|A|log

(
(KL)|S||D|

δ

)
|S||D|KL+ 2L2|S||D|

=
√

112

√
|A|log

(
(KL)|S||D|

δ

)
|S||D|KL+ 2L2|S||D| (28)

where (i) follows by replacing βkD(st, dt, δ) with its definition, (ii) follows by the fact that (k− 1)L ≤ KL, (iii)

follows from Lemma 5, in which, we putW := S×D, c :=
√

2 log
(

(KL)7|S||D|2|A|+1

δ

)
, Tk = (wk,1, . . . , wk,L) :=

((s1, d1), . . . , (sL, dL)). Now, due to Eq. 28, we have the following.

min
{
T,

K∑
k=1

LE

[
L∑
t=1

min{1, βkD(st, dt, δ)}|s1, d0

]}
≤min

{
T,
√

112L

√
|A||S||D|T log

(
T |S||D|

δ

)
+ 2L2|S||D|

}
(29)

Now, if T ≤ 2L2|S||A||D|log
(
T |S||D|

δ

)
,

T 2 ≤ 2L2|S||A||D|T log
(
T |S||D|

δ

)
=⇒ T ≤

√
2L

√
|S||A||D|T log

(
T |S||D|

δ

)

19

Published in Transations on Machine Learning Research (07/2022)

and if T > 2L2|S||A||D|log
(
T |S||D|

δ

)
,

2L2|S|<

√
2L2|S||A||D|T log

(
T |S||D|

δ

)
|A||D|log

(
T |S||D|

δ

) ≤
√

2L

√
|S||A||D|T log

(
T |S||D|

δ

)
. (30)

Thus, the minimum in Eq. 29 is less than

(
√

2 +
√

112)L

√
|S||A||D|T log

(
|S||D|T

δ

)
< 12L

√
|S||A||D|T log

(
|S||D|T

δ

)
(31)

A similar analysis can be done for the second term of the RHS of Eq. 26, which would show that,

min
{
T,

K∑
k=1

LE

[
L∑
t=1

min{1, βk(st, at, δ)}|s1, d0

]}
≤ 12L|S|

√
|A|T log

(
T |S||A|

δ

)
. (32)

Combining Eqs. 26, 31 and 32, we can bound the first term of the total regret as follows:

K∑
k=1

∆kI(P ∗D ∈ PkD ∧ P ∗ ∈ Pk) ≤ 12L

√
|A||S||D|T log

(
T |S||D|

δ

)
+ 12L|S|

√
|A|T log

(
T |S||A|

δ

)
(33)

— Computing the bound on
∑K
k=1 ∆kI(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk)

Here, we use a similar approach to Jaksch et al. (2010). Note that

K∑
k=1

∆kI(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk) =

⌊√
K
L

⌋∑
k=1

∆kI(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk) +
K∑

k=
⌊√

K
L

⌋
+1

∆kI(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk).

(34)

Now, our goal is to show the second term of the RHS of above equation vanishes with high probability. If we
succeed, then it holds that, with high probability,

∑K
k=1 ∆kI(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk) equals the first term of

the RHS and then we will be done because⌊√
K
L

⌋∑
k=1

∆kI(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk) ≤

⌊√
K
L

⌋∑
k=1

∆k

(i)
≤

⌊√
K

L

⌋
L =

√
KL, (35)

where (i) follows from the fact that ∆k ≤ L since we assumed the cost of each step ce(s, a)+cc(d)+cx(d, d′) ≤ 1
for all s ∈ S, a ∈ A, and d, d′ ∈ D.

