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ABSTRACT

In this paper, we propose a novel approach for analyzing and evaluating how a
deep neural network is autonomously learning different features related to pro-
grams on different input representations. We trained a simple autoencoder having
5 hidden layers on a dataset containing Java programs, and we tested the ability
of each of its neurons in detecting different program features using only unlabeled
data for the training phase. For doing that, we designed two binary classification
problems having different scopes: while the first one is based on the program cy-
clomatic complexity, the other one is defined starting from the identifiers chosen
by the programmers, making it more related to the functionality (and thus, to some
extent, to the semantic) of the program than to its structure. Using different pro-
gram vector representations as input, we performed experiments considering the
two problems, showing how some neurons can be effectively used as classifiers
for programs on different binary tasks. We also discuss how the program repre-
sentation chosen as input affects the classification performance, stating that new
and customized program embeddings could be designed in order to obtain models
able to solve different tasks guided by the proposed benchmarking approach.

1 INTRODUCTION

Mining information from source code has a crucial relevance in many fields of computer science.
At a first glance, it can help software developers and software engineers in their tasks of error
correction, code maintenance and code reuse. In addition to this, applications in other settings
are also possible, such as in security analysis or for finding new and effective ways for teaching
programming languages.

The aim of this work is to assess the ability of a generic machine learning model of building internal
representations able to detect different and general program features, similarly to what other authors
(Le et al., 2012) did for images.

We implemented a simple autoencoder and we trained it on different program embeddings. In spite
to the fact that we are using program embeddings designed for specific purposes, the experiments
we conducted show that some neurons are able to detect some program features, stating that our
approach is promising and can be used as a baseline for further research.

2 BACKGROUND

In the literature, there exist several examples of tools or models focused on the extraction of infor-
mation from source code or, more in general, from programs. This section provides a brief overview
of the attempts in this direction, focusing on the perspective we are interested in, and gives an intro-
duction to the works that most inspired our research statement.

A first interesting approach is the work of Allamanis et al. (2018) in which, by means of a graph
based representation for programs derived from their abstract syntax trees, a deep learning model
is trained for solving tasks such as predicting the name of a variable or detecting if a variable has
been misused. A similar task is addressed in Alon et al. (2019) and Allamanis et al. (2016), where
the authors test the performance in solving the method naming task by means of a source code
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embedding (i.e. a vector representation for source code) and a convolutional neural network based
on the transformer model (Vaswani et al., 2017), respectively.

The main motivation in studying approaches for predicting the name of a program component (e.g. a
method or a variable) lies in the fact that, since in most cases that name is given by the programmer in
order to give advice on the purpose of that component, being able to predict that name is somehow
close to extracting some semantic information from a piece of code. A comparable purpose is
targeted by Mou et al. (2016), where the authors produce a dataset of programs labelled according
to their task and a deep learning-based embedding is used for the classification of the programs by
functionality.

The idea of extracting information from the source code is also applied in other fields. For example,
referring to cybersecurity, there exist many examples of the application of various machine learning
techniques for detecting or classifying software vulnerabiliteis. Examples are proposed in Russell
et al. (2018), where a supervised deep learning model is used for the classification of different kinds
of software weaknesses, and in Yamaguchi et al. (2011), where a program embedding and common
usage patterns are used for detecting code potentially vulnerable to a known weakness.

All the approaches mentioned before share the common objective of mining a specific information
from programs. The aim of this work, instead, is to test if it is possible for a general machine learn-
ing model to build an internal representation for different program features after an unsupervised
training process. This idea takes its inspiration from the work of Le et al. (2012), where the authors
conducted experiments on images in order to build a feature representation from unlabelled data,
showing how their model was able to effectively recognise, for example, faces and cats.

3 EXPERIMENTS

This section describes the experimental setting we adopted for testing the effectiveness of our ap-
proach. We first implemented two simple autoencoders (Goodfellow et al., 2016) for program vec-
tors, and we trained them using two distinct source code embeddings as input. We then tested the
ability of such autoencoders in learning different (and never seen before) program features, similarly
to what Le et al. (2012) did for images.

