
Agent Workflow Memory

Zora Zhiruo Wang 1 Jiayuan Mao 2 Daniel Fried 1 Graham Neubig 1

Abstract
Despite the potential of language model-based
agents to solve real-world tasks such as web nav-
igation, current methods still struggle with long-
horizon tasks with complex action trajectories. In
contrast, humans can flexibly solve complex tasks
by learning reusable task workflows from past ex-
periences and using them to guide future actions.
To build agents that can similarly benefit from this
process, we introduce Agent Workflow Memory
(AWM), a method for inducing commonly reused
routines, i.e., workflows, and selectively provid-
ing workflows to the agent to guide subsequent
generations. AWM flexibly applies to both offline
and online scenarios, where agents induce work-
flows from training examples beforehand or from
test queries on the fly. We experiment on two
major web navigation benchmarks — Mind2Web
and WebArena — that collectively cover 1000+
tasks from 200+ domains across travel, shopping,
and social media, among others. AWM substan-
tially improves the baseline results by 24.6% and
51.1% relative success rate on Mind2Web and
WebArena while reducing the number of steps
taken to solve WebArena tasks successfully. Fur-
thermore, online AWM robustly generalizes in
cross-task, website, and domain evaluations, sur-
passing baselines from 8.9 to 14.0 absolute points
as train-test task distribution gaps widen.1

1. Introduction
Language model (LM) based agents are rapidly improving,
and are now able to tackle digital tasks such as navigating
the web (Zhou et al., 2024; Deng et al., 2023) or operating
mobile apps (Rawles et al., 2023; 2024). Current agents
mostly integrate a fixed set of given examples via training

1Carnegie Mellon University 2Massachusetts Institute
of Technology. Correspondence to: Zora Zhiruo Wang
<zhiruow@cs.cmu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1https://github.com/zorazrw/agent-workflow-memory

Get the
coordinates
of a place

Get the zip
code of a place

Decide if can
drive from A to B
in a given time

Find a place
by its name

Find cafe
near a place

Get driving time
from A to B

Display the route
from place A to B Find a Hilton hotel

near this location,
then show me the
shortest walking
path to a nearby
supermarket …

Gap widens to 22.5
after 40 examples

AWM
baseline

Figure 1. AWM enables agents to continuously induce and apply
workflows to improve performance, compared to stagnant base-
lines. We show results by AWM on the WebArena map split as an
example.

(Fu et al., 2024; Murty et al., 2024) or in-context learning
(Zheng et al., 2024). This allows them to perform well on ac-
tion sequences similar to those presented in these examples,
but results in a lack of robustness to changes in task contexts
or environments (Deng et al., 2023). Essentially, they fail to
grasp the key to disentangling increasingly complex tasks —
to extract and learn reusable task workflows shared across
similar tasks and environments (Yu et al., 2023; Wang et al.,
2024a). Moreover, as agents solve each task separately,
they do not learn from past successes and failures, and are
therefore unable to adapt over time (Yoran et al., 2024).

Motivated by how humans abstract common task routines
from past experiences and apply such knowledge to guide
future activities (Chi et al., 1981; 2014), we propose agent
workflow memory (AWM) (§2) to realize a similar mech-
anism in agents. AWM induces workflows from agent
trajectories by extracting reusable routines, and then inte-
grates these workflows into agent memory to guide future
task-solving processes. Each workflow represents a goal
with a common routine extracted from available action tra-
jectories, which allows it to effectively capture the most
essential and reusable skills agents need to acquire to suc-
cessfully solve increasingly complex tasks. As an example,
Figure 1 shows workflows induced by AWM on the We-
bArena map test split of the benchmark (Zhou et al., 2024).
AWM starts with a basic set of built-in actions and solves
new tasks in a streaming manner, continuously inducing
workflows from the task at hand, e.g., learning to “find a

1

https://github.com/zorazrw/agent-workflow-memory

Agent Workflow Memory

place by its name” from the first few examples. Moreover,
AWM continues to build more complex workflows on top
of new experiences and previously acquired workflows. For
example, the “find a place by its name” workflow, once
induced, effectively serves as a subgoal to build a more com-
plex workflow “get the zip code of a place.” Such continual
learning mechanisms create a snowball effect to induce and
apply increasingly complex workflows while expanding the
agent memory, often yielding a substantial performance gap
over a vanilla agent that does not adapt. This gap over the
baseline rises as high as 22.5 points on WebArena after
rolling over only tens of examples (as shown by Figure 1).

AWM readily operates in both offline and online scenar-
ios, where annotated examples are either available or non-
existent. When high-quality annotated examples are avail-
able for a task, AWM operating in an offline fashion can
extract reusable workflows from these canonical examples
and integrate them into memory to assist test-time inference.
Even if no annotated examples exist, AWM online can also
run in an supervision-free setting, where it iteratively in-
duces workflows from self-generated past predictions that
are judged correct by an evaluator module.

We evaluate AWM on two agent web navigation bench-
marks (§3): WebArena, which provides rigorous execution-
based evaluation (Zhou et al., 2024), and Mind2Web, which
emphasizes broad tasks and domain coverage (Deng et al.,
2023). On WebArena, AWM improves over the top pub-
lished autonomous method (Drouin et al., 2024) by 51.1%
relative success rate, and even outperforms methods using
human expert written workflows (Sodhi et al., 2023) by
7.9%. On Mind2Web, AWM effectively improves the cross-
task results by 24.6% in relative step-wise success rate.

We further demonstrate the generalizability of AWM on
both datasets. On WebArena, we create a cross-template
subset where each example is instantiated from different task
templates. AWM still consistently surpasses all baseline
approaches, demonstrating its reliable cross-task workflow
adaptability (§3.1). On Mind2Web, we evaluate AWM on
the cross-website and cross-domain test splits to examine its
domain generality, where it scores 8.9–14.0 absolute points
higher over baseline, and the margins become more substan-
tial as the train-test distribution gap widens (§3.2). Both
results show the superior generalization of AWM across
tasks, websites, and domains.

2. Agent Workflow Memory
In this section, we first describe the web navigation task
(§2.1), then introduce the workflow representation (§2.2),
and describe the mechanism of AWM as well as various
usage scenarios (§2.3).

2.1. Problem Statement

For the purpose of this paper, we consider agents with a lan-
guage model backbone L and text-based memory M , where
the base memory contains documentation of built-in actions
such as CLICK and TYPE.2 To solve a task specified by
a natural language (NL) instruction q, the agent acts in an
environment defined by a transition function T . For each
time step ti, the environment state si gives observation oi,
which is then passed into the model to generate action ai
via L(q,M, oi) → ai. The action is executed in the envi-
ronment and changes the state as T (si, ai) → si+1. This
observe-act loop iterates until the model predicts the stop
action ai =STOP, or reaches a task termination condition,
e.g., a maximum pre-determined number of steps.

Each completed task forms an experience e, which com-
prises an NL instruction q and a trajectory of steps attempt-
ing to solve the task, where each step p contains the agent
observation o obtained from the current state, and action
taken by the agent a, formulated as p = (o, a). Our goal
is to induce useful workflows W = {w} from the set of
experiences E = {e} constructed from past or collected
examples, using an induction module I via I(E) → W .
We add induced workflows into the agent memory M as
guidance for subsequent task-solving.

Next, we introduce the workflow representation design,
workflow induction method, and agent memory update with
workflows in varied setups.

2.2. Workflow Representation
Similar to an experience, a workflow comprises two com-
ponents: first, a textual description of the workflow d; and
second, a series of steps to finish the workflow (p1, p2, · · ·),
as shown in Figure 2.

