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Abstract

Maximizing the energy production in wind farms requires mitigating wake effects,
a phenomenon by which wind turbines create sub-optimal wind conditions for
the turbines located downstream. Finding optimal control strategies is however
challenging, as high-fidelity models predicting complex aerodynamics are not
tractable for optimization. Good experimental results have been obtained by
framing wind farm control as a cooperative multi-agent reinforcement learning
problem. In particular, several experiments have used an independent learning
approach, leading to a significant increase of power output in simulated farms.
Despite empirical success, the independent learning approach has no convergence
guarantee due to non-stationarity. We show that the wind farm control problem
can be framed as an instance of a transition-independent Decentralized Partially
Observable Decentralized Markov Decision Process (Dec-POMDP) where the
interdependence of agents dynamics can be represented by a directed acyclic graph
(DAG). We show that for these problems, non-stationarity can be mitigated by a
multi-scale approach, and show that a multi-scale Q-learning algorithm (MQL)
where agents update local Q-learning iterates at different timescales guarantees
convergence.

1 Introduction

Recent advances in reinforcement learning (RL) have seen a growing interest in solving cooperative
multi-agent problems, where several agents interact with the same environment to optimize a common
objective [31, 20]. Multi-agent reinforcement learning (MARL) has encountered successes in fields
as varied as games with multiple players [2], vehicle routing problem for traffic regulation [32], or
recently, distributed optimal control of wind farms [24].

Operating wind turbines causes wind perturbations called wake effects: downstream of the rotor,
the velocity of the wind decreases and its turbulence increases. In wind farms, where many wind
turbines are grouped together on the same field, wake effects create sub-optimal wind conditions
the farm that can reduce the production of downstream turbines. An example of this phenomenon
can be seen on Section 1. One solution is to increase the angle between a turbine’s rotor and the
direction of the wind, called the yaw: this decreases the turbine’s own production, but can increase
the total power output of the farm by deflecting the wake away from downstream turbines. Finding
the optimal yaws to maximize the production is hard. Models must predict complex aerodynamics
interactions under turbulent wind inflow and uncertain atmospheric conditions, and the optimal yaws
returned by classical optimization approaches based on static models are sensitive to modeling errors.
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Figure 1: Left: Wake effects in the offshore wind farm of Horns Rev 1 - Vattenfall. Right: Wake
steering schema according to [14]. The yaw of the first turbine is increased to deflect the wake away
from the downstream turbine.

Instead, recent methods have proposed to frame the wind farm control problem as a cooperative
multi-agent reinforcement learning task: in this approach, every turbine is an agent that can choose to
increase or decrease its yaw, and all seek to maximize the total power production. Good empirical
results have been achieved under this framework, with RL algorithms significantly increasing the
total power output of several simulated wind farms [6, 13, 24]. In particular, independent learning, an
approach where all agents simultaneously run single-agent RL algorithms, was sufficient to learn
optimal memory-less control strategies [11, 30, 8, 6]. To our knowledge no attempt at mobilizing
theory to understand this success or derive convergence guarantees has however been made.

In this article, we rely on stochastic approximation techniques to prove the convergence of a multi
time-scale approach to tackle the non-stationarity problem. In particular, multi-timescale stochastic
approximation showed that several interdependent stochastic processes can all converge when they are
updated at different scales [7, 17]. These have been successfully used to build reinforcement learning
algorithms maintaining different iterates, to decouple the learning of future rewards and of the best
response in various fictitious-play [3, 23, 16] and Q-learning [22]. Unfortunately, these convergence
results require the reward function to be stationary, meaning that for a given state-action pair, the
collected reward is always sampled from the same distribution. These results do hence not apply
to the partial observability case. In [19], a multi-scale approach similar to the one investigated in
this article is further evaluated on several multi-agent reinforcement learning problems, and found to
stabilize learning in several MARL environments, but an analysis of its convergence is not provided.

Contributions of the paper

• We show that this wind farm control problem can be framed as a Transition-Independent
Dec-POMDP where agent dynamics are represented as a directed acyclic graph (DAG).
This approach identifies a problem structure that can be useful beyond its application to
wind farm control.

• We show that for independent learners in a transition-independent Dec-POMDP, the loss of
information due to partial observability can be seen as a Markovian noise.

• Using weak convergence results for multi-timescale asynchronous updates from [15], we
prove that letting agents learn at different time scales can be sufficient to guarantee the
convergence of independent Q-learning when agent dynamics can be described by a
DAG.

• We build on the network distributed POMDP problems [18], in which interactions between
agents can be represented by a sparse graph, and show that our multi-scale Q-learning
approach can exploit known interaction structure to guide learning rates selection.

The paper is organized as follows. In Section 2 we formalize the problem of finding an equilibrium in
a transition-independent Dec-POMDP and show how it can describe our wind farm control problem.
Then, in Section 3, we propose a multi-scale Q-learning algorithm and prove its convergence: we
lay out the assumption of acyclic dependence structure between agent dynamics, and show how it
allows us to apply our multiscale results to the defined class of Dec-POMDP. We then exploit the
graph of interaction between agents in a networked problem to derive faster algorithms. Finally, our
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experiment in Section 4 evaluates the multi-scale approach on the real industrial problem of wind
farm control, and empirically validates its convergence.

2 Preliminaries: cooperative MARL with local learners

Let us consider the case of a fully cooperative, infinite horizon multi-agent reinforcement problem,
where state information is distributed among all agents and they must collaborate to maximize a
shared reward. Such problems are commonly formulated as decentralized partially observable Markov
decision processes (Dec-POMDPs) in the MARL literature.

We further focus on the special case of the transition-independent Dec-POMDP [4, 5]. In a transition-
independent Dec-POMDP, each agent’s local observations only depend on its local actions, so that
agents only interact through the shared reward. In general, any blind cooperation problem in which
agents must learn to coordinate while being oblivious to each other’s existence will fit this description.
In the rover exploration problem introduced by [4] for example, several rovers must coordinate to
explore a planet. Rovers are assigned distinct sides of the planet to explore so that they do not directly
interact, but the value of the information they can gather depends on what is collected by other agents.

We now show that a transition-independent Dec-POMDPs can also be constructed from certain
standard Dec-POMDPs, and such a reformulation can be useful to solve real industrial problems.
This is the case of the distributed wind farm control problem, in which the local information available
to any agent in the Dec-POMDP can be factorized into two components: we have for any agent
i, (yi, wi) where the first component yi is the state of the current yaw of the agent, and wi is a
statistic of the local wind conditions at the wind turbine. The first is a private component, that is a
local component independent of other agents: the state of each agent’s actuator is only controlled
and measured by itself. The second is a deterministic function of the private components of other
agents, and of an observable exogenous Markovian process that is independent of any agent’s action:
the local wind conditions are a function of the incoming wind inflow at the entrance of the farm,
and of the yaws of other wind turbines. Note that this function is unknown: it is the function
predicting the values of the velocity field in front of every turbine rotor, determined by the solutions
to 3D Navier-Stokes equations [1]. The identification of such an exogenous process is however
sufficient: constructing local states by replacing the second component with a direct observation of the
exogenous process frees the local state from dependence on other agents’ action, while maintaining
the Markovian property of the global MDP, and concludes the reformulation of the problem as a
transition-independent Dec-PODMP. In the case of wind farm control, we replace the observations of
local wind conditions at every turbine by the observation of a single measure of wind conditions at
the entrance of the wind farm w∞, so that we have in the local observation of each agent (yi, w∞).
Intuitively, we sacrifice state observability for transition independence.

Let us now formalize the problem of transition-independent Dec-POMDP. We then explicit the
assumptions on the transitions and local policies that we will consider in the rest of this paper, before
introducing our multi-scale Q-learning algorithm.

2.1 Independent transition Dec-POMDP

We will consider a decentralized partially observable Markov Decision Process (Dec-POMDP)
reinforcement learning problem, where M agents interact with the same environment to maximize
a common reward. Let us assume a finite state space S and a finite action space A. The global
state space S is factorized into M observation or local state spaces S = S1 × · · · × SM and for any
s ∈ S we write si the corresponding local state in Si. Note that this means that the local state at
any time is a deterministic function of the global state. Similarly, we write A = A1 × · · · ×AM the
factorization of the global action space A. A global reward r : S ×A→ R is shared by all agents.
The reward is bounded in R by a constant R > 0, that is: ∀(s, a) ∈ S ×A, |r(s, a)| ≤ R. We write
P : S ×A× S → (0, 1) a transition kernel, denoting transition probabilities between states given
chosen actions. For any state space S and any action space A, we write ∆(S,A) the set of policies
mapping any state s ∈ S to a distribution over actions in A. Every agent i has a set of local policies
∆(Si, Ai), and for any πi ∈ ∆(Si, Ai) we write the probability of taking action ai in si πi(ai | si).
If the policy is deterministic, so that for any state si ∈ Si a unique action ai is chosen with probability
one, we directly write πi(si) = ai. A global policy π can always be extracted from a set of local
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policies {π1, . . . , πM} and we write π = (π1, . . . , πM ). Among all global policies, we thus consider
the subset of policies that can be written as a product of local policies Πo = ×M

i=1∆(Si, Ai).