To prove that
∑K

k=
⌊√

K
L

⌋
+1 ∆kI(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk) = 0 with high probability, we proceed as follows. By

applying Lemma 6 to P ∗D and P ∗, we have

Pr(P ∗D 6∈ PkD) ≤ δ

2tk6 , Pr(P
∗ 6∈ Pk) ≤ δ

2tk6 (36)

Thus,

Pr(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk) ≤ Pr(P ∗D 6∈ PkD) + Pr(P ∗ 6∈ Pk) ≤ δ

tk
6 (37)

20

Published in Transations on Machine Learning Research (07/2022)

where tk = (k − 1)L is the end time of episode k − 1. Therefore, it follows that

Pr
(

K∑
k=
⌊√

K
L

⌋
+1

∆kI(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk) = 0
)

= Pr
(
∀k :

⌊√
K

L

⌋
+ 1 ≤ k ≤ K; P ∗D ∈ PkD ∧ P ∗ ∈ Pk

)

= 1− Pr
(
∃k :

⌊√
K

L

⌋
+ 1 ≤ k ≤ K; P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk

)
(i)
≥ 1−

K∑
k=
⌊√

K
L

⌋
+1

Pr(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk)

(ii)
≥ 1−

K∑
k=
⌊√

K
L

⌋
+1

δ

t6k

(iii)
≥ 1−

KL∑
t=
√
KL

δ

t6
≥ 1−

∫ KL

√
KL

δ

t6
≥ 1− δ

5(KL) 5
4
. (38)

where (i) follows from a union bound, (ii) follows from Eq. 37 and (iii) holds using that tk = (k− 1)L. Hence,
with probability at least 1− δ

5(KL)
5
4
we have that

K∑
k=
⌊√

K
L

⌋
+1

∆kI(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk) = 0. (39)

If we combine the above equation and Eq. 35, we can conclude that, with probability at least 1− δ
5T 5/4 , we

have that ⌊√
K
L

⌋∑
k=1

∆kI(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk) ≤
√
T (40)

where T = KL. Next, if we combine Eqs. 33 and 40, we have

R(T) =
K∑
k=1

∆kI(P ∗D ∈ PkD ∧ P ∗ ∈ Pk) +
K∑
k=1

∆kI(P ∗D 6∈ PkD ∨ P ∗ 6∈ Pk)

≤ 12L

√
|A||S||D|T log

(
T |S||D|

δ

)
+ 12L|S|

√
|A|T log

(
T |S||A|

δ

)
+
√
T

≤ 13L

√
|A||S||D|T log

(
T |S||D|

δ

)
+ 12L|S|

√
|A|T log

(
T |S||A|

δ

)
(41)

Finally, since
∑∞
T=1

δ
5T 5/4 ≤ δ, with probability at least 1− δ, the above inequality holds. This concludes the

proof.

B Useful lemmas

Lemma 4. Suppose PD and P are true transitions and PD ∈ PkD, P ∈ Pk for episode k. Then, for arbitrary
policy πk, and arbitrary P kD ∈ PkD, P k ∈ Pk, it holds that

V π
k

1 |PD,P (s, d)− V π
k

1 |PkD,Pk
(s, d) ≤ LE

[
L∑
t=1

min{1, βkD(st, dt, δ)}+
H∑
t=1

min{1, βk(st, at, δ)} | s1 = s, d0 = d

]
,

(42)

21

Published in Transations on Machine Learning Research (07/2022)

where the expectation is taken over the MDP with policy πk under true transitions PD and P .

Proof. For ease of notation, let vkt := V π
k

t |PD,P , v
k
t | k := V π

k

t |PkD,Pk
and cπt (s, d) = cπkt (s,d)(s, d). We also define

d′ = πk1 (s, d). From Eq 68, we have

vk1(s, d) = cπ1 (s, d) +
∑
a∈A

pπk1 (s,d)(a | s) ·
(
ce(s, a) +

∑
s′∈S

p(s′|s, a) · vk2(s′, d′)
)

(43)

vk1 | k(s, d) = cπ1 (s, d) +
∑
a∈A

pkπk1 (s,d)(a | s) ·
(
ce(s, a) +

∑
s′∈S

pk(s′|s, a) · vk2 | k(s′, d′)
)

(44)

Now, using above equations, we rewrite vk1(s, d)− vk1 | k(s, d) as

vk1(s, d)− vk1 | k(s, d) =
∑
a∈A

pπk1 (s,d)(a|s)
(
ce(s, a) +

∑
s′∈S

p(s′|s, a) · vk2(s′, d′)
)