Workflow Description To present workflows in a format
where agents can learn from them properly, it is impor-
tant to describe the high-level goal of the series of actions.
Therefore, we associate each workflow with an NL task
description d, essentially a summary of the workflow’s func-
tion, by heuristically extracting from experience instructions
or summarizing with an LM (see §2.3).

Workflow Trajectory The workflow trajectory contains
a series of steps (p1, p2, · · ·) to finish the process described
in d. Each p consists of three parts, demonstrated in pn
in Figure 2, Step 3. (1) A description of the current envi-
ronment state in NL, such as “Order {id} is shown”; (2)
The reasoning process elaborated by the agent to decide
which action to generate based on observations, such as
“Order {id} is found, I will now terminate the task.”; and

2Memory is usually implemented as a system prompt or auxil-
iary information in the main prompt context.

2

Agent Workflow Memory

Environment

state s

LM
Backbone

Memory
Agent

action

observation

Who ordered
order #0130?

I need to click the “Orders” link to see all orders.
click(‘126’) # id of the button

I need to find order 0130 in the current page.
scroll(0, 200)

… … … …
The current page shows order 0130.
send_msg_to_user(“Emma Lopez”)
stop()

Step 1. Obtain Actions (annotate/generate/…)

Step 2.
Trajectory Evaluation

Query solved correctly?

Y
ES

N
O

pass

Step 3. Induce Workflows
❖ Workflow Description d
This workflow aims to find an
customer order with specified ID.
❖ Workflow Trajectory
[env desc] The current page shows..
[reason] I need to click “Orders” to..
[action] click(‘order-link-id’)

… … … …
[env desc] Order {id} is shown.
[reason] Order {id} is found, I will
now terminate the task.
[action] stop()

p1

pn

…

integrate into
memory

Figure 2. Illustration of our AWM pipeline: an agent takes actions
to solve given queries, induces workflows from successful ones,
and integrates them into memory.

(3) an action represented as an executable program over the
environment, i.e., stop() that realizes termination.

2.3. Inducing and Using Workflows

At the core of AWM is an induction module I that induces a
set of workflows W from one or more past agent experiences
E = {ei}mi=1. Each experience e = (q, P e) contains an NL
task instruction q and an action trajectory that consists of a
sequence of steps (observation and action) P e = (pe1, ..., p

e
n)

that were taken to solve q. The workflow induction module
operates by taking in E and producing a set of workflows,
as I(E) → W = {w} = {(dj , P d

j)}.

LM-based Workflow Induction To produce workflows
that more accurately capture reusable trajectories across
tasks, we propose an LM-based module I that prompts the
agent to extract common sub-routines from one or more
input experiences.

Different from task instructions that specify concrete, less-
repetitive tasks, e.g., “Buy dry cat food on Amazon and
deliver to my address”, we deliberately prompt models to in-
duce workflows at finer granularities, i.e., a sub-task “search
for a product on Amazon” that frequently re-appears as
part of multiple similar instructions. Meanwhile, instead
of giving example-specific values (e.g., “dry cat food”), we
enhance workflow generality by abstracting out example-
specific contexts, i.e., replacing “dry cat food” with a more
general name “{product-name}” by specifying this in the
workflow induction prompts. These workflows are seg-
mented (based on double-line breaks in the model output)
and stored separately in the workflow memory. Refer to §A
for the exact model prompts, example workflows, and an
examination of quality.3

3We also explore a rule-based workflow induction method. See
§B for more detailed experiments.

After the workflows W are induced, they are then integrated
into the agent as auxiliary memory, M +W → Mw, where
M stands for the original agent memory, and Mw stands
for the agent memory augmented with induced workflows.
When solving a given instruction q, the agent now produces
a series of actions by L(q,Mw, o) = L(q,M +W, o) → a.
Next, we introduce AWM in use in two scenarios:

Offline Scenario AWM can operate in an offline scenario
when additional canonical experiences are available, such
as data annotated by humans or synthesized by models. In
this case, we perform workflow induction and utilization
in two standalone processes. As shown in Figure 3 (left),
AWM first takes in all training examples from a website by
concatenating them into a single prompt, and feeds them
to the LM to create a set of workflows at ‘training’ time;
I(Etrain) → Woffline . Second, AWM incorporates all in-
duced workflows into the agent memory at inference time
to solve test instructions L(q,M +Woffline , o

test
i) → atesti .

Since the workflows are fully induced before test-time infer-
ence, the agent uses the same workflow memory Woffline

to solve each test.

Online Scenario Extra canonical experiences are not al-
ways available or easy to collect, especially those that cover
the same domains and tasks as the test instructions. AWM
also works in an online, supervision-free setting, where
only test queries are needed. As in Figure 3 (right), agents
with AWMonline process test queries in a streaming fashion,
where the agents conduct the loop of induce, integrate, and
utilize workflows after running inference for each test task.

“Training” w/
extra examples

Infer test examples
w/ workflows

apply
workflows

2

workflow add into memory

 induce
workflows

1

Test examples
passed in a stream

Continuously adding
workflows into agent

memory
 induce

… …

1

2

1

2

apply grow
over
time
…

apply workflows
for test inference

Offline Online

Test examples
passed in a stream

Continuously adding
workflows into agent

memory

… …

 induce1

1

2

2 applygrow
over
time
…

apply workflows
for test inference

Figure 3. Illustration of AWMoffline (left) and AWMonline (right).

Concretely, the agent starts with the default memory M ;
given the t-th test instruction qt passed into the agent, the
agent attempts to solve the task by generating an action
trajectory (pt1, p

t
2, · · ·), which collectively forms an expe-

rience et = (qt, {pt}). We adopt the LM-based evalua-
tion model of Pan et al. (2024) to output a binary label,
Leval(e

t) ∈ {0, 1}, that judges if et successfully solves qt

by prompting a neural model. If et is predicted as success,
i.e., 1, we then transform it into workflow(s) I(et) → {wt}
and add {wt} into the agent memory M t + {wt} → M t+1,
which serves as the agent memory to process the t + 1-th
instruction. As depicted in Figure 3 (right), we continue this
memory-updating process by iteratively predicting actions
for and inducing workflows from streamed test instructions,
until all tests are processed. We evaluate the success rate of

3

Agent Workflow Memory

predicted action trajectories {pt} for all tests.

3. Experiments
In this section, we experiment on two major web naviga-
tion benchmarks – WebArena (§3.1) and Mind2Web (§3.2).
For each benchmark, we first introduce the benchmark and
top-performing baseline methods, then present our AWM
approach and showcase its ability to achieve superior task
success and generalization across varied setups.

For both benchmarks, we conduct AWM on a website ba-
sis. In other words, we group examples by their associated
websites, and respectively run AWM on each group. This
mechanism maintains a small collection of workflows that
are nonetheless relevant to the test tasks.

3.1. WebArena
WebArena (Zhou et al., 2024) provides 812 web navigation
tasks on five websites that cover four common application
domains: e-commerce, social forum discussions, collabora-
tive software development, and content management. Most
importantly, WebArena supports rigorous evaluation on the
functional correctness of agent trajectories.

We adopt the current state-of-the-art method without human-
annotated site-specific knowledge, BrowserGym (Drouin
et al., 2024), which altered the agent default action space.
We adopt the BrowserGym framework and its default action
space, and represent webpages using accessibility trees, fol-
lowing the environment representation in Zhou et al. (2024).
Because BrowserGym inputs both webpage HTML and
accessibility tree representations, to keep a fair compari-
son with our method, we also run the BrowserGym ver-
sion with only accessibility tree webpage representations,
denoted as BrowserGymax−tree . We also compare to the
SteP method (Sodhi et al., 2023), which uses 14 human ex-
pert written workflows tailored to solving WebArena. Our
method, in contrast, uses no human supervision and is not
tailored to the WebArena setting.

