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ABSTRACT

In recent years, gradient based multi-agent reinforcement learning is growing in
success. One contributing factor is the use of shared parameters for learning pol-
icy networks. While this approach scales well with the number of agents during
execution it lacks this ambiguity for training as the number of produced samples
grows linearly with the number of agents. For a very large number of agents, this
could lead to an inefficient use of the circumstantial amount of produced samples.
Moreover in single-agent reinforcement learning policy search with evolutionary
algorithms showed viable success when sampling can be parallelized on a larger
scale. The here proposed method does not only consider sampling in concurrent
environments but further investigates sampling diverse parameters from the popu-
lation in co-evolution in joint environments during training. This co-evolutionary
policy search has shown to be capable of training a large number of agents. Be-
yond that, it has been shown to produce competitive results in smaller environ-
ments in comparison to gradient descent based methods. This surprising result
make evolutionary algorithms a promising candidate for further research in the
context of multi-agent reinforcement learning.

1 INTRODUCTION

The core idea of this work is based on a union of the concepts of parameter sharing for multi-
agent policies and policy search with evolutionary algorithms (EA). In general stochastic gradient
descent (SGD) together with back-propagation is a powerful approach for optimizing neural network
parameters. For on-policy reinforcement learning with SGD the generated samples are dependent on
the current policy which is again subject to the gradient update. This circumstance makes the vanilla
policy gradient high in variance and slow in learning Sutton et al. (1999). Hence contemporary
policy gradient methods use baseline terms and other remedies to reduce the variance and further
increase sample efficiency. One exemplary algorithm of this class is PPO (Schulman et al., 2017b)
which further includes a clipping based on the probability ratio of the old and updated policy.

Policy search with evolutionary algorithms is gradient-free and its use in reinforcement learning has
already a long history (Heidrich-Meisner & Igel, 2008; Moriarty et al., 1999). One advantage of
this method is the lack of backpropagation and its computational cost that scales linearly with the
amount of samples per iteration. One disadvantage of evolutionary algorithms, as black-box opti-
mization methods, is the absence of step-wise information about state, action, and reward transitions.
Furthermore, a key distinction to on-policy policy gradient methods is that a ensemble of policies,
the population, is evaluated in each iteration. This increases the demand for necessary samples for
each iteration compared to policy gradients. However, due to the advent of cloud computing and
multi-threading CPU architectures parallel sampling became more accessible to a broader audience.

Another difficulty of evolutionary algorithms was that they did not scale well with the number of
parameters needed for deep learning. One efficient and almost hyperparameter free algorithm CMA-
ES Hansen et al. (2003) scales unfortunately quadratically with the amount of parameters. Never-
theless small networks with just 104 parameters have shown to be capable of learning vision-based
tasks as shown by Tang et al. (2020). However, that deep reinforcement learning is possible with
evolutionary algorithms is shown by multiple works that use some variants of evolutionary strategies
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(ES) or genetic algorithms (GA). In particular, the work of Salimans et al. (2017) has validated the
capabilities of ES in deep reinforcement learning. Some of their core outcomes were that policy
search with ES is relatively easy to scale with almost linear training time reduction. Since the policy
update time cost is relatively cheap in contrast to the sampling time. Further, in their experiments the
data efficiency was not substantially worse, with a range of 3-10 times of compared policy gradient
methods. Another noteworthy implementation of ES in deep reinforcement learning is from Conti
et al. (2017) that extends the fitness objective by a novelty term (Lehman & Stanley, 2011) for im-
proving exploration. Besides the work of Such et al. (2017) has shown that also GA are capable of
training large networks for more complex tasks like Atari games and continuous control problems.
Additionally, they showed a method describing network parameters in a compressed form through a
chain of mutation seeds. Moreover, in the contribution of Hausknecht et al. (2014) one subclass of
GA the generative encoding algorithm HyperNEAT (Stanley et al., 2009) was used. It was besides
DQN (Mnih et al., 2013) one of the first solutions for Atari (Brockman et al., 2016) games. While
not too popular in single-agent reinforcement learning, policy search with EA still showed some
competitive results over recent years.

