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ABSTRACT

Diffusion models excel in generative tasks, but aligning them with specific objec-
tives while maintaining their versatility remains challenging. Existing fine-tuning
methods often suffer from reward over-optimization, while approximate guidance
approaches fail to effectively optimize target rewards. Addressing these limita-
tions, we propose a training-free sampling method based on Sequential Monte
Carlo (SMC) to sample from the reward-aligned target distribution. Our approach,
tailored for diffusion sampling and incorporating tempering techniques, achieves
comparable or superior target rewards to fine-tuning methods while preserving
diversity and cross-reward generalization. We demonstrate its effectiveness in
single-reward optimization, multi-objective scenarios, and online black-box opti-
mization. This work offers a robust solution for aligning diffusion models with
diverse downstream objectives without compromising their general capabilities.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., [2021c)) have revolution-
ized generative Al, excelling in tasks from Text-to-Image (T2I) generation (Rombach et al.,|[2022) to
protein structure design (Watson et al., [2023). However, diffusion models are typically pre-trained
on large uncurated datasets that may not accurately represent the desired target distribution. For in-
stance, in the T2I generation, real users want to produce aesthetically pleasing images while faithful
to prompt instructions, rather than generating random internet images from the pre-trained dataset.
Also, one might want to produce only specific cartoon character images, rather than general styles.
These challenges underscore the importance of alignment, a process to adapt diffusion models for
specific customized rewards.

Existing alignment approaches mainly fall into two categories: (1) fine-tuning and (2) guidance
methods. Fine-tuning approaches, including Reinforcement Learning (RL) (Fan et al.| 2024} |Black
et al., [2023) and direct backpropagation (Clark et al., 2024; |Prabhudesai et al., 2024), have shown
promising results in optimizing target rewards. However, it often suffers from the reward over-
optimization problem, sacrificing general image quality and diversity (Clark et al.| 2024} Gao et al.,
2022). On the other hand, guidance methods (Bansal et al., 2023; Yu et al., 2023} Song et al., 2023}
He et al., 2024)) offer a training-free alternative that stays closer to the pre-trained model distribution.
Meanwhile, they suffer from the reward under-optimization problem, failing to effectively optimize
target rewards due to their difficult reward approximation nature.

To address these limitations, we propose Diffusion Alignment as Sampling (DAS), a training-free
approach that both achieves effective reward alignment and preserves model generalization. To en-
sure better approximation of the reward without fine-tuning, DAS adopts Sequential Monte Carlo
(SMC) sampling methods to fix errors in guidance approaches, enabling direct sampling from a
reward-aligned target distribution. To do so, DAS incorporates a tempering technique to design
intermediate target distributions, which we demonstrate both theoretically and empirically to signif-
icantly improve the sample efficiency.

To validate its effectiveness for optimizing target reward without over-optimization, we apply DAS
to Stable Diffusion v1.5 (Rombach et al, [2022), targeting aesthetic reward, e.g., LAION aesthetic
score (Schuhmann, [2022) and human preference, e.g., PickScore (Kirstain et al., [2023)). Without
the computational burden of training or extensive hyperparameter tuning, DAS outperforms all fine-
tuning baselines in two target scores, while not sacrificing cross-reward generalization and output
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diversity. We further demonstrate the efficacy of DAS in multi-objective optimization, achieving
a new Pareto front when jointly optimizing CLIPScore (Hessel et al., |2021) and aesthetic score.
Moreover, the diverse sampling ability is especially beneficial in online settings with limited reward
queries. In such a difficult scenario, while existing methods drop the scores of unseen rewards due
to severe over-optimization, DAS improves the pre-trained T2I model by up to 20% in both target
and unseen rewards.

In summary, our main contributions are:

* We propose DAS, a training-free method for aligning diffusion models with arbitrary rewards
while preserving general capabilities.

* We provide theoretical analysis of DAS’s asymptotic properties, proving the benefits of tempering
in SMC sampling for diffusion models.

* We empirically validate DAS’s effectiveness across diverse scenarios, including single-reward,
multi-objective, and online black-box optimization tasks.

2 RELATED WORK

2.1 FINE-TUNING DIFFUSION MODELS FOR ALIGNMENT

Aligning pretrained models through fine-tuning has been extensively studied in language models
(Ziegler et al.|, 2020; |(Ouyang et al.l 2022} [Rafailov et al., 2023). For diffusion models, several
approaches have emerged. |Lee et al.| (2023) and [Wu et al.[(2023b)) employ supervised fine-tuning
with preference-based reward models. Black et al.|(2023)) and [Fan et al.|(2024) formulate sampling
as a Markov decision process and apply reinforcement learning (RL) to maximize rewards. |[Xu
et al.| (2024); Clark et al.|(2024) and |[Prabhudesai et al.| (2024)) fine-tune by direct backpropagation
through differentiable reward models. These approaches, however, face challenges with reward
over-optimization (Gao et al., [2022; (Coste et al., [2024), which may distort alignment or reduce
sample diversity. KL regularization has been proposed as a mitigation strategy (Fan et al.| [2024;
Uehara et al.| 20244a), inspired by its success in language models (Stiennon et al., 2020; [Ouyang
et al.| 2022; [Korbak et al.,[2022). Section[3.2]examines the limitations of this approach, focusing on
the mode-seeking behavior observed in the context of variational inference. While diffusion-based
samplers (Zhang & Chenl [2022} [Vargas et al.|[2023} |Berner et al.| [2024} |Sanokowski et al.| [2024)) use
similar training objective to sample from multimodal, unnormalized target density, the fine-tuning
setup makes training more susceptible to mode collapse (Appendix [E). Alternatively, Zhang et al.
(2024) approached over-optimization in RL fine-tuning through inductive and primacy biases.

2.2 GUIDANCE METHODS

Building on the score-based formulation of diffusion models (Song et al.,[2021c), various guidance
methods have been developed. While classifier guidance (Dhariwal & Nichol, [2021) requires addi-
tional training, recent works approximate guidance to use off-the-shelf classifiers or reward models
directly (Ho et al., 2022; Song et al., [2022}; (Chung et al.| 2023; Bansal et al., 2023 |Yu et al.| 2023;
Song et al., 2023} |Yoon et al., |2023}; |He et al.| [2024). These methods rely on Tweedie’s formula
(Efron, 2011} |Chung et al., [2023) for prediction of the original data given noisy data, but our exper-
iments indicate that such inaccurate prediction limits effectiveness in maximizing complex rewards.
Sequential Monte Carlo (SMC) methods have been applied to address inexactness (Trippe et al.
2023} (Cardoso et al., 2024; |Wu et al.| |2023a; [Dou & Song}, 2024), but their application has been
limited to inverse problems and class-conditional sampling. While SMC methods offer asymptotic
exactness, naive applications may fail to sample from complex targets within finite samples due
to inefficiency. Our approach incorporates a tempered SMC sampler to enhance sample efficiency,
achieving comparable or superior performance to fine-tuning methods without additional training.

3 DIFFUSION ALIGNMENT AS SAMPLING (DAS)

This section formulates the diffusion alignment problem as sampling from a reward-aligned distri-
bution, examines limitations of existing methods, and introduces DAS, a Sequential Monte Carlo
(SMC) based algorithm with theoretical guarantees for asymptotic exactness and sample efficiency.
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Figure 1: SMC method excels in sampling from the target distribution compared to existing
approaches. Left of dashed line: Samples from pre-trained model trained on mixture of Gaussians,
reward-aligned target distribution py,,-. Right of dashed line: methods for sampling from p;,, in-
cluding previous methods (RL, direct backpropagation, approximate guidance) and ours using SMC.
Top: reward r(X,Y) = —X?2/100 — Y2, bottom: reward r(X,Y) = —X? — (Y — 1)2/10. EMD
denotes sample estimation of Earth Mover’s Distance, also known as Wasserstein distance between
the sample distribution using each method and the target distribution. Our SMC-based method out-
performs existing approaches in capturing multimodal target distributions, as evidenced by lower
EMD and successful sampling from all modes. Note that samples may exist outside the grid.

3.1 PROBLEM SETUP: ALIGNING DIFFUSION MODELS WITH REWARDS

Aligning diffusion models with rewards can be seen as finding a new distribution that maximizes
the expectation given reward r. Formally, it can be written as solving:

Prar = argmax Eqp[r(2)]. (D
P

However, this approach may lead to reward over-optimization (Gao et al., 2022), disregarding the
pre-trained distribution. To mitigate this, we employ KL regularization (Korbak et al.l|2022} Uehara
et al., [2024a)):

Ptar = argmax Ew,\,p[T(.’E)] - aDKL(pprre) ()
p

where ppr. is the sample distribution of the pre-trained diffusion model. Following Rafailov et al.
(2023)), it is straightforward to show that the target distribution can be written in an equivalent form:

Prar(2) = %ppre(x) exp <Tf)) 3)

where Z is normalization constant. We frame the diffusion alignment problem as sampling from this
reward-aligned target distribution p.,,.. Note, however, that we only have access to an unnormalized
density of py,, and its evaluation requires running a probability flow ODE (Song et al.|[2021c), even
for a single sample, making the sampling problem highly non-trivial.