Following the baseline approaches, we use GPT-4o
(gpt-4o-2024-05-13) with a temperature of 0.0 to en-
sure mostly stable model outputs. Because WebArena only
has test examples and no additional high-quality, domain-
aligned examples exist, we only conduct AWM in the online
setting as in §2.3.

3.1.1. MAIN RESULTS

As shown in Table 1, our AWM achieves the best published
results on WebArena, surpassing the BrowserGym base-
line by 12.0 absolute points and 51.1% relative increase in
overall success rate. Notably, AWM also outperforms SteP,
which uses strong domain-specific supervision from human-
written workflows, by a 7.6% relative increase in overall

success rate. According to the breakdown on five websites,
our AWM method substantially enhances the agent perfor-
mance across all websites over the BrowserGym baseline,
by 11.8–30.7 absolute points, indicating its general applica-
bility across varied domains and tasks.

Beyond task success, we also evaluate the average number
of steps the agent takes to solve a task, as shown in the right-
most column in Table 1. AWM conducts about 2.0 fewer
steps per example than the BrowserGym baseline. Further
compared to the Autoeval (Pan et al., 2024) method, which
necessitates additional evaluation and refinement steps to
solve tasks correctly, our AWM approach uses 40.8 fewer
steps on average. See §D for more efficiency discussions.
Both comparisons show that AWM obtains high success
rates while maintaining efficient trajectories.

Rapid
learning
phase

Stable
inference
phase

Figure 4. AWM enables rapid learning from a small amount of
data (about 40 queries), using WebArena map split as an example.

3.1.2. EFFICIENT LEARNING FROM SMALL AMOUNTS OF
DATA

To demonstrate the behavior of the AWMonline method, we
illustrate the cumulative success rate over the process of
online evaluation, by evaluating the average success rate of
the first k finished examples.

As in Figure 4, the agent exhibits a fast learning curve in
the beginning (between 0–40 examples), by acquiring the
most essential workflows, which results in higher success
rates. Afterward, agents learn more advanced workflows
(Figure 1), while success rates gradually stabilize to the
highest point in the early learning phase. This showcases
AWM’s efficient learning process, which substantially im-
proves performance with merely tens of examples.

3.1.3. CROSS-TEMPLATE WORKFLOW GENERALIZATION

Some tasks in WebArena have highly overlapping canonical
trajectories, due to the benchmark construction process that
instantiates multiple examples from a single underlying task
template. AWM intuitively improves in-template success
rate, that is, given one workflow induced from a successful
example, it would be theoretically easier to solve all other
examples generated from the same task template.

4

Agent Workflow Memory

Table 1. Task success rate on WebArena using gpt-4, and score breakdown on five website splits.

Method Total SR Shopping CMS Reddit GitLab Maps # Steps

With human engineered workflows
*SteP (Sodhi et al., 2023) 33.0 37.0 24.0 59.0 32.0 30.0 -

Autonomous agent only
WebArena (Zhou et al., 2024) 14.9 14.0 11.0 6.0 15.0 16.0 -
AutoEval (Pan et al., 2024) 20.2 25.5 18.1 25.4 28.6 31.9 46.7
BrowserGym (Drouin et al., 2024) 23.5 - - - - - -
BrowserGymax−tree 15.0 17.2 14.8 20.2 19.0 25.5 7.9

AWM (OURS) 35.5 30.8 29.1 50.9 31.8 43.3 5.9

To confirm that the benefits of AWM are not just from learn-
ing workflows that help only within a template, and investi-
gate whether AWM can obtain cross-template (≈cross-task)
generalization, we extract a subset of WebArena examples
sourcing from non-overlapping templates, by grouping ex-
amples by their templates and randomly choosing one ex-
ample from each template group. We run AWM on this
cross-template subset and examine if it achieves similar
performance gains.

As shown in Table 2, AWM still achieves the highest per-
formance, overall and on each website split. These results
demonstrate that AWM induced workflows can effectively
generalize across different tasks, i.e., examples instantiated
from different task templates.

Find a place by its name Get the zip code of a place
Task Objective: Show me {location} on the map
Action Trajectory:
To find the {location}, I will search for
"{location}" on OpenStreetMap.

Task Objective: Tell me the zip of code of {location}
Action Trajectory:
To find the zip code of {location}, I will first search for {location} on
OpenStreetMap. Once located, I will extract the zip code from the map or
the associated information

The search results have provided multiple
locations…. This location includes the zip code.

fill('145', {location})
click('147')

send_msg_to_user("The zip code is {zip-code}")

fill('145', {location})
click('147')

Adopt the first few
steps from earlier,
easier workflows

Add more steps to
build increasingly
complex workflows

Find a place by its name Get the zip code of a place
Task Objective: Show me {location} on the map
Action Trajectory:
To find the {location}, I will search for
"{location}" on OpenStreetMap.

Task Objective: Tell me the zip of code of {location}
Action Trajectory:

To find the zip code of {location}, I will first search for {location} on
OpenStreetMap. Once located, I will extract the zip code from the
map or the associated information

The search results have provided multiple
locations…. This location includes the zip code.

fill('145', {location})
click('147')

send_msg_to_user("The zip code is {zip-code}")

fill('145', {location})
click('147')

Adopt the first few
steps from earlier,
easier workflows

Add more steps to
build increasingly
complex workflows

Figure 5. AWM builds increasingly complex workflows over time,
by learning from past examples and earlier workflows.

Building increasingly complex workflows To more in-
tuitively demonstrate AWM’s cross-template generalization
and ability to build increasingly complex workflows (as ex-
emplified in Figure 1), we conduct a case study to illustrate
the workflow mechanism behind it.

As exemplified in Figure 5, the agent creates and learns the
“Find a place by its name” workflow in the early stage of
the online process by summarizing past examples. Later,
when encountering an example that further asks to obtain
the zip code of the location, AWM agent learns to adopt
the first few steps to find locations by following the existing
workflow, and then conducts further steps to obtain the zip
code of the place found. Integrating these new steps upon
the vanilla find location task, the agent successfully builds a
more complex workflow, i.e., “get the zip code of a place”.
We further examine whether example ordering affects this
gradual induction process in §E.

3.2. Mind2Web
Mind2Web (Deng et al., 2023) features web navigation in
cross-task, website, and domain settings, stressing the gen-
erality of agents on versatile operations and environments.
Each task in Mind2Web has a fixed number of steps; at
each step, the agent needs to predict an action, which is
evaluated by: (1) element accuracy: to check if the correct
page element is selected, (2) action F1 to check if the action
taken on the element is correct, and aggregating (1) and (2)
yields (3) step success rate which checks that both element
and action selection are correct at the current step. Lastly,
after completing every step in the given task, the last metric
(4) task-level success rate measures if all intermediate steps
are successfully conducted for this task, i.e., all steps for
this task score 1 under metric (3).

Because Mind2Web provides a training set that covers part
of the tested websites (the cross-task split), we explore both
the offline setting that induces workflows from the training
set and applies to test sets, and the online setting, where
we stream workflow induction and inference on test queries
(§2.3).

Since we focus on LM-based agents that only take textual
inputs, we compare AWM to two state-of-the-art methods,
MindAct (Deng et al., 2023) and Synapse (Zheng et al.,
2024). MindAct introduces webpage element filtering and
multi-choice task format to ease observation processing, and
Synapse changes the format to a trajectory style and aug-
ments retrieved relevant examples. We integrate the element
filtering adopted in both methods, and added workflows
instead of retrieved examples in Synapse, to verify the supe-
riority of reusable workflows over concrete examples. To
fairly compare with all baseline methods, we run AWM
with both gpt-3.5-turbo and gpt-4 models with tem-
perature 0.0. We use the same model for neural workflow
induction and agent action generation.