−
∑
a∈A

pkπk1 (s,d)(a|s)
(
ce(s, a) +

∑
s′∈S

pk(s′|s, a) · vk2 | k(s′, d′)
)

(i)=
∑
a∈A

pπk1 (s,d)(a | s)
(
ce(s, a) +

∑
s′∈S

p(s′|s, a) · vk2(s′, d′)− ce(s, a)−
∑
s′∈S

pk(s′ | s) · vk2 | k(s′, d′)
)

+
∑
a∈A

(
pπk1 (s,d)(a | s)− pkπk1 (s,d)(a | s)

)
ce(s, a) +

∑
s′∈S

pk(s′ | s, a) · vk2 | k(s′, d′)︸ ︷︷ ︸
≤L

(ii)
≤
∑
a∈A

[
pπk1 (s,d)(a | s) ·

∑
s′∈S

[
p(s′ | s, a)vk2(s′, d′)− pk(s′ | s, a)vk2 | k(s′, d′)

]]
+ L

∑
a∈A

[
pπk1 (s,d)(a | s)− pkπk1 (s,d)(a | s)

]
(iii)=

∑
a∈A

[
pπk1 (s,d)(a | s) ·

∑
s′∈S

p(s′ | s, a) ·
(
vk2(s′, d′)− vk2 | k(s′, d′)

)]

+
∑
a∈A

pπk1 (s,d)(a | s)
∑
s′∈S

(
p(s′ | s, a)− pk(s′ | s, a)

)
vk2 | k(s′, d′)︸ ︷︷ ︸

≤L

+ L

∑
a∈A

[
pπk1 (s,d)(a | s)− pkπk1 (s,d)(a | s, d)

]
(iv)
≤ Ea∼p

πk1 (s,d)(. | s),s′∼p(· | s,a)

[
vk2(s′, d′)− vk2 | k(s′, d′)

]
+ LEa∼p

πk1 (s,d)(· | s)

[∑
s′∈S

[
p(s′ | s, a)− pk(s′ | s, a)

]]
+ L

∑
a∈A

[
pπk1 (s,d)(a | s)− pkπk1 (s,d)(a | s)

]
,

(45)

where (i) follows by adding and subtracting term pπk1 (s,d)(a | s)
(
ce(s, a) +

∑
s′∈S p

k(s′ | s, a) · vk2 | k(s′, d′)
)
,

(ii) follows from the fact that ce(s, a) +
∑
s′∈S p

k(s′ | s, a) · vk2 | k(s′, d′) ≤ L, since, by assumption, ce(s, a) +
cc(d) + cx(d, d′) < 1 for all s ∈ S, a ∈ A and d, d′ ∈ D.. Similarly, (iii) follows by adding and subtracting
p(s′ | s, a)vk2 | k(s′, d′), and (iv) follows from the fact that vk2 | k ≤ L. By assumption, both PD and P kD lie in

22

Published in Transations on Machine Learning Research (07/2022)

the confidence set PkD(δ), so∑
a∈A

[
pπk1 (s,d)(a | s)− pkπk1 (s,d)(a | s)

]
≤ min{1, βkD(s, d′ = πk1 (s, d), δ)} (46)

Similarly, ∑
s′∈S

[
p(s′ | s, a)− pk(s′ | s, a)

]
≤ min{1, βk(s, a, δ)} (47)

If we combine Eq. 46 and Eq. 47 in Eq. 45, for all s ∈ S, it holds that

vk1(s, d)− vk1 | k(s, d) ≤ Ea∼p
πk1 (s,d)(.|s),s′∼p(.|s,a)

[
vk2(s′, d′)− vk2 | k(s′, d′)

]
+ LEa∼p

πk1 (s,d)(.|s)
[
min{1, βk(s, a, δ)}

]
+ L

[
min{1, βkD(s, d′ = πk1 (s, d), δ)}

]
(48)