3.1 NETWORK ARCHITECTURE

Since the aim of this work is to lay the foundations of a methodological approach for mining varied
properties from a program, the study of the best network architecture is not in the scope of this paper.
Therefore, without any hyper-parameters optimization nor any in-depth study on the network design,
we implemented two simple dense autoencoders having two hidden layers in the encoder, two sym-
metrical hidden layers in the decoder and one code layer in the middle. We used the ADADELTA
optimizer (Zeiler, 2012) and a Rectified Linear Unit (ReLU), defined, for all x ∈ R as max(0, x), as
the activation function for the hidden layers. As a loss function, we used the Mean Squared Error:

MSE =
1

n

n∑
i=1

(xi − yi)
2 (1)

Where n is the cardinality of the set of vectors, xi is the i-th input vector and yi is the prediction for
the i-th vector.

The summary of our network architecture is shown in Figure 1. We wrote this implementation with
the APIs provided by the Keras library (Chollet et al., 2015).

3.2 TRAINING

We trained our autoencoders on the Java dataset also used in Allamanis et al. (2016), which is a
2GB collection of popular gitHub1 projects containing over 200000 methods. For each method in

1https://github.com
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Figure 1: Architecture of the networks used for the experiments. The sizes of the layers differs in
the models due to different embedding dimensions: we considered n = 384 for code2vec vectors
and n = 300 for doc2vec vectors. Layers highlighted in yellow are those tested in the classification
experiments.

the dataset, we built the corresponding vectors by applying two kinds of source code embedding
techniques:

1. The source code embedding obtained with the code2vec model (Alon et al., 2019), which
produces 384-dimensional code vectors combining the paths on the abstract syntax tree
through the attention model (Vaswani et al., 2017).

2. A shallow 300-dimensional embedding obtained by applying the doc2vec model (Le &
Mikolov, 2014) on the pure source code, without any preprocessing, using the Gensim
(Řehůřek & Sojka, 2010) framework.

The reason for the choice of those embeddings as our inputs lies in the underlying construction ideas:
the code2vec model is designed for predicting the name of a method, and thus for capturing some
semantic information related to the method, while the other one is a rough application of a classical
natural language processing algorithm (Mikolov et al., 2013) to the pure source code, which is not
supposed, dealing with source code instead of natural language, to seize features or properties of
any type.

3.3 PROBLEMS DEFINITION

The focus of this work is to investigate the ability of a general deep neural network in building an
internal representation able to detect different features after an unsupervised training phase. To this
end, we defined two different binary classification problems having throughly different natures. The
first one, which is designed using the program control flow graph (CFG) (Allen, 1970), addresses
the structure of the source code, while the other one uses the identifiers chosen by the programmers
in order to target a semantic task.

Structural problem We considered the cyclomatic complexity (McCabe, 1976) of a program,
defined from its control flow graph G having n vertices, e edges and p connected components as:

V (G) = e− n+ p (2)

Dealing with java methods, such metric can be easily calculated counting 1 point for the beginning
of the method, 1 point for each conditional construct and for each case or default block in a switch-
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case statement, 1 point for each iterative structure and 1 point for each Boolean condition. Starting
from this software metric, we defined the problem as follows:

Problem 1 Let M be a set of Java methods, and let hc : M → {0, 1} be a classification rule for
the methods. We define, for each m ∈M :

hc(m) =

{
0 if V (Gm) < 10

1 otherwise
(3)

Semantic problem For the definition of this problem, we considered the assumption (as in the
works of Allamanis et al. (2016) and Alon et al. (2018)) that the name that a programmer gives to a
method is a sort of summary of what that method does. This means that the name of a method shall
providesome semantic information about the method itself. Starting from this premise, we defined
this semantic problem using the sub-tokens in the method name (i.e. the words obtained by splitting
the names considering the camel case and the snake case notations) and we locate a method in a
class according to the presence or the absence of a given sub-token into its name. Formally, we can
describe this binary classification problem as follows:

Problem 2 Let N be a set of method names, and let T be a set of words. We write s1 ≤ s2 if s1 is
a substring of s2. Let ht : N → {0, 1} be a classification rule for the methods. We define, for each
n ∈ N and for each t ∈ T :

ht(n) =

{
1 if t ≤ n

0 otherwise
(4)

Random problem Finally, we defined a problem defined by random labels to be used as a bench-
mark. For this problem, we only considered a random split of the methods:

Problem 3 Let L be a list of methods, and let mi ∈ L be the method having index i. Given a
threshold n and a function hn : L→ {0, 1}, we define, for each mi ∈ L:

hn(mi) =

{
1 if i ≤ n

0 otherwise
(5)

3.4 CLASSIFICATION

In order to assess the ability of our network in autonomously learning program features, we tested
the performance of the hidden neurons in classifying methods according to the problems described
below.

Using the combinations between the program vectors described in Section 3.2 We considered the
code layer and the two hidden layers in the decoder, as shown in Figure 1, and we tested the accu-
racy score of each neuron in classifying programs, considering different thresholds of the activation
values.

The Algorithm 1 describes the procedure for finding the best neuron. We applied such routine to
both our models (i.e. the autoencoders trained on the code2vec and doc2vec models, respectively)
using, for each binary classification problem, a balanced random sample of the dataset containing
1500 positive examples and 1500 negative examples, always obtaining an accuracy score higher than
60%, as reported in Table 1.

In order to verify the significance of the result, namely the fact that such accuracy scores are reason-
ably higher than those of a “lucky” random classification, we compared them with an actual random
one: we first produced a balanced 300-dimensional binary vector x and then, considering x as the
vector representing the true labels, we simulated 5000 predictions using 5000 randomly generated
binary vectors. Such experiment produced a best accuracy score of 53%, stating that our best neuron
is a significantly better classifier than a pure random one.
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Algorithm 1: Algorithm for finding the best neuron in classifying programs
bestAccuracy = -1 // Accuracy of the best neuron
vectors := list of program vectors
for each neuron do

activations := list of activation values for that neuron
minVal = 0
maxVal = max(activations)
step = (maxVal - minVal)/10
for i = 0 to 10 do

threshold[i] = i*step
end
best = -1 // Best accuracy for this neuron
for each threshold do

predLabels := predicted class labels
for i = 0 to len(activations) do

if activations[i] < threshold then
predLabels[i] = 0

else
predLabels[i] = 1

end
end

end
if accuracy(predLabels) > best then

best = accuracy(predLabels) // update best accuracy for this neuron
end
if best > bestAccuracy then

bestAccuracy = best // update global best accuracy
end

end
return neuron having best accuracy

Table 1: Accuracy obtained by the best neuron for the considered problem instances.

Problem code2vec doc2vec

Random 58% 56%
Complexity 63% 65%
Semantic - find 67% 68%
Semantic - create 64% 57%
Semantic - find OR create 65% 60%
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Figure 2: Results for the structural problem. The plot to the left reports the accuracy for each neuron,
while the plot on the right show the accuracy distribution with respect to the number of neurons that
achieve a certain accuracy level.

4 RESULTS DISCUSSION

Since our goal was to start playing with analysis methods derived from works on images (e.g. Le
et al. (2012)), and adapting it to the specific setting of unsupervised models on program embeddings,
we are looking for evidences that those methods, even in the simple models we used, are able to
discover neurons, possibly internal ones, which perform significantly better than others, on tasks not
directly related to the unsupervised learning goals of the model.