3.2.1. MAIN RESULTS

We first run with AWM offline using both GPT variants,
and find that AWM consistently obtains the highest success
rate in both step and task levels, leading to 4.0–8.9% rela-

5

Agent Workflow Memory

Table 2. Task success rate on the cross-template subset of WebArena, as well as the result breakdown on each website split. We mark the
number of examples for each website split under the name.

Method Total SR Shopping CMS Reddit GitLab Maps
(51) (45) (24) (45) (32)

With human engineered workflows
*SteP (Sodhi et al., 2023) 32.1 26.5 29.3 52.2 27.3 36.4

Autonomous agent only
AutoEval (Pan et al., 2024) 23.2 12.2 17.1 21.7 31.8 36.4
BrowserGymax−tree 20.5 10.4 17.8 23.1 27.3 28.6
AWM (OURS) 33.2 24.5 29.3 52.2 31.8 39.4

Table 3. AWM offline results on Mind2Web cross-task dataset.
Elem Acc and SR are short for element accuracy and success
rate. We footnote the GPT variant used by each method, 3.5
and 4 stands for gpt-3.5-turbo and gpt-4, respectively. We
highlight the best result within the same model variant.

Method Elem Acc Action F1 Step SR SR

MindAct3.5 20.3 56.6 17.4 0.8
CogAgent3.5 - - 18.6 -
Synapse3.5 34.0 - 30.6 2.4
AWM3.5 39.0 52.8 34.6 2.8

MindAct4 41.6 60.6 36.2 2.0
AWM4 50.6 57.3 45.1 4.8

tive and 0.4–2.8 absolute points increases in step-wise and
task-wise success rates than the baselines — Synapse with
gpt-3.5-turbo and MindAct with gpt-4. Decompos-
ing the step success rate by element and action selection
and accuracy, we notice the increases mainly come from
more accurate element selection, as indicated by the 5.0–9.0
element accuracy increase in Table 3.

Abstract sub-routines vs. concrete experiences More
specifically, compared to the Synapse (Zheng et al., 2024)
method that retrieves the most relevant training examples,
AWM achieves a +5.0 element accuracy and leads to a +4.0
increase in step success rate. While augmenting concrete,
full examples may bias agents to select elements similar to
those presented in the given examples, AWM introduces
less bias on element selection via its abstract representation
of example-specific contexts in workflows, and therefore
enables higher step success rates.

Furthermore, AWM integrates frequently-used sub-routines,
which can be more flexibly and readily leveraged across test
examples, compared to the full example trajectories used
by Synapse, which are less likely to appear multiple times.
In general, our results indicate that the abstract, reusable
nature of workflows contributes to the superiority of the
AWM method.

Learn to diverge from workflow guidelines Despite
more accurate element selection, AWM gets slightly lower
action F1 scores than MindAct, possibly because the aug-

mented workflows may guide the agent to take certain ac-
tions aligning to the workflows, which are not always rel-
evant to the particular environment state at hand. While
following the workflows generally results in more success-
ful task trajectories, agents still encounter challenges in
identifying places to diverge from the workflow guidelines.

3.2.2. ONLINE AWM ENABLES GENERALIZATION

Beyond the offline induction setting, we further explore the
AWM in the online setting, similar to the WebArena experi-
ment setup in §3.1, where no additional training examples
are needed besides test queries. This naturally facilitates
cross-website and cross-domain generalization, which we
examine on the two other splits provided by the Mind2Web
dataset: cross-website and cross-domain tests.

In addition to the MindAct baseline, we additionally set bars
with our AWMoffline setup, by randomly selecting work-
flows induced from the training set as memory augmenta-
tions. Specifically, for cross-website examples, we select
workflows from the same domain; for the cross-domain
setting, we randomly select workflows from all domains.
We conduct AWMonline by iteratively inducing, integrat-
ing, and utilizing workflows over test inferences. We also
explore AWMoffline+online in §C.

As shown in Table 4, both AWMonline and AWMoffline

surpass the MindAct baseline by a large margin, resulting
in 7.4–8.9, 3.6–3.8, and 14.0–16.9 absolute point improve-
ments in step success rates, in cross-task, cross-website, and
cross-domain scenarios.

In-domain, cross-task scenario When tested in-domain,
AWMonline and AWMoffline perform comparably to each
other. When inspecting the model behaviors in detail, we
notice the pros and cons of each method. AWMonline in-
duces workflows from model-predicted trajectories that are
not always correct, thus can lead to incorrect workflows that
degrade model performance. On the other hand, the training
and test examples on some websites vary in task distribu-
tions (e.g., training examples cover how to buy items on
Amazon, test examples ask for job applications to Amazon
careers.). AWMonline naturally resolves this train-test gap

6

Agent Workflow Memory

Table 4. Success rate on Mind2Web cross-task, cross-website, and cross-domain generalization test, using gpt-4 model. EA is short for
element accuracy and AF1 is short for action F1.

Method Cross-Task Cross-Website Cross-Domain
EA AF1 Step SR SR EA AF1 Step SR SR EA AF1 Step SR SR

MindAct* 41.6 60.6 36.2 2.0 35.8 51.1 30.1 2.0 21.6 52.8 26.4 2.0

AWMoffline 50.6 57.3 45.1 4.8 41.4 46.2 33.7 2.3 36.4 41.6 32.6 0.7
AWMonline 50.0 56.4 43.6 4.0 42.1 45.1 33.9 1.6 40.9 46.3 35.5 1.7

because its operating process only involves test queries and
environments, therefore yields workflows that are presum-
ably more targeted toward the test distribution, which in
turn, leads to higher success rates overall. Nonetheless, if
distribution-matching, high-quality training examples are
available, AWMoffline could bring more benefit by alleviat-
ing the gap issue, as the slightly higher cross-tasks scores
of AWMoffline in Table 4.

Extending to unseen websites and domains When
applied on unseen websites or domains, AWMonline

demonstrates greater generalization abilities, compared to
AWMoffline . The performance margin of AWMonline (over
AWMoffline) widens as the domain gaps between train-
ing and testing data widen from different websites (e.g.,
apple to bestbuy) to different domains (e.g., macys in
shopping domain to reddit in social media domain). Be-
cause AWMonline does not require nor rely on informa-
tion from the training data, it is not affected by any do-
main gaps. Nonetheless, as demonstrated by the substantial
improvements of AWMoffline over the MindAct baseline,
AWMoffline still demonstrates that models can benefit from
mechanistically similar workflows from the previously in-
duced workflow repository.

4. Exploring Optimal Workflow
Representations

In this section, we experiment with other possible alterna-
tives to better represent the workflows. Specifically, we
ablate workflows in sub-routine, abstract formats (§4.1),
explore workflows in descriptive texts (§4.2), and lastly, be-
yond the default workflows that describe environment state
in NL, we compare strengthened observations with website
HTML within workflow steps (§4.3).

4.1. How much does the sub-routine, abstract format
contribute?

In this section, we compare our abstract, sub-routine-based
induction method using LMs to a rule-based method without
context and sub-routine abstraction.

Specifically, our rule-based induction Irule first extracts the
action sequence (e.g., CLICK → CLICK → TYPE) of each
experience and deduplicates experiences by their action
sequence. In each unique experience, we then remove the

steps whose action cannot be executed on the environment.
We take these unique, validated experiences as workflows.
Find more detailed descriptions in §B.

Table 5. AWM success rate on WebArena using gpt-4, with rule-
and lm-based induction.