Multi-agent reinforcement learning (MARL) is an interesting extension of reinforcement learning
that involves game theoretical issues. The advantages of MARL compared to RL are obvious for
problems that can be separated into multiple agents. The separation of state and action is limit-
ing the curse of dimensionality and it enables further decentralized learning and execution schemes
compared to the single agent case. Nevertheless, MARL introduces additional problems such as the
non-stationarity caused by interdependent non-converged policies. Some other important problems
dependent on the specific task are the credit attribution, heterogeneity of agents, partial-observable
states and communication between agents. The issue of scaling the number of agents is the primary
motivation for this work. The study of (Gupta et al., 2017) investigated the concept of parameter
sharing (PS) for policies. This method can scale in execution to an arbitrary amount of agents if the
problem itself does not change due to the number of agents. Else curriculum learning Bengio et al.
(2009) was found to enable adjustment to tasks that change with size. Yet not every environment
allows scaling in size and considering very large environments an overabundance of samples gener-
ated per timestep and agent could further slow down SGD. Still for the agent-wise smaller 5 vs. 5
player game of DOTA 2 the work of (Berner et al., 2019) showed that also learning on a larger scale
with batches of about 2 × 106 timesteps every 2 seconds is feasible for parameter sharing PPO in
self-play.

2 METHODS

First, let us revisit evolutionary strategies (ES) as a particularly interesting evolutionary algorithm
for this work. For ES the population is sampled from a normal distribution with its mean and
variances as only describing parameters. For parameter distribution based RL the authors of RE-
INFORCE (Williams, 1992) already described a gradient ascent term. For this gradient ascent term
similar to TRPO (Schulman et al., 2017a) a natural gradient can be defined that accounts for the
KL-divergences (Wierstra et al., 2014). A simple but empirical still effective variant of ES with a
constant variance is that of Salimans et al. (2017). This makes that variant a good candidate for
large-scale MARL experiments. The work of Lehman et al. (2018) gives an insightful description of
the differences in learning between ES and finite difference based methods. Further, they conclude
to the understanding that because ES optimizes the average reward of the population they seek es-
pecially robust parameters for perturbation. Further, it is assumed by the authors that this parameter
robustness could be a useful feature for co-evolution and self-play. The pressure to find a distribution
that finds samples compatible for co-operation could lead to more stable solutions. Some successful
demonstrations of early self-play with EA is found in Chellapilla & Fogel (2001).

All in all, investigating co-evolution on MARL problems seems interesting. But how can co-
evolution be realized in the context of collaborative MARL? Parameter sharing is a valid option for
policy gradient methods and would be also a seemingly viable option for policy search within EA.
Yet EA need to sample multiple policies for their expected fitness values. This increases sampling
demand linearly by population size. By co-evolutionary sampling, one could reduce this growing
complexity, especially for environments with many agents. However, if no local rewards are avail-
able credit assignment could be a problem and additional runs in different pairings are necessary for
a good estimation of the fitness.
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How to pair solutions for co-evolutionary fitness evaluation in environments is an open question.
The here proposed method should be simple. It should work disregarding the chosen EA algorithm,
the number of the population, evaluation workers and agents in the environment. The Algorithm 1
depicts such a simple co-evolutionary method (COMARL). Here for each episode that will be run
by an evaluation worker a random set of the population is drawn. The only requirement is that the
number of total runs per iteration should be minimal and that for each population member at least η
episodic return samples were generated.

So with COMARL, there is a simplistic co-evolutionary pairing scheduler that should work for every
EA in training. But how should be a solution selected and executed from co-evolutionary training?
A method that would work for every EA would be to use the solution with the best sampled fitness
during training and execute it as a parameter sharing policy. However, this does not consider the
performance of other solutions. Sometimes rewards in MARL can be negatively correlated and
the sampled fitness is only good because of the failure of other agents. Moreover, other solution
selection methods could be specific for some EA. In the case of ES, the population with maximum
average fitness could be considered. Here the population defining mean in parameter sharing or
samples from the parameter distribution could be the selected solutions for the policies in execution.
This could limit the variance in returns of agents with respect to the first proposed method.