Before we continue, we introduce binary optimality variable O € {0,1} with p(O = 1|z)
exp(r(z)/a), where samples with high reward are interpreted as more likely “optimal”. Then the
posterior p(x|@ = 1) characterizes the distribution of samples that achieve high rewards. Using
Bayes’ rule with prior p = ppr give p(z|O = 1) x p(x)p(O = 1|x) = ppre(z) exp (r(z)/a)
Puar(2), revealing the equivalence between two perspectives. We drop *=1" from now on following
common convention.

3.2 LIMITATIONS OF EXISTING METHODS

Previous approaches to sampling from the target distribution (Equation [3) primarily fall into two
categories: fine-tuning and direct sampling using approximate guidance. In this subsection, we first
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demonstrate how these approaches struggle to sample from multimodal target distributions, even for
simple Gaussian mixtures, and explain their limitations leading to potential failures.

Figure I]illustrates the failure modes of two approaches. Fine-tuning methods (RL, direct backprop-
agation) fail to fit all modes of the multimodal target distribution p,,,, depicting their mode-seeking
behavior. Approximate guidance results in low rewards, failing to effectively optimize target re-
ward, portraying the inexactness of the guidance. In contrast, our SMC-based method successfully
samples from all modes of p,,, achieving the lowest Earth Mover’s Distance between py,, and
comparable mean reward.

We first investigate the source of the mode-seeking behavior of fine-tuning methods. Fine-tuning
methods can be interpreted as variational inference, with the objective: (Rafailov et al.| (2023) Ap-
pendix A.1) :

miniemizeDKL (pollpear)- 4)

This can be optimized using reinforcement learning (RL) (Fan et al., [2024) or direct backpropaga-
tion (Uehara et al., 2024a). However, the mode-seeking behavior of reverse KL divergence (Chan
et al.| 2022 [Wang et al., 2023) may cause the model to fit only the modes of the target distribution,
especially when pyq, is multimodal (See Figure [I). This connects to low diversity of fine-tuning
methods, as we reveal in[4]

Next, we turn to approximate guidance methods. If the exact score function of the posteriors
Ve, logpe(2:|0) = Va, log pi(2¢) + Va, log p(O|zy), (5)

is known, one can use reverse diffusion for generation (Song et al., 2021c), where marginal p; ()
and conditional distribution p;(z,|Q) is defined by the forward diffusion process. However, to
sidestep the intractable integration p(O|z;) = [ p(Olxo)p(zo|zs) dxo, line of works (Chung
et al., 2023 [Yu et al., 2023 |Bansal et al.l 2023 [Song et al., [2023) rely on the approximation
P(Olzs) = Epzola) [P(Olzo)|2:] = p(Ol2o(2:)) where 2o = Elxo|a,] is given by the Tweedie’s
formula (Efron, 2011; Chung et al., [2023). Finally, replacing p(O|zo) o exp (r(z¢)/«), approxi-
mate guidance is given as

1 R
Vi, logp(O)zy) =~ athr(xt) (6)

where 7(-) := r(Zo(-)). However, predicting clean data with noisy data introduces errors, especially
at the beginning of sampling (He et al.,2024) where the noise is large, making it difficult to sample
exactly from pyg,-.

3.3 SAMPLING FROM REWARD-ALIGNED TARGET DISTRIBUTION VIA TEMPERED SMC

Limitations of the previous approaches motivate us to search for a new approach that can sample
from py,, while effectively leveraging the pre-trained diffusion model. Sequential Monte Carlo
(SMC) samplers (Chopin & Papaspiliopoulos, |2020; [Murphyl, 2023) have been used as a power-
ful tool to sample from an unnormalized target distribution by sequential sampling from a simple,
known prior 7w (in our case pr = N (0, U%I )) to the desired final target distribution 7y (in our case
Dtar), Using the previous samples. This similarity between SMC samplers and diffusion sampling
naturally motivates the adaptation of SMC samplers to our problem setting. However, applications
of SMC methods in modern computational statistics typically use hundreds to thousands of particles
(i.e. samples), which is impractical for computationally expensive diffusion sampling. Our design
choices, especially the usage of tempering, effectively enhance sample efficiency, enabling DAS to
achieve samples from complex reward-aligned targets with low costs.

Before we go into detail on DAS, we shortly introduce key design choices of SMC samplers. :

* Sequence of intermediate target distributions 7y () = A¢(x¢)/ 2 for t = 1 : T that bridge
between the prior 77 and target distribution 7y, where ~; is unnormalized density of 7,

» Backward kernels [1_] Li(x¢|x¢—1) which define intermediate joint distributions
T

Fo(wer) = m(ze) [ Le(rlas-r) @)

s=t+1

"Backward respect to sampling procedure, which is the same time direction with a forward diffusion process.
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* Proposals, or transition kernels m;_1 (z;_1|z:) for sequential sampling
* Weights

Te—1(2e—1.7) Fe—1(xe—1) Le(xi]|zi—1)
Te(zpr)me—1(Te—1|at) Fe(ze)  my—1(Te—1]xe)

®)

wt71($t71,$t) =

in which proposed particles are resampled from Multinomial (2} ; w} 1Y)

A more detailed and theoretical introduction to SMC can be found in Appendix B}

3.3.1 BACKWARD KERNEL

To incorporate pre-trained diffusion models, we define the backward kernel using Bayes’ rule
with general stochastic diffusion samplers. For any stochastic diffusion sampler pg(x;—1|z:) =
N (pg(z,t),021), we define the backward kernels as:

pe(xt—1|$t)pt($t)
ptfl(l'tfl) )

where p; is the marginal distribution of This formulation also serves as an approximation for general
non-Markovian forward processes given pre-trained reverse processes (Song et al.|[2021a).

©))

Lt(xt|xt—1) =

3.3.2 INTERMEDIATE TARGETS: APPROXIMATE POSTERIOR WITH TEMPERING

As stated in section sampling from the target p(x(|O) requires score functions of the true pos-
teriors p (2¢|O). Instead, approximate guidance gives a score function of an alternative distribution,
which we refer to as the approximate posterior:

P 0) o pi(e)p(Olio(w1)) ox prlar) exp (”j”) . (10)

However, we can’t sample even from these approximate posteriors since they are not defined by
any forward diffusion process anymore. Nevertheless, this approximate posterior becomes exact at
t = 0 as o = xo, thus defining a sequence of distributions interpolating pr and p;,,- which can be
incorporated as intermediate targets for SMC sampler. Since prediction 2y gets more accurate as ¢
goes to 0, the approximate posteriors get closer to the true posteriors while the error may be large at
the beginning of sampling. Hence, we propose to add tempering for intermediate targets as:

N At -
(1) o e Olnla) x o) exp ( 2(er) ) = ) a
which can interpolate pp to py,, more smoothly where 0 = Ap < Ap_; < --- < Ag = 1is

sequence of inverse temperature parameters.

While modern SMC samplers often use adaptive tempering (Chopin & Papaspiliopoulos, [2020;
Murphy, [2023), we find out simply setting A\; = (1 + 7)* — 1 works well in our setting where ~y
is a hyperparameter. In Section we compare different tempering schemes and explain how to
select . To the best of our knowledge, this adaptation of density tempering is novel among works
applying SMC methods to diffusion sampling.

3.3.3 PROPOSAL: APPROXIMATING LOCALLY OPTIMAL PROPOSAL

Given the backward kernels and intermediate targets, we derive the locally optimal proposal that
minimizes the variance of the weights. Minimizing weight variance ensures more uniform impor-
tance among particles, thereby enhancing sample efficiency.

Proposition 1 (Locally Optimal Proposal). The locally optimal proposal m;_,(x¢—1|x+) that mini-
mizes the conditional variance Var(w;_1(x¢—1,x¢)|xs) is given by

x 1 Ai—1
i sfaeako) o exp (= oo~ poCon O + i) ) (12)
t

proof. The full proof can be found in Appendix
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Since sampling from m* is non-trivial, we adapt Gaussian approximation of m™* as our proposal:

At .
my_1(Ti_1|z) =N (ug(xt,t) + U?%thr(xt), JEI) (13)

where we used first-order Taylor approximation r(Zo(z¢—1)) = r(Zo(zt)) + (Va,m(Zo(2t)), T4—1 —
;) and 2o (-, t) ~ do (-, t — 1)}

Tempering further improves this approximation by reducing errors from linear approximation,
thereby decreasing weight variance. It also mitigates off-manifold guidance (He et al.,[2024), partic-
ularly in early sampling stages. As \; increases from O to 1, it gradually guides sampling towards the
target while minimizing weight degeneracy and manifold deviation. Section 4| provides empirical
validation of these effects.

Finally, the unnormalized weights for each particle are calculated as

At—1
wy—1(x x)fﬁtfl(l'tfl) Li(we|ze—1) 7p9($t*1|xt)eXp( o T(xtfl)) (14)
e Ye(ze)  mu—1(ze—1|ze) mt,l(:ct,1|a:t)exp(%f(xt))

fort =1: T and wr(zr) = exp (’%Tf(xT)) which are used for resampling. The pseudo-code of
the final algorithm with adaptive resampling is given in Algorithm

3.3.4 ASYMPTOTIC BEHAVIOR

This section presents asymptotic analysis results for DAS. We first demonstrate asymptotic exact-
ness, a key property distinguishing SMC methods from other approximate guidance approaches.

Proposition 2 (Asymptotic Exactness). (Informal) Under regularity conditions, sample estimation
Of Exrop,.. [9(X)] given by DAS converge to the true expectation almost surely for test functions .