Method Total SR # Steps

AWMrule 35.6 6.3
AWMlm 35.5 5.9

WebArena Results As shown in Table 5, using rule- and
LM-based workflow induction performs comparably, with a
small 0.1 gap in success rate; the LM-based method appears
more efficient and uses 0.4 fewer steps. Our manual analysis
found workflows produced by the LM-based induction mod-
ule Ilm are finer-grained, preventing agents from following
unnecessary steps that sometimes appear in rule-induced
workflows, hence making the task-solving process slightly
more efficient.

Table 6. AWM results with different workflow induction methods
on Mind2Web cross-task dataset.

Method Elem Acc Action F1 Step SR SR

MindAct4 41.6 60.6 36.2 2.0
AWM4,rule 49.5 57.0 43.4 2.0
AWM4,lm 50.6 57.3 45.1 4.8

Mind2Web Results In Table 6, compared to AWMrule,
AWMlm improves by a 2.8 margin. While augmenting
concrete, full examples may bias agents to select elements
similar to those presented in the given examples, AWM
lm introduces less bias on element selection via its abstract
representation of example-specific contexts in workflows.

Further, AWM lm uses frequently-used sub-routines, which
can be more flexibly and readily utilized across test exam-
ples, compared to the full example trajectories induced by
AWM rule , which are less likely to appear multiple times.
In general, our results indicate that the abstract, reusable
nature of workflows contributes to the efficacy of AWM lm

method.

4.2. Workflows in Descriptive Texts
AWM represents workflow steps in a program format. In
this section, we compare with a textual format for work-

7

Agent Workflow Memory

flows, to understand whether text or code serves as a better
format for agent memory. More concretely, we prompt
gpt-3.5-turbo to verbalize the action trajectory in the
workflows induced in earlier experiments. For example,
from an action CLICK({submit-id}), its verbalized
NL representation reads similar to “CLICK the submit but-
ton”. We use the same textual observation and thoughts
from code actions as observation and thoughts in these text
actions.

Table 7. Mind2Web cross-task results with AWM using code and
text workflows.

Method Elem Acc Action F1 Step SR SR

MindAct 41.6 60.6 36.2 2.0

AWM 50.6 57.3 45.1 4.8
AWMtext 51.2 57.4 45.4 3.6

From the results in Table 7, AWMtext achieves slightly
higher element selection accuracy and step success rate, by
0.6 and 0.3 points, respectively, yet degrades 1.2 in task suc-
cess rate. Overall, we do not find substantial performance
variance between workflows represented in text and code
formats, indicating that both forms can be effective. See §F
for more studies on executable action workflows.

4.3. Environment Abstraction in Workflows
AWM describes intermediate webpage states using NL, yet
showing concrete states may be helpful to better ground
agents on the environment. Since a webpage’s full HTML
can be overly long, we filter the webpage representation
using the relevance predictor of Deng et al. (2023), and
augment each workflow step with this shortened HTML
that only has elements predicted as relevant. We run
gpt-3.5-turbo with only descriptions, only HTML,
and both types of content.

Table 8. Mind2Web results using GPT-3.5-turbo with different en-
vironment representations.

Desc. HTML Elem Acc Act F1 Step SR SR

✓ ✗ 39.0 52.8 34.6 2.8
✗ ✓ 38.1 54.0 33.8 2.8
✓ ✓ 37.1 51.3 32.9 2.0

As shown in Table 8, NL description of states is more useful
than HTML, as replacing NL with HTML leads to a slight
0.8 drop in step success rate. Interestingly, using both NL
and filtered HTML leads to worse results. We conjecture
the reason to be two-fold. First, adding NL and HTML sub-
stantially increases the context length, thus making it harder
for models to handle things correctly. Second, the filtered
HTML has a substantial number of irrelevant items (miss-
ing all correct elements 47% of the time) thus potentially
contradicting NL descriptions and impairing agent abilities.

5. Related Work
Web Agent Benchmarks The first modern and widely
used web agent benchmark is Shi et al. (2017)’s MiniWob,
which evaluates across various scenarios such as flight book-
ing. (Liu et al., 2018) then created MiniWob++ with extra
challenges. More recently, WebShop (Yao et al., 2022) fea-
tures a simulated e-commerce website and crowd-sourced
text instructions. WebArena (Zhou et al., 2024) integrates
four more websites and enables realistic execution-based
evaluations, and VisualWebArena (Koh et al., 2024) extends
with tasks that necessitate visual inputs. Mind2Web (Deng
et al., 2023) proposes versatile tasks and stresses agent gen-
eralization across websites and domains. We use WebArena
and Mind2Web to evaluate our method’s task success and
generality.

Enhancing Agents for Complex Tasks Many works im-
prove agents by modifying their action space, such as con-
straining its action search space (Liu et al., 2018), enabling
LM self-feedback to refine predicted actions (Sun et al.,
2023), or incorporating human-designed actions to certain
tasks (Sodhi et al., 2023; Sarch et al., 2024). Other works
explore ways to augment agent memory, such as adding
example demonstrations in context (Haluptzok et al., 2023;
Zheng et al., 2024; Fu et al., 2024). However, high-quality
examples are not always available or easy to collect. Our
AWM can flexibly operate even when auxiliary examples
are non-existent and only test queries are available.

Learning Common Procedures from Experiences
Some works use full examples (Zheng et al., 2024) as con-
text for an agent, yet they entangle with example-specific
contexts and face challenges in extrapolating to other tasks
or domains (Majumder et al., 2023). Many works propose to
extract frequently reused sub-routines from experiences with
rule-based (Ellis et al., 2023; Bowers et al., 2023; Grand
et al., 2023) or LM-based methods (Cai et al., 2023; Wang
et al., 2024c;a) methods, and use them as auxiliary skills
to ease future task-solving (Oh et al., 2017; Liang et al.,
2023; Yu et al., 2023; Mao et al., 2023). We explored both
rule- and LM-based methods to induce reusable workflows,
and use them flexibly as context guidance that are free of
environment grounding issues.

6. Conclusion
We propose agent workflow memory that induces, augments,
and uses workflows, offline from available examples or
purely online at inference time. We evaluate AWM on
WebArena and Mind2Web, and achieve 24.6% and 51.1%
relative increases in task success rate. AWM also demon-
strates its superior generalization abilities across tasks, web-
sites, and domains. We hope AWM sheds insight on and
boosts advances in dynamic memory building and agent
adaptations on varied digital tasks.

8

Agent Workflow Memory

Acknowledgments
We thank Frank Xu, Jiayi Pan, Vijay Viswanathan, Chenglei
Si, and Jason Wu for their helpful discussions during the
early stage of this project. We would like to thank members
of NeuLab and DFried Lab at Carnegie Mellon University
for their valuable feedback and comments on the paper.
Zora Zhiruo Wang is supported by the CMU Presidential
Fellowship and Fujitsu Research.

Impact Statement
This paper presents work whose goal is to advance large
language model-supported digital agents. While utilizing
digital agents in practice can facilitate users in completing
computer-using tasks, these agents may not perform per-
fectly accurately, and ensuring safety and privacy through-
out the usage is still an open problem in the field.

References
Bowers, M., Olausson, T. X., Wong, L., Grand, G., Tenen-

baum, J. B., Ellis, K., and Solar-Lezama, A. Top-down
synthesis for library learning. Proc. ACM Program.
Lang., 7(POPL), jan 2023. doi: 10.1145/3571234. URL
https://doi.org/10.1145/3571234.

Cai, T., Wang, X., Ma, T., Chen, X., and Zhou, D.
Large language models as tool makers. arXiv preprint
arXiv:2305.17126, 2023. URL https://arxiv.org/pdf/2305.
17126.

Chi, M. T., Feltovich, P. J., and Glaser, R. Categorization
and representation of physics problems by experts and
novices. Cognitive science, 5(2):121–152, 1981.

Chi, M. T., Glaser, R., and Farr, M. J. The nature of expertise.
Psychology Press, 2014.

Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang,
B., Sun, H., and Su, Y. Mind2web: Towards a gener-
alist agent for the web. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023. URL https://openreview.net/
forum?id=kiYqbO3wqw.

Drouin, A., Gasse, M., Caccia, M., Laradji, I. H., Del Verme,
M., Marty, T., Boisvert, L., Thakkar, M., Cappart, Q.,
Vazquez, D., et al. Workarena: How capable are web
agents at solving common knowledge work tasks? arXiv
preprint arXiv:2403.07718, 2024.

Ellis, K., Wong, L., Nye, M., Sable-Meyer, M., Cary, L.,
Anaya Pozo, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. B. Dreamcoder: growing generalizable, inter-
pretable knowledge with wake–sleep bayesian program

learning. Philosophical Transactions of the Royal Society
A, 381(2251):20220050, 2023.

Fu, Y., Kim, D.-K., Kim, J., Sohn, S., Logeswaran, L.,
Bae, K., and Lee, H. Autoguide: Automated generation
and selection of state-aware guidelines for large language
model agents. arXiv preprint arXiv:2403.08978, 2024.

Grand, G., Wong, L., Bowers, M., Olausson, T. X., Liu,
M., Tenenbaum, J. B., and Andreas, J. Lilo: Learning
interpretable libraries by compressing and documenting
code. arXiv preprint arXiv:2310.19791, 2023.

Haluptzok, P., Bowers, M., and Kalai, A. T. Language
models can teach themselves to program better. In The
Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=
SaRj2ka1XZ3.

Koh, J. Y., Lo, R., Jang, L., Duvvur, V., Lim, M. C., Huang,
P.-Y., Neubig, G., Zhou, S., Salakhutdinov, R., and Fried,
D. Visualwebarena: Evaluating multimodal agents on
realistic visual web tasks. In ICLR 2024 Workshop on
Large Language Model (LLM) Agents, 2024. URL https:
//openreview.net/forum?id=RPKxrKTJbj.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B.,
Florence, P., and Zeng, A. Code as policies: Language
model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 9493–9500. IEEE, 2023.

Liu, E. Z., Guu, K., Pasupat, P., and Liang, P. Reinforcement
learning on web interfaces using workflow-guided explo-
ration. In International Conference on Learning Repre-
sentations, 2018. URL https://openreview.net/forum?id=
ryTp3f-0-.

Majumder, B. P., Mishra, B. D., Jansen, P., Tafjord, O.,
Tandon, N., Zhang, L., Callison-Burch, C., and Clark,
P. Clin: A continually learning language agent for
rapid task adaptation and generalization. arXiv preprint
arXiv:2310.10134, 2023.

Mao, J., Lozano-Pérez, T., Tenenbaum, J. B., and Kael-
bling, L. P. Learning reusable manipulation strategies. In
Conference on Robot Learning, pp. 1467–1483. PMLR,
2023.

Murty, S., Manning, C., Shaw, P., Joshi, M., and Lee, K.
Bagel: Bootstrapping agents by guiding exploration with
language. arXiv preprint arXiv:2403.08140, 2024.

Oh, J., Singh, S., Lee, H., and Kohli, P. Zero-shot task gen-
eralization with multi-task deep reinforcement learning.
In International Conference on Machine Learning, pp.
2661–2670. PMLR, 2017.

9

https://doi.org/10.1145/3571234
https://arxiv.org/pdf/2305.17126
https://arxiv.org/pdf/2305.17126
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=SaRj2ka1XZ3
https://openreview.net/forum?id=SaRj2ka1XZ3
https://openreview.net/forum?id=RPKxrKTJbj
https://openreview.net/forum?id=RPKxrKTJbj
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-

Agent Workflow Memory

Pan, J., Zhang, Y., Tomlin, N., Zhou, Y., Levine, S., and
Suhr, A. Autonomous evaluation and refinement of digital
agents. arXiv preprint arXiv:2404.06474, 2024.

Rawles, C., Li, A., Rodriguez, D., Riva, O., and Lillicrap,
T. P. Androidinthewild: A large-scale dataset for android
device control. In Thirty-seventh Conference on Neu-
ral Information Processing Systems Datasets and Bench-
marks Track, 2023. URL https://openreview.net/forum?
id=j4b3l5kOil.

Rawles, C., Clinckemaillie, S., Chang, Y., Waltz, J., Lau,
G., Fair, M., Li, A., Bishop, W., Li, W., Campbell-
Ajala, F., et al. Androidworld: A dynamic benchmark-
ing environment for autonomous agents. arXiv preprint
arXiv:2405.14573, 2024.

Sarch, G., Jang, L., Tarr, M. J., Cohen, W. W., Marino, K.,
and Fragkiadaki, K. Ical: Continual learning of multi-
modal agents by transforming trajectories into actionable
insights. arXiv preprint arXiv:2406.14596, 2024.

Shi, T., Karpathy, A., Fan, L., Hernandez, J., and Liang, P.
World of bits: An open-domain platform for web-based
agents. In Precup, D. and Teh, Y. W. (eds.), Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 3135–3144. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/shi17a.html.

Sodhi, P., Branavan, S., and McDonald, R. Heap: Hierar-
chical policies for web actions using llms. arXiv preprint
arXiv:2310.03720, 2023.

Sun, H., Zhuang, Y., Kong, L., Dai, B., and Zhang, C.
Adaplanner: Adaptive planning from feedback with lan-
guage models. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=rnKgbKmelt.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C.,
Zhu, Y., Fan, L., and Anandkumar, A. Voyager: An
open-ended embodied agent with large language mod-
els. Transactions on Machine Learning Research, 2024a.
ISSN 2835-8856. URL https://openreview.net/forum?id=
ehfRiF0R3a.

Wang, Z., Cheng, Z., Zhu, H., Fried, D., and Neubig, G.
What are tools anyway? a survey from the language
model perspective. In First Conference on Language
Modeling, 2024b. URL https://openreview.net/forum?id=
Xh1B90iBSR.

Wang, Z., Neubig, G., and Fried, D. TroVE: Inducing veri-
fiable and efficient toolboxes for solving programmatic
tasks. In Forty-first International Conference on Machine
Learning, 2024c. URL https://openreview.net/forum?id=
DCNCwaMJjI.

Yao, S., Chen, H., Yang, J., and Narasimhan, K.
Webshop: Towards scalable real-world web inter-
action with grounded language agents. In Koyejo,
S., Mohamed, S., Agarwal, A., Belgrave, D., Cho,
K., and Oh, A. (eds.), Advances in Neural Infor-
mation Processing Systems, volume 35, pp. 20744–
20757. Curran Associates, Inc., 2022. URL https:
//proceedings.neurips.cc/paper files/paper/2022/file/
82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.
pdf.

Yoran, O., Amouyal, S. J., Malaviya, C., Bogin, B., Press,
O., and Berant, J. Assistantbench: Can web agents
solve realistic and time-consuming tasks? arXiv preprint
arXiv:2407.15711, 2024.

Yu, W., Gileadi, N., Fu, C., Kirmani, S., Lee, K.-H., Are-
nas, M. G., Chiang, H.-T. L., Erez, T., Hasenclever, L.,
Humplik, J., et al. Language to rewards for robotic skill
synthesis. arXiv preprint arXiv:2306.08647, 2023.

Zheng, L., Wang, R., Wang, X., and An, B. Synapse:
Trajectory-as-exemplar prompting with memory for com-
puter control. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=Pc8AU1aF5e.

Zhou, S., Xu, F. F., Zhu, H., Zhou, X., Lo, R., Sridhar, A.,
Cheng, X., Ou, T., Bisk, Y., Fried, D., Alon, U., and
Neubig, G. Webarena: A realistic web environment for
building autonomous agents. In The Twelfth International
Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=oKn9c6ytLx.