Because any local policy only depends on its local states, we have π(a | s) = ΠM
i πi(ai | si) for all

a, s. For any discount factor β ∈ (0, 1), we consider the maximization of the expectation of the sum
of discounted reward, or return Eπ

[∑∞
k=0 β

kr(sk, ak)
]
, with π a global policy mapping global states

to global actions. It has been shown by [10] and [9] that in transition-independent DecPOMDPs, this
quantity can be maximized by a the product of local policies in Πo.

As we consider transition-independent Dec-POMPD, we make the following assumption [4]: every
agent’s local state is only influenced by its own current state and action.
Assumption 2.1. We assume that transitions between locally observed states only depend on local
state and actions. That is, there are local transition kernels P i

i=1...M such that ∀s, a, s′ ∈ S ×A× S

P (s, a, s′) = ΠM
i=1P

i(si, ai, s′i)

For simplicity of notations, we will in the following ignore local states with exogenous processes, but
the analysis is easily extended to them.

For any stationary global policy π, the global state process s is in fact a Markov chain with transition
matrix

Pπ(s, s
′) =

∑
a

π(a|s)P (s, a, s′) =
∑

a=(a1,...,aM )

ΠM
i=1π

i(ai|si)P (s, a, s′)

We now introduce an assumption on the transition function of the MDP.
Assumption 2.2. For any non-deterministic local policy πi such that ∀ai, si ∈ A, πi(ai | si) > 0,
the local state process is an irreducible and aperiodic Markov chain.

This classical assumption for Q-learning [28, 27, 12] will ensure that all local state processes admit an
invariant distribution, and will converge to it under a fixed policy regardless of the initial distribution.
Note that this implies that the global state process is also irreducible and aperiodic.

Using vector notation, we define dπ ∈ (0, 1)|S| the invariant distribution over the global state space
S satisfying dπPπ = dπ. Similarly, for every agent i we define dπ

i

i , the invariant distribution of the
local state process si. If we ensure that local policies πi have non-null probabilities on all the local
action space, then A 2.2 ensures that the local state-action process (si, ai) is also irreducible: it is a
Markov chain over Si ×Ai, with transition matrix Pπi((si, ai), (s′i, a′i)) = P (si, ai, s′i)πi(a′i|s′i)
given by A 2.1. We denote its invariant distribution as λi.

In the rest of this paper, we consider the transition-independent Dec-POMDP that satisfies A 2.1 and
A 2.2.

2.2 Q-functions in a TI Dec-POMDP

For an agent i and a global policy π, we note π−i the set of local policies in π except πi. For any
pair (si, ai) ∈ Si ×Ai and any global policy π ∈ Πo, we define the ith q-function Qπ−i

πi (si, ai) the
value of taking action ai in local state si, and then following policy πi, provided that any other agent
j follows its respective local policy πj :

Qπ−i

πi (si, ai) = Es0∼dπ,ak∼(πi,π−i),sk∼P

[ ∞∑
k=0

βkr(sk, ak) | si0 = si, ai0 = ai

]
(1)

where the initial state s0 is sampled according to the stationary distribution dπ. These local q-
functions Qπ−i

πi can be written as tables of dimension |Si|× |Ai|, and admit a recursive formula given
in lemma 1.
Lemma 1. Any local q-function eq. (1) satisfies the following recursive formula:

Qπ−i

πi (si, ai)

=
∑
s

dπ(s | si)
∑
a−i

π−i(a−i|s)r(s, a) + β
∑
s′i

P i(si, ai, s
′i)
∑
a′i

πi(a
′i|s

′i)Qπ−i

πi (s′i, a′i) (2)
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The proof of lemma 1 is straightforward but tedious, detailed in appendix A.1. Like for the single-
agent q-value function [25], the q-value is split in two parts: an immediate reward collected at the
current state and a future gain, that is the reward expectation starting from the next state. Note that at
every step the expectation of the reward r(s, a) is taken with regard to a distribution over the global
state and the global action. Because the q-value is evaluating the response πi to π−i, the global action
must always be taken with respect to π. Then, per definition of the q-value eq. (1), the initial state
is sampled from the stationary distribution dπ. It then follows from the definition of the stationary
distribution that the distribution of the next global state will still be dπ , and the local q-value taken at
the next step is the expectation of the future gain. We now introduce the definition of a best response,
as a local policy πi which maximizes the return when other local policies are fixed.
Definition 1 (Best response). A local policy πi

br is said to be a best response to a set of local policies
π−i if starting from any local state, it always maximizes the return as the other agents follow local
policies π−i. That is, for any local policy πi we have:

Qπ−i

πi
br
(si, ai) ≥ Qπ−i

πi (si, ai) ∀si ∈ Si, a
i ∈ Ai

Best response policies will therefore maximize the expectation of this optimal q-value at every state
si. They can be written as the set of policies πi such that πi(· | si) ∈ argmax

ρ∈Ω(si)

[
ρTQπ−i

πi (si, ·)
]
,

where Ω(si) ⊂ [0, 1]|Ai| is the simplex of dimension |Ai| representing the set of local strategies
mapping a given local state to a distribution over actions. Yet in order to ensure that local policies
always have non-null probabilities on the local action space, we consider a regularized objective
introduced in [17, 22]: for any given q-value table Qi, let us define the mapping ϕ that returns the
following local policy:

ϕ(Qi)(· | si) = argmax
ρ∈Ω(si)

[
ρTQi(si, ·) + τνisi(ρ)

]
∀si ∈ Si (3)

where τ > 0 is a temperature parameter representing the weight given the regularization, and νisi
is a smooth and strongly concave function which takes infinite values outside of Ω(si). Strong
concavity ensures the uniqueness of the solution ϕ(Qi), and we call any local policy π∗i such that
π∗i = ϕ(Qπ−i

π∗i ) a smoothed best response to π−i. If all agents follow a smoothed best-response, then
the corresponding global policy is called an equilibrium.
Definition 2 (Equilibrium). A global policy π∗ is an equilibrium iff every local policy πi is a
smoothed best response to other local policies π−i

To shorten the notation, we write v′(Qi, si, ai) the expectation of the future gain as estimated by any
table Qi after taking action ai in si:

v′(Qi, si, ai) =
∑
s′i

P i(si, ai, s′i)[ϕ(Qi)(· | s′i)]TQi(s′i, ·) (4)

Then writing Qπ−i

∗ = Qπ−i

π∗i , from lemma 1 we have that the equilibrium π∗ and its associated
q-functions Qπ∗−i

∗ (si, ai) are solutions to the following equations:

Qπ∗−i

∗ =
∑
s

dπ
∗
(s | si)

∑
a−i

π∗−ir(s, ai, a−i) + βv′(Qπ∗−i

∗ , si, ai)

for all i ∈ {1 . . .M}, si ∈ Si, ai ∈ Ai.

3 Weak-convergence of multi-scale Q-learning iterates

Let all agents maintain a local estimate Q̂i of the q-function (1), and follow a local policy πi = ϕ(Q̂i).
The combined actions of all agents sample M local trajectories {(si0, ai0, ri0), (si1, ai1, ri1) . . . }, i ∈
{1 . . .M}. Let now all agents locally run a Q-learning update, so that each agent updates its local
estimate Q̂i

k at each timestep k:

Q̂i
k+1(s

i, ai) = Q̂i
k(s

i, ai)

+ αi
k(s

i
k, a

i
k)
[
rk + β[ϕ(Q̂k)(s

i
k+1)]

T Q̂k(s
i
k+1, ·)− Q̂i

k(s
i
k, a

i
k))
]
Ik,si,ai

(5)
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with Ik,si,ai the indicator of the event that the local state-action pair si, ai is visited at timestep k.
At this timestep, all other state-action pairs are therefore not updated, and the iterates are therefore
asynchronous.

Note that in the original single-agent Q-learning, the collected reward r(s, a) is exactly the expectation
of the reward for the observed state-action pair (s, a). Here however, no agent ever collects a reward
sampled according to the stationary distribution of the equilibrium policy as defined in the q-value
eq. (1). In fact, no agent ever collects a reward sampled from any stationary distribution at all. Instead,
we can notice that the collected reward depends on an unobserved Markovian global state process,
and that the difference between the collected reward and the reward expected at equilibrium can be
seen as a state-dependent noise. To treat this state-dependent noise, we can therefore apply results
from the stochastic approximation theory concerning multi time scales iterates with Markovian
noise. The full proof of this approach is detailed in the Appendice appendix A.2, and we call the
resulting algorithm the multi-scale Q-learning algorithm. It allow us to reframe the convergence
of the multi-scale Q-learning iterates as the problem of finding a specific order among agents, such
that at equilibrium the change in policy of an agent of higher order creates only small perturbations
among agents with a lower order.