Although SMC samplers are asymptotically exact, their sample efficiency depends on design
choices. Using a Central Limit Theorem analysis, we bound the asymptotic variance of sample
estimations. This approach allows us to prove the benefits of tempering for sample efficiency, pro-
viding theoretical justification beyond intuitive advantages.

Proposition 3 (Asymptotic Variance and Sample Efficiency). (Informal) Under the same regularity
conditions as Proposition[2} the upper bound of asymptotic variances of sample estimations given
by DAS when tempering is used, i.e. A\;’s are not all 1 fort = 0 : T, are always smaller or equal to
when tempering isn’t used, i.e. A\y’s are all 1 fort =0:T.

These propositions further imply setwise convergence of empirical measures to p:q, and quantify
the asymptotic error, which is reduced with tempering. Formal statements and proofs are provided

in Appendix [C.2]
4 EXPERIMENTS

The main benefits of DAS are twofold: (1) it can avoid over-optimization by directly sampling
from the target distribution, and (2) it is efficient since there is no need for additional training. We
investigate these benefits through various experiments by addressing the following questions:

* Can DAS effectively optimize a single reward while avoiding over-optimization? (§4.1))

» Can DAS optimize multiple rewards all at once without training for each combination? (§4.2)

» Can DAS effectively search diverse viable solutions in an online black-box optimization? (§4.3))
* Does tempering increase sample efficiency as predicted by the theory? (§4.1)

4.1 SINGLE REWARD

4.1.1 EXPERIMENT SETUP

Tasks. For single reward tasks, we compare methods on maximizing aesthetic scores given by
LAION aesthetic predictor V2 (Schuhmannl 2022 and PickScore (Kirstain et al.| |2023)). For fine-
tuning methods, we used animals from Imagenet |[Deng et al.| (2009) and prompts from Human

2%0 use noise prediction of pre-trained diffusion model, in which the output depends on time.
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Figure 2: Target Reward vs. Evaluation Metrics. Top: target is the aesthetic score, bottom: target
is PickScore. (a), (e) and (b), (f): evaluation of cross-reward generalization using HPSv2 and Im-
ageReward, respectively. (c), (g) and (d), (h): evaluation of diversity using Truncated CLIP Entropy
(TCE) and mean pairwise distance (MPD) calculated with LPIPS, respectively. Our method reach
similar or better target reward compared to fine-tuning methods (DDPO, AlignProp) while main-
taining cross-reward generalization and diversity like guidance methods (DPS, FreeDoM, MPGD),
breaking through the Pareto-front of previous methods.

Preference Dataset v2 (HPDv2) (Wu et al., 2023b)) when training on aesthetic score and PickScore
respectively, similar to previous settings (Black et al., [2023; |Clark et al.| [2024; |[Prabhudesai et al.|
2024;|Zhang et al.|[2024). Evaluation uses unseen prompts from the same dataset.

Evaluation metrics. We assess three aspects: target rewards, cross-reward generalization, and
sample diversity. For cross-reward generalization, we use HPSv2 (Wu et al.| [2023b)) and ImageRe-
ward (Xu et al}[2024), both alternative models that measure human preference. For sample diversity,
we use Truncated CLIP Entropy (TCE) (Ibarrola & Gracel 2024) which measures entropy of CLIP
embeddings, and mean pairwise distance calculated with LPIPS (Zhang et al.| [2018) which quanti-
fies perceptual differences.

Baselines. We employ Stable Diffusion v1.5 (Rombach et al.L[2022)) as the pre-trained model. Other
baselines include fine-tuning methods (DDPO (Black et al.l [2023), AlignProp (Prabhudesai et al.|
2024])), AlignProp with KL regularization, TDPO (Zhang et al., 2024)), and DiffusionDPO (Wallace
et al.||2024)) for PickScore) and training-free guidance methods (DPS (Chung et al.,[2023)), FreeDoM
(Yu et al.| 2023)), and MPGD (He et al.,[2024)).

4.1.2 RESULTS

Quantitative evaluation. Figure 2] shows quantitative results on both the target reward and eval-
uation metrics. Fine-tuning methods generally cluster in the bottom right, indicating reward over-
optimization with high target rewards but low diversity and poor generalization to similar rewards.
AlignProp with KL exhibits a similar trend, failing to mitigate over-optimization due to mode-
seeking behavior, as demonstrated in the mixture of Gaussian example (Section [3.2). TDPO, pro-
posed as an alternative to early stopping and KL regularization, fails to effectively mitigate over-
optimization for aesthetic scores and tends to under-optimize for PickScore. Conversely, guidance
methods typically occupy the upper left quadrant, failing to optimize target rewards effectively.
DAS consistently occupies the upper right quadrant, achieving high target rewards while maintain-
ing cross-reward generalization and diversity, thus effectively mitigating over-optimization.

Preserving diversity while optimizing rewards. Figure [3|showcases samples generated from the
prompt “crocodile,” aimed at maximizing aesthetic score. Our approach demonstrates superior aes-
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Pre-trained

DDPO

AlignProp
w/ KL

DAS (Ours)

Figure 4: Qualitative comparison of T2I alignment. Target reward: PickScore. Unseen prompts:
“A green colored rabbit” (color), “Four wolves in the park” (count), “cat and a dog” (composition),
“A dog on the moon” (location), “A cat in the style of Van Gogh’s Starry Night” (style), “A door that
leads to outer space” (unusual). Samples generated by DAS used only 4 particles.

thetic appeal while preserving sample diversity and pre-trained features of the animal. In contrast,
samples from fine-tuning methods deviate significantly from the pre-trained model’s output and ex-
hibit less diversity in colors, backgrounds, and appearances, indicating reward over-optimization.

Improving T2I alignment. Improving T2I Pre-trained DDPO AlEHZoP  DAS (Ours)
alignment. Notably, in Figure 2] DAS sub- =y
stantially outperforms fine-tuning methods for s
the PickScore task across all metrics. To
check whether the quantitative results align
with actual human preferences, Figure [ visu-
alizes samples targeted to maximize PickScore
across six categories: color, count, composi-
tion, location, style, and generating unusual
scenes. DAS successfully generates aligned im-
ages with high visual appeal, even compared to
fine-tuning baselines, thus effectively aligning
the samples with human preferences. We pro-
vide additional results in Appendix [F].

Figure 3: Qualitative comparison of over-

Ablation on tempering We additionally con- e ! .
optimization and diversity.

ducted an ablation study using the aesthetic
score as target reward and ImageReward as evaluation for alignment and cross-reward generaliza-
tion. We also tested various tempering strategies, including low  (0.008), high v (where A, reaches
1 after 90 or 30 steps), and adaptive tempering (A.2). As shown in Figure [5] without tempering,
SMC suffers from over-optimization, even with 32 particles, resulting in low ImageReward. In con-
trast, with tempering, both high aesthetic scores and ImageReward are achieved using only 4 or 8
particles, greatly improving efficiency regardless of tempering schemes. Tempering also reduces de-
viation from the latent manifold, indicating fewer generations of OOD samples as particle numbers
increase. These findings align with the theoretical predictions in Section [3.3.3]and [3.3.4] While the
performance of DAS is robust to tempering schemes, we recommend low  with a tuned « for the
best balance of quality and efficiency in general.
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Figure 5: Effect of tempering on sample efficiency and manifold deviation. We compare different
tempering schemes while changing the numbers of particles, using aesthetic score as a target and
ImageReward for evaluation. Usage of tempering improves sample efficiency and reduces manifold
deviation compared to no tempering, achieving high scores in both rewards with fewer particles.

4.2 MULTI REWARDS
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Figure 6: Comparison of multi-objective optimization. (a) DAS achieve Pareto-optimal trade-
off between the two rewards. (b) Prompt: “classic cars on a city street with people and a dog”.
Interestingly, the ’dog’ in the prompt consistently appear when aesthetic score weight gets lower
than 0.9, while baselines fail to generate the dog for some images.

Experiment setup. Multi-objective optimization is important in many practical applications
2016), e.g. improving multiple quality metrics or considering constrained setting. To evaluate
DAS’s ability to optimize multiple objectives, we combine aesthetic score and CLIPScore
2021), which measures image-text alignment. We use a weighted sum:

w - Aesthetic Score + (1 — w) - 20 - CLIPScore (15)

with w € {0,0.1,0.3,0.5,0.7,0.9,1.0}. Baselines include interpolated LoRA weights fine-tuned
separately on each objective using DDPO and AlignProp (Ramé et all) 2023} [Clark et al.| 2024}
[Prabhudesai et al] [2024)), and a model directly fine-tuned on the weighted sum (w = 0.5). We use
HPDvV2 prompts for training and evaluation.

Pareto-optimality without fine-tuning. Figure [6a]shows DAS achieving Pareto-optimal solutions
without additional training, outperforming fine-tuning baselines. In contrast, direct fine-tuning on
weighted averages fails to improve the Pareto-front. DAS obtains optimal solutions for any reward
combination by sampling from the reward-aligned target distribution. Figure[6b]demonstrates DAS’s
superior prompt alignment and aesthetic quality across mixed weights.