Algorithm 1: Simple Co-Evolutionary MARL (COMARL)
Input:
EA solver E : {F (θ0), . . . , F (θj)} → {θ0, . . . , θj} = population p,
episodic return evaluation F (i) : {θm, . . . , θn} = Θ(i) → {r(i)m , . . . , r

(i)
n } = r(i),

minimum samples η
initialize all θi ∈ population p according to EA method;
while genration is not max_generations do

Create the minimum amount of random shuffled multiset subsets Θ(i) of set p such that
dim(Θ(i)) = dim r(i) and such that each element of the population p occurs at least η
times ;

Evaluate all F (i) ;

Calculate fitness from average episodic returns F (θl) = average
(
r
(i)
l

)
;

Update population population← E(F (θ0), . . . , F (θj) ;
end

3 EXPERIMENTS

The issue of scaling the number of agents is the initial incentive for this paper. This part will
be discussed in the experiments of 3.2. How the co-evolutionary algorithm compares to SOTA
algorithms in smaller benchmark environments is covered in 3.3.

3.1 SETUP

For the experiments about scalability in 3.2 the Longroad environment has been used which is
loosely based on traffic control with circular interweaving crossroads. It has discrete action and
partial observable discrete state space and can simulate thousands of agents with multiple frames
per second on a single machine. The agents control the traffic either by blocking one road or un-
blocking the opposite direction. For each waiting vehicle a negative local reward is given. Otherwise
to promote cooperative behavior a positive global reward is given for each continuously moving ve-
hicle. The goal of this environment is not showcase any sophisticated learning behavior but rather
to be a primitive test bed for testing out large scale MARL concepts.

Since the environment used for the scaling experiments was not used in any other publications it
would be interesting to investigate the co-evolutionary method in more established MARL environ-
ments. Here the SISL environments first created for Gupta et al. (2017) and now maintained as part
of PettingZoo (Terry et al., 2020) could give more comparability with the experiments conducted
in 3.3. Unfortunately, it seems that the Waterworld environment is not supported in newer releases
which is why it is omitted in the following experiments. However, with Pursuit as a discrete environ-
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ment and Multiwalker as a continuous control task, some diversity is already considered. Further,
a slightly self-patched version of the newest release of PettingZoo was used to enable compatibility
with newer NumPy versions.

The earlier co-evolutionary experiments with COMARL of 3.2 are based on the EA implementa-
tions of Ha (2017). This includes a CMA-ES implementation based on the pycma (Hansen et al.,
2019) library, a ES implementation of Salimans et al. (2017), a implementation of the natural evolu-
tionary strategy variant of PEPG (Sehnke et al., 2010) and also a simple genetic algorithm. The co-
evolutionary experiments with COMARL conducted in 3.3 are based on a simpler re-implementation
with JAX (Bradbury et al., 2018) and FLAX (Heek et al., 2020) of the fixed variance ES algorithm
of Salimans et al. (2017) in the toolbox of Ha (2017). Where applicable for stochastic gradient
ascent of the parameter distribution the Adam (Kingma & Ba, 2017) optimizer was used. The refer-
ence trials were conducted in both with RLlib (Liang et al., 2018) and their implementations of the
on-policy PPO (Schulman et al., 2017b), off-policy Ape-X DQN/DDPG (Horgan et al., 2018) and
parameter sharing Gupta et al. (2017). For the experiments in the Longroad environment, a MLP
with hidden layer shape (16, 16) was used for the EA and (256, 256) for PPO. All methods in 3.3
use a MLP with hidden layer of shape (64, 64). The parallelization of sampling was realized with
Ray (Moritz et al., 2018). For details of the chosen hyperparameters consult Appendix A.1.

For the co-evolutionary computation in 3.2 an AMD Ryzen 5900X CPU was used with 4-10 workers
for parallel sampling and for the reference algorithms a NVidia Quadro K620 GPU was used. The
devices for 3.3 were an AMD Ryzen Threadripper PRO 3955WX CPU for the co-evolutionary
method with 30 concurrent sampling workers and for the reference algorithms an Intel XEON E-
2278G CPU with 15 sampling workers and a Nvidia RTX 3080 GPU for inference and training.