In the next section we detail further what is means by agent ordering. Intuitively, for each agent we
want to look at its best response dynamic, and identify a set of other agents such that this dynamic
converges when all policies in the set are fixed. This will define a type of dependency between agents
in the Dec-POMDP: if we can extract a total order on all agents from these dependencies, then it
will suffice to assign learning rates following that order. Note that such a total order implies acyclic
dependencies between agents. In Section 3.1, we will start by making explicit what is meant by
ordering agents according to their dynamics through A 3.1. But such an assignment will force us to
have as many learning rates as agents. Building further on the acyclic dependencies assumption, and
to address a more concrete application, Section 3.2 zooms in on the case of the networked distributed
POMDP (ND-POMDP), in which the shared reward is distributed among agents and the graph of
connections between agents is known. We show knowledge about this graph can be exploited to
reduce the number of different learning rates and build a faster algorithm.

3.1 Interaction structure between agents for multi-scale Q-learning

Consider a case in which agents are given learning rates such that every agent is learning at a different
timescale. We start by defining precisely the total order needed on agents for this solution to converge.

Recall π, dπ as defined by (18), with ϕ(Q) · dπ the corresponding stationary distribution over global
state-action pairs. Therefore for any M-uplets Q there is an associated reward expectation taken over
the stationary distribution of state-action pairs. We look at any agent i and its corresponding q-table
Qi. We denote Q>i = (Qi+1, . . . , QM ) and Q<i = (Q1, . . . , Qi−1). Let us take a set of q-tables Q
with its corresponding global policy π = ϕ(Q) such that

• For j ≤ i, Qj is any q-table in Sj ×Aj

• For j > i, Qj is a q-table of the smoothed best response to π−j as introduced in eq. (3). We
write Z≥i+1(Q<i+1) the M − i q-tables Q>i thus defined.

Any disturbance to a local q-table Q′i ̸= Qi causes a corresponding change to Z≥i+1(Q<i, Q′i). If
the reward function is such that a local perturbation does not produce change in the reward expectation
greater than the perturbation, then it will follow that the mean ODE approximating the local iterates
(5) will have a single fixed point. We will now formalize this condition.

Assumption 3.1. Let Q′i ∈ [−D,D]|Si|×|Ai| be a local perturbation to Qi within the constraint
set. Write Q′ = (Q<i, Q

′i, Z≥i+1(Q<i, Q
′i)) and π′ = ϕ(Q′). There exists an ordering of agents

{1, . . . ,M} and K ∈ (0, 1) such that for every agent i and its q-table Qi, the reward function
satisfies:

∥Rπ(s)−Rπ′(s)∥1 ≤ K∥Qi −Q′i∥∞

Theorem 1. Let us consider M agents locally updating their q-values estimates according to (5)
with initial values Q̂i

0 ∈ [−D,D] for D > 0 such that D > R
β . Suppose that A 3.1 is satisfied with

the ordering of agents {1, . . . ,M}, and the learning rates {αi}1...M follow A A.5 and A A.8, where
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αi is the learning rate sequence of the ith agent. If the discount factor β satisfies β ≤ 1−K, then the
q-value estimates will converge weakly towards the smoothed best-response q-values Q∗i. Moreover,
the deterministic global policy defined by si, π∗i = ϕ(Q∗i) for all i is an equilibrium.

This learning rates attribution however forces us to have as many learning rates as we have agents.
We notice that Section 3.1 defined a dependency between agent dynamics that can be represented by
a directed acyclic graph (DAG). If such a dependency is known, then the graph can be used to assign
a ranking to agents that allows for different agents to have the same learning rate sequence. We will
now look at a specific class of Dec-POMDP with specific assumptions on agent interaction structure
and see how this allows us to derive a faster algorithm.

3.2 Reward decomposition for multi-scale Q-learning

In this section we address further constraints on our Dec-POMDP that can relax the need for a total
order on all agents. We now look at of Networked Distributed POMDPs (ND-POMDPs), a specific
case of transition-independent Dec-POMDPs introduced by [18] to model distributed optimization
problems like sensor network coordination. We now assume the shared reward can be written as a sum
of M components {ri}1,...,M such that for all (s, a) ∈ S × A, r(s, a) =

∑M
i=1 r

i(si, ai, sU
i

, aU
i

),
where U i is a subset of agents, and sU

i

- resp. aU
i

- is a vector concatenating local states and - resp.
local actions - of agents in U i. We say that agent i influences agent j if i ∈ U j . Here, the total reward
is not received by every agent, but rather distributed in the network that connects all agents.

Let the relationships between agents be modeled by a directed acyclic graph (DAG) G = (V, E) with
V the set of vertices and E the set of edges, such that |V| = M , and (i −→ j) ∈ E iff agent i influences
agent j. For every node i, we writeN i

in the set of nodes from which there is an edge to i in the graph,
and N i

out the set of nodes to which there is an edge from i in the graph. The neighborhood of node
i is then noted N i = N i

in

⋃
N i

out. We write NA(i) the ancestors of i, that is the set of nodes for
which there exists a path towards i. Similarly, we write ND(i) the descendants of i. Under A A.5,
every agent learned at a different scale, for a total of M different scales. In ND-POMDPs, we can
exploit the structure of the problem to attribute a smaller set of M̄ ≤M scales to all agents.

We want to find a ranking function rk : i→ rk(i) ∈ {1, . . . , M̄}, such that the proof of convergence
of theorem 1 is preserved if every agent i is assigned the learning rate sequence αrk(i)

k . Let us start by
rewriting A 3.1 as a loser, local assumption. To achieve this, first note that the only role of the total
ordering in this assumption was to ensure that for every agent, the set of all other agents could be
partitioned into two subsets: agents that need to learn slower and agents that need to learn faster. This
was needed because in the general case, the dynamics of all iterates must be assumed to be dependent
on all other iterates. Yet under our new DAG structure, we already know by construction that if the
parents of i maintain fixed policies, then only a - possibly strict - subset of other agents will need to
adapt their best responses to a change in the policy of agent i: its descendants and their respective
ancestors. Therefore the convergence of the iterates for i can be ensured by a partition of other agents
in 3 categories: some "faster" agents, some "slower" agents, and all other agents whose learning scale
has no impact on the iterates. The possibility to gain in learning speed will depend on the size of that
last subset. We can therefore rewrite:

Assumption 3.2. For every agent i in G and with the same notations as A 3.1, there exists K ∈ (0, 1)
for the ordering of agents {NA(i), i,ND(i)} such that ∥Rπ(s)−Rπ′(s)∥1 ≤ K∥Qi −Q′i∥∞

Then, any ranking that satisfies the following conditions will also preserve the convergence of
theorem 5.

• (A) For any node i, nodes in NA(i) have a strictly inferior rank, and nodes in ND(i) have
a strictly superior rank.

• (B) For any node i, there exists no two different nodes of the same rank in NA(i).

Let us now take any topological sorting algorithm and apply it to our directed acyclic graph: the
total order on nodes it will return satisfies (A) by construction, and trivially satisfies (B) by giving
a different rank to every node. Therefore it still returns M̄ = M ranks. We give in appendix A.6 a
straightforward attribution procedure for any DAG that returns M̄ < M ranks whenever it is possible.
An example of the application of that procedure to a real example can be found in Figure 2a.
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As an example, let us consider a specific type of graph structures for which finding a ranking satisfying
(A) and (B) is particularly trivial. We focus on the subset of graphs T defined the following way.
First, it contains all trees. Secondly, for a given tree G = (V, E), it also contains any new graph
(V, E ∪E ′), where E ′ ⊂ {(i→ j) | (i, j) ∈ V, and ∃ path from i to j in G}. Then, finding a learning
rate attribution that satisfies (A) and (B) is immediate: we only need attributing to every node the
size of the longest path from a root - a node without incoming edge - to this node. We now show that
under any learning rates attribution satisfying (A) and (B), convergence to a global equilibrium is
preserved when every agent only receives a local reward gathered from its neighbors.