Similarly, for all s ∈ S, d ∈ D we can show

vk2(s, d)− vk2 | k(s, d) ≤ Ea∼p
πk1 (s,d)(.|s),s′∼p(.|s,a)

[
vk3(s′, π2(s, d))− vk3 | k(s′, π2(s, d))

]
+ LEa∼p

πk1 (s,d)(.|s)
[
min{1, βk(s, a, δ)}

]
+ L

[
min{1, βkD(s, πk2 (s, d), δ)}

]
(49)

Hence, by induction we have

vk1(s, d)− vk1 | k(s, d) ≤ LE
[
L∑
t=1

min{1, βkD(st, dt, δ)}+
L∑
t=1

min{1, βk(st, at, δ)}|s1 = s, d0 = d)
]

(50)

where the expectation is taken over the MDP with policy πk under true transitions PD and P .

Lemma 5. Let W be a finite set and c be a constant. For k ∈ [K], suppose Tk = (wk,1, wk,2, . . . , wk,H) is a
random variable with distribution P (.|wk,1), where wk,i ∈ W. Then,

K∑
k=1

ETk∼P (.|wk,1)

[
H∑
t=1

min{1, c√
max{1, Nk(wk,t)}

}

]
≤ 2H|W|+2

√
2c
√
|W|KH (51)

with Nk(w) :=
∑k−1
j=1

∑H
t=1 I(wj,t = w).

Proof. The proof is adapted from Osband et al. (2013). We first note that

E

[
K∑
k=1

H∑
t=1

min{1, c√
max{1, Nk(wk,t)}

}

]
= E

[
K∑
k=1

H∑
t=1

I(Nk(wk,t) ≤ H) min{1, c√
max{1, Nk(wk,t)}

}

]

+ E

[
K∑
k=1

H∑
t=1

I(Nk(wk,t) > H) min{1, c√
max{1, Nk(wk,t)}

}

]

≤ E

[
K∑
k=1

H∑
t=1

I(Nk(wk,t) ≤ H) · 1
]

+ E

[
K∑
k=1

H∑
t=1

I(Nk(wk,t) > H) · c√
Nk(wk,t)

]
(52)

23

Published in Transations on Machine Learning Research (07/2022)

Then, we bound the first term of the above equation

E

[
K∑
k=1

H∑
t=1

I(Nk(wk,t) ≤ H)
]

= E

[∑
w∈W
{# of times w is observed and Nk(w) ≤ H}

]
≤ E [|W|·2H] = 2H|W| (53)

To bound the second term, we first define nτ (w) as the number of times w has been observed in the first τ
steps, i.e., if we are at the tth index of trajectory Tk, then τ = tk + t, where tk = (k − 1)H, and note that

ntk+t(w) ≤ Nk(w) + t (54)

because we will observe w at most t ∈ {1, . . . ,H} times within trajectory Tk. Now, if Nk(w) > H, we have
that

ntk+t(w) + 1 ≤ Nk(w) + t+ 1 ≤ Nk(w) +H + 1 ≤ 2Nk(w). (55)

Hence we have,

I(Nk(wk,t) > H)(ntk+t(wk,t) + 1) ≤ 2Nk(wk,t) =⇒ I(Nk(wk,t) > H)
Nk(wk,t)

≤ 2
ntk+t(wk,t) + 1 (56)

Then, using the above equation, we can bound the second term in Eq. 52:

E

[
K∑
k=1

H∑
t=1

I(Nk(wk,t) > H) c√
Nk(wk,t)

]
= E

[
K∑
k=1

H∑
t=1

c

√
I(Nk(wk,t) > H)

Nk(wk,t)

]
(i)
≤
√

2cE
[
K∑
k=1

H∑
t=1

√
1

ntk+t(wk,t) + 1

]
, (57)

where (i) follows from Eq. 56.
Next, we can further bound E

[∑K
k=1

∑H
t=1

√
1

ntk+t(wk,t)+1

]
as follows:

E

[
K∑
k=1

H∑
t=1

√
1

ntk+t(wk,t) + 1

]
= E

[
KH∑
τ=1

√
1

nτ (wτ) + 1

]