3.2 SCALABILITY

Rather than examining the performance of co-evolutionary learning the experiments in this category
should show its feasibility for a growing number of agents in contrast to single-agent and param-
eter sharing policy gradient methods. Beginning with 10 agents, the three evolutionary algorithms
Genetic Algorithm (GA), CMA-ES and OpenAI-ES (Salimans et al., 2017) and the centralized sin-
gle agent PPO and parameter sharing PPO (PPO-PS) are evaluated. The length of an episode is 50
timesteps. For COMARL each policy solution is sampled 16 times with a total of 400 episodes per
fitness evaluation. The policy gradient methods have a batch size of 80×50 timesteps. All algorithm
types are run for 500 iterations. The Figure 1a shows the learning curve for the averaged total mean
reward over three trials. The PPO-PS performs fast and sample-efficient on the first iterations but the
slower centralized single agent PPO ultimately exceeds the results of the PPO-PS runs. All three EA
in COMARL perform worse than the policy gradients. Still, for this number of agents all methods
are feasible.

The second experiment shown in Figure 1b scales the number of agents to 100. Here the number
of samples per episode for parameter sharing PPO-PS grows ten-fold. So does its learning time
consumption when still all produced samples should be considered. The curve for PPO-PS thus
only depicts a single incomplete trial which seems to perform still better than the other methods.
Seemingly the curse-of dimensional affects the single-agent PPO as no increase in return can be
observed. Considering learning regarding simulated timesteps the co-evolutionary methods seem to
profit from the increased number of samples per timestep.

Ultimately the trials for 1000 agents are depicted in Figure 1c. Because of the expected learning time
consumption of PPO-PS for this setting it was omitted for this number of agents. Unsurprisingly
the single-agent PPO did not overcome the curse of dimensionality with growing state and action
space. Again the co-evolutionary methods seem to benefit from the increased number of samples
per simulation timestep.

To stress test the capabilities of COMARL a single trial with 106 agents was conducted using
OpenAI-ES as underlying EA as shown in Figure 2. The iterations for this example consist of
only one episode per worker. Still for such a high number of agents, good progress in learning could
be observed. Since the parameter update time of the evolutionary algorithms just depends on the
size of the population, the parameter space and their hyperparameter it is indifferent to the number
of samples needed for fitness evaluation. The fitness evaluation becomes the bottle-neck in that case
as the Table 3 and Table 4 further illustrate.
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(a) 10 Agents Longroad
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(b) 100 Agents Longroad

0 20000 40000 60000 80000 100000 120000
timesteps

40

30

20

10

0

av
er

ag
e 

ep
iso

di
c 

re
wa

rd

GA
CMA-ES
OpenAI-ES
PPO

(c) 1000 Agents Longroad

Figure 1: Averaged learning curves for different scaled Longroad environments. The curves are the
averaged episodic mean over all trials. The single-agents PPO reward is normalized by the number
of agents. For Figure 1b and Figure 1c the PPO and PPO-PS curves depict only a single trial
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Figure 2: Learning curve in logarithmic scale for 106 agents in Longroad with co-evolutionary
OpenAI-ES. The red line gives the average episode reward over the population and the blue area the
range of episodic rewards for that generation.

3.3 COMPARABILITY

The preceding experiments of 3.2 have shown that the co-evolutionary method can scale to numer-
ous agents. However, the Longroad environment is not a good benchmark in a general setting.
Hence the following experiments examine the co-evolutionary method in the for MARL research
more prevalent SISL environments, Pursuit and Multiwalker, to give an idea of the performance in
comparison. For each environment and method 3 trials on the same set of seeds was run.

For the continuous control problem of Multiwalker as Figure 3 depicts the co-evolutionary variant
of OpenAI-ES shows a stable performance over all trials. Considering the wall clock-time it reaches
very fast a region of positive rewards and is seemingly also sample-efficient in contrast to parameter
sharing Ape-X DPPG which shows also more variance in its outcome on different trials. Under this
setting parameter sharing PPO fails to learn the task at hand. With the related method of parameter
sharing TRPO better results were accomplished in Gupta et al. (2017). But the question arises of
how comparable the new versions of Multiwalker are to that examined in older work.

In the discrete environment of Pursuit, the results of the investigated methods are more aligned as
Figure 3 shows. Parameter sharing Ape-X DQN is the only algorithm to reach positive rewards on
a trial but is again variant in its outcome for different runs similar to Ape-X DPPG in Multiwalker.
Else parameter sharing PPO seems to be more sample efficient while co-evolutionary OpenAI-ES is
slightly faster on wall-clock time. However, the difference is not too significant.