4.3 ONLINE BLACK-BOX OPTIMIZATION
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Target (1) Unseen Reward (1) Diversity (1)
Method Aesthetic HPSv2 ImageReward TCE LPIPS
SEIKO-UCB 6.88 0.25 -0.31 38.5 0.51
SEIKO-Bootstrap 6.51 0.25 -1.01 40.4 0.49
DAS-UCB (Ours) 6.77 0.28 1.25 41.1 0.66
DAS-Bootstrap (Ours) 6.73 0.28 1.27 40.6 0.65

Table 1: Comparison of online optimization methods. DAS achieves comparable target aesthetic
scores while significantly outperforming in generalization to unseen rewards and output diversity.

Online black-box optimization with diffu- SEIKO- SEIKO- DAS-UCB  DAS-Bootstrap
. . .. UCB Bootstrap (Ours) (Ours)

sion models. This approach optimizes an un- _

known function through iterative sampling, es-

pecially useful when offline data is insufficient

or objectives (e.g., human preferences) change

over time. Minimizing feedback queries is key

to reducing costs. SEIKO, proposed by
(2024D)), is a feedback-efficient method

using an uncertainty-aware optimistic surrogate
model built through linear model (UCB) or en-
sembling (Bootstrap). While SEIKO guaran-
tees theoretical regret bounds, it relies on sam-
pling from a aligned distribution using the sur-
rogate model, similar to p,, in which they in-
corporate direct backpropagation to solve it. In-
stead, we adapt DAS to directly sample from Figure 7: Qualitative comparison of online
this distribution (A.3). methods.

Experiment setup. We adopt aesthetic score as a black-box reward model, and limit to use only
1024 feedback queries for all methods. Experiment is conducted in a batch online setting through
an iterative cycle: proposing samples (from fine-tuned model in SEIKO, or using DAS to directly
sample from distribution aligned with surrogate model), recieving feedbacks from the black-box
reward, and updating the surrogate model.

Efficient exploration of diverse viable solutions. Figure [7] highlights that DAS preserves pre-
trained characteristics and generates diverse, high-quality images, while SEIKO, using AlignProp
with KL, distorts animal features. Quantitatively, in Table m DAS matches SEIKO in optimizing
aesthetic scores but significantly outperforms in unseen rewards and diversity, proving its ability to
explore a broader solution space. This demonstrates the limitations of previous work incorporating
direct backpropagation: low sample diversity of the fine-tuned model limits exploration, leading
to misguided reward models and over-optimization. Furthermore, DAS bypasses the need to fine-
tune the diffusion model every time the surrogate model is updated, enhancing adaptability through
frequent updates.

Non-differentiable rewards. Reward maximization often involves non-differentiable or computa-
tionally expensive models. While DAS requires differentiable rewards for guidance, its success in
online settings suggests it can handle general rewards by posing the reward as black-box reward and
learning a compute-efficient surrogate model with online feedback (see Appendix [F3).

5 CONCLUSIONS

We introduce DAS, a training-free method using Sequential Monte Carlo sampling to align diffusion
models with rewards. DAS optimizes rewards while preserving generalization without fine-tuning.
In single and multi-reward experiments, DAS achieves comparable or superior target rewards to
fine-tuning methods while excelling in diversity and cross-reward generalization. The online op-
timization results demonstrate DAS’s ability to efficiently explore diverse, high-quality solutions.
These findings establish DAS as a versatile and efficient approach for aligning diffusion models
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applicable to a wide range of objectives and scenarios while significantly reducing the cost and
complexity of the alignment process.

REPRODUCIBILITY STATEMENT

We have made several efforts to ensure the reproducibility of our work. We provide complete proofs
for all theoretical results in Appendix [C} including formal statements and proofs for Propositions 2]
and [3]in Sections [C.2.4] and Detailed pseudocode for our full DAS algorithm is included in
Appendix [A] with versions with adaptive resampling (Algorithm [I)), adaptive tempering (Algorithm
[3) and adaptation to online setting[5] Appendix [D] contains comprehensive implementation details
for our method and baselines, including hyperparameter settings, training and sampling procedures.
We will release our full codebase upon publication to enable others to replicate our results, including
implementations of DAS. We use publicly available datasets and evaluation metrics, with details
of experiment setup provided in Sectiond Appendix [F contains additional experimental results to
supplement those in the main paper. By providing these materials, we aim to enable other researchers
to reproduce our results and build upon our work. We are committed to addressing any questions or
requests for additional information to further support reproducibility efforts.
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A PSEUDOCODES

A.1 PSEUDOCODE FOR FULL ALGORITHM OF DAS

In practice, adaptive resampling (Chopin & Papaspiliopoulos} [2020; Murphyl, [2023)) is used instead
of resampling every step with more sophisticated resampling schemes instead of multinomial resam-
pling for variance reduction. We also used adaptive resampling with Srinivasan Sampling Process
(SSP) resampling scheme (Gerber et al., 2019)). The full algorithm of DAS is given as follows.

In practice, adaptive resampling (Chopin & Papaspiliopoulos} 2020; Murphyl, 2023)) is used instead
of resampling at every step. This approach helpsmaintaining particle diversity where resampling
every step may lead to particle degenarcy. Adaptive resampling uses the Effective Sample Size
(ESS) as a criterion to determine when resampling is necessary. The ESS is defined as:

N —1
ESS = (Z(Wt")2> (16)

n=1

where W/ are the normalized particle weights. Resampling is performed only when the ESS falls
below a predetermined threshold, indicating significant imbalance among particle weights. Note
that weights in Equation [14|now become incremental weight.

Furthermore, more sophisticated resampling schemes are often employed instead of simple multi-
nomial resampling to reduce variance. In our implementation of DAS, we use adaptive resampling
with the Srinivasan Sampling Process (SSP) resampling scheme (Gerber et al., 2019).

The full algorithm of DAS incorporating these techniques is given in Algorithm|[I].

Algorithm 1 Full Algorithm of DAS with Adaptive Resampling

1: Input: Number of time steps 7', Number of particles N, Minimum ESS threshold ESS,,
Resampling scheme RESAMPLE(+), Tempering scheme 0 = A\p < Ap_q <--- < Ao =1

2: Output: Particle approximations of psa,, { X, WZ I,
3: // Initialize particles at time T
4: forn =1to N do
5: X7~ N (0,6%1) > Sample from prior
6: wh + exp (AZF(XR)) > Initial weights
7: end for
8 Wr—wik/SN_wpforn=1,...,N > Normalize weights
9: // Main loop: reverse time from T to 1
10: fort =T to 2 do
11 /I Adaptive resampling based on ESS
12: ESS + (25:1 (th)2> > Calculate Effective Sample Size
13: if ESS < ESSnin then
14: AFN « RESAMPLE(W}N) > Resample using SSP
15: wy <~ 1lforn=1,...,N > Reset weights
16: else
17: A} <~ nforn=1,...,N > Keep original indices
18: wy —wy forn=1,...,N > Keep original weights
19: end if

20: /I Importance Sampling
21: forn =1to N do

22: X g ~me—q(zp—1 |X;47) > Propose new particles, equation
23: Wity w?wt,l(Xf‘f y X1 q) > Update weights, equation
24: end for

25: Wi, «—wpy/ ZZZI w*, forn=1,...,N > Normalize weights
26: end for

27: return { X, WQ N,
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A.2 PSEUDOCODE FOR DAS WITH ADAPTIVE TEMPERING

We also provied pseudocode of DAS with adaptive tempering for completeness.

Algorithm 2 Full Algorithm of DAS with Adaptive Resampling and Adaptive Tempering

1: Input: Number of time steps T, Number of particles N, Target ESS ESSye, Resampling
scheme RESAMPLE(-)

2: Output: Particle approximations of pya,, { X{, WG,

3: // Initialize particles at time T

4: forn =1to N do

55 XE~N(0,040) > Sample from prior
6: w1 > Initial weights
7: end for

8 Wir— wik/ SN _wpforn=1,...,N > Normalize weights
9: Ap 0 > Initial tempering parameter

10: // Main loop: reverse time from T to 1
11: fort =T to 1do
12: /I Adaptive tempering

13: & < SOLVEFORDELTA({ X", W/}, ' ESStarget; At) > Solve for §
14: At—1 < min(A; +4,1) > Update tempering parameter
15: forn =1to N do

16: Wi — wi - exp (%f(Xt”)) > Update weights

17: end for
18: W wi/ Zﬁizl wforn=1,...,N > Normalize weights
19: /I Adaptive resampling based on ESS

-1
20: ESS + (Zf:;l (th)2> > Calculate Effective Sample Size
21: if ESS < ESSiurge: then
22: AFN « RESAMPLE(W}N) > Resample using SSP
23: wy <~ 1lforn=1,...,N > Reset weights
24: else
25: A} <~ nforn=1,...,N > Keep original indices
26: wy —wy forn=1,...,N > Keep original weights
27: end if
28: /I Importance Sampling
29: if £ > 1 then > Skip proposal step for the final iteration
30: forn =1to N do .
31: Xy ~meq (T \XtA‘ ) > Propose new particles, equation
32: wy u??wt_l(XtAt , X/ 1) > Update weights using A;—1 = )¢, Eq. equation
33: end for
34: Wi «—wl/ 22:1 wit forn=1,...,N > Normalize weights
35: end if
36: end for

37: return { X7, W@,

Algorithm 3 SolveForDelta function with clamping
function SOLVEFORDELTA({ X[, W]"}V_ || ESSareets At)

n=1>
Define f(5) = ESS({W/" - exp(2#(X[))};) — ESSurget
Sunclamped <— NumericalRootFinding( f) > e.g., bisection method