(i)= E

∑
w∈W

NK+1(w)∑
ν=0

√
1

ν + 1

=
∑
w∈W

E

NK+1(w)∑
ν=0

√
1

ν + 1

≤
∑
w∈W

E

[∫ NK+1(w)+1

1

√
1
x
dx

]
≤
∑
w∈W

E
[
2
√
NK+1(w)

]
(ii)
≤ E

2
√
|W|

∑
w∈W

NK+1(w)

 (iii)= E
[
2
√
|W|KH

]
= 2
√
|W|KH, (58)

where (i) follows from summing over different w ∈ W instead of time and from the fact that we observe each
w exactly NK+1(w) times after K trajectories, (ii) follows from Jensen’s inequality and (iii) follows from the
fact that

∑
w∈W NK+1(w) = KH. Next, we combine Eqs 57 and 58 to obtain

E

[
K∑
k=1

H∑
t=1

I(Nk(wk,t) > H) c√
Nk(wk,t)

]
≤
√

2c× 2
√
|W|KH = 2

√
2c
√
|W|KH (59)

24

Published in Transations on Machine Learning Research (07/2022)

Further, we plug in Eqs. 53 and 59 in Eq.52

E

[
K∑
k=1

H∑
τ=1

min{1, c√
max{1, Nk(wk,t)}

}} |

]
≤ 2H|W|+2

√
2c
√
|W|KH (60)

This concludes the proof.

Lemma 6. Let W be a finite set and Pt(δ) := {p : ∀w ∈ W, ||p(.|w) − p̂t(.|w)||1≤ βt(w, δ)} be a |W|-
rectangular confidence set over probability distributions p∗(.|w) with m outcomes, where p̂t(.|w) is the empirical
estimation of p∗(.|w). Suppose at each time τ , we observe an state wτ = w and sample from p∗(.|w). If

βt(w, δ) =

√√√√2 log
(
t7|W|2m+1

δ

)
max{1, Nt(w)} with Nt(w) =

∑t
τ=1 I(wτ = w), then the true distributions p∗ lie in the

confidence set Pt(δ) with probability at least 1− δ
2t6 .

Proof. We adapt the proof from Lemma 17 in Jaksch et al. (2010). We note that,

Pr(p∗ 6∈ Pt)
(i)= Pr

(⋃
w∈W

‖p∗(· |w)− p̂t(· |w)‖1 ≥ βt(w, δ)
)

(ii)
≤
∑
w∈W

Pr

‖p∗(· |w)− p̂t(· |w)‖1 ≥

√√√√2 log
(
t7|W|2m+1

δ

)
max{1, Nt(w)}

(iii)
≤

∑
w∈W

t∑
n=0

Pr

‖p∗(· |w)− p̂t(· |w)‖1 ≥

√√√√2 log
(
t7|W|2m+1

δ

)
max{1, n}

 ,

where (i) follows from the definition of the confidence set, i.e., the probability distributions do not lie in the
confidence set if there is at least one state w in which ‖p∗(· |w)− p̂(· |w)‖1 ≥ βt(w, δ), (ii) follows from the
definition of βt(w, δ) and a union bound over all w ∈ W and (iii) follows from a union bound over all possible
values of Nt(w). To continue, we split the sum into n = 0 and n > 0:

∑
w∈W

t∑
n=0

Pr

‖p∗(· |w)− p̂t(· |w)‖1 ≥

√√√√2 log
(
t7|W|2m+1

δ

)
max{1, n}

=
∑
w∈W

t∑
n=1

Pr

‖p∗(· |w)− p̂t(· |w)‖1 ≥

√√√√2 log
(
t7|W|2m+1

δ

)
n

+

if n=0︷ ︸︸ ︷∑
w∈W

Pr
(
‖p∗(· |w)− p̂t(· |w)‖1 ≥

√
2 log

(
t7|W|2m+1

δ

))