Theorem 2. Let us consider M agents locally updating their q-values estimates according to iterates

Q̂i
k+1,c = Q̂i

k,c + αi
k(s

i
k, a

i
k)
[
r̄ik + β[ϕ(Q̂i

k)(s
i
k+1)]

T Q̂i
k(s

i
k+1, ·)− Q̂i

k,c

]
(6)

with r̄ik =
∑

j∈{i,N i} r
j(sjk, a

j
k, s

Uj

k , aU
j

k ), in the ND-POMDP with graph interaction network
G ∈ T satisfying A 3.2. Let the learning rates {αk} be attributed by a ranking that satisifes (A) and
(B). Then the conclusion of theorem 1 stands.

The iterates eq. (6) will be labeled NetworkMQL. The proof is detailed in appendix A.7. We start by
showing any ranking satisfying (A) and (B) preserves the convergence of theorem 5 and then that
TreeLRs returns a learning rate distributions that belongs to that set.

4 Application to wind farm control

We validate the multi-scale approach on a case of a simulated wind farm with 16 turbines. An
anonymized version of the code is available here: https://anonymous.4open.science/r/wfcrl-mql-
D84F.

(a) Agent interaction DAG. (b) Evolution of power output (c) Evolution of learning rates

Figure 2: MQL: Multi-scale. NetworkMQL: Multi-scale with Reward Decomposition LQL: Local
Q-learning. fig. 2a represents the 16 interacting wind turbines on a graph. The coordinates represent
the location of each turbine in the farm. The levels used in the MQL algorithm are written in white,
and the corresponding levels used in the NetworkMQL algorithm obtaines with Algorithm 1 are
written in black. The total power output of the simulated 16 turbines wind farm averaged on 1000
time-steps is reported on Figure 2b. The evolution of learning rates under MQL based on scales
attributed in Figure 2a is reported on Figure 2c for the first 100k time-steps.

Let us consider a farm of M wind turbines whose power output we want to maximize. In our
multi-agent problem, every turbine is an agent. We assume that statistics on the wind inflow entering
the farm can be represented by an irreducible and aperiodic Markovian process W taking values
in a finite state space with transition kernel PW . W is obviously not controllable by the agents.
The production of each turbine i is a function of its yaw yi, and of wind conditions statistics. This
information can be gathered in its local state: we write Si the finite local state space for agent i, and
the finite global state space is S = ×iSi. The local action space Ai for agent i corresponds to the
choice of increasing or decreasing its yaw by 1◦, or to let it unchanged, so that Ai = {−1, 0,+1}.
The finite action space is similarly defined A = ×iAi. The reward r(s, a) returns the total production
of the farm after agents have picked action a in state s. Note that if agents are allowed to observe their
local wind conditions, the problem is not transition-independent: any action taken by an agent can
change the wind conditions at other agent’s locations. This can be fixed by using a direct observation
of W as wind statistics in the local state.

8

https://anonymous.4open.science/r/wfcrl-mql-D84F
https://anonymous.4open.science/r/wfcrl-mql-D84F


The transition function is P = PyPW = ΠM
i=1P

i
yPW , where P i

y is the transition kernel on the
local yaw. Note that P i

y is then entirely deterministic as for any si, ai, s′i ∈ Si ×Ai × Si we have
P (si, ai, s′i) = I{s′i = si + ai}. It is easy to see that if all local policies are forced to maintain
non-null probabilities on all local actions, then the local state processes will be irreducible and
aperiodic.

A DAG modeling interactions between agents can be built the following way: from M nodes
representing the M agents, we add an edge from i→ j if turbine j is in the wake of turbine i. The
reward can then be rewritten as a sum of local components r(s, a) =

∑M
i ri(si, ai, sU

i

, aU
i

), where
each ri returns the production of agent i, and U i is the set of in-neighbors of turbine i. We start by
defining M learning sequences: for each rank in {1, . . . , M̄}, let 0 < lM̄ < · · · < l1 < 1 and the
corresponding learning rate sequences be

αli
k,c =

g

nk((si, ai)c)li

with g > 0 a gain and nk((s
i, ai)c) = # visits to the cth state-action pair (si, ai)c up to k. These

sequences are standard for Q-learning algorithms. For our multiscale experiments, we modify the
sequences by adding a term dependent on the time between visits, so that the final learning rate
sequences are:

α′li
k,c = g

(
1

nk((si, ai)c)
+

log(T i
k,c)− log(T i

k−1,c)

T i
k,c − T i

k−1,c

)li

where T i
k,c is the real time of the kth update to component c. This second term is motivated by

the theory of convergence of asynchronous iterates - detailed in Appendix in A A.8: used alone, it
ensures that learning happens at the same time-scale for all components of a single q-table. The first
term used alone, or αli

k,c, ensures on the other hand that different agents learn at different time-scales.
An example of the evolution of the resulting sequences of learning rates for Algortihm MQL can be
found on Figure 2c, and we can see empirically that they preserve both properties. We use the same
gain g = 2 for all algorithms. We run both Algorithm MQL eq. (5) and Algorithm NetworkMQL
eq. (6) on a simulation of a wind farm with 16 wind turbines on 10 different seeds. We report the
average production and standard deviation on Figure 2b. For MQL, we simply assign a different rank
to every agent following a topological sort and use the M multi-scale learning rate sequences α′li

k,c.
We compare with a naive Local Q-learning approach, where the standard Q-learning algorithm is run
at every agent with the standard learning rates sequences αli

k,c. All agents are then given the fastest
learning rate sequence corresponding to li = 1. For NetworkMQL, we use the procedure described in
appendix A.6 to assign M̄ ≤M ranks to all agents in the DAG. We obtain M̄ = 9 different ranks
shown in fig. 2a and use the last 9 learning rate sequences in {li}i∈1...M .

5 Conclusion

By allowing all agents to run a single-agent reinforcement algorithm in parallel, independent learn-
ing provides the simplest way to adapt these algorithms to cooperative multi agent environments.
Although this approach has encountered experimental successes, it has no underlying theoretical
guarantee. Inspired by the surprising success of such an approach on the wind farm control problem,
we have highlighted a specific subclass of cooperative MARL problems: transition-independent
Dec-PODMP where agent dynamics can be represented by a DAG. We show that in these problems
the partial observability of the global state can be modeled as a Markovian perturbation in stochastic
approximation iterates. We show that when there is an acyclic dependence structure between agent
dynamics in these cooperative systems, a careful assignment of learning rate sequences following
a multi-scale approach can be sufficient to establish convergence. In particular, knowledge of the
interaction graph between agents in ND-POMDP can be exploited to assign learning rates to preserve
convergence. We show how these results can be applied to wind farm control, a real optimization
problem from the industry. Further work could extend these conclusions to systems with noisy
local observations or non-independent transition functions. Furthermore, independent learning has
often encountered experimental success without the multiscale approach in multiagent reinforcement
learning settings ([29, 26]), and our acyclic dependence analysis could provide a basis to find a
theoretical explanation of these results.
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A Appendix / supplemental material

A.1 Proof of Recursive form of local q-function

Proof of Lemma lemma 1 We can rewrite (1) as

Qπ−i

πi (si, ai) (7)

=
∑
s

dπ(s | si)Ea0∼(πi,π−i)

[
r(s0, a0) | si0 = si, ai

0 = ai, s0 = s
]

(8)

+ β
∑
s

dπ(s | si)Eak∼(πi,π−i),sk∼P

[
∞∑

k=1

βk−1r(sk, ak) | si0 = si, ai
0 = ai, s0 = s

]
(9)

While the term in (8) can be expressed as
∑

s d
π(s | si)

∑
a−i π

−i(a−i|s)r(s, ai, a−i), the term in (9) can be
developed in the following way

β
∑
s

dπ(s | si)Es1,a
i
1

[
Eak∼π,sk∼P

[
∞∑

k=1

βk−1r(sk, ak) | s0 = s, ai
0 = ai, s1 = s′, ai

1 = a′i

] ∣∣∣∣∣s0 = s, ai
0 = ai

]
= β

∑
s

dπ(s | si)
∑
a−i

π−i(a−i | s)
∑
s′

P (s, a, s′)
∑
a′i

πi(a′i | s′(i))×

Eak∼π,sk∼P

[
∞∑

k=1

βk−1r(sk, ak) | s1 = s′, ai
1 = a′i

]

= β
∑
s′i

P i(si, ai, s′i)
∑
a′i

πi(a′i | s′(i))

[∑
s

dπ(s | si)
∑
a−i

π−i(a−i | s)
∑
s′

P−i(s−i, a−i, s′−i)×

Eak∼π,sk∼P

[
∞∑

k=1

βk−1r(sk, ak) | si1 = s′i, s−i
1 = s′−i, ai

1 = a′i

]]

= β
∑
s′i

P i(si, ai, s′i)
∑
a′i

πi(a′i | s′(i))

[
Es1∼dπ,ak∼π,sk∼P

[
∞∑

k=1

βk−1r(sk, ak) | si1 = s′i, ai
1 = a′i

]]

= β
∑
s′i

P i(si, ai, s′i)
∑
a′i

πi(a′i | s′(i))Qπ−i

πi (s′i, a′i)

where the second line to the last is due to the definition of the stationary distribution.