1:
2
3:
4: d < max (0, min(dunctamped, 1 — A¢)) > Clamp 6 between 0 and 1-X;
5
6:

return 0
end function

A.3 PSEUDOCODE FOR ONLINE BLACK-BOX OPTIMIZATION

We first provide pseudocode of SEIKO for completeness.
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Algorithm 4 SEIKO (OptimiStic finE-tuning of dIffusion with KL cOnstraint)

1: Input: Parameters o, (3, pre-trained diffusion model fi : [0,T] x X — X, initial distribution
Vpre : X = A(X)
Output: Sequence of fine-tuned models p(V), . .., p(¥)
Initialize f(©) + fire, V(0 ¢ Ve
for: =1to K do
Generate new sample () ~ 5=V (z) following reverse SDE:
dry = fO-D(t, 2,)dt + o(t)dw,, xg ~ v~
Get feedback y() = r(z() + ¢
Update dataset: D) <— D=1 (2() ()
Train surrogate model 7#(*) () and uncertainty oracle §(*)(z) using D(*)
Fine-tune diffusion model to fit the following distribution:

. OO 8D A 8 o
p o exp (%) (P ()} {ppre (-) } 757
12: and get f(), (),

13: end for

14: return p, ... p(f)

,_
e AN IR AR A

—

For every update, SEIKO use direct backpropagation to fit the diffusion model to the target distribu-
tion p(*) by solving

P = argmaxE,p[r(z)] — aKL(p || p'©) — BKL(p || p“~V) (17)
PEA(X)

similarly to|Uehara et al.|(2024a). However, we revealed that this method can easily fall into mode-
seeking behavior in Section [3.2]and ] Instead, we adapt DAS for the corresponding step to sample
from

) p() (. 5(0) (.
ﬁ(z) o ppre(.) exp <W> (18)

directly. Online algorithm employing DAS is given in Algorithm 3]

Algorithm 5 Online Black-box Optimization using DAS

—

Input: Parameters «, pre-trained diffusion model
Output: Samples from final target aligned to black box reward
Initialize p(®) = Dpre
fori=1to K do
Generate new sample () ~ (*~1)(z) using DAS (Algortihm [1):
Get feedback y) = r(z()) + ¢
Update dataset: D) < DCG=1 (20 4())
Train surrogate model #(*) () and uncertainty oracle () (z) using D(*)
end for
return p(M), ... p

VR DN

(K)

—

B INTRODUTION TO SMC

In this section, we give introdution to SMC and particle filtering using Feyman-Kac formulation
following |Chopin & Papaspiliopoulos| (2020). We additionaly introduce theoretical results in the
SMC literature, which will be used in and[C.2.5]for asymptotic analysis of DAS.

Please note that in this section, we follow similar time notation of general SMC methods which,
unlike diffusion sampling, starts at time 0 and ends at time /. We will come back to time notation
for diffusion models in appendix |C|where we analyze DAS.
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B.1 FEYNMAN-KAC MODELS AND PARTICLE FILTERING

Feynman-Kac models extend a Markov process by incorporating potential functions to create a new
sequence of probability measures via change of measure. Starting with a Markov process on state
space X, with initial distribution Mly(dx) and transition kernels My, (zj—1,dxy) fork =1 : K, the
joint distribution defined on XX is

K
K (dzo.x) = Mo(dzo) H k(Tp—1, dzy) 19)

The Feynman-Kac foramlization introduces potential functions G (o) and Gy (xp—1,xy) fork > 1
which are strictly positive. These define a new sequence of probability measures Q;, through change
of measure:

Qi (dzo.) = *Go (x0) {HG (xs—1,25) }Mk(dl”o:k) (20)

refered as sequence of Feynman-Kac models. Here, Ly, is a normalizing constant:

Ly = By,

k
Go(Xo) H X1, X ] 1)

Feynman-Kac model will also be used as a term that refer to the collection of kernels and potential
functions { M}, G }. The probability measures can be extended to an arbitrary future horizon K >
k, allowing Qj, to be defined on X K for all k:

Qr(dzox) = *Go (zo {HG Ts—1,Ts }MK(CZZUO:K) (22)

In this extended formulation, Q, (dxo.x ) is defined on the full time horizon [0, K] for any k < K.
Qg (dzg.r) becomes the marginal distribution of the first £ + 1 components of Qy(dxo.x). For
s > k, the potential functions G are effectively set to 1, allowing the process to evolve according to
the original Markov dynamics M for the remaining time steps. Note that Qy (dz.;) is a marginal
of Qx(dzo.x ), but not necessarily of Qg (dzo.x) for K > k, a distinction crucial in working with
Feynman-Kac models and related inference methods.

Sequential Monte Carlo (SMC), also known as particle filtering, is a generic algorithm that pro-
vides recursive approximations of a given state-space model. It relies on the Feynman-Kac model to
provide the recursive structure for the probability distributions we wish to approximate, and uses im-
portance sampling and resampling techniques to achieve these approximations. Algorithm [6] shows
the sampling process of generic particle filtering algorithm.

Ouput of the particle filtering algorithm can be used for sample approximations of the associated
Feyman-Kac models by

1 N
Qi1 (doe) & 7 D 0xp (23)
n=1
N
Qi(day) =~ > Widxp (24)
n=1
1 N
Egu_1[p(Xe)] = QeoaMi(0) & 52 D @(X) (25)
n=1
N
Eg, [p(Xk)] = Qrle) = Y Wie(X}) (26)
n=1
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Algorithm 6 Generic Particle Filtering Algorithm

1: Input: Feynman-Kac model {Mj, Gy}, Number of particles N, Resampling scheme
RESAMPLE(+), Number of time steps K
Output: Particle approximations { X}’ Wk yfork=0,...,K
forn =1to N do
Xg ~ M()(dx())
wi = Go(Xg)
end for
we —wy/ SN _wpforn=1,...,N
for k = 1to K do
A}N « RESAMPLE(WLY)
for n=1to N do
XD~ Mk(X,j‘ L dzy)
wy; < Gi( kfl’Xk)
end for
ewk/zm qwitforn=1,...,N

TV RRIUNRELN

—_—

. end for
: return { X7 WP fork =0,..., K

—_
A A A

where p € Cy(X) is some test function and Cp(X') denotes the set of functions ¢ : X — R that
are measurable and bounded. We give further asymptotic analysis of these approximations in the
following sections when assuming multinomial resampling is used. For simplicity, we focus on the
approximation 26}

Finally, we note that SMC samplers apply particle filtering where the associated Feynman-Kac
model targets to approximate intermediate joint distributions in equation [/ but with different time
notation.

B.2 CONVERGENCE OF PARTICLE ESTIMATES

We state the following law of large number (LLN) type proposition for approximation [26] without
proof. This proposition provides the asymptotic exactness of particle filtering algorithms and SMC
samplers, including DAS, when the assumptions are met.

Proposition 4 (Chopin & Papaspiliopoulos (2020), Proposition 11.4). For algorithm [6| with multi-
nomial resampling, if potential functions Gy,’s of the associated Feynman-Kac model are all upper
bounded, for k > 0 and o such that ¢ X Gy, € Cp(X),

Z Po(XP) L5 Qulp). (27)

a.s.
where — denotes almost sure convergence.

B.3 CENTRAL LIMIT THEOREMS AND STABILITY OF ASYMPTOTIC VARIANCES

Even if approximations given by particle filtering algorithms and SMC samplers are asymptotically
exact due to Proposition ] the accuracy of approximation with finite number of particle depends
on the rate of convergence. Typically, the asymptotic error is characterized by CLT type argument,

where the error of estimation is distributed in Gaussian with scale O(N *%) and the asymptotic
variance determines rate of convergence. We state formal version of the argument without proof.

Proposition 5 (Chopin & Papaspiliopoulos|(2020), Proposition 11.2). Under the same settings and
assumptions as Propositionfor k > 0 and ¢ such that p x Gy, € Cp(X),

(Z kP(XE) Qk(%ﬁ)) = N(0,Vi(9)) (28)
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where = denotes convergence in distribution and the asymptotic variances Vy’s are defined cumu-

latively as
k

Vi(#) = D Qe M) [(GsRoprn(p — Quep))?] - (29)

s=0
Here, G, = Liﬁl Gr Ri(0) = Mi(Gr x ) and Ry 1.6(p) = Rsy1 0+ 0 R(¢p).

Due to the cumulative form of the asymptotic variance, it may easily blow up as the sampling errors
accumulate. To prevent this, the Markov kernels should be strongly mixing, that is, future states of
the Markov process should become increasingly independent of the initial state, making the effect
of previous sampling errors vanish. We lay out the desired properties of the Markov kernels and
potential functions, then state the stability of the asymptotic variance by providing an upper bound
for the asymptotic variances that is uniform over time, based on the assumptions.

We first give a formal definition of strongly mixing Markov kernels.

Definition 1 (Contraction coefficient, Strongly mixing Markov kernel). The contraction coefficient
of a Markov kernel My, is the quantity pys € [0, 1] defined as

pyv = sup ||My(xk—1,dxy) — My(xy_y, dag)|rv. (30)

Tho1,T)_y
where | — Q|7v = sup scpx IP(A) — Q(A)| is total variation distance between to probability

measures P and Q, and B(X) denotes Borel o-algebra of state space X. Furthermore, Markov
kernel My, is said to be strongly mixing if ppr < 1.