(i)=
∑
w∈W

t∑
n=1

Pr

‖p∗(· |w)− p̂t(· |w)‖1 ≥

√√√√2 log
(
t7|W|2m+1

δ

)
n

+ 0

(ii)
≤ t|W|2m exp

(
log
(
− t

7|W|2m+1

δ

))
≤ δ

2t6 ,

25

Published in Transations on Machine Learning Research (07/2022)

where (i) follows from the fact that ‖p∗(· |w)− p̂t(· |w)‖1 <

√
2 log

(
t7|W|2m+1

δ

)
for non-trivial cases. More

specifically,

δ < 1, t ≥ 2 =⇒

√
2log

(
t7|W|2m+1

δ

)
>
√

2 log(512) > 2,

‖p∗(· |w)− p̂t(· |w)‖1 ≤
∑
i∈[m]

(p∗(i | s) + p̂t(i |w)) ≤ 2, (61)

and (ii) follows from the fact that, after observing n samples, the L1-deviation of the true distribution p∗
from the empirical one p̂ over m events is bounded by:

Pr (‖p∗(·)− p̂(·)‖1 ≥ ε) ≤ 2m exp
(
−nε

2

2

)
(62)

Lemma 7. Consider the following minimization problem:

minimize
x

m∑
i=1

xiwi

subject to
m∑
i=1
|xi − bi|≤ d,

∑
i

xi = 1,

xi ≥ 0 ∀i ∈ {1, . . . ,m},

(63)

where d ≥ 0, bi ≥ 0 ∀i ∈ {1, . . . ,m},
∑
i bi = 1 and 0 ≤ w1 ≤ w2 . . . ≤ wm. Then, the solution to the above

minimization problem is given by:

x∗i =

min{1, b1 + d

2} if i = 1
bi if i > 1 and

∑i
l=1 xl ≤ 1

0 otherwise.
(64)

Proof. Suppose there is {x′i;
∑
i x
′
i = 1, x′i ≥ 0} such that

∑
i x
′
iwi <

∑
i x
∗
iwi. Let j ∈ {1, . . . ,m} be the

first index where x′j 6= x∗j , then it’s clear that x′j > x∗j .
If j = 1:

m∑
i=1
|x′i − bi|= |x′1 − b1|+

m∑
i=2
|x′i − bi|>

d

2 +
m∑
i=2

bi − x′i = d

2 + x′1 − b1 > d (65)

If j > 1:
m∑
i=1
|x′i − bi|= |x′1 − b1|+

m∑
i=j
|x′i − bi|>

d

2 +
m∑

i=j+1
bi − x′i >

d

2 + x′1 − b1 = d (66)

Both cases contradict the condition
∑m
i=1|x′i − bi|≤ d.

Lemma 8. For the value function V πt|PD,P defined in Eq. 10, we have that:

V πt|PD,P (s, d) = cπt(s,d)(s, d) +
∑
a∈A

pπt(s,d)(a|s) ·
(
ce(s, a) +

∑
s′∈S

p(s′ | s, a) · V πt+1|PD,P (s′, πt(s, d))
)

(67)

Proof.

V πt|PD,P (s, d) (i)= c̄(s, d) +
∑
s′∈S

p(s′, πt(s, d)|(s, d))V πt+1|PD,P (s′, πt(s, d))

26

Published in Transations on Machine Learning Research (07/2022)

(ii)=
∑
a∈A

pπt(s,d)(a | s)ce(s, a) + cc(πt(s, d)) + cx(πt(s, d), d) +
∑
s′∈S

∑
a∈A

p(s′ | s, a)pπt(s,d)(a | s)V πt+1|PD,P (s′, πt(s, d))

(iii)= cπt(s,d)(s, d) +
∑
a∈A

pπt(s,d)(a|s) ·
(
ce(s, a) +

∑
s′∈S

p(s′ | s, a) · V πt+1|PD,P (s′, πt(s, d))
)
, (68)

where (i) is the standard Bellman equation in the standard MDP defined with dynamics 3 and costs 4, (ii)
follows by replacing c̄ and p with equations 3 and 4, and (iii) follows by cd′(s, d) = cc(d′) + cx(d′, d).