A.2 Conditions for the weak convergence of synchronous multi-scale iterates with Markovian
noise

Weak convergence of stochastic approximation for two time-scales systems were proven in [15]. We formally
extend these results to the multi-scale case. We consider the constrained case: at each iteration, the iterates are
projected on a defined admissible space H . We assume that H is a hyperrectangle H = [h1, b1]× [h2, b2]×
· · · × [hd, bd] with (hi, bi) ∈ R2 for i ∈ {1, . . . , d} and d > 0 the dimension of the iterates. The operator ΠH

is used to denote this projection on H .

Consider M interdependent stochastic approximation processes θ1k, . . . , θ
M
k updated according to iterates:

θik+1 = ΠH

[
θik + αi

kY
i
k

]
= θik + αi

k(F
i(θk, ξ

i
k) + δU i

k) +Bi
k (10)

where θk = (θ1k, · · · , θMk ), {ξik} are noise sequences, F i(·, ·) are functions of θ and ξi, δU i
k+1 = Y i

k −
F i(θk, , ξ

i
k) are martingale noise differences, αi

k := αi(k) > 0 are learning rates for timescale i at iterate k,
and Bi

k is a correction term to project the iterate on H , henceforth referred as reflection terms.

Let {Fk} be a sequence of non-decreasing σ−algebra generated by {θij , Y i
j−1, ξ

i
j , j ≤ k, i ≤ M}, and Ek

refers to the associated conditional expectation E[·|Fk], and we have EkY
i
k = F i(θk, ξ

i
k). To be concise, we

will use the notations
θ<i := (θ1, . . . , θi−1), θ≥i := (θi, . . . , θM ).

We now lay down the assumptions needed to ensure convergence. Let Ξ be a complete and separable metric
space, and A be an arbitrary compact set in Ξ. We start by standard assumptions for stochastic approximation
algorithms: the sequences of observations Y i

k are uniformly integrable, and at each timestep their expectations
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are given by a continuous function of the iterate θik. The main idea is that an error term δU i
k of null expectation

will be averaged out through the iterations, so that as k goes to infinity, the behavior of the iterates can be
described without the error terms. We make the following assumption for i = 1, · · · ,M .

We first start with basic assumptions from stochastic approximation theory:

Assumption A.1. The {Y i
k} are uniformly integrable, and can be written Y i

k = F i(θk, ξ
i
k)+ δU i

k with {δU i
k}k

martingale noise differences EkδU
i
k = 0 and F i(·, ξi) functions continuous in θ, and continuous in ξi ∈ A.

Here, F i is still dependent on the error sequences ξik whose expectations are not null. Yet, the Markovian
property of these sequences, combined with a constraint on the rate of evolution of the learning rates (see
A A.5), can be exploited to construct an approximation of F i(·, ξi) that does not depend on ξi. We detail some
assumptions on the Markovian noise processes that can be considered.

Assumption A.2. The noise processes {ξik} are bounded with values in Ξ, and Markovian: they admit a
transition function P i(·, ·|θ) such that P i(·, A|θ) is measurable for each Borel set A ⊂ Ξ, and P i(ξik+1 ∈
·|Fk) = P i(ξik, ·|θk). This transition function is continuous and does not depend on k. For any compact A ∈ Ξ
and µ ∈ (0, 1) such that, there exists a compact A′ such that P (ξik+1 ∈ A′ | ξik) ≥ 1− µ for all ξik ∈ A.

We now define the fixed θ−chain {ξk(θ)}, the Markov chain on state space Ξ with the fixed transition function
P (ξ, ·, |θ). It is the noise process starting from k if θ stayed constant, i.e., {ξk+j(θ), j ≥ 0, ξk(θ) = ξk)}.
The continuous function of the actual noise process can be approximated by the continuous function of the
fixed-chain process F i(·, ξik) (see the proof of Theorem 8.4.3 [15], p.271-275) if the rate of change of the
learning rates is slow enough. If we can construct a function F̂ i(·) of θ that does not depend on the process
ξi, such that F̂ i(θ) is a local average of the F i(·, ξik), then F̂ i(θk) is also an approximation of F i(θk, ξ

i) as
k → ∞. We detail these assumptions here:

Assumption A.3. The set {F i(θk, ξ
i
k)}k is uniformly integrable. For any j ≥ 0 with ξij ∈ A the set

{F i(θ, ξij+k(θ))}k≥0 is uniformly integrable, where ξij+k(θ) is the fixed-θ chain with initial conditions ξij and
transition function P i(ξ, ·|θj).
Assumption A.4 (Averaging condition). There exists a continuous function F̄ i(·) such that for each θ and on
any compact set A ∈ Ξ

lim
(k,m)→∞

1

m

k+m−1∑
j=k

Ek

[
F i(θ, ξi(θ))− F̄ i(θ)

]
Iξi

k
∈A = 0

We establish a different timescale to correspond to each process. For i, j ∈ {1, · · · ,M}, let tjk =
∑k−1

l=0 αj
l ,

and θi,0
αj (t) be the piecewise interpolation of the process θik on the j-th timescale defined as

θi,0
αj (t) = θi0, t ≤ 0, θi,0

αj (t) = θik, t ∈ [tjk, t
j
k+1]

Then, the shifted continuous time interpolation θi,k
αj (·) is simply the interpolation "started" from a specific

time-step k:
θi,k
αj (t) = θi,0

αj (t
j
k + t) (11)

and we let m(j)(t) = {κ : tjκ ≤ t ≤ tjκ+1}. Similarly, we define Bi,k

αj the shifted continuous time interpolation
at the j-th timescale of the sequence of reflection terms Bi

k. We are interested in the behavior of θi,k
αj (·) and

Bi,k

αj (·) as tjk → ∞ while αj
k → 0.

We now lay out further constraints on the learning rate sequences. The first two are standard for the stochastic
approximating literature: intuitively they require the learning rates to go towards zero, but not too quickly. The
third assumption is what makes the iterates multi-scale: it imposes a hierarchy between the M sequences that
ensures every iterate is learning at a different timescale.

Assumption A.5 (Assumption on learning rates). For each i ∈ {1, · · · ,M},

• (Classical rates) limk α
i
k = 0 and

∑∞
k=0 α

i
k = ∞

• (Slow changes) there is a sequence of integers ai
n → ∞ such that

lim
n

sup
0≤j≤ai

n

∣∣∣∣αi
n+j

αi
n

− 1

∣∣∣∣ = 0

• (Multi-scale) αi
k

α
j
k

→ 0, as k → ∞, whenever each i < j.

13



With the expectations EkY
i
k being approximated by F̄ i(θk) as k goes to ∞, the interpolations of the iterates

θi,k
αj will be shown to admit limit processes following mean ODEs defined by the F̄ i. The solution of the ODE

can then be used to characterize the asymptotic properties of the θik for i = 1, · · · ,M . Thanks to the multi-scale
assumption, at any timescale j the interpolation for all iterates learning at a slower timescale i < j will follow
the null ODE. Intuitively, they evolve so slowly that they can be considered constant at the j-th timescale.
Similarly, the interpolations for all iterates learning at a faster timescale can be considered to have reached the
limit of their respective mean ODE, if it exists. We consider the case where the ODE for every limit process for
any timescale has a unique asymptotically stable point.

Assumption A.6. There exists a continuous function ζi(θ<i) such that, for any set of initial conditions θ, the
solution to the following ODE has a unique asymptotically stable point (θ<i, ζi(θ<i)) for i ≥ 2:

Ẋj = 0 for j < i

Ẋi = F̄ i(X<i+1, Z≥i+1(X<i+1)) + bi.

where bi is the reflection on H , and

Z≥i(θ<i
k ) = (ζi(θ<i

k ), Z≥i+1(θ<i
k , ζi(θ<i

k ))), i = 2, · · · ,M − 2 (12)

with Z≥M−1(θ<M−1
k ) = (ζM−1(θ<M−1

k ), ζM (θ<M−1
k , ζM−1(θ<M−1

k ))).

When applying our multi-scale iterates to our Dec-POMDP problem, this assumption will enforce strong
constraints on the dynamics of the multi-agent system. In Section 3, we will introduce specific DAG structures
on agent interaction that can satisfy them, and a concrete example will be given in Section 4.

Note that the reflection terms bi of the projected ODE must live within a convex space Υ(Xi), defined the
following way: on the interior of H , Υ(Xi) = {0}, the set only containing the null vector, and on the boundary
of H , Υ(Xi) is the infinite convex cone generated by the outer normals at Xi of the faces on H on which Xi

lies.