10

https://openreview.net/forum?id=j4b3l5kOil
https://openreview.net/forum?id=j4b3l5kOil
https://proceedings.mlr.press/v70/shi17a.html
https://openreview.net/forum?id=rnKgbKmelt
https://openreview.net/forum?id=rnKgbKmelt
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=Xh1B90iBSR
https://openreview.net/forum?id=Xh1B90iBSR
https://openreview.net/forum?id=DCNCwaMJjI
https://openreview.net/forum?id=DCNCwaMJjI
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://openreview.net/forum?id=Pc8AU1aF5e
https://openreview.net/forum?id=Pc8AU1aF5e
https://openreview.net/forum?id=oKn9c6ytLx

Agent Workflow Memory

A. LM-Based Workflow Induction
As introduced in §2.3, one realization of our workflow induction module is to prompt LMs to generate abstract, sub-routine
workflows from the given examples, i.e., experience. In this section, we provide the detailed model prompt, exemplar
workflows induced by models, and quality examination on these workflows.

A.1. Model Prompt

We provide the exact prompt inputted to the model for WebArena and Mind2Web experiments below. Experiments on both
datasets use the same prompt.

Given a list of web navigation tasks, your task is to extract the common workflows.
Each given task contains a natural language instruction, and a series of actions to solve the task. You need to find the
repetitive subset of actions across multiple tasks, and extract each of them out as a workflow.
Each workflow should be a commonly reused sub-routine of the tasks. Do not generate similar or overlapping workflows.
Each workflow should have at least two steps. Represent the non-fixed elements (input text, button strings) with descriptive
variable names as shown in the example.

A.2. Example Workflows

We present several exemplar workflows induced on WebArena and Mind2Web, to give a more concrete impression of
workflows.

WebArena Workflows We show one example workflow on each website involved in WebArena.

shopping: Browse Products in a Specific Category
To browse products in a specific category, I need to navigate to the relevant main category. I will start by hovering over
the main category menu item to reveal the subcategories.
hover(’main category id’)
To browse products in the specific subcategory, I need to click on the subcategory link.
click(’subcategory id’)

shopping admin: Edit and Save Changes
This workflow is used to edit specific fields and save changes.
To edit a specific field, I need to locate the field and update its value.
clear(’field id’)
fill(’field id’, ’new value’)
Next, I need to save the changes by clicking the ”Save” button.
click(’save button id’)

reddit: Navigate to a forum section and select a specific forum
To navigate to a specific forum, I need to click on the ”Forums” section.
click(’42’)
Now, I need to click on the specific forum link based on the forum name provided.
click(’<forum link id>’)

gitlab: Navigation to Repository and Contributors Section
This workflow involves searching for a repository and navigating to its contributors to find detailed contribution data.
First, search for the specific repository to gather information.
fill(’130’, ’{RepositoryName}’)
press(’130’, ’Enter’)
Navigate to the “Contributors” section to view contribution details.
click(’311’) # “Contributors” link
Obtain and report the required contributor details.
send msg to user(’{ContributorDetails}’)

11

Agent Workflow Memory

map: Calculate Travel Time and Distance
To calculate travel time and distance between two locations, I will use the directions feature. I will fill in the respective
fields and select the mode of transportation.
fill(’158’, ’FROM LOCATION’)
fill(’163’, ’TO LOCATION’)
select option(’166’, ’MODE OF TRANSPORTATION’)
click(’171’)
I will use these details to provide the user with accurate travel time and distance information.
send msg to user(’The distance between FROM LOCATION and TO LOCATION is DISTANCE
and the estimated travel time is TIME.’)

Mind2Web Workflows We present one example workflow in each data domain in Mind2Web.

travel: enter flight locations
Given that you are on the flight booking page, this workflow enters the departure and destination city/airport for your
flight.
[link] From Departure Airport or City Your Origin − > CLICK
[textbox] Origin City or Airport − > TYPE: {your-origin-city}
[link] {best-popup-option} − > CLICK
[link] To Destination Airport or City Your Destination − > CLICK
[textbox] Destination City or Airport − > TYPE: {your-destination-city}
[link] {best-popup-option} − > CLICK

shopping: search and sort
Given that you are on the Amazon search results page, this workflow searches for a product and sorts the results.
[textbox] Search Amazon − > TYPE: {search-term}
[button] Go − > CLICK
[span] Sort by: − > CLICK
[option] {sort-option} − > CLICK

entertainment: search and select
Given that you are on the IMDb homepage, this workflow searches for a term and selects the best match.
[textbox] Search IMDb − > TYPE: {search-term}
[button] Submit Search − > CLICK
[button] {best-match} − > CLICK

A.3. Workflow Quality Analysis

To provide intermediate information beyond the end-to-end task success, we propose several metrics to verify the quality
of the model-induced workflows. (1) Number of workflows: The number of workflows augmented to the memory, fewer
workflows is better, whereas agents rely on fewer workflows to achieve satisfactory performance. (2) Coverage: How many
steps in the action trajectory are covered by the workflows, higher coverage presumably signals the general applicability of
the concerned workflow. (3) Function overlap: How much functionality overlap exists between workflows, we measure this
by counting the number of overlapping sub-trajectories (≤ 2 steps) between each workflow pair for the same website. Less
overlap indicates more maximized workflow management. (4) Utility rate: How often are workflows used by test examples.

We evaluate the workflows on WebArena test examples and Mind2Web cross-task test examples. We do not evaluate
coverage on WebArena since it requires canonical trajectories, yet which are not available for WebArena. For Mind2Web,
we do not evaluate on cross-website and cross-domain test examples since workflows induced from training examples do not
have domain overlapping with these test examples, thus less applicable to them.

As shown in Table 9, neural-based induction produces 7.3–7.4 workflows per example, which is efficient and do not add too
much content to the memory. On WebArena, the induced workflows are used by 0.94 of the test examples, indicating its wide
applicability among varied tasks. Further, only 0.08 of the steps between workflows overlap, demonstrating the efficiency of
workflows in solving respective tasks. Workflows on Mind2Web, although used similarly frequently as indicated by the high

12

Agent Workflow Memory

Table 9. Quality evaluation of model-induced workflows on Mind2Web dataset.

Metric # Workflows Coverage Function Overlap Utility Rate

WebArena 7.4 - 0.08 0.94
Mind2Web 7.3 0.40 0.20 0.91

0.91 utility rate, have slightly more functional overlap, and only achieve a 0.40 coverage over test examples. However, as
the training examples used to induce workflows have substantial task distribution variances with the cross-task test examples,
this relatively low coverage is reasonable.

B. Rule-Based Workflow Induction
Beyond LM-based workflow induction, we also explored a rule-based workflow induction method. Our rule-based workflow
induction module consists of two steps: (i) experience deduplication, and (2) invalid action filtering.

For deduplication, we extract the action sequence of the experience, e.g., extracting CLICK → CLICK → TYPE from
the trajectory CLICK(’12’) → CLICK(’30’) → TYPE(’44’, "cat"). We group experiences by their action
sequence and randomly select n (n = 1 by default) experiences from each group. Specifically on WebArena, where the task
template for each experience is available. We conduct another round of deduplication by grouping experiences by their task
template, and randomly selecting n (n = 1 by default) experiences from each group. This process yields diverse experiences
from the given set of experiences.