Lemma 9. min{T, a+ b} ≤ min{T, a}+ min{T, b} for T, a, b ≥ 0.

Proof. Assume that a ≤ b ≤ a+ b. Then,

min{T, a+ b} =

T ≤ a+ b = min{T, a}+ min{T, b} if a ≤ b ≤ T ≤ a+ b
T ≤ a+ T = min{T, a}+ min{T, b} if a ≤ T ≤ b ≤ a+ b
T ≤ 2T = min{T, a}+ min{T, b} if T ≤ a ≤ b ≤ a+ b
a+ b = min{T, a}+ min{T, b} if a ≤ b ≤ a+ b ≤ T

(69)

27

Published in Transations on Machine Learning Research (07/2022)

C Implementation of UCRL2 in finite horizon setting

ALGORITHM 2: Modified UCRL2 algorithm for a finite horizon MDPM = (S,A, P, C, L).
Require: Cost C = [c(s, a)], confidence parameter δ ∈ (0, 1).

1: ({Nk(s, a)}, {Nk(s, a, s′)})← InitializeCounts()
2: for k = 1, . . . ,K do
3: for s, s′ ∈ S, a ∈ A do

4: if Nk(s, a) 6= 0 then p̂k(s′|s, a)← Nk(s, a, s′)
Nk(s, a) else p̂k(s′|s, a)← 1

|S|

5: βk(s, a, δ)←

√
14|S|log

(2(k−1)L|A||S|
δ

)
max{1, Nk(s, a)}

6: end for
7: πk ← ExtendedValueIteration(p̂k, βk, C)
8: s0 ← InitialConditions()
9: for t = 0, . . . , L− 1 do

10: Take action at = πkt (st), and observe next state st+1.
11: Nk(st, at)← Nk(st, at) + 1
12: Nk(st, at, st+1)← Nk(st, at, st+1) + 1
13: end for
14: end for
15: Return πK

ALGORITHM 3: It implements ExtendedValueIteration, which is used in Algorithm 2.
Require: Empirical transition distribution p̂(.|s, a), cost c(s, a), and confidence interval β(s, a, δ).

1: π ← InitializePolicy(), v ← InitializeValueFunction()
2: n← |S|
3: for t = T − 1, . . . , 0 do
4: for s ∈ S do
5: for a ∈ A do
6: s′1, . . . , s

′
n ← Sort(vt+1) # vt+1(s′1) ≤ . . . ≤ vt+1(s′n)

7: p(s′1)← min{1, p̂(s′1|s, a) + β(s,a,δ)
2 }

8: p(s′i)← p̂(s′i|s, a) ∀ 1 < i ≤ n
9: l← n

10: while
∑

s′
i
∈S p(s

′
i) > 1 do

11: p(s′l) = max{0, 1−
∑

s′
i
6=s′
l

p(s′i)}
12: l← l − 1
13: end while
14: q(s, a) = c(s, a) + Es′∼p [vt+1(s′)]
15: end for
16: vt(s)← mina∈A{q(s, a)}
17: πt(s)← arg mina∈A{q(s, a)}
18: end for
19: end for
20: Return π

28

Published in Transations on Machine Learning Research (07/2022)

D Distribution of cell types and traffic levels in the lane driving environment

Table 1: Probability of cell types based on traffic level.

road grass stone car
no-car 0.7 0.2 0.1 0
light 0.6 0.2 0.1 0.1
heavy 0.5 0.2 0.1 0.2

Table 2: Probability of traffic levels based on the previous row.

no-car light heavy
no-car 0.99 0.01 0
light 0.01 0.98 0.01
heavy 0 0.01 0.99

E Performance of the human and machine agents in obstacle avoidance task

Machine Human Optimal
Policy

0

2

To
ta

le
nv

ir
on

m
en

tc
os

t

×103

(a) γ0 = no-car

Machine Human Optimal
Policy

0

10

×103

(b) γ0 ∈ {light, heavy}

Figure 8: Performance of the machine policy, a human policy with σH = 2, and the optimal policy in terms
of total cost. In panel (a), the episodes start with an initial traffic level γ0 = no-car and, in panel (b), the
episodes start with an initial traffic level γ0 ∈ {light, heavy}.