Now we state the week convergence of the iterates (10) in the following theorem.

Theorem 3 (Weak convergence of multi-scale iterates with Markovian noise). Consider iterates (10). Let
{θi,k

αj (·)} be the interpolation of the process θik on the j-th timescale, defined by (11). If A A.1 to A.5 hold, then
{θ1,k

α1 (·)} admits a subsequence which converges towards a process θ1(·) such that:

θ̇1 = F̄ 1(θ1, Z≥2(θ1)) + b1, b1(t) ∈ −Υ(θ1(t)) (13)

where b1 is the reflection, that is the minimum force needed to keep θ1 in H . Moreover, for any δ > 0, the
fraction of time spent by θ1(·) in any δ−neighborhood around the set of limit points of (13) on the interval
[0, T ] goes to one in probability as T → ∞.

theorem 3 is a straightforward extension of the week convergence result established for two timescale iterates by
[Theorem 8.6.1, [15], p.286] to the case of M time scales. An example of the extension procedure from two-scale
to multi-scale can be found in [17]. The idea behind Kushner’s original proof in [15] for the two-timescale case
is that the noise induced by the Markovian sequences {ξik} can be seen as perturbations to local averages defined
by the functions F̄ i. This allows to approximate the iterates in continuous time by a projected ODE.

A.3 Extension to asynchronous iterates

We will now consider the case where the iterates are updated asynchronously: that is, not all elements of the θi

are updated at every iteration.

We index all elements in every θi by c ∈ {1 . . . C}, and the C elements are updated in an asynchronous manner.
Let αi

k,c be the learning rate for element c of iterate i at timestep k: all elements within a single iterate are given
the same sequences of learning rates, so that we use the notation αi

k = αi
k,1 = αi

k,2 = · · · = αi
k,C . The M

iterates in (10) can therefore be seen as M × C iterates, with the updates to each component following:

θik+1,c = ΠH

[
θik,c + αi

k,cY
i
k,c

]
(14)

The time between the kth and (k + 1)th updates of the element indexed by c in {θik}k is given by the random
variable τ i

k,c. Because the kth update can happen at a different time for two components, we need another
timeline to analyze the behavior of the iterates. We will look at their behaviors in the "real time", so that the kth
update at element c in the {θik}k is done at the real time T i

k,c =
∑k−1

n=0 τ
i
n,c. We note Γi

k,c =
∑k−1

n=0 α
i
nτ

i
n,c

the corresponding scaled real time, and introduce the real-time interpolation θ̂ic: θ̂ic(t) = θik,c on [T i
k,c, T

i
k+1,c).
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Like in (11), we look at the shifted piecewise constant interpolations θic,αj of the sequences {θik,c}k at every
timestep j = {1, . . . , C} in the iterate time, that is the continuous interpolations whose origins are at any
arbitrary timestep k. Here again, since all components do not reach a given timestep at the same time, we define
the shifted interpolates as starting at arbitrary real times υ. For this purpose, we introduce functions pic(υ), that
return the index of the first update at an element c of iterate i after a given real time υ:

pic(υ) = min

{
k :

k−1∑
n=0

τ i
n,c ≥ υ

}
, ∀υ > 0,

The shifted interpolates are then

θi,υ
c,αj (t) = θik+pic,c

, t ∈ [tij,υk,c , tij,υk+1,c), tij,υk,c =

k−1∑
n=pic(υ)

αj
n (15)

and the shifted real-time interpolations θi,υ
c,αj (·) are defined similarly:

θ̂i,υ
c,αj (t) = θik,c, t ∈ [Γij,υ

k+pic,c
,Γij,υ

k+1,c) Γij,υ
k,c =

k−1∑
n=pic(υ)

αj
nτ

i
n,c (16)

We now extend the definitions of the σ−algebra used in Appendix A.2. Two sets of random variables need to
be considered at every iteration: the Y i

k,c and the τ i
k+1,c. The corresponding σ−algebras should measure all

variables observed in the "past" up to the relevant moment during update k + 1. Again reasoning in real time,
note that update k + 1 is made after having observed Y i

k , but before entering the next waiting time τ i
k+1,c. This

corresponds to two slightly different sequences of σ−algebras:

F i,τ
k,c = {θi0,c, Y i

j−1,h, ξ
i
j−1,h, τ

i
j−1,h | T i

j,h ≤ T i
k+1,c}

F i,Y
k,c = {θi0,c, Y i

j−1,h, ξ
i
j−1,h | T i

j,h < T i
k+1,c}

⋃
{τ i

j−1,h | T i
j,h ≤ T i

k+1,c}

We write the associated conditional expectations Ei,τ
k,c and Ei,Y

k,c .

Let us denote the component-wise error sequences ξik,c δU i
k,c, ξik = (ξik,1, . . . , ξ

i
k,C), and δU i

k =

(δU i
k,1, . . . , δU

i
k,C). We assume A A.1 to A.5 hold, with any statement on a sequence Xi

k interpreted as
holding for all component-wise sequences Xi

k,c. We make the additional assumptions on the time intervals
between updates:

Assumption A.7. For all i, the sequence of intervals between updates {τ i
k,c}k is uniformly integrable, and

there exists ūi
c ≥ 1 such that the Ei,τ

k+1,c

[
τ i
k,c

]
are in the bounded interval

[
1, ūi

c

]
uniformly in k.

Assumption A.8. Every component’s learning rate αi
k,c can be written as a local average of positive real-valued

functions f i:

αi
k,c =

1

τk,c

∫ T i
k,c+τi

k,c

T i
k,c

f i(s)ds such that
∫ ∞

0

f i(s)ds = ∞ and lim f i(s)
s→∞

= 0

Assumption A.9. There exists a continuous function ζi(θ<i) such that, for any set of initial conditions θ, the
solution to the following ODE has a unique asymptotically stable point (θ<i, ζi(θ<i)) for i ≥ 2:

Ẋj = 0 for j < i

Ẋi =
F̄ i(X<i+1, Z≥i+1(X<i+1))

ui
c

+ b̂i.

with ui
c(t) with values in [1, ūi

c], b̂
i the term of projection on H , the Zi have been defined in (12)

Then, we can state the weak convergence result for the asynchronous multi-scale iterates.

Theorem 4 (Weak convergence of asynchronous multi-scale iterates with Markovian noise). Consider iterates
(14), updated asynchronously following the time interval sequences {τ i

k,c}k. If Assumptions A A.1 to A.5 hold,
and Assumptions A A.7 to A.9 also hold, then the conclusion of theorem 3 still holds with the limit process:

˙̂
θ1c,α1(t) =

F̄ 1(θ1c,α1(t), Z
≥2(θ1c,α1)(t))

ui
c(t)

+ b̂1c,α1(t) ui
c(t) ∈ [1, ūi

c]. (17)

The weak convergence of asynchronous updates for the single-agent case has been established in [Theorem
12.3.5 [15]], and this is an extension to the multi-scale case. As previously for theorem 3, the extension is
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derived by writing the ODEs for the continuous approximations at all iterate timescales. Unlike before, the
ODEs are now dependent on the continuous approximation at the real timescale. A simple relation between the
approximations at real and iterate timescales introduced by [15] can then be used to derive ODEs for the latter
and conclude the proof.

With the weak convergence of the multi-scale iterates laid out, we are now ready too apply these results to our
multi-scale Q-learning iterates eq. (5).

A.4 Application to multi-scale Q-learning iterates

Theorem 5. Consider the multi-scale Q-learning iterates (5). If A A.5, A.8 and A.9 are true, let all Q̂i
0,c ∈

[−D,D] for D > 0 such that D > R
β

with R the reward bound, then the conclusions of theorem 4 hold.

Proof. Let us consider any local state action pair si, ai of any iterate Qi. By assumption on the transition kernel
A 2.2 and the design of the mapping ϕ, the sequence of times between two visits are uniformly integrable. All
return times must moreover be at least 1. The En+1,cτ

i
n,c are therefore uniformly bounded with values in an

interval [1, ui
c] with ui

c ≥ 1, therefore satisfying A A.7.