Next we lay out the assumptions for the associated Feynman-Kac model for the asymptotic variance
to be stable.

Assumption (1) Markov kernels M, for £ = 1 : K admit a probability density my, such that
mp(Tg|TE—1)
mp (kT _q)

for any xy, xp—1,)_; € X, for some cps > 1.

<cumu 3D

Assumption (2) Potential functions G;’s are uniformly bounded for £ = 0 : K as
0< < Grlap—1,2r) < cu (32)
where Gy, (zx—1, z)) must be replaced by Go(xg) for k = 0.

Given these assumptions, both Mj}’s and Markov process defined by Qj’s become strongly mixing
as below.

Proposition 6 (Chopin & Papaspiliopoulos| (2020), Proposition 11.9). Under Assumptions (1) and
(2), My, is strongly mixing with contraction coefficient contraction coefficient pp; < 1 — cX/[l Fur-
thermore, the Markov process defined by Qy is also strongly mixing with contraction coefficient
po <1—1/c%cq where cg = ¢,/

Finally, using the assumptions and Proposition |3| one can prove the following proposition bounding
the asymptotic variances uniformly in time.

Proposition 7 (Chopin & Papaspiliopoulos| (2020), Proposition 11.13). Under Assumptions (1) and
(2), for any ¢ € Cyp(X), asymptotic variance Vi () define by[29is bounded uniformly in time by

2pmca 1
Vi(p) < ¢2 A(erxp< )x (33)
k( ) G( ) 1—PQ 1_/)22
2(1—ciMe 1
< & (Ap)?exp (= i) > (34

—1 _
1-— (1 —(Aca) ) 1— (1 —(A3ca) 1)
where A = sup, ,icx [o(x) — p(z’)| is the variation of p.

Note that the upper bound is increasing function of both cj; and cq. Intuitively, as these constants
grow, the Markov kernels exhibit stronger mixing properties, which, in turn, accelerates the process
of forgetting or diminishing the influence of past sampling errors. We will use this property in[C.2.5|
to prove that tempering can lower this uniform upper bound.
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C PROOFS

C.1 LoCALLY OPTIMAL PROPOSAL

C.1.1 PROOF OF PrROPOSITIONI]]

proof.  We first show that m} ;(zi—1|x) such that minimizes Var(w:_1(xs—1,x¢)|xs) satis-
fies m;_j(x¢—1|®t) & ~yi—1(xs—1)L¢(x¢|zi—1). Since the minimization problem has constraint
J day—1my_1(z¢—1]x) = 1, by introducing a Lagrange multiplier (), the dual problem can be
written as

min {Emt,l(zt,lm) [wi—1 (=1, 26)?] = (Bny_y (2p_1|20) [Wim1 (@1, 24)])

my_1(ze—1|xt)
+v(xy) (/ dzy—1my—1(xi—1]7e) — 1)}

Using calculation of variation and that only first and

2

_ Te—1(Te—1.7)
Here, wt*l(xt*l’ xt) T we(zer)me—1(Te_1]re)

third term include m;_1, m;_; should satisfy

Tp—1(@e—1.7)
0=w' (241, 2)% —2m*  (zs_1|x)w’_ (241, T +v(z
to1 (i1, mp) t1(@e1|ze)wi g (Te-1, t)ﬁ't(l‘t:T)m:_l(xt—ﬂxt)Z (1)

= —w;_y(zs_1,2)* + v(z4)

Te—1(Te—1.7)
Te(xer)mi_  (Te—1]|ze
Te—1(Te—1:
M X Ye—1(2e—1) Ly (ze|ap—1). (35)

Then using the definitions of intermediate targets and backward kernels used in DAS,

_1f($t1)>

1 At—1 .
x exp (_wlxtl — ug(xt,t)||2 + . r(:rtl))

where w;_; (zi—1,x¢) = - Since v(z4) is with constant respect to a1,

my_y(T4—1]7s) o

. A
i (2 ]e) ox po(we |ze) exp ( :

C.2 ASYMPTOTIC ANLYSIS OF DAS
C.2.1 FEYNMAN-KAC MODEL FOR DAS

To give asymptotic analysis for DAS, we first clarify the Feynman-Kac model for DAS using the
formulations from [B] The Feynman-Kac model for DAS is given by simply substituting

Mo(dyo) = pr(zr)(dzr) = N(0,071)(dxr) (36)
A
My (yr—1, dyr) = my_1(xi—1|2e) (dai—1) = N (Me(iﬁt, t) + o} talvmf(xt) I) (dai—1)
37
A
Go(yo) = wr(2r) = exp (Jf(xT)> (38)

Do xt-1\xt)eXp(At L7 (g 1))

Gr(Yr—1,yr) = wi—1(T4, T4-1) = - (39)
my—1(x¢—1]|T¢) exp (%T(xt))
Then, the associated Feynman Kac models are
T
Qi-1(dz—r.7) = {st 1(Ts, Ts— 1)}pT(xT)Hms1(xslxs)(dwt1;T)
s=t

T
_ 7Ts 1375 1T)
= ar(zr H, Me—1(Ts—1|2s)(dTi—1.7

L T(@er)msoi (wsalzs) (@arfes)(dze-1.7)

= T—1(@t—1.7)(dTr—1:7)
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where we used the alternative definition of w;_, in[§]and telescoping to simplify the terms. Thus
indeed, Feynman-Kac models become the intermediate joint distributions defined through the inter-
mediate targets and backward kernels. Especially, if we marginalize at t = 0, we get

Qo(dzo) = mo(x0)(dxo) = Prar(xo)(dxo) (40)

C.2.2 ASSUMPTIONS FOR PROPOSITION 2] AND[3]

Before we start the main proofs, we lay out the assumptions for the proofs.
Assumption (a) Reward function is bounded by 0 < r(-) < R
Assumption (b) Norm of gradient of # is uniformly bounded by ||V, 7(x¢)| < L

Assumption (c) X;_1, defined as the union of support of p; and supports of m;_1(+|z;) for all z,
is bounded and d;_; := diam(X;_1) = sup{d(z,y) : x,y € Xy_1} fort =1:T.

We go over the viability of these assumptions. Assumption (a) can be satisfied lower and upper
bounded rewards by adding a constant. Real-world rewards are indeed lower and upper bounded in
most practical settings, including aesthetic score and PickScore used in our experiments. Even if
not, we can simply clamp the reward to ensure the condition. Assumption (b) should be ensured for
numerical stability of the algorithm. That is, if the gradient explode, generation using the guidance
isn’t possible. Since r(-) and Z(-) are function using neural networks, the assumption can be met
unless x; gets out of support of the training distribution. Experimentally, this is commonly true
unless using extremely small . Note that the assumption of uniform bound in time is only for
simplicity and the bound may change in time. Assumption (c) is generally not true since m; is a
Gaussian kernel and p; is also the marginal distribution over Gaussian noise added to clean data.
However, it can ’effectively’ be satisfied. We explain what this means in more detail. First, the
data manifold &} can be assumed to be bounded since most real-world data without corruption
doesn’t contain infinitely large or small component. Next, suppose we define the forward, reverse
diffusion process and the Markov kernels using Gaussian distribution truncated at tail probability €
instead of standard Gaussian. Numerically, when ¢ is sufficiently small, the impact of the truncation
becomes negligible, hence the diffusion process and the SMC sampler behaves similarly to the
original Gaussian case. However, unlike the unbounded Gaussian noise, the bounded support of the
truncated noise ensures compactness X; in Assumption (c). Thus the models can be modified to
satisfy Assumption (c) without any effect of the practical algorithm.

C.2.3 LEMMAS

We first prove lemmas need to prove the propositions. We omit ¢ in pg(x¢,t) from now on for
simplicity.

Lemma 1. Under Assumptions (a) ~ (c),

_ _ d2 B 3 2
Meor(talte) o (Bonygg,  Motp o (0,200 @1
my—1(xe—1|z}) o7 ! a

foranyx;_1 € X1 and xy € X}

proof.

log mt—l(ﬂjt—lle)

my—1(z¢—1|T})

1 2>\t—1 ~ 2 ! 2)‘25—1 NANIP]
= ot (s = () — 0219 @) — s — o) — 0 ()

t

1 1 1 o\ _ R .
_ L <x L (@) + o)) — 222N (V) + V().

o; 2 2 o

(ko) = o) + =10, ) - V(e )
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Applying Cauchy-Schwarz inequality,

<%4_;mameM%D—;ﬁAZ%w¢@g+%¢@m>M
At—1

|(ater) = wataly) + 0222V - Vi) |

Using Assumption (b) to bound ||V, 7 (24, | Va7 (2}) |

<1

and Assumption (c) to bound

21— 2 (o) + (@) | o) — ol |

2

since r;_1, Me(l“t% Me(l”f:) €&,

1 A At
S ) <dt_1 +O’$ t 1L) . (dt—l + 20'f2 i 1L>
o (0% (0%
d? Ao A1\
= t;1 +3dt71 i 1L+2 (Jt i lL)
[ (67 (&%

O

Thus Assumption (1) inholds for Feynman-Kac model of DAS under Assumptions (a) (c) where
the uniform upper bound c,, is given by

_ d7_, At—1 At—1 ?
cy = sup exp 5 +3di—1 L+2( oy L . 42)
te{1,...,.T} Oy (e «

Lemma 2. Under Assumptions (a) ~ (c),

1 oA A A
()<exp<<m_14aft 1L>.a§ tlLtR);gu%_dzhbe) (43)
2 a a a
and
1 oA A Ao
wtl(xt,xtl)gexp«dtﬁa? ' 1L> o P L+ 1R> (44)
2 a a a
proof.