F The amount of human control for different initial traffic levels

no-car light heavy
Initial Traffic Level

0.2

0.4

H
um

an
C

on
tr

ol
R

at
e cx = 0, cc(H) = 0

cx = 0.1, cc(H) = 0.2

Figure 9: The amount of human control rate using UCRL2-MC switching algorithm for different initial traffic
levels. For each traffic level, we sample 500 environment and average the human control rate over them.
Higher traffic level results in more human control, as the human agent is more reliable in heavier traffic.

29

Published in Transations on Machine Learning Research (07/2022)

2 4 8 16
Number of Actions

1.0

1.5

2.0

R
eg

re
tR

at
io

(a)

2 3 4 5 6 7 8 9 10
Number of Agents

0.25

0.50

0.75

1.00

R
eg

re
tR

at
io

(b)

Figure 10: Ratio of UCRL2-MC regret to UCRL2 for (a) a set of action sizes and (b) different numbers of
agents. By increasing the action space size, the performance of UCRL2-MC gets worse but remains within the
same scale. In addition, UCRL2-MC outperforms UCRL2 in environments with a larger number of agents.

G Additional Experiments

In this section, we run additional experiments in the RiverSwim environment to investigate the effect of
action space size and the number of agents in a team on the total regret.

G.1 Action space size

To study the effect of action space size on the total regret, we artificially increase the number of actions
by planning m steps ahead. More concretely, we consider a new MDP, where each time step consists of m
steps of the original RiverSwim MDP, and the switching policy decides for all the m steps at once. The
number of actions in the new MDP increases to 2m, while the state space remains unchanged. We consider
a setting with a single team of two agents with p = 0 and p = 1, i.e., one agent always takes action right
and the other takes left. We run the simulations for 20,000 episodes with m = {1, 2, · · · , 4}, i.e., with
the action size of 2, 4, 8, 16. Each experiment is repeated for 5 times. We compare the performance of our
algorithm against UCRL2 in terms of total regret. Figure 10 (a) summarizes our results; The performance
of UCRL2-MC gets worse by increasing the number of actions as the regret bound directly depends on the
action size (Theorem 2). However, the regret ratio still remains within the same scale even after doubling the
number of actions. One reason is that our algorithm only needs to learn the actions taken by the agents to
find the optimal switching policy. If the agents’ policies include a small subset of actions, our algorithms will
maintain a small regret bound even in environments with huge action space. Therefore, we believe a more
careful analysis can improve our regret bound by making it a function of agents’ action space instead of the
whole action size.

G.2 Number of agents

Here, our goal is to examine the impact of the number of agents on the total regret achieved by our algorithm.
To this end, we consider the original RiverSwim MDP (i.e., two actions) with a single team of n agents,
where we run our simulations for n = {3, 4, · · · , 10} and 20,000 episodes for each n. We choose p, i.e.,
the probability of taking action right for n agents as {0, 1

n−1 , · · · ,
n−2
n−1 , 1}. As shown in Figure 10 (b),

UCRL2-MC outperforms UCRL2 as the number of agents increases. This agrees with Theorem 2, as our
derived regret bound mainly depends on the action space size |A|, while the UCRL2 regret bound depends
on the number of agents |D|.

30

	Introduction
	Related work
	Switching Control Among Agents as a 2-Layer MDP
	Learning to Switch in a Team of Agents
	Learning to Switch Across Multiple Teams of Agents
	Experiments
	Obstacle avoidance
	Results

	RiverSwim
	Results

	Conclusions and Future Work
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Useful lemmas
	Implementation of UCRL2 in finite horizon setting
	Distribution of cell types and traffic levels in the lane driving environment
	Performance of the human and machine agents in obstacle avoidance task
	The amount of human control for different initial traffic levels
	Additional Experiments
	Action space size
	Number of agents