In the following, we write {F̄ i
c (Q)}c R-valued continuous functions for c ∈ {1 . . . , |Si||Ai|, with ϕ defined in

eq. (3) for any update to a component c we write:

πk = (π1
k, . . . , π

M
k ) πj

k = ϕ(Q̂j
k) Q̂k = (Q̂1

k, . . . , Q̂
M
k ) Q̂i

k = {Q̂i
k,c}c=1,...,C (18)

We can rewrite the iterates (5) in real time in the following way:

Q̂i
k+1,c = Q̂i

k,c + αi
k,cIk,c

[
F̄ i
c (Q̂k) + δU i

k,c + ξik,c

]
δU i

k,c := Y i
k,c − EY

k,c[Y
i
k,c]

ξik,c := EY
k,c[Y

i
k,c]− F̄ i

c (Q̂
i
k)

Y i
k,c := rk + β[ϕ(Q̂i

k)(· | sik+1)]
T Q̂i

k(s
i
k+1, ·)− Q̂i

k,c

= F i
c (Q̂k, ξ

i
k,c) + δU i

k,c

(19)

where

F̄ i
c (Q) =

∑
s

dπk (s | si)
∑
a−i

π−i
k (a−i|s)r(s, ai, a−i) + βv′i(Qi, (si, ai)c)−Qi

c

F i
c (Q, ξ) = F̄ i

c (Q) + ξ

with v′i(Q, (si, ai)c) = v′i(Q, si, ai) for si, ai the cth component of Qi and recall that

v′(Qi, si, ai) =
∑
s′i

P i(si, ai, s′i)[ϕ(Qi)(· | s′i)]TQi(s′i, ·)

We will now show that the iterates eq. (19) are in fact equivalent to their constrained version:

Q̂i
k+1,c = Π[−D,D]

(
Q̂i

k,c + αi
k,cIk,c

[
F̄ i
c (Q

i
k,c) + δU i

k,c + ξik,c

])
Indeed for any i, k, c, we have αi

k,c ∈ (0, 1). Per definition of the discount factor, it is also true that β ∈ (0, 1).
It follows that since Q̂i

0,c ∈ [−D,D] for all c and R < βD, and ϕ(Q̂i
k) is a probability distribution, then we

have supk ||Q̂i
k,c|| < D for all c and the iterates will never leave the hyper-rectangle defined by [−D,D]|Si||Ai|.

This means that for constrained iterates with constraint space [−D,D]|Si||Ai|, the induced reflexion term will
always equal zero.

The Y i
k,c are then uniformly bounded, and the F i

c are moreover continuous in ξ and Q. Per definition, for any
k, i, c, EY

k,c[δU
i
k,c] = 0 and {

∑k
j=0 δU

i
k,c}k is a martingale sequence. We have therefore shown that the iterates

eq. (5) can be written as the multi-scale stochastic approximation iterates of theorem 4.

If the noise sequences (ξik,c) satisfy A A.2 to A.4, then according to theorem 4 the iterates follow the M × C
mean ODEs:

d

dt
qit(s

i
c, a

i
c) =

1

ui
c

F̄ i(q<i
t , qit, Z

≥i+1(q<i+1
t )) (20)

where π−i = (ϕ(q1t ), . . . , ϕ(q
i−1
t ), ϕ(qi+1

t )), . . . , ϕ(qMt )), the {qjt}j<i are constant, {qjt}j>i =
Z>i+1(q<i+1

t ). Then, assumption A A.9 guarantees that (20) admits an asymptotically stable point, and
we conclude on the convergence of the iterates towards a smooth equilibrium as defined in definition 2.
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We now need to prove that the noise sequences ξik,c with values in the space Ξ defined in eq. (19) are Markovian
state-dependent noise sequences, satisfying A A.2 and A A.4. Let us derive an expression for EY

k [Y i
k,c]. First,

Q̂i
k,c is a function of Q̂i

0,c and the previous Y i
j , τ

i
j , j < q, so we only need to focus on sik+1 and rk. The next

state sik+1 is sampled from the local transition kernel after the agent has visited component (si, ai), so we have
exactly:

EY
k,c

[
[ϕ(Q̂i

k)(s
i
k+1)]

T Q̂k(s
i
k+1, ·)

]
= v′(Q̂i

k, (s
i, ai)c)

As for the reward rk: EY
k,crk = EY

k,cr(sk, ak) = EY
k,cr((s

i, ai)c, s
−i
k , a−i

k ). Neither s−i
k nor a−i

k are observed
by agent i. If s−i

k was known however, then the expectation of a−i
k would just be taken from the respective

policies of other agents at that time π̄−i = ϕ(Q̂−i
k ):

EY
k,crk = EY

k,c

[
EY
k,c

[
r((si, ai)c, s

−i
k , a−i

k ) | s−i
k

]]
= EY

k,c

[
[ϕ(Q̂−i

k )(·, s−i
k )]T r((si, ai)c, s

−i
k , ·)

]
It remains to handle s−i

k . It is easy to see that the state process {s−i
k }k is in fact a Markovian process, whose

transition kernel depends on the iterates Q̂k in real time. Recall that P is the global transition matrix of dimension
|S| × |Ai| . . . |AM | × |S|. By construction the mapping ϕ returns a policy assigning a non-zero probability to
every action, so that there exists ϵϕ > 0 such that for all a ∈ Ai, π(a|si) > ϵϕ. For an initial distribution d0,
we write {dk}k≥0 ∈ (0, 1)|S| the process tracking the distribution of s−i:

dk+1 = dk · PΠM
j=1ϕ(Q̂

j
k)

{dk}k is a state-dependent Markovian process, that is:

P (dk+1 ∈ ·|F i,Y
k,c , dk) = P (dk+1 ∈ ·|Q̂k, dk) (21)

We can now write the processes {ξik,c}k as:

ξik,c =
∑
s

[dk(s|si)− dπk (s|si)]
[
ϕ(Q−i

k )(·, s−i
k )]T r(sic, s

−i
k , ai

c, ·)
]

(22)

where dπk = dϕ(Qk) is still the stationary distribution over global states under policy ϕ(Qk) as defined by:

dπ(s|si) = P (̂s = s | ŝi = si) =
P ({ŝ = s} ∩ {ŝi = si)}

P (̂si = si)
=

1[̂s(i)=si]d
π(s)∑

s̄ 1[s̄(i)=si]d
π(s̄)

(23)

. Since the reward is bounded in [−R,R], the {ξik,c}k take values in the compact [−R|S||A|, R|S||A|]. The
{ξik,c}k being an affine transformation of {dk}, it follows that it is also a state-dependent Markovian process.
Moreover, this state-dependent process is stationary, in the sense that for each Q there is a time-invariant (does
not depend on k if we know Q) measurable transition function P ξ(·, ·|Q) such that P (ξk+1,c ∈ ·|F i,Y

k,c , dk) =

P ξ(ξk,c, ·|Q̂k). Therefore, A A.2 is satisfied.

It remains to show that the noise {ξi}k satisfies A A.4: its "rate of change" is small enough that it can be locally
averaged out, and the noisy observations can be approximated by the mean ODE. In particular, we define the
fixed Q−chain {ξk,c(Q)}, the Markov chain on state space Ξ with the fixed transition function P (·, ·|Q). It is
the noise process starting from n if Q̂ stayed constant forever: {ξn+j,c(Q̂), j ≥ 0, ξn,c(Q̂) = ξn,c)}. To verify
A A.4, we need to prove for any compact set A ∈ Ξ,

lim
n,m

1

m

n+m−1∑
l=n

EY
n

[
ξl,c(Q̂)I{ξl,c∈A}

]
= 0 (24)

We define the corresponding fixed Q−chain d̃n+j(s|si, Q), for all j ≥ 0 such that:

d̃n = dn, d̃k+1 = d̃k · PΠM
j=1ϕ(Q

j) = d̃k · PQ (25)

Switching to vector notation, we write Rπ the vector of size |S| of reward expectations under the global policy
π for the global state s. So for all s ∈ S,

Rπk (s) =
[
ϕ(Q−i

k )(·, s−i
k )]T r((si, ai)cs

−i
k , ·)

]
We also write D̃l(Q) and D(Q) the corresponding state distribution vectors for d̃l(s|si, Q) the fixed Q-chain
starting in n as defined in eq. (25) and dϕ(Q)(s|si) the stationary distribution under policy ϕ(Q).
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Then for all n, m, and any Q̂ putting (22) into (24) allows us to rewrite the latter as:

1

m

n+m−1∑
l=n

EY
n

[
ξl,c(Q̂)I{ξn∈A}

]
=

1

m

n+m−1∑
l=n

[(
D̃l(Q̂)−D(Q̂)

)
Rπl

]
I{ξl∈A}

=
1

m

n+m−1∑
l=n

[(
(D̃n(Q̂)Πl−1

j=nP
Q̂)−D(Q̂)

)
Rπl

]
I{ξl∈A}

=
1

m

n+m−1∑
l=n

[(
dn

(
P Q̂

)l−n

−D(Q̂)

)
Rπl

]
I{ξl∈A}

≤ R

m

m−1∑
l′=0

∥∥∥∥(dn
(
P Q̂

)l′

−D(Q̂)

)∥∥∥∥
1

I{ξl′+n∈A}

(26)