Concerning the original work of OpenAI-ES (Salimans et al., 2017) in the single-agent domain
that achieved sample-efficiencies of 3-10 times to reference non-EA algorithms, the results for the
SISL environments are surprisingly far from that range. Still, the scale of parallelization differs
significantly from this work which could be one factor.

The solution selection method of choosing the parameters with the best sampled fitness over all
generations was evaluated in parameter sharing execution for 32 episodes. The detailed results are
shown in Table 6. This method was chosen because it works with all EA. However the results are
not overwhelming. Only for the Multiwalker 2 of 3 trails were close to the result of the best sampled
fitness. Else the evaluation of the solution was worse than the mean return of its population during
training.

Moreover, for both environments the throughput for sampling time steps is greater by one order of
magnitude for the co-evolutionary method compared to PPO. This could be because the inference is
run on multiple CPU threads instead of a single GPU. Further for updating the parameter distribution
with OpenAI-ES less than 2% of total time was utilized while for parameter sharing PPO the policy
update consumed about 80% of the total time. See Table 5 for actual numbers.

Since sampling fitness for a population or parameter distribution with parameter sharing was deemed
ineffective it was not further investigated. Nevertheless, the next experiment compares it to co-
evolutionary sampling for a single trial in the Multiwalker environment since it has only 3 agents
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Figure 3: Averaged learning curves of the examined SISL environments regarding time and sample
efficiency. The transparent area shows the range of the mean episodic return for all trials.

for its regular configuration. Figure 4 depicts the fitness ascend for the whole population and its
statistics. For parameter sharing 10 complete episodes were sampled while for COMARL it was
just 10 agent-wise experiences among all evaluated episodes each iteration. This already leads
to a thrice as high sampling time for learning with parameter sharing for a parameter distribution
(Table 7. In this example, the deviation between fitness values is higher for COMARL than PS
and it reaches further a higher fitness plateau. Regardless, for just a single trial nothing conclusive
about the performance in comparison to parameter shared training can be shown except its timings.
Anyway, after the experiments in section 3.3 and 3.2 co-evolution seems to be also a viable option
for a smaller number of agents and practically the only one for a very high number of agents.

4 CONCLUSION AND FUTURE WORK

The motivation behind this work was to find a method that scales to a high number of agents. The
here proposed co-evolutionary method achieved this for large scale environments in the range of up
to 106 agents. Since the investigated large scale environment is very simplistic more meaningful and
realistic environments in that range of agents could be examined next. Moreover the compromise of
information lost in this black-box optimization scheme for policy search improves high scaling and
decentralization of sampling. Here also EA with asynchronous or decentralized updates could be of
particular interest for MARL.

Unexpected was the competitive result in a small comparative study to SOTA on and off-policy
parameter sharing methods. Here the fixed variance natural evolutionary strategy (Salimans et al.,
2017) in co-evolution showed still good data-efficiency. Further an exhaustive comparative study in
more MARL environments could be of interest. A lack of well established benchmark environments
in contrast to single agent reinforcement learning is an ongoing problem. Since it is assumed that co-
evolution could help with robustness research in task that involve for instance adversarial behavior
of agents could be of interest.

Moreover, this work focused on finding a co-evolutionary training method regardless of the under-
lying EA. For evaluation a solution for execution has to be defined. Here further research with
analytical focus on specific EA and a solution selection methods for them could be of interest. Fur-
ther the co-evolutionary pairing itself could exhibit improvement in alignment with specific EA.

In conclusion it is hoped that this work can spark interest in policy search with evolutionary algo-
rithm in the context of multi-agent reinforcement learning.
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Figure 4: Fitness plot and statistics for Multiwalker with OpenAI-ES. The 3D plot above shows the
fitness for each member of the population respectively for COMARL in Figure 4a and parameter
sharing in Figure 4b. Correspondingly below the statistics to the mean and standard deviation of the
fitness are given. The axis of the mean is logarithmic and its zero level shifted.
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A APPENDIX

A.1 HYPERPARAMETER

A.1.1 SCALABILITY

Table 1: Hyperparameter of the EA and policy gradient algorithms in 3.2

(a) OpenAI-ES

Parameter Value
Feedforward shape (16, 16)
initial variance 0.1
variance decay 0.9999
variance limit 0.02
learning rate 0.1
weight decay 0.005