As introduced in the previous section, we trained a simple autoencoder on vectors from two different
embeddings: code2vec and doc2vec, and later we fed as input for inference to each of the trained
autoencoders, two possible sets of vectors: one defining a supervised task on a code structural
problem, and a second one for a code semantics problem. We are not looking for a good performance
of our models on these tasks, instead we are looking for (possibly internal) neurons whose activation
values on the input vectors allow to obtain a classification accuracy significantly better (above 60%)
than a random labeling. Interestingly, we consistently found them in the 4 experimental settings (2
unsupervised learners, each measured against 2 different supervised tasks).

Finally, we checked the “best neuron” behaviour of the trained models when input vectors were
randomly labeled. Surprisingly, no neuron has been able to classify such artificial data sets with
accuracy above our threshold of 60%.

More in details, for the Structural problem, the model based on code2vec performed worse than the
doc2vec model. The accuracy on correct labels was clearly above 60%, but the accuracy on random
labels stayed slightly below our threshold. On the other hand, the model based on doc2vec had a
similar performance on the correct labels, but a better separation of results on random labels: in this
case the best accuracy of its neurons stayed more clearly below our threshold, typically around 55%.
See Figure 2.

Considering the Semantic problem, we tested our approach on three problems in the category. We
checked our 2 trained systems on three data sets which classified, as positive instances, methods
(their embeddings) whose identifiers were related to some chosen operation. Viz, the three data sets
have been those for: methods performing some find operation, methods performing some create
operation, and finally the data set where positive instances are the union of those from the other two
data sets.

The goal was to check the performance on two expectedly different semantic contexts (and the
source codes implementing the find and create are typically different), and finally to check whether
any neuron in the trained models was able to in some way classify instances from the union problem,
thus recognizing the more difficult concept which is the “OR” disjunction of the first two.

The results on these three different examples of the Semantic problem showed what follows. Both
learning systems had neurons able to classify reasonably well the instances of the three data sets,
but with different quality on the first two, and worse in the third “union” data set. The performance
on the three data sets can be seen in Figure 3.
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Figure 3: Results for the semantic problem, considering different identifiers. The plot to the left
reports the accuracy for each neuron, while the plot on the right show the accuracy distribution with
respect to the number of neurons that achieve a certain accuracy level.

Figure 4: Results for the random problem. The plot to the left reports the accuracy for each neuron,
while the plot on the right show the accuracy distribution with respect to the number of neurons that
achieve a certain accuracy level.

Considering the 2 different high level tasks and their union, find and create, the best performance
has been with find, compared to create, but more interestingly, the worse behavior was for the task
requiring to recognize their union.

Finally, we find useful to visualize the overall behavior of our systems on the random problem in
Figure 4.

5 CONCLUSION

We defined and tested methods to analyse the behavior of trained unsupervised models for programs
code, when their neurons are tested as classifiers for labeled problems, in analogy with what has
been done in a similar setting for images.

Results have been interesting, because we discovered neurons which could do significantly better
than a random classifier on problems related to the structure and to the semantic of source code
instances. The interest comes from the fact that those “best neurons” are in a network trained and
tested on input vectors which actually are themselves generated through a preceding embedding pro-
cess for Java source code methods. Therefore, even if their performance on structural and semantic
classification problems is very limited (with accuracy around 66%), their activation values seem to
somehow distinguish embedding vectors coming from source code having different structural, or
semantic, properties.

This approach could be further studied, because in some cases we need a good explanation of why
such (approximate) classification is emerging, even if performed on the embedding and not on the
source code (or its abstract syntax tree). For instance, for our experiments we used embeddings
defined in literature, which could perhaps explain some of our results, because they have been built
with goals good for our simple tasks (consider the identifiers for code2vec and our Semantic prob-
lem). But this is not the case for all of our experiments.
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Therefore, we could first consider different embeddings, so to favour the passing of useful informa-
tion from source code through to the learning neurons, and also we will study more sophisticated
learning models, which will be actually designed for performance, so to check in that more realistic
setting whether “good neurons” emerge.
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