From A 2.2, we know that the finite Markov chain representing the global state process is irreducible and
aperiodic. Therefore, P Q̂ is the transition matrix associated with an irreducible global state process over the
finite state-space S, and the stationary distribution defined by Dϕ(Q̂) is its limiting state distribution. Moreover,
the convergence rate is geometric [21], so that for any initial distribution dn there exists constants 0 < b < 1
and C > 0 such that for all l: ∥∥∥∥(dn

(
P Q̂

)l

−D(Q̂)

)∥∥∥∥
1

< C(1− b)l

Therefore, together with (26) we have that:

lim
m

lim
n

1

m

n+m−1∑
l=n

EY
l

[
ξl,c(Q̂)I{ξn∈A}

]
≤ lim

m

R

m

m−1∑
l′=0

C(1− b)l
′
= lim

m

CR

mb
= 0

A.5 Convergence with acyclic dependence structure

Proof. We recall the mean ODE followed by each agent i as introduced in (20):
d

dt
qit(s

i
c, a

i
c) =

1

ui
c

F̄ i(q<i
t , qit, Z

≥i+1(q<i+1
t ))

with F̄ i(q<i
t , qit, Z

≥i+1(q<i+1
t )) = r(sic, a

i
c, q

<i
t , qit, Z

≥i+1(q<i+1
t ))+β

∑
s′ P (si, ai, s

′i)qi(s
′i, ϕ(q)(s

′i))

and rqi(s
i
c, a

i
c, q

<i
t , qit, Z

≥i+1(q<i+1
t )) =

∑
s d

π
qi,Z>i+1(qi)(s)

∑
a−i π

−i
qi,Z>i+1(qi)

(a−i)r(s, ai, s−i). Ac-

cording to A 3.1 and for each agent i and component c, the mapping from qi to rqi(s
i
c, a

i
c, q

i) is a K - contraction
mapping. F̄ i is therefore a (K+β) contraction mapping with regard to the infinite norm. It follows that for each
agent i there is a unique fixed point Q∗i such that F̄ i(Q<i, Q∗i, Z≥i+1(Q<i+1)) = Q∗i and that this fixed
point is the unique globally asymptotically stable point of the ODE Ẋ = F̄ i(Q<i+1, Z≥i+1(Q<i+1)). Recall
that the reflection terms are null. The multiplication by the factor 1/ui

c has a time scaling effect on the ODE but
does not change its asymptotic behavior. It follows that A A.9 on the asymptotic behaviors of the mean ODEs is
satisfied. A sequence of learning rates αi

k has been assigned to each agent i such that A A.5 and A.8 are satisfied.
The weak convergence of the iterates Q̂k towards a smoothed equilibrium then follows from theorem 5.

A.6 Learning rates attribution procedure

We call TopSort any topological sorting algorithm.

We call RBFS the procedure that does reverse breadth first search on the graph, starting from a single leaf up to
all discovered roots, and returns the set of all visited nodes.

The detail of this algorithm is quite straightforward. First, Line 3 a total order on all nodes is extracted through
a topological sort. As noted earlier this is already a valid ranking for any DAG structure that will ensure
convergence, and the rest of the algorithm is dedicated to reduce the number of ranks if possible.

Lines 4 to 9 simply extract constraint sets from the DAG: two nodes belonging to the same set admit at least a
path towards a same third node, and therefore cannot receive the same rank. This is done by returning, for every
leaf, the set of all its ancestors through the reverse breadth first search.

Then, lines 11 to 21 simply adjust the ranking by extracting node by topological order, and assigning them the
slowest rank that does not conflict with other nodes in his constraint sets. The final ranking, by construction,
ensures that all nodes have higher ranks than their parents (through the topological order) and different ranks
from other nodes in their constraint sets.
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Algorithm 1 Procedure: Attribute learning rates for any DAG structure

Require: Network DAG G = (V, E) with M nodes
1: Init Σ← {}, d← [∞, . . . ,∞] ∈ (N ∪∞)M , Heap Q
2: VR ← Leaves(G)
3: Q← TopSort(G)
4: ## Retrieve constraint sets Σ
5: for leaf in VR do
6: A← RBFS(leaf)
7: σ ← A

⋃
{leaf}

8: Σ.append(σ)
9: end for

10: ## Assign levels based on Σ
11: while Q not empty do
12: v ← Q.pop()
13: if Parents(v) empty then
14: dv ← 0
15: else
16: dv ← max({dp : p ∈ Parents(v)) + 1
17: end if
18: C̄ ← {dn : ∃σ ∈ Σ, σ ⊃ {n, p}}
19: while dv ∈ C̄ do
20: dv ← dv + 1
21: end while
22: end while
23: return d

A.7 Proof of theorem 2

We detail the proof of theorem 2. The case handled here is slightly more general that the one in the theorem. We
start by considering a set of learning rate sequence attribution that preserves the convergence of theorem 5. We
then show that TreeLRs returns a learning rate distributions that belongs to that set.

Proof. We note that for a node i, a best response π∗i to other policies π−i only depends on policies in
the neighborhood. Any change at a local policy outside of the neighborhood does not lead to a change in
best-response to π−i if local policies in the neighborhood remain the same.

That is, let i be a node in the direct acyclic graph G, and πi the local policy followed by agent i. We remind
that N i is the set of the neighbors of i and write the corresponding set of local policies πN i

= {πj , j ∈ N i}.
Similarly, we write the set of the remaining nodes excluding i, N̄ i = V\N i and their local policies πN̄ i

. Let
local policy π∗i be a best response to π−i = (πN i

, πN̄ i
). Then, for any other set of local policies π′N̄ i

, π∗i is
also a best response to π′−i = (πN i

, π′N̄ i

). This is immediate if we recall that for π∗i is a best response to π if
for any local policy πi we have for all si ∈ Si and ai ∈ Ai, Qπ−i

π∗i (s
i, ai) ≥ Qπ−i

πi (si, ai) , and that due to the
structure of the reward as a sum of local components:

Qπ−i

πi (si, ai) =

M∑
l=1

E
πl,πUl

)
G(l, U l)

with

E
(πl,πUl

)
G(l, U l) = E

(sl0,s
Ul
0 ,al

k
,aUl

k
,sk)∼(dπ

l
,dπ

Ul
,πl,πUl

,P )

[
∞∑

k=0

βkrl(slk, a
l
k, s

Ul

k , aUl

k ) | si0 = si, ai
0 = ai

]
and

Qπ−i

πi (si, ai) =
∑

l∈(i,N i)

E
(πl,πUl

)
G(l, U l) +

∑
l∈N̄ i

E
(πl,πUl

)
G(l, U l)

Now let local policy π∗i be a best response to πN i

only, and take any set of local policies excluding i

π−i = (πN i

, πN̄ i

). Then
∑

l∈(i,N i) Eπl,πUl
)
G(l, U l) ≥

∑
l∈(i,N i) Eπl,πUl

)
G(l, U l) per definition of the
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best response. The second sum is a constant with respect to the local policy of i, and we have Qπ−i

π∗i (s
i, ai) ≥

Qπ−i

πi (si, ai).

For now, we assume that learning rates are such that there exists no two paths from two different agents of the
same level towards the same node i, and show that the result will follow. Note that this indeed explicitly the
property we ensure if we follow the procedure to assign learning rates (see. appendix A.6) for the case of a
common DAG.

At each i, iterates for agents i will follow an ODE whose mean field will be a continuous function of both the
parameters of agents in N i

in, which by construction learn on a slower scale, and the parameters of agents in
N i

out, which by construction learn on a faster scale. At the scale of i, the parameter of N i
in can be considered

fixed. The parameters of N i
out will have converged towards the parents of N i

out. If the G is a tree, then the set of
parents of N i

out is reduced to N i
in, and convergence follows. If G is any standard DAG, then the mean field of

any agent j ∈ N i
out is ∝ F̄ j(qU

j

). Any node l ∈ U j is either slower than i, in which case it can be considered
constant, or faster than i, in which case it has converged towards a continuous function of parameters qU

l

. Again,
any node k in U l is either slower than i, or has converged towards a continuous function of parameters qU

k

. By
repeating this procedure, we find that F̄ j(qU

j

) depends on all the ancestors of j. Recall that the graph is acyclic,
and we have just assumed that there never exists two paths from two agents at the same level towards any node.
Therefore we can rewrite F̄ j(qU

j

) as a function of a finite number of agents, in which any node that has the
same level with i must be i itself. Therefore, at the timescale i, j will have converged towards a continuous
function of qi and a set of paramters slower than i. Convergence of i follows.

Now it is easy to show that when G is a tree, and we follow the procedure TreeLRs, then there never exists two
paths from two agents of the same level towards any node i. Indeed, if there existed such two nodes v and v̄ with
a path towards i, then in a tree there would also exist a path between v and v̄, and the level of v (or v̄) would be
strictly greater than the level of v̄ (or v). This concludes the proof.
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