(b) CMA-ES

Parameter Value
Feedforward shape (16, 16)
initial variance 0.1

(c) Genetic Algorithm

Parameter Value
Feedforward shape (16, 16)
elite ratio 0.1
variance 0.5
weight decay 0.005

(d) PPO

Parameter Value
Feedforward shape (256, 256)
activation function tanh
learning rate 0.00005
discount factor 0.99
clipping factor 0.3
entropy coefficient 0.0
batch size 80 x 50
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A.1.2 COMPERABILITY

Table 2: Hyperparameter of the EA and reference algorithms in 3.3

(a) OpenAI-ES

Parameter Value
Feedforward shape (64, 64)
initial variance 0.1
variance decay 0.9999
variance limit 0.02
learning rate 0.1
weight decay -

(b) PPO

Parameter Value
Feedforward shape (64, 64)
activation function tanh
learning rate 0.00005
discount factor 0.99
clipping factor 0.3
entropy coefficient 0.0
batch size (Multiwalker) 20000
batch size (Pursuit) 5000

(c) Ape-X

Parameter Value
Feedforward shape (64, 64)
activation function tanh
replay buffer capacity 2000000
batch size 200000

A.2 DETAILED RESULTS

A.2.1 SCALABILITY

Table 3: The detailed results of the scalability experiments in the Longroad environment.
The mean sample and learn times are scaled to correspond to 1000 timesteps.

10 Agents:
GA CMA-ES OpenAI-ES PPO PPO-PS

mean sample time [s] 0.4629 0.4133 0.4648 2.4477 1.3700
mean learn time [s] 0.0009 0.0305 0.0012 4.9640 15.7019

100 Agents:
GA CMA-ES OpenAI-ES PPO PPO-PS

mean sample time [s] 0.9560 0.8561 0.9607 15.1163 4.5312
mean learn time [s] 0.0056 0.3240 0.0091 33.3100 155.9862

1000 Agents:
GA CMA-ES OpenAI-ES PPO PPO-PS

mean sample time [s] 4.1388 3.3275 4.1291 147.7115
mean learn time [s] 0.1135 4.6325 0.2196 323.6083
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Table 4: Detailed iteration timing results for OpenAI-ES

agentsize iteration time [s]
101 7.50
102 1.05
103 1.35
106 573.71

A.2.2 COMPERABILITY

Table 5: The detailed timing results of the comparability experiments.
The mean sample and learn times are for one iteration or scaled to correspond to 1000 timesteps.

Pursuit:
OpenAI-ES PPO

mean sample time (iteration) [s] 19.24971 17.90616
mean learn time (iteration) [s] 0.23939 62.51912
mean sample time (1000 steps) [s] 0.02135 0.31975
mean learn time (1000 steps) [s] 0.00027 1.11641

Multiwalker:
OpenAI-ES PPO

mean sample time (iteration) [s] 8.5248 5.75671
mean learn time (iteration) [s] 0.1296 28.18318
mean sample time (1000 steps) [s] 0.01213 0.22824
mean learn time (1000 steps) [s] 0.00018 1.11737

Table 6: The solution selection results for co-evolutionary OpenAI-ES for the best sampled fitness
over all generations, the average fitness for the generation of the best sampled fitness and its evalua-
tion over 32 episodes in parameter sharing.

Pursuit:
Trial 1 Trial 2 Trial 3 Average

best fitness 8.34898 4.09528 7.82374 6.75600
population fitness of best fitness 2.32692 -8.23141 -7.05302 -4.31917
evaluation of best fitness -18.19020 -9.51989 -18.97909 -15.56306

Multiwalker:
Trial 1 Trial 2 Trial 3 Average

best fitness 4.18716 4.94261 4.65052 4.59343
population fitness of best fitness -11.02063 -0.38326 -6.19596 -5.86661
evaluation of best fitness 2.00721 3.70874 -36.13141 -10.13849

Table 7: Timings of parameter shared and co-evolutionary OpenAI-ES in the Multiwalker environ-
ment

method sampling time [s]
COMARL 8.70872

PS 23.00535
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