log wt—l(ft, fUt—l)

po(wealz) exp (527 (ze) )

mt71($t71 |$t) €xXp (%f(ft))

= log

1. At .
talr(xt,l) - Etr(xt)

= log pg(z¢—1|z¢) —logme—1(zi—1|me) +

By Assumption (a),

R 45)
a
Also,

logpo(xt—l \xt) — log mtfl(l'tfl \xt)

1 A
= 202 (l“t—l — po(z0)||* = [lwe—1 — po () — af—ta ! ij(xt)HQ)
_ 1 T R o1
- ;? <xt1 o () §O't Tvmr(xt), o} Tvm (x¢)
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Applying Cauchy-Schwarz inequality,

O VN Moo
<mt1-—udx0-—2afiylvxﬂ(xﬂ,affllvmt($0>‘
1 ohae Moo
< ||rem1 = po(ae) = 507 =V i) ~‘03 V()

Using Assumption (b) to bound ||V, 7 ()]
and Assumption (c) to bound ||z;—1 — pe ()| since xy_1, po(zs) € X4

1, At—
S(dt—1+0t2 i 1L>~Ut2 Ly )
2 o o

Combining the two bounds, we conclude the proof. O

Thus Assumption (2) in[B.3]also holds for Feynman-Kac model of DAS under Assumptions (a) ~
(c). where ¢ = ¢, /¢; is given by

1A Mot Me
CG=6XP< sup {(dt1+o§ : IL)-Uf L+ 2 1R}+
2 8] 6] o

te{1,...,T}
1 oA A A
sup {(dt1+af i 1L> N =y tR} (46)

te{1,...,T} 2 « Q «Q

C.2.4 PROOF OF PROPOSITION[2]

We state formal version of Proposition 2| and prove it.

Proposition 8. For DAS with multinomial resampling, under Assumptions (a) ~ (c), for @ such that
¢ € Cy(Xo) and output of DAS { X5, WY

n=1»
N
D WEe(XE) = prar()- (47)
n=1

where pqqy is the final target distribution of DAS defined in[3]

proof. By Lemma[2] each potential functions of the Feynman-Kac model are all upper bounded, and
thus all conditions for Proposition ] are met. Using Proposition @ at ¢ = 0 (i.e. k = T respect to
SMC for time notation), since Qo (dxo) = prar(xo)(dzo),

N
> We(X8) = prar(e). (48)

n=1

Setwise convergence of empirical measure can be derived as direct corollary by substituting ¢(X) =
I4(X) forall A € B(Xp).

C.2.5 PROOF OF PROPOSITION[3]

Finally, we state formal version of Proposition[3|and prove it.

Proposition 9. For DAS with multinomial resampling, under Assumptions (a) ~ (c), for ¢ such that
¢ € Cy(Xo) and output of DAS { X5, WY _,,

N
VN (Z Wee(Xy) — pm(so)> = N(0, V() (49)

n=1
where the asymptotic variance Vo () is bounded by

2(1—ci}
Vo) < cg(Ap)? exp (L= cy)co x !

(@0 )T (o)

(50)
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using the definitions of ¢y and c¢ in[#2]and Furthermore, this upper bound when tempering is
used, i.e. \¢’s are not all 1 fort = 0 : T, is always smaller or equal to when tempering isn’t used,
ie. \(sareall 1 fort =0:T.

proof. By Lemmal[2] each potential functions of the Feynman-Kac model are all upper bounded, and
thus all conditions for Proposition 5] are met. Using Proposition[5]at ¢t = 0 (i.e. k = T respect to
SMC for time notation), since Qo (dzo) = prar(zo)(dzo),

N

VN (Z W3 e(X5) ptar(@) = N(0,Vo()) (51)
n=1

Also, by Lemma ] and 2] together, the Feynman-Kac model satisfies the Assumption (1) and (2) in

[B3] thus using Proposition[7, we get

2(1-cy)ca y 1
1-— (1 - (C?\/[CG)_I) 1-— (1 — (c%cG)71)2

Looking at the definitions of ¢js and ¢ in[d2)and [46] both values when tempering is used, i.e. A;’s
are not all 1 fort = 0 : 7T, is always smaller or equal to when tempering isn’t used, i.e. \;’s are all
1 fort = 0 : T since the equations in the supremum are all increasing functions of A; > 0. Finally,
since the upper bound is an increasing function of cj; and ¢, we conclude that the upper bound
when tempering is used is always smaller or equal to when tempering isn’t used. O

Vo(p) < c&(Ap)? exp

(52)

Again, similar result can be obtained for setwise convergence of empirical measure by substituting
©(X) =14(X)and Ap =1 forall A € B(Xp).

D IMPLEMENTATION DETAILS

In all experiments, we adapted Stable Diffusion (SD) v1.5 [Rombach et al.| (2022)) for pre-trained
model.

Fine-tuning methods. We used official PyTorch codebase of DDPO, AlignProp, TDPO with min-
imal change of hyperparameters from the settings in the original papers and codebases. We used
200 epoch and effective batch size of 256 using gradient accumulations if need for all methods. For
AlignProp, even with KL regularization, severe reward collapse were mostly observed at the end of
training, generating unrecognizable images. We used checkpoints before the collapse for compar-
isons. For AlignProp with KL regularization, we used the same coefficient of othe KL regularization
terms. For DiffusionDPO, we used the official fine-tuned weights SD v1.5 using Pick-a-Pic dataset
(Kirstain et al.| |2023) released by the authors.

Guidance methods. We adapted the official PyTorch codebase of FreeDoM and MPGD to incor-
porate with diffusers library. For DPS, which wasn’t adapted to latent diffusion, we used the same
implementation of FreeDoM but withou time-travel startegy (Yu et al.l 2023} Lugmayr et al.|[2022).
As in the official implementations, we scaled the guidance to match the scale of classifier-guidance
and multiplied additional constants. These constants are 0.2 and 15 for FreeDoM and MPGD re-
spectively, following the official implementation.

DAS. Across all experiment results except ablation studies, we used 100 diffusion time steps with
~v = 0.008 for tempering. For single reward experiments, we used KL coefficient & = 0.01 for
aesthetic score task and o = 0.0001 for PickScore task considering the scale of the rewards. For
multi-objective experiments and online black-box optimization, we used o = 0.005. We used 16
particles if not explicitly mentioned. Exceptionally, we used 4 particles during online black-box
optimization for efficieny.

(Answer to Q1 of Reviewer Kkg4, W2 of Reviewer J1vs)

DAS hyperparameter selection recipe. To ehance easiness of adapting DAS, we propose a sys-
tematic approach for selecting hyperparameters based on empirical performance and convergence
behavior. Firstly, tempering parameter y can be selected depending on the diffusion time steps 7'
such that (1++)7 ~ 1. While more particles are often better, 4 to 16 particles are sufficient to guar-
antee good performance as in the ablation study from Section[f.1} Especially, for rapid prototyping,
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Pre-trained Target FT-NN Train-NN FT-Grad  Train-Grad DAS (Ours)
Distribution Distribution (Direct (Sampler)
Backprop)
l Reward: -0.96 Reward: -0.15 Reward: -1.57 Reward: -0.55 Reward: -0.22
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Figure 8: Comparison with diffusion-based samplers. Without either the Grad parameterization
(Train-NN) or random initialization (FT-Grad), the methods fail to capture all modes in multimodal
target distributions unlike diffusion-based sampler (Train-Grad), explaining the mode collapse of
direct backpropagation (FT-NN). Furthermore, DAS still outperforms diffusion-based sampler for
sampling from the target distribution

we recommend 4 particles. KL coefficient o should be scaled to reward magnitude. Speicificaly, « in
the range such that approximate guidance norm ~ classifier guidance norm * [1/5, 5] is appropriate.
While «v is the main tuning parameter, based on the above criteria, optimal values can be efficiently
found through few sampling iterations since DAS requires no training. Typically, we fixed T" = 100,
v = 0.008, N = 4 and used grid search for o € {107%,1072, 1073, 10~*}. After selecting the best
10~*, we again used grid search for v € {3 x 10~#+1) 5 x 10=(k+1D 107 3 x 107%,5 x 107%}.

E COMPARISON WITH DIFFUSION-BASED SAMPLERS

(Answer to W1, Q1 of Reviewer QHss)
Connection to Diffusion-based Samplers. Starting from the objective of fine-tuning methods:

minimize Dict (po [pua). (53)

RL or direct backpropagation (Uehara et al | [2024al) optimize the variational lower
bound of this objective given by the data processing inequality, D1, (pg (zo.7) ||prar(z0.7)), Which is
the KL divergence between joint distribution along the diffusion process (path measure for continu-
ous processes). This objective can alternatively written as

Prar(T
Drr(po(zo.1)||par(®o:7)) = Drr(po(xo.1)||Pret(T0:7)) + Eggmpy (20) {log ptrgag} (54)
e
where pyr is defined by the same forward diffusion starting from a different reference distribution,
since

ptar(xO)
pref(IO)

In our problem setting for reward maximization, the reference diffusion is given by the pre-trained
model by prer = Dpre and log % = r(x0), and thus the objective becomes reward with KL
regularization term enforcing the diffusion process to stay close to the pre-trained diffusion process.