Next, for each unique experience, we remove the invalid steps in its action trajectory. Invalid actions means actions that
cannot be successfully executed on the environment, because the input arguments do not meet the requirement of the action
function. Specifically, we have one rule of determining invalid actions for CLICK and TYPE, that requires the first argument
to be a string-formatted integer (which refers to the id of an element in the environment). We remove CLICK and TYPE
steps if they do not meet this requirement. For example, an experience with trajectory CLICK(12)→ CLICK(’12’)
→ CLICK(’30’)→ TYPE(44, "cat")→ TYPE(’44’, "cat") will yield CLICK(’12’)→ CLICK(’30’)
→ TYPE(’44’, "cat"). We conduct this invalid action filtering for each unique experience, and take the resulting
experiences as rule-based workflows.

C. Integrating AWM Offline and Online
We compared AWMoffline and AWMonline in §3.2, that adopts workflows induced separately from training or on-the-fly
during testing, respectively. In this section, we explore an integration of both sets of workflows, AWMoff+on , that injects
relevant training workflows to warm start task-solving, but also aggregates increasingly more online-induced workflows to
better adapt to test distributions.

Table 10. Success rate on Mind2Web cross-task, cross-website, and cross-domain generalization test, using gpt-4 model. EA is short for
element accuracy and AF1 is short for action F1.

Method Cross-Task Cross-Website Cross-Domain
EA AF1 Step SR SR EA AF1 Step SR SR EA AF1 Step SR SR

MindAct* 41.6 60.6 36.2 2.0 35.8 51.1 30.1 2.0 21.6 52.8 18.6 1.0

AWMoffline 50.6 57.3 45.1 4.8 41.4 46.2 33.7 2.3 36.4 41.6 32.6 0.7
AWMonline 50.0 56.4 43.6 4.0 42.1 45.1 33.9 1.6 40.9 46.3 35.5 1.7
AWMoff+on 50.0 57.0 44.5 1.6 41.8 45.5 33.3 1.1 39.3 44.3 34.1 1.5

From Table 10, AWMoff+on scores between AWMoffline and AWMonline across three test splits. Rather than an additive
effect, workflows induced offline and online are not fully compatible with each other, particularly, the offline workflows
seem to impair the generative quality and utility efficacy of online workflows, therefore resulting in medium results overall.

D. Efficiency Discussion
In addition to task success rate, the efficiency and scalability of agents are crucial too. In addition to reporting the number of
steps in §3, we provide a more detailed analysis of the computation cost for each of the modules involved in AWM.

13

Agent Workflow Memory

Besides the action generation step, our AWM approach adds two other steps — trajectory evaluation and workflow induction.
We calculate the average computation of all three steps by the number of input, output, total tokens per step, the average
number of times that the step occurs per task, and the total number of tokens used on average for a task. As shown in
Table 11, the trajectory evaluation step and workflow induction step only take 4.0% and 6.8% of the compute of the original
action generation step. Compared to the baseline method (using action generation step only), our AWM approach only adds
10.8% computation overhead, but brings a 51.5% accuracy increase in WebArena tasks, demonstrating the cost-effectiveness
of our AWM approach.

Table 11. Computation cost breakdown for action generation, trajectory evaluation, and workflow induction modules in AWM.

Step # Input Tokens # Output Tokens # Per Step Tokens # Occurance # Total Tokens

Action generation 5,663 52.0 5,715 5.9 33,718.5
Trajectory evaluation 306.8 82.8 389.6 5.9 2298.6
Workflow induction 306.8 328.7 635.5 2.1 1344.6

E. AWM Sensitivity to Example Ordering
The process of AWM gradually learning increasingly complex workflows may raise the hypothesis that, streaming the
examples in an easy-to-hard order may facilitate this gradual learning process and optimize AWM performance. Therefore,
we test the effect of example ordering in AWM experiments. We conduct this analysis on the Mind2Web dataset (cross-task
split); because WebArena examples need to be kept in the original order released to maintain the validity of the browser
environment (Zhou et al., 2024), we could not change the orders arbitrarily to examine this effect. We run the AWM
online approach to focus on test example ordering without being affected by other training examples during the offline
process. Specifically, we compare the (1) original ordering, (2) random shuffling as a comparison baseline, (3) easy-to-hard
ordering, and (4) hard-to-easy ordering. For (3) and (4), we measure the examples’ difficulty by the number of steps in the
ground-truth trajectory, i.e., the more steps, the harder the example. The results are shown in Table 12.

Table 12. Success rate on Mind2Web (cross-task) with AWM online in different example ordering.

Method Element Acc. Action F1 Step SR SR

MindAct* 41.6 60.6 36.2 2.8

Original 50.6 57.3 45.1 4.8
Random shuffle 49.4 57.9 45.9 4.0
Easy-to-hard 49.8 57.8 45.7 4.0
Hard-to-easy 48.5 59.0 45.6 4.2

First, AWM in all example orderings still substantially outperforms the MindAct baseline. Moreover, the ordering of
examples does not significantly affect the performance of our AWM approach, where all four example ordering achieves
similar step success rates. Coupled with a careful analysis of the derived workflows, we found that our design of the
“sub-task level” workflow contributes to AWM ’s robustness to example ordering —- regardless of the complexity of the task,
our method can induce usable workflow. Nonetheless, because each website in the Mind2Web dataset only has less than 20
examples, AWM’s robustness to example ordering in relatively small numbers of examples (as shown by the experiments
above) may not fully extrapolate larger datasets.

F. Exploring Workflow Utilization in Context and in Action
Besides integrating workflows as agent memory, we also explore workflows in expanding the agent action space, denoted as
AWMAS . We leverage the programmatic nature of workflows and wrap each workflow into a high-level function, similar to
a shortcut tool the agent can call to perform a pre-determined series of actions (Wang et al., 2024b). Formally, an agent is
initially equipped with default, primitive actions P (e.g., click, type), and AWMAS adds the induced workflow actions
W (e.g., find place, get place zipcode) to its action space.

The agent can call a primitive or workflow action at each step. When a primitive action is called, the agent immediately
takes that action. When the agent calls a workflow action, it will trigger the sequence of pre-determined steps in the
workflow. For example, calling the login(username, password) workflow action results in sequentially executing

14

Agent Workflow Memory

click(box1-id)→ type(box1-id, username)→ click(box2-id)→ type(box2-id, password)
→ click(submit-id). The workflow action is completed when all intermediate primitive actions are finished.

Table 13. Mind2Web results with AWMAS variant that alters the
action space besides memory augmentation. All methods use gpt-4.

Method Elem Acc Action F1 Step SR SR

MindAct 41.6 60.6 36.2 2.0
AWM 50.6 57.3 45.1 4.8
AWMAS 51.8 56.7 46.4 3.6

In Table 13, expanding the agent action space with work-
flows (AWMAS) slightly improves the step success rate
by 1.3 points, and gets the same overall success rate,
3.2, of the base memory-augmented AWM. We analyzed
agent predictions and found they call workflow actions in
merely 18.5% of the tasks, suggesting a resistance of cur-
rent agents to use newly-added actions. Overall, expand-
ing actions with workflows seems to reinforce workflows
in memory, and brings small extra gains as auxiliary actions.

However, workflow actions do not always lead to task success. A representative example is shown in Figure 6. When
booking flights, users often input a city name such as “New York,” yet the system often pops up some nearby airports to
support next-step search. While one can induce a book flight workflow that enters all required data via a pre-determined
action sequence, the action to choose pop-up airports is executed without seeing the intermediate states with available
pop-up options, and is not flexible enough to do so. More advanced techniques such as granting real-time state access
or dynamic execution loops can be promising to solve this issue, and we encourage future work to leverage the AWM
framework to explore these.

click(120) # id of textbox under ‘To*’
type(120, “New York”) # enter location

1

select(‘New York, NY, US (JFK)’)

2

Depend on the
pop up options

A
ct
io
n

En
vi
ro
nm

en
t

Figure 6. An example of dynamic environment changes that challenge workflow action utilization.

15