Par(Z0:7) = Prar(T0:7|70) Prar (20) = Pret(@0:7]20)Prar(0) = Pret(zo.7) (55)

This formulation reveals the connection to diffusion-based samplers (Zhang & Chen| 2022} [Vargas|
et all] 2023} [Berner et al| [2024)) which also use similar variational objective for training diffusion
model to sample from a given unnormalized target density. While standard diffusion training can be
interpreted as optimizing similar variational objective for discrete time framework,
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Song et al| (2021b) for continuous time framework), they use conditional score matching using the
samples from the target distribution. However, when sampling from unnormalized density, due to the
lack of samples from the target, the methods use direct backpropagation for optimization. Similarly,
RLHF (reward maximization) tasks also have no samples from the target distribution, thus previ-
ously proposed works are also based on direct backpropagation or RL. Compared to RL and direct
backpropgation methods for reward maximization, diffusion-based samplers use different reference
diffusions. Specifically, PIS [2022) use pinned Brownian motion running back-
wards in time, DDS (Vargas et al| [2023) use OU(Ornstein-Uhlenback) process, and DIS

[2024) allows general reference diffusions.

Key Differences. In fact, the key distinction comes from the initialization of the models where
diffusion-based samplers typically train from scratch, i.e. random initialization, while RLHF fine-
tune pre-trained models. Fine-tuning enables to incorporate prior knowledge of pre-trained model,
offering a practical solution. However, it may make models more susceptible to mode collapse since
it can only generate from the pre-trained distribution initially, as we demonstrate in our experiment
below.

Additionally, diffusion-based samplers use model parameterization that incorporates the target score
function. For example, PIS and DDS use sg(x¢,t) = NNy (z,t) + NNg - V 1og py(z), which will
refer as *Grad parameterization’. Without Grad parameterization, diffusion-based samplers failed
to fit multimodal target distribution, even for simple GMM (for example, Figure 2 in
and Figure 13 in [Berner et al] (2024)). However, we demonstrate that even if we
incorporate Grad parameterization during fine-tuning, the model fails to capture all modes of the
target, indicating the fundamental difference between fine-tuning and training from scratch.

Empirical Validation. We conducted additional experiment using GMM examples from Figure 1.
To check our hypothesis and demistify the effect of each elements, we conducted experiment using
fine-tuning + NN parameterization (FT-NN, equivalent to Direct Backprop w/ KL regularization),
fine-tuning + Grad parameterization (FT-Grad), training from scratch + NN parameterization (Train-
NN), training from scratch + Grad parameterization (Train-Grad, equivalent to diffusion-based sam-
pler). The result presented in Figure [8] shows that without either the Grad parameterization from
diffusion-based samplers or random initiallization, the methods fail to capture all modes in multi-
modal target distributions. Furthermore, DAS still outperforms diffusion-based sampler in terms of
both reward, and EMD (earth mover’s distance) with the target distribution.

In conclusion, we claim that constraints in the RLHF setting pose additional difficulty in training a
diffusion model that can sample unnormalized target distribution. DAS can overcome this problem
by offering a training-free solution.

F ADDITIONAL EXPERIMENT RESULTS

F.1 3D Swiss ROLL

(Answer to W2 of Reviewr 31k3)

To further visualize the effectiveness of DAS for sampling from unnormlized target density using
pre-trained diffusion model, we conducted additional experiment using 3d Swiss roll. As in Figure
[ DAS again demonstrates superior performance in sampling from the target distribution.

F.2 DAS wiTH SDXL

(Answer to W3 of Reviewer Kkg4)

We conducted experiment using SDXL (Podell et al] 2024)) as pre-trained base model to demon-
strate the generality of our approach. We compare with the pre-trained SDXL (base + refiner),
DPO-SDXL which fine-tuned SDXL using DiffusionDPO (Wallace et al] [2024), and our DAS with
SDXL as base model. The results summarized in Figure |[I1] show that DAS’s effectiveness gen-
eralizes beyond SD v1.5, achieving superior performance in both target optimization (PickScore)
and cross-reward generalization (HPSv2, ImageReward) while maintaining competitive diversity
metrics (TCE, LPIPS MPD), even with just 4 particles.
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Pre-trained Target Direct Approx.
Distribution Distribution RL Backprop  Guidance DAS (Ours)

Reward: -2.59 Reward: -2.49 Reward: -927 Reward: -0.50
Reward: -3.26 Reward: -0.72 EMD: 2.99 EMD: 520 EMD:26.60 EMD: 0.86
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Figure 9: SMC method excels in sampling from the target distribution compared to existing
approaches. Left of dashed line: Samples from pre-trained model trained on 3d Swiss roll, reward-
aligned target distribution py, using reward r(X,Y,Z) = —X?/100 — Y2/100 — Z2. Right of
dashed line: methods for sampling from p;,, including previous methods (RL, direct backpropaga-
tion, approximate guidance) and ours using SMC. Top: Projection of samples to XY plane, reward,
bottom: 3d plot of samples. EMD denotes sample estimation of Earth Mover’s Distance, also known
as Wasserstein distance between the sample distribution using each method and the target distribu-
tion. DAS outperforms existing approaches in capturing complex target distributions, as evidenced
by lower EMD and the similarity with the target samples. Note that samples may exist outside the
grid.

- DAS-SDXL
SDXL DPO-SDXL (Ours)

SDXL DPO DAS

PickScore(target)  0.23 0.23  0.25

HPSv2 029 029 031
ImageReward 0.82 1.24 140
TCE 46.1  46.7 46.1
LPIPS MPD 057 0.61 0.61
Figure 10: Qualitative Comparison. Table 2: Quantitative Comparison.

Figure 11: Experiment using SDXL. Target reward: PickScore. Unseen prompts for qualitative
comparison: “A close up of a handpalm with leaves growing from it.”, “A photo-realistic image
of flying lion with blue butterfly wings”. Unseen prompts for quantitative comparison: HPDv2
evaluation prompts. Samples generated by DAS used only 4 particles.
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F.3 NON-DIFFERENTIABLE REWARDS

(Answer to W2, W4 of Reviewer Kkg4)

Pre-trained

SD1.5 DDPO DAS

DDPO

Compressibility  -116 -84 -71

CLIPScore 0.26 0.26 0.26
:)(;susr-sl)JcB TCE 39.8 41.1 43.4
LPIPS MPD 0.66 0.62 0.62

Figure 12: Qualitative Comparison. Table 3: Quantitative Comparison.

Figure 13: JPEG Compressibility. Online black-box optimization framework enable DAS to
optimize non-differentiable rewards, outperforming DDPO which can naturally incorporate non-
differentiable rewards using RL.

As stated in Section[f.3] DAS can effectively optimize non-differentiable rewards by incorporating
them as black-box rewards in our online black-box optimization framework. This allows us to han-
dle non-differentiable objectives without modifying the core DAS algorithm. To further demonstrate
this capability, we conducted experiments using JPEG compressibility - a strictly non-differentiable
reward measured as the negative file size (in KB) after JPEG compression at quality factor 95. Our
experimental setup included 4096 reward feedback queries, ImageNet animal prompts for evalua-
tion, and comparison with DDPO (Black et all, 2023)), which naturally handles non-differentiable
rewards via RL. We combined DAS with UCB as described in Section 3]

The results in [I3] shows that DAS-UCB achieves the best compressibility score, outperforming
both pre-trained model and DDPO. Also, it ,aintains CLIPScore and diversity metrics compared
to pre-trained model, mitigating over-optimization as intended. The qualitative results show how
our method effectively minimizes background complexity while preserving key semantic features
of the subjects.

In conclusion, while DAS is designed for differentiable rewards, our approach provides a practical
and effective solution for non-differentiable objectives through online black-box optimization. The
empirical results demonstrate that this approach outperforms methods specifically designed for non-
differentiable rewards, while maintaining the key benefits of DAS such as diversity preservation and
avoiding over-optimization.

F.4 AESTHETIC SCORE ADDITIONAL RESULTS

Figure[T4]provides additional samples generated from each methods to target Aesthetic Score.

F.5 PICKSCORE ADDITIONAL RESULTS

Figure[I3] provides additional samples generated from each methods to target PickScore.
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SDvL.5

DDPO

AlignProp
w/ KL

TDPO

DPS

FreeDoM

MPGD

DAS (Ours)

Figure 14: Images generated to target aesthetic score using prompts: “bat’, *cheetah’, *crocodile’,
*gorilla’, "hedgehog’, “hippopotamus’, *kangaroo’, ’lobster’, *octopus’, ’snail’
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SDvl.5

DDPO

AlignProp
w/ KL

TDPO

DPS

FreeDoM

MPGD

DAS (Ours)

Figure 15: Images generated to target PickScore using prompts: ’A toy elephant is sitting inside
a wooden car toy.’, A white toilet in a generic public bathroom stall.’, ’An eye level counter-view
shows blue tile, a faucet, dish scrubbers, bowls, a squirt bottle and similar kitchen items.’, *People
getting on a bus in the city.’, ’Street merchant with bowls of grains and other products.’, *The black
motorcycle is parked on the sidewalk.’, *Three people are preparing a meal in a small kitchen.’, ’a
black motorcycle is parked by the side of the road.”, ’a dog with a plate of food on the ground.’,
"there is a red bus that has a mans face on it.